CS 263: Counting and Sampling

Nima Anari
s salatad

slides for

Comparison Arguments

Review

Example: hypercube

D Eigvals: k / n
$D\binom{n}{k}$ many

Review

Example: hypercube

D Eigvals: k / n
$D\binom{n}{k}$ many

Example: cycle
© Eigvals:
$\cos (2 \pi k / n)$
D One for $k \in[n]$

Review

Example: hypercube

D Eigvals: k / n
$D\binom{n}{k}$ many

Example: cycle

© Eigvals: $\cos (2 \pi k / n)$
D One for $k \in[n]$

\checkmark Relaxation time (lazy, reversible):

$$
t_{\text {rel }}=\frac{1}{1-\lambda_{2}}=\Theta\left(\lim _{\epsilon \rightarrow 0} \frac{\mathrm{t}_{\text {mix }}(\epsilon)}{\log (1 / \epsilon)}\right)
$$

Review

Example: hypercube

D Eigvals: k / n
$D\binom{n}{k}$ many

Example: cycle
© Eigvals: $\cos (2 \pi k / n)$
D One for $k \in[n]$

\checkmark Relaxation time (lazy, reversible):

$$
t_{\text {rel }}=\frac{1}{1-\lambda_{2}}=\Theta\left(\lim _{\epsilon \rightarrow 0} \frac{\mathrm{t}_{\text {mix }}(\epsilon)}{\log (1 / \epsilon)}\right)
$$

Review

Example: hypercube

D Eigvals: k / n
$D\binom{n}{k}$ many

Example: cycle

\bigcirc Eigvals: $\cos (2 \pi k / n)$
D One for $k \in[n]$

\checkmark Relaxation time (lazy, reversible):

$$
t_{\text {rel }}=\frac{1}{1-\lambda_{2}}=\Theta\left(\lim _{\epsilon \rightarrow 0} \frac{\mathrm{t}_{\text {mix }}(\epsilon)}{\log (1 / \epsilon)}\right)
$$

\bigcirc Functional analysis in cont. time:

$$
\frac{\mathrm{d}}{\mathrm{dt}} \mathcal{D}_{\phi}\left(v_{\mathrm{t}} \| \mu\right) \leqslant-\rho \mathcal{D}_{\phi}\left(v_{\mathrm{t}} \| \mu\right)
$$

Review

Example: hypercube

D Eigvals: k / n
$D\binom{n}{k}$ many

Example: cycle

\bigcirc Eigvals: $\cos (2 \pi k / n)$
D One for $k \in[n]$

\checkmark Relaxation time (lazy, reversible):

$$
t_{\text {rel }}=\frac{1}{1-\lambda_{2}}=\Theta\left(\lim _{\epsilon \rightarrow 0} \frac{\mathrm{t}_{\text {mix }}(\epsilon)}{\log (1 / \epsilon)}\right)
$$

- Functional analysis in cont. time:

$$
\frac{\mathrm{d}}{\mathrm{dt}} \mathcal{D}_{\phi}\left(v_{\mathrm{t}} \| \mu\right) \leqslant-\rho \mathcal{D}_{\phi}\left(v_{\mathrm{t}} \| \mu\right)
$$

D Dirichlet form $\mathcal{E}(f, g)=$

$$
\frac{1}{2} \mathbb{E}_{(x, y) \sim Q}[(f(x)-f(y))(g(x)-g(y))]
$$

Review

Example: hypercube

D Eigvals: k / n
$D\binom{n}{k}$ many

Example: cycle

\bigcirc Eigvals: $\cos (2 \pi k / n)$
D One for $k \in[n]$

\checkmark Relaxation time (lazy, reversible):

$$
t_{\text {rel }}=\frac{1}{1-\lambda_{2}}=\Theta\left(\lim _{\epsilon \rightarrow 0} \frac{t_{\text {mix }}(\epsilon)}{\log (1 / \epsilon)}\right)
$$

- Functional analysis in cont. time:

$$
\frac{\mathrm{d}}{\mathrm{dt}} \mathcal{D}_{\phi}\left(v_{\mathrm{t}} \| \mu\right) \leqslant-\rho \mathcal{D}_{\phi}\left(v_{\mathrm{t}} \| \mu\right)
$$

D Dirichlet form $\mathcal{E}(f, g)=$

$$
\frac{1}{2} \mathbb{E}_{(x, y) \sim Q}[(f(x)-f(y))(g(x)-g(y))]
$$

- Func. analysis via Dirichlet form:

$$
\mathcal{E}\left(\phi^{\prime}(f), f\right) \geqslant \rho E n t^{\phi}[f]
$$

Review

Example: hypercube

D Eigvals: k / n
$D\binom{n}{k}$ many

Example: cycle

\bigcirc Eigvals: $\cos (2 \pi k / n)$
D One for $k \in[n]$

\checkmark Relaxation time (lazy, reversible):

$$
t_{\text {rel }}=\frac{1}{1-\lambda_{2}}=\Theta\left(\lim _{\epsilon \rightarrow 0} \frac{t_{\text {mix }}(\epsilon)}{\log (1 / \epsilon)}\right)
$$

\checkmark Functional analysis in cont. time:

$$
\frac{\mathrm{d}}{\mathrm{dt}} \mathcal{D}_{\phi}\left(v_{\mathrm{t}} \| \mu\right) \leqslant-\rho \mathcal{D}_{\phi}\left(v_{\mathrm{t}} \| \mu\right)
$$

D Dirichlet form $\mathcal{E}(f, g)=$

$$
\frac{1}{2} \mathbb{E}_{(x, y) \sim Q}[(f(x)-f(y))(g(x)-g(y))]
$$

- Func. analysis via Dirichlet form:

$$
\mathcal{E}\left(\phi^{\prime}(f), f\right) \geqslant \rho E n t^{\phi}[f]
$$

\checkmark Poincaré: $2 \mathcal{E}(f, f) \geqslant \rho \operatorname{Var}[f]$

Review

Example: hypercube

D Eigvals: k / n
$D\binom{n}{k}$ many

Example: cycle

\bigcirc Eigvals: $\cos (2 \pi k / n)$
D One for $k \in[n]$

D Relaxation time (lazy, reversible):

$$
t_{\text {rel }}=\frac{1}{1-\lambda_{2}}=\Theta\left(\lim _{\epsilon \rightarrow 0} \frac{t_{\text {mix }}(\epsilon)}{\log (1 / \epsilon)}\right)
$$

\checkmark Functional analysis in cont. time:

$$
\frac{\mathrm{d}}{\mathrm{dt}} \mathcal{D}_{\phi}\left(v_{\mathrm{t}} \| \mu\right) \leqslant-\rho \mathcal{D}_{\phi}\left(v_{\mathrm{t}} \| \mu\right)
$$

D Dirichlet form $\mathcal{E}(f, g)=$

$$
\frac{1}{2} \mathbb{E}_{(x, y) \sim Q}[(f(x)-f(y))(g(x)-g(y))]
$$

- Func. analysis via Dirichlet form:

$$
\mathcal{E}\left(\phi^{\prime}(f), f\right) \geqslant \rho E n t^{\phi}[f]
$$

\bigcirc Poincaré: $2 \mathcal{E}(f, f) \geqslant \rho \operatorname{Var}[f]$
$\bigcirc \operatorname{MLSI}: \mathcal{E}(f, \log f) \geqslant \rho \operatorname{Ent}[f]$

Comparison Arguments

\checkmark Direct comparison
D Routing

- Comparison method

Applications
\bigcirc Canonical paths
D Matchings

Comparison Arguments

- Direct comparison

D Routing

- Comparison method

Applications

- Canonical paths
\bigcirc Matchings

Direct comparison

D Suppose we have two chains $\mathrm{P}, \mathrm{P}^{\prime}$ with the same stationary μ.

Direct comparison

D Suppose we have two chains $\mathrm{P}, \mathrm{P}^{\prime}$ with the same stationary μ.

Example: Metropolis vs. Glauber

\bigcirc Metropolis: pick v, c and accept/reject.
\checkmark Glauber: pick v, then pick valid c.

Direct comparison

D Suppose we have two chains $\mathrm{P}, \mathrm{P}^{\prime}$ with the same stationary μ.

Example: Metropolis vs. Glauber

\bigcirc Metropolis: pick v, c and accept/reject.

- Glauber: pick v, then pick valid c.

© Comparison: as long as $Q(x, y) \geqslant c \cdot Q^{\prime}(x, y)$ for $x \neq y$, functional inequalities for P^{\prime} transfer to P with a loss of c .

Direct comparison

D Suppose we have two chains $\mathrm{P}, \mathrm{P}^{\prime}$ Proof: with the same stationary μ.

Example: Metropolis vs. Glauber

\bigcirc Metropolis: pick v, c and accept/reject.

- Glauber: pick v, then pick valid c.

D Comparison: as long as $Q(x, y) \geqslant c \cdot Q^{\prime}(x, y)$ for $x \neq y$, functional inequalities for P^{\prime} transfer to P with a loss of c .

Direct comparison

\bigcirc Suppose we have two chains P, P^{\prime} with the same stationary μ.

Example: Metropolis vs. Glauber
D Metropolis: pick v, c and accept/reject.
D Glauber: pick v, then pick valid c.

Proof:
D Func ineqs are of the form

$$
\mathcal{E}\left(\phi^{\prime}(f), f\right) \geqslant \rho E n t^{\phi}[f]
$$

© Comparison: as long as $Q(x, y) \geqslant c \cdot Q^{\prime}(x, y)$ for $x \neq y$, functional inequalities for P^{\prime} transfer to P with a loss of c .

Direct comparison

- Suppose we have two chains P, P^{\prime} with the same stationary μ.

Example: Metropolis vs. Glauber
\bigcirc Metropolis: pick v, c and accept/reject.

- Glauber: pick v, then pick valid c.

- Comparison: as long as $Q(x, y) \geqslant c \cdot Q^{\prime}(x, y)$ for $x \neq y$, functional inequalities for P^{\prime} transfer to P with a loss of c .

Proof:
D Func ineqs are of the form

$$
\mathcal{E}\left(\phi^{\prime}(f), f\right) \geqslant \rho E n t^{\phi}[f]
$$

D But \mathcal{E} is a positive Q / Q^{\prime}-weighted combination of

$$
\left(\phi^{\prime}(f(x))-\phi^{\prime}(f(y))\right)(f(x)-f(y))
$$

Because ϕ is convex, these terms are always $\geqslant 0$.

Direct comparison

\checkmark Suppose we have two chains P, P^{\prime} with the same stationary μ.

Example: Metropolis vs. Glauber
\bigcirc Metropolis: pick v, c and accept/reject.

- Glauber: pick v, then pick valid c.

© Comparison: as long as $Q(x, y) \geqslant c \cdot Q^{\prime}(x, y)$ for $x \neq y$, functional inequalities for P^{\prime} transfer to P with a loss of c .

Proof:
D Func ineqs are of the form

$$
\mathcal{E}\left(\phi^{\prime}(f), f\right) \geqslant \rho E n t^{\phi}[f]
$$

D But \mathcal{E} is a positive $\mathrm{Q} / \mathrm{Q}^{\prime}$-weighted combination of

$$
\left(\phi^{\prime}(f(x))-\phi^{\prime}(f(y))\right)(f(x)-f(y))
$$

Because ϕ is convex, these terms are always $\geqslant 0$.
D So as long as $Q(x, y) \geqslant c \cdot Q^{\prime}(x, y)$:

$$
\mathcal{E}_{P}\left(\phi^{\prime}(f), f\right) \geqslant c \cdot \mathcal{E}_{P^{\prime}}\left(\phi^{\prime}(f), f\right)
$$

Corollary
Metropolis and Glauber satisfy the same Poincaré and MLSI up to

$$
\frac{q}{q-\Delta}
$$

Corollary
Metropolis and Glauber satisfy the same Poincaré and MLSI up to

$$
\frac{q}{q-\Delta}
$$

D What if P doesn't have all the moves of P^{\prime} ?

Corollary
Metropolis and Glauber satisfy the same Poincaré and MLSI up to

$$
\frac{q}{q-\Delta}
$$

D What if P doesn't have all the moves of P^{\prime} ?
D Direct comparison becomes useless.

Corollary
Metropolis and Glauber satisfy the same Poincaré and MLSI up to

$$
\frac{q}{q-\Delta}
$$

D What if P doesn't have all the moves of P^{\prime} ?
\checkmark Direct comparison becomes useless.
D Idea: simulate moves of P^{\prime} by multiple of P .

Corollary

Metropolis and Glauber satisfy the same Poincaré and MLSI up to

$$
\frac{q}{q-\Delta}
$$

D What if P doesn't have all the moves of P^{\prime} ?
\checkmark Direct comparison becomes useless.
D Idea: simulate moves of P^{\prime} by multiple of P .

D Main application: when P^{\prime} is the ideal chain, i.e.,

Routing

Multi-commodity flow (normalized)
A distribution π over paths

$$
X_{0} \rightarrow X_{1} \rightarrow \cdots \rightarrow X_{\ell}
$$

Routing

Multi-commodity flow (normalized)
A distribution π over paths

$$
X_{0} \rightarrow X_{1} \rightarrow \cdots \rightarrow X_{\ell}
$$

- Note: ℓ can be random

Routing

Multi-commodity flow (normalized)
A distribution π over paths

$$
X_{0} \rightarrow X_{1} \rightarrow \cdots \rightarrow X_{\ell}
$$

- Note: ℓ can be random
$D \pi$ routing of an ergodic flow Q^{\prime} if

$$
\mathbb{P}_{\pi}\left[X_{0}=s, X_{\ell}=t\right]=Q^{\prime}(s, t)
$$

Routing

Multi-commodity flow (normalized)
A distribution π over paths

$$
X_{0} \rightarrow X_{1} \rightarrow \cdots \rightarrow X_{\ell}
$$

- Note: ℓ can be random
$D \pi$ routing of an ergodic flow Q^{\prime} if

$$
\mathbb{P}_{\pi}\left[X_{0}=s, X_{\ell}=t\right]=Q^{\prime}(s, t)
$$

\bigcirc Alt view: to route Q^{\prime}, specify
conditional dist on $s \rightarrow t$ paths:

$$
\pi\left(\text { path } \mid X_{0}=s, X_{\ell}=t\right)
$$

Routing

Multi-commodity flow (normalized) Congestion

A distribution π over paths

$$
X_{0} \rightarrow X_{1} \rightarrow \cdots \rightarrow X_{\ell}
$$

D Note: ℓ can be random
$D \pi$ routing of an ergodic flow Q^{\prime} if

$$
\mathbb{P}_{\pi}\left[X_{0}=s, X_{\ell}=t\right]=Q^{\prime}(s, t)
$$

\bigcirc Alt view: to route Q^{\prime}, specify conditional dist on $s \rightarrow t$ paths:

$$
\pi\left(\text { path } \mid X_{0}=s, X_{\ell}=t\right)
$$

Suppose π is dist over paths and Q is ergodic flow. Congestion is

$$
\max \left\{\left.\frac{\mathbb{P}_{\text {path } \sim \pi}[(x \rightarrow y) \in \text { path }]}{Q(x, y)} \right\rvert\, x \neq y\right\}
$$

Routing

Multi-commodity flow (normalized) Congestion

A distribution π over paths

$$
X_{0} \rightarrow X_{1} \rightarrow \cdots \rightarrow X_{\ell}
$$

\bigcirc Note: ℓ can be random
$D \pi$ routing of an ergodic flow Q^{\prime} if

$$
\mathbb{P}_{\pi}\left[X_{0}=s, X_{\ell}=t\right]=Q^{\prime}(s, t)
$$

\bigcirc Alt view: to route Q^{\prime}, specify conditional dist on $s \rightarrow t$ paths:

$$
\pi\left(\text { path } \mid X_{0}=s, X_{\ell}=t\right)
$$

Suppose π is dist over paths and Q is ergodic flow. Congestion is

$$
\max \left\{\left.\frac{\mathbb{P}_{\text {path } \sim \pi}[(x \rightarrow y) \in \text { path }]}{Q(x, y)} \right\rvert\, x \neq y\right\}
$$

D Goal: route Q^{\prime} through Q with low congestion and length \leftarrow this is just ℓ

Routing

Multi-commodity flow (normalized) Congestion

A distribution π over paths

$$
X_{0} \rightarrow X_{1} \rightarrow \cdots \rightarrow X_{\ell}
$$

\checkmark Note: ℓ can be random
$D \pi$ routing of an ergodic flow Q^{\prime} if

$$
\mathbb{P}_{\pi}\left[X_{0}=s, X_{\ell}=t\right]=Q^{\prime}(s, t)
$$

\bigcirc Alt view: to route Q^{\prime}, specify conditional dist on $s \rightarrow t$ paths:

$$
\pi\left(\text { path } \mid X_{0}=s, X_{\ell}=t\right)
$$

Suppose π is dist over paths and Q is ergodic flow. Congestion is

$$
\max \left\{\left.\frac{\mathbb{P}_{\text {path } \sim \pi}[(x \rightarrow y) \in \text { path }]}{Q(x, y)} \right\rvert\, x \neq y\right\}
$$

D Goal: route Q^{\prime} through Q with low congestion and length \longleftarrow this is just ℓ

Example: trivial routing

When $\pi=Q^{\prime}$, length is 1 and congestion is

$$
\max \left\{\frac{Q^{\prime}(x, y)}{Q(x, y)}\right\}=\max \left\{\frac{P^{\prime}(x, y)}{P(x, y)}\right\}
$$

$\mathrm{P}, \mathrm{P}^{\prime}$ reversible with same stationary:

Lemma: direct comparison

Assume routing with length $\leqslant 1$. If P^{\prime} contracts \mathcal{D}_{ϕ} at rate $\rho^{\prime}, \mathrm{P}$ has rate:

$$
\rho=\frac{\rho^{\prime}}{\text { congestion }}
$$

$\mathrm{P}, \mathrm{P}^{\prime}$ reversible with same stationary:

Lemma: direct comparison

Assume routing with length $\leqslant 1$. If P^{\prime} contracts \mathcal{D}_{ϕ} at rate ρ^{\prime}, P has rate:

$$
\rho=\frac{\rho^{\prime}}{\text { congestion }}
$$

Lemma: comparison

Assume any routing. If P^{\prime} contracts χ^{2} at rate $\rho^{\prime}, \mathrm{P}$ contracts at rate:

$$
\rho=\frac{\rho^{\prime}}{(\text { congestion }) \cdot(\text { max length })}
$$

$\mathrm{P}, \mathrm{P}^{\prime}$ reversible with same stationary:

Lemma: direct comparison

Assume routing with length $\leqslant 1$. If P^{\prime} contracts \mathcal{D}_{ϕ} at rate ρ^{\prime}, P has rate:

$$
\rho=\frac{\rho^{\prime}}{\text { congestion }}
$$

Lemma: comparison

Assume any routing. If P^{\prime} contracts χ^{2} at rate $\rho^{\prime}, \mathrm{P}$ contracts at rate:

$$
\rho=\frac{\rho^{\prime}}{(\text { congestion }) \cdot(\text { max length })}
$$

D Note: for length $\geqslant 2$, we can only compare Poincaré ineqs. MLSI does not compare. :
$\mathrm{P}, \mathrm{P}^{\prime}$ reversible with same stationary:

Lemma: direct comparison

Assume routing with length $\leqslant 1$. If P^{\prime} contracts \mathcal{D}_{ϕ} at rate ρ^{\prime}, P has rate:

$$
\rho=\frac{\rho^{\prime}}{\text { congestion }}
$$

Lemma: comparison

Assume any routing. If P^{\prime} contracts χ^{2} at rate $\rho^{\prime}, \mathrm{P}$ contracts at rate:

$$
\rho=\frac{\rho^{\prime}}{(\text { congestion }) \cdot(\text { max length })}
$$

D Note: for length $\geqslant 2$, we can only compare Poincaré ineqs. MLSI does not compare. :
$\mathrm{P}, \mathrm{P}^{\prime}$ reversible with same stationary:

Lemma: direct comparison

Assume routing with length $\leqslant 1$. If P^{\prime} contracts \mathcal{D}_{ϕ} at rate ρ^{\prime}, P has rate:

$$
\rho=\frac{\rho^{\prime}}{\text { congestion }}
$$

Lemma: comparison

Assume any routing. If P^{\prime} contracts χ^{2}
at rate $\rho^{\prime}, \mathrm{P}$ contracts at rate:

$$
\rho=\frac{\rho^{\prime}}{(\text { congestion }) \cdot(\text { max length })}
$$

\bigcirc Note: for length $\geqslant 2$, we can only compare Poincaré ineqs. MLSI does not compare. :

Proof:
D Will compare Dirichlet forms. For Poincaré, we care about $\mathcal{E}(f, f)$.
$\mathrm{P}, \mathrm{P}^{\prime}$ reversible with same stationary:

Lemma: direct comparison

Assume routing with length $\leqslant 1$. If P^{\prime} contracts \mathcal{D}_{ϕ} at rate ρ^{\prime}, P has rate:

$$
\rho=\frac{\rho^{\prime}}{\text { congestion }}
$$

Lemma: comparison

Assume any routing. If P^{\prime} contracts χ^{2} at rate $\rho^{\prime}, \mathrm{P}$ contracts at rate:

$$
\rho=\frac{\rho^{\prime}}{(\text { congestion }) \cdot(\text { max length })}
$$

\checkmark Note: for length $\geqslant 2$, we can only compare Poincaré ineqs. MLSI does not compare. :

Proof:
D Will compare Dirichlet forms. For Poincaré, we care about $\mathcal{E}(f, f)$.
D Take path $X_{0} \rightarrow X_{1} \rightarrow \cdots \rightarrow X_{\ell}$ of routing π. By Cauchy-Schwarz:

$$
\begin{gathered}
\ell \cdot \sum_{i}\left(f\left(X_{i+1}\right)-f\left(X_{i}\right)\right)^{2} \geqslant \\
\left(f\left(X_{\ell}\right)-f\left(X_{0}\right)\right)^{2}
\end{gathered}
$$

$\mathrm{P}, \mathrm{P}^{\prime}$ reversible with same stationary:

Lemma: direct comparison

Assume routing with length $\leqslant 1$. If P^{\prime} contracts \mathcal{D}_{ϕ} at rate ρ^{\prime}, P has rate:

$$
\rho=\frac{\rho^{\prime}}{\text { congestion }}
$$

Lemma: comparison

Assume any routing. If P^{\prime} contracts χ^{2} at rate $\rho^{\prime}, \mathrm{P}$ contracts at rate:

$$
\rho=\frac{\rho^{\prime}}{(\text { congestion }) \cdot(\text { max length })}
$$

D Note: for length $\geqslant 2$, we can only compare Poincaré ineqs. MLSI does not compare. :

Proof:
D Will compare Dirichlet forms. For Poincaré, we care about $\mathcal{E}(f, f)$.
D Take path $X_{0} \rightarrow X_{1} \rightarrow \cdots \rightarrow X_{\ell}$ of routing π. By Cauchy-Schwarz:

$$
\begin{gathered}
\ell \cdot \sum_{i}\left(f\left(X_{i+1}\right)-f\left(X_{i}\right)\right)^{2} \geqslant \\
\left(f\left(X_{\ell}\right)-f\left(X_{0}\right)\right)^{2}
\end{gathered}
$$

\checkmark Taking expectations we get

$$
\begin{aligned}
& \sum_{x, y} \mathbb{E}[\ell \cdot \mathbb{1}[(x \rightarrow y) \in \text { path }]](f(x)- \\
& f(y))^{2} \geqslant \mathbb{E}_{(x, y) \sim Q^{\prime}}\left[(f(x)-f(y))^{2}\right]
\end{aligned}
$$

$\mathrm{P}, \mathrm{P}^{\prime}$ reversible with same stationary:

Lemma: direct comparison

Assume routing with length $\leqslant 1$. If P^{\prime} contracts \mathcal{D}_{ϕ} at rate ρ^{\prime}, P has rate:

$$
\rho=\frac{\rho^{\prime}}{\text { congestion }}
$$

Lemma: comparison

Assume any routing. If P^{\prime} contracts χ^{2} at rate $\rho^{\prime}, \mathrm{P}$ contracts at rate:

$$
\rho=\frac{\rho^{\prime}}{(\text { congestion }) \cdot(\text { max length })}
$$

\bigcirc Note: for length $\geqslant 2$, we can only compare Poincaré ineqs. MLSI does not compare. :)

Proof:
D Will compare Dirichlet forms. For Poincaré, we care about $\mathcal{E}(f, f)$.
D Take path $X_{0} \rightarrow X_{1} \rightarrow \cdots \rightarrow X_{\ell}$ of routing π. By Cauchy-Schwarz:

$$
\begin{gathered}
\ell \cdot \sum_{i}\left(f\left(X_{i+1}\right)-f\left(X_{i}\right)\right)^{2} \geqslant \\
\left(f\left(X_{\ell}\right)-f\left(X_{0}\right)\right)^{2}
\end{gathered}
$$

\checkmark Taking expectations we get

$$
\begin{aligned}
& \sum_{x, y} \mathbb{E}[\ell \cdot \mathbb{1}[(x \rightarrow y) \in \text { path }]](f(x)- \\
& f(y))^{2} \geqslant \mathbb{E}_{(x, y) \sim Q^{\prime}}\left[(f(x)-f(y))^{2}\right]
\end{aligned}
$$

\checkmark The I.h.s. is at most

$$
\begin{gathered}
(\text { cong }) \cdot(\text { max len }) \cdot \\
\mathbb{E}_{(x, y) \sim Q}^{\left[(f(x)-f(y))^{2}\right]}
\end{gathered}
$$

$\mathrm{P}, \mathrm{P}^{\prime}$ reversible with same stationary:

Lemma: direct comparison

Assume routing with length $\leqslant 1$. If P^{\prime} contracts \mathcal{D}_{ϕ} at rate ρ^{\prime}, P has rate:

$$
\rho=\frac{\rho^{\prime}}{\text { congestion }}
$$

Lemma: comparison

Assume any routing. If P^{\prime} contracts χ^{2} at rate $\rho^{\prime}, \mathrm{P}$ contracts at rate:

$$
\rho=\frac{\rho^{\prime}}{(\text { congestion }) \cdot(\text { max length })}
$$

\bigcirc Note: for length $\geqslant 2$, we can only compare Poincaré ineqs. MLSI does not compare. :

Proof:
D Will compare Dirichlet forms. For Poincaré, we care about $\mathcal{E}(f, f)$.
\bigcirc Take path $X_{0} \rightarrow X_{1} \rightarrow \cdots \rightarrow X_{\ell}$ of routing π. By Cauchy-Schwarz:

$$
\begin{gathered}
\ell \cdot \sum_{i}\left(f\left(X_{i+1}\right)-f\left(X_{i}\right)\right)^{2} \geqslant \\
\left(f\left(X_{\ell}\right)-f\left(X_{0}\right)\right)^{2}
\end{gathered}
$$

\checkmark Taking expectations we get

$$
\begin{aligned}
& \sum_{x, y} \mathbb{E}[\ell \cdot \mathbb{1}[(x \rightarrow y) \in \text { path }]](f(x)- \\
& f(y))^{2} \geqslant \mathbb{E}_{(x, y) \sim Q^{\prime}}\left[(f(x)-f(y))^{2}\right]
\end{aligned}
$$

\bigcirc The l.h.s. is at most

$$
\begin{gathered}
(\text { cong }) \cdot(\text { max len }) \cdot \\
\mathbb{E}_{(x, y) \sim Q}\left[(f(x)-f(y))^{2}\right]
\end{gathered}
$$

\checkmark This finishes the proof:

$$
\mathcal{E}_{\mathrm{P}}(\mathrm{f}, \mathrm{f}) \geqslant \frac{\varepsilon_{\mathrm{P}},(\mathrm{f}, \mathrm{f})}{(\mathrm{cong}) \cdot(\text { max len })}
$$

- Note: if we tried proof for MLSI, the Cauchy-Schwarz part fails. :
- Note: if we tried proof for MLSI, the Cauchy-Schwarz part fails. :
- Alt: use stronger log-Sobolev ineq

$$
\mathcal{E}(\sqrt{f}, \sqrt{f}) \geqslant \rho \operatorname{Ent}[f]
$$

- Note: if we tried proof for MLSI, the Cauchy-Schwarz part fails. :
D Alt: use stronger log-Sobolev ineq

$$
\mathcal{E}(\sqrt{f}, \sqrt{f}) \geqslant \rho \operatorname{Ent}[f]
$$

- The comparison method is often used with ideal chain P^{\prime} :

- Note: if we tried proof for MLSI, the Cauchy-Schwarz part fails. :
D Alt: use stronger log-Sobolev ineq

$$
\mathcal{E}(\sqrt{f}, \sqrt{f}) \geqslant \rho \operatorname{Ent}[f]
$$

- The comparison method is often used with ideal chain P^{\prime} :

- Ideal P^{\prime} mixes instantaneously, so $\rho^{\prime}=1$. We just need to control
congestion and length of routing.
- Note: if we tried proof for MLSI, the Cauchy-Schwarz part fails.
\bigcirc Alt: use stronger log-Sobolev ineq

$$
\mathcal{E}(\sqrt{f}, \sqrt{f}) \geqslant \rho \operatorname{Ent}[f]
$$

- The comparison method is often used with ideal chain P^{\prime} :

- Ideal P' mixes instantaneously, so $\rho^{\prime}=1$. We just need to control congestion and length of routing.
\triangleright Routing: send $\mu(s) \mu(t)$ units of flow from each s to each t.

Example: hypercube

- Note: if we tried proof for MLSI, the Cauchy-Schwarz part fails.
D Alt: use stronger log-Sobolev ineq

$$
\mathcal{E}(\sqrt{f}, \sqrt{f}) \geqslant \rho \operatorname{Ent}[f]
$$

- The comparison method is often used with ideal chain P^{\prime} :

- Ideal P' mixes instantaneously, so $\rho^{\prime}=1$. We just need to control congestion and length of routing.
\triangleright Routing: send $\mu(s) \mu(t)$ units of flow from each s to each t.
$D \mu=$ unif on $\{0,1\}^{n}$
D $\mathrm{P}=$ Glauber
$D P^{\prime}=\mathbb{1} \mu$

Example: hypercube

D Note: if we tried proof for MLSI, the Cauchy-Schwarz part fails.
\bigcirc Alt: use stronger log-Sobolev ineq

$$
\mathcal{E}(\sqrt{f}, \sqrt{f}) \geqslant \rho \operatorname{Ent}[f]
$$

D The comparison method is often used with ideal chain P^{\prime} :

D Ideal P^{\prime} mixes instantaneously, so $\rho^{\prime}=1$. We just need to control congestion and length of routing.
D Routing: send $\mu(s) \mu(t)$ units of flow from each s to each t.
$D \mu=$ unif on $\{0,1\}^{n}$
D $\mathrm{P}=$ Glauber
$D P^{\prime}=1 \mu$

- Routing: go from sto t in n steps:

$$
X_{i}=\left(t_{1}, \ldots, t_{i}, s_{i+1}, \ldots, s_{n}\right)
$$

Example: hypercube

D Note: if we tried proof for MLSI, the Cauchy-Schwarz part fails.
D Alt: use stronger log-Sobolev ineq

$$
\mathcal{E}(\sqrt{f}, \sqrt{f}) \geqslant \rho \operatorname{Ent}[f]
$$

\bigcirc The comparison method is often used with ideal chain P^{\prime} :

- Ideal P^{\prime} mixes instantaneously, so $\rho^{\prime}=1$. We just need to control congestion and length of routing.
D Routing: send $\mu(s) \mu(t)$ units of flow from each s to each t.
$D \mu=$ unif on $\{0,1\}^{n}$
D $\mathrm{P}=$ Glauber
$D P^{\prime}=1 \mu$

D Routing: go from s to t in n steps:

$$
X_{i}=\left(t_{1}, \ldots, t_{i}, s_{i+1}, \ldots, s_{n}\right)
$$

D Note: can ignore the $X_{i}=X_{i+1}$.

Example: hypercube

D Note: if we tried proof for MLSI, the Cauchy-Schwarz part fails.
D Alt: use stronger log-Sobolev ineq

$$
\mathcal{E}(\sqrt{f}, \sqrt{f}) \geqslant \rho \operatorname{Ent}[f]
$$

D The comparison method is often used with ideal chain P^{\prime} :

D Ideal P^{\prime} mixes instantaneously, so $\rho^{\prime}=1$. We just need to control congestion and length of routing.
D Routing: send $\mu(s) \mu(t)$ units of flow from each s to each t.
$D \mu=$ unif on $\{0,1\}^{n}$
D $\mathrm{P}=$ Glauber
$D P^{\prime}=1 \mu$

D Routing: go from s to t in n steps:

$$
X_{i}=\left(t_{1}, \ldots, t_{i}, s_{i+1}, \ldots, s_{n}\right)
$$

\bigcirc Note: can ignore the $X_{i}=X_{i+1}$.
D Congestion: if I know path goes through transition $x \rightarrow y$, I know $s_{i+1: n}, t_{1: i+1}$. There are 2^{n-1} pairs matching. Congestion is

$$
\frac{\sum_{\text {matching }} \mu(s) \mu(t)}{Q(x, y)} \leqslant \frac{2^{n-1} \cdot 2^{-n} \cdot 2^{-n}}{2^{-n} \cdot(1 / 2 n)}
$$

which is n;)

Example: hypercube

D Note: if we tried proof for MLSI, the Cauchy-Schwarz part fails.
D Alt: use stronger log-Sobolev ineq

$$
\mathcal{E}(\sqrt{f}, \sqrt{f}) \geqslant \rho \operatorname{Ent}[f]
$$

D The comparison method is often used with ideal chain P^{\prime} :

D Ideal P^{\prime} mixes instantaneously, so $\rho^{\prime}=1$. We just need to control congestion and length of routing.
D Routing: send $\mu(s) \mu(t)$ units of flow from each s to each t.
$D \mu=$ unif on $\{0,1\}^{n}$
D $\mathrm{P}=$ Glauber
$D P^{\prime}=1 \mu$

D Routing: go from s to t in n steps:

$$
X_{i}=\left(t_{1}, \ldots, t_{i}, s_{i+1}, \ldots, s_{n}\right)
$$

D Note: can ignore the $X_{i}=X_{i+1}$.
D Congestion: if I know path goes through transition $x \rightarrow y$, I know $s_{i+1: n}, t_{1: i+1}$. There are 2^{n-1} pairs matching. Congestion is

$$
\frac{\sum_{\text {matching }} \mu(s) \mu(t)}{Q(x, y)} \leqslant \frac{2^{n-1} \cdot 2^{-n} \cdot 2^{-n}}{2^{-n} \cdot(1 / 2 n)}
$$

which is n :
D Length: at most n$)$, so $\rho \geqslant 1 / \mathrm{n}^{2}$

D This is not tight for the hypercube (tight $\rho=1 / n$). :

D This is not tight for the hypercube (tight $\rho=1 / n$). :

- Unavoidable. Any routing in the hypercube has

$$
\mathbb{E}[\text { length }] \geqslant \Omega(\mathrm{n})
$$

and cong is at least avg len.
\triangleright This is not tight for the hypercube (tight $\rho=1 / n$). :
\bigcirc Unavoidable. Any routing in the hypercube has

$$
\mathbb{E}[\text { length }] \geqslant \Omega(\mathrm{n})
$$

and cong is at least avg len.

> Example: cycle
> $D \mu=$ uniform
> $D P=$ rand walk
> $D \mathrm{P}^{\prime}=$ ideal

\triangleright This is not tight for the hypercube (tight $\rho=1 / n$). :
\bigcirc Unavoidable. Any routing in the hypercube has

$$
\mathbb{E}[\text { length }] \geqslant \Omega(\mathrm{n})
$$

and cong is at least avg len.

Example: cycle

© $\mu=$ uniform
D $\mathrm{P}=$ rand walk
D $\mathrm{P}^{\prime}=$ ideal

D Routing: go clockwise!
\triangleright This is not tight for the hypercube (tight $\rho=1 / n$). :

- Unavoidable. Any routing in the hypercube has

$$
\mathbb{E}[\text { length }] \geqslant \Omega(\mathrm{n})
$$

and cong is at least avg len.

Example: cycle

© $\mu=$ uniform
D $\mathrm{P}=$ rand walk
D $\mathrm{P}^{\prime}=$ ideal

D Routing: go clockwise!
D cong $=O(n)$, len $=O(n) ;$
\triangleright This is not tight for the hypercube (tight $\rho=1 / n$). :

- Unavoidable. Any routing in the hypercube has

$$
\mathbb{E}[\text { length }] \geqslant \Omega(\mathrm{n})
$$

and cong is at least avg len.

Example: cycle

D $\mu=$ uniform
D $\mathrm{P}=$ rand walk
D $\mathrm{P}^{\prime}=$ ideal

D Routing: go clockwise!
D cong $=O(n)$, len $=O(n) ;$
\bigcirc Implies $\rho=1 / \Omega\left(n^{2}\right)$)

D This is not tight for the hypercube (tight $\rho=1 / n$). :
D Unavoidable. Any routing in the hypercube has

$$
\mathbb{E}[\text { length }] \geqslant \Omega(\mathrm{n})
$$

and cong is at least avg len.

Example: cycle

D $\mu=$ uniform
D $\mathrm{P}=$ rand walk
D $\mathrm{P}^{\prime}=$ ideal

D Routing: go clockwise!
D cong $=O(n)$, len $=O(n) ;$
D Implies $\rho=1 / \Omega\left(n^{2}\right) ;$

Example: simple random walk
$D \mu \propto \operatorname{deg}$
© $\mathrm{P}=$ rand walk
© $\mathrm{P}^{\prime}=$ ideal

D This is not tight for the hypercube (tight $\rho=1 / n$). :
D Unavoidable. Any routing in the hypercube has

$$
\mathbb{E}[\text { length }] \geqslant \Omega(\mathrm{n})
$$

and cong is at least avg len.

Example: cycle

D $\mu=$ uniform
D $\mathrm{P}=$ rand walk
D $\mathrm{P}^{\prime}=$ ideal

D Routing: go clockwise!
D cong $=O(n)$, len $=O(n) ;$
D Implies $\rho=1 / \Omega\left(n^{2}\right) ;$

Example: simple random walk
$D \mu \propto \operatorname{deg}$

- $\mathrm{P}=$ rand walk

D $\mathrm{P}^{\prime}=$ ideal

\checkmark Routing: take any path.

D This is not tight for the hypercube (tight $\rho=1 / n$). :
D Unavoidable. Any routing in the hypercube has

$$
\mathbb{E}[\text { length }] \geqslant \Omega(\mathrm{n})
$$

and cong is at least avg len.

Example: cycle

© $\mu=$ uniform
D $\mathrm{P}=$ rand walk
$D \mathrm{P}^{\prime}=$ ideal

D Routing: go clockwise!
D cong $=\mathrm{O}(\mathrm{n})$, len $=\mathrm{O}(\mathrm{n})$;
D Implies $\rho=1 / \Omega\left(n^{2}\right) ;$

Example: simple random walk

- $\mu \propto \operatorname{deg}$
- $\mathrm{P}=$ rand walk

D $\mathrm{P}^{\prime}=$ ideal

\checkmark Routing: take any path.
\bigcirc len $=O(n)$;)

D This is not tight for the hypercube (tight $\rho=1 / n$). :
D Unavoidable. Any routing in the hypercube has

$$
\mathbb{E}[\text { length }] \geqslant \Omega(\mathfrak{n})
$$

and cong is at least avg len.

Example: cycle

D $\mu=$ uniform
D $\mathrm{P}=$ rand walk
D $\mathrm{P}^{\prime}=$ ideal

D Routing: go clockwise!
D cong $=O(n)$, len $=O(n) ;$
\bigcirc Implies $\rho=1 / \Omega\left(n^{2}\right) \odot$

Example: simple random walk
$D \mu \propto \operatorname{deg}$
D $\mathrm{P}=$ rand walk
D $\mathrm{P}^{\prime}=$ ideal

\checkmark Routing: take any path.
\bigcirc len $=\mathrm{O}(\mathrm{n})$)

- Congestions is at most

$$
\frac{\sum_{s, t} \mu(s) \mu(t)}{1 / 2 m} \leqslant O(m)
$$

\checkmark This is not tight for the hypercube (tight $\rho=1 / n$). :
D Unavoidable. Any routing in the hypercube has

$$
\mathbb{E}[\text { length }] \geqslant \Omega(\mathrm{n})
$$

and cong is at least avg len.

Example: cycle

D $\mu=$ uniform
D $\mathrm{P}=$ rand walk
$D \mathrm{P}^{\prime}=$ ideal

\checkmark Routing: go clockwise!
D cong $=O(n)$, len $=O(n) ;$
D Implies $\rho=1 / \Omega\left(n^{2}\right) ;$

Example: simple random walk
$D \mu \propto \operatorname{deg}$

- $\mathrm{P}=$ rand walk

D $\mathrm{P}^{\prime}=$ ideal

\checkmark Routing: take any path.
\bigcirc len $=\mathrm{O}(\mathrm{n})$)

- Congestions is at most

$$
\frac{\sum_{s, t} \mu(s) \mu(t)}{1 / 2 m} \leqslant \mathrm{O}(m)
$$

D Implies $\rho=1 / \Omega(\mathrm{mn}) ;$
tight

D This is not tight for the hypercube (tight $\rho=1 / n$). :
D Unavoidable. Any routing in the hypercube has

$$
\mathbb{E}[\text { length }] \geqslant \Omega(\mathfrak{n})
$$

and cong is at least avg len.

Example: cycle

D $\mu=$ uniform
D $\mathrm{P}=$ rand walk
$D \mathrm{P}^{\prime}=$ ideal

\checkmark Routing: go clockwise!
D cong $=O(n)$, len $=O(n) ;$
D Implies $\rho=1 / \Omega\left(n^{2}\right)$)

Example: simple random walk
$D \mu \propto \operatorname{deg}$

- $\mathrm{P}=$ rand walk
$D \mathrm{P}^{\prime}=$ ideal

\checkmark Routing: take any path.
\bigcirc len $=\mathrm{O}(\mathrm{n})$)
D Congestions is at most

$$
\frac{\sum_{s, t} \mu(s) \mu(t)}{1 / 2 m} \leqslant \mathrm{O}(m)
$$

\bigcirc Implies $\rho=1 / \Omega(\mathrm{mn}) ;$
D Dumbbell graph:
tight

Comparison Arguments

- Direct comparison

D Routing

- Comparison method

Applications

- Canonical paths
\bigcirc Matchings

Comparison Arguments

\checkmark Direct comparison
D Routing

- Comparison method

Applications

- Canonical paths
- Matchings

Canonical paths

Suppose routing is deterministic.
one path per s, t

Canonical paths

Suppose routing is deterministic.
one path per s, t
D Goal: bound cong for $x \rightarrow y$.

Canonical paths

Suppose routing is deterministic.
one path per s, t
D Goal: bound cong for $x \rightarrow y$.
D Idea: injective mapping enc from

$$
\{(s, t) \mid(x \rightarrow y) \in \text { st-path }\}
$$

to $\Omega \times[M]: \longleftarrow j u n k /$ side info

$$
(\mathrm{s}, \mathrm{t}) \mapsto(\mathrm{r}, \mathrm{j} \cup n k) .
$$

Canonical paths

Suppose routing is deterministic.
one path per s, t
D Goal: bound cong for $x \rightarrow y$.
D Idea: injective mapping enc from

$$
\{(s, t) \mid(x \rightarrow y) \in \text { st-path }\}
$$

to $\Omega \times[M]: \longleftarrow j u n k /$ side info

$$
(\mathrm{s}, \mathrm{t}) \mapsto(\mathrm{r}, \mathrm{j} \cup n \mathrm{k}) .
$$

D Want $\mu(s) \mu(t) \leqslant C \cdot \mu(r) Q(x, y)$.

Canonical paths

Suppose routing is deterministic.
one path per s, t
D Goal: bound cong for $x \rightarrow y$.
D Idea: injective mapping enc from

$$
\{(s, t) \mid(x \rightarrow y) \in \text { st-path }\}
$$

to $\Omega \times[M]: \longleftarrow j u n k /$ side info

$$
(s, t) \mapsto(r, j \cup n k) .
$$

D Want $\mu(s) \mu(t) \leqslant C \cdot \mu(r) Q(x, y)$.
\bigcirc Alt: think of enc as mapping to Ω that is at most M-to- 1 .

Canonical paths

Suppose routing is deterministic.
one path per s, t
D Goal: bound cong for $x \rightarrow y$.
\checkmark Idea: injective mapping enc from

$$
\{(s, t) \mid(x \rightarrow y) \in \text { st-path }\}
$$

to $\Omega \times[M]: \longleftarrow j u n k /$ side info

$$
(\mathrm{s}, \mathrm{t}) \mapsto(\mathrm{r}, \mathrm{j} \cup n \mathrm{k}) .
$$

D Want $\mu(s) \mu(t) \leqslant C \cdot \mu(r) Q(x, y)$.
\bigcirc Alt: think of enc as mapping to Ω that is at most M-to- 1 .
0 If it exists, then cong \leqslant

$$
\begin{aligned}
& \sum_{(s \rightarrow t) \ni(x \rightarrow y)} \mu(s) \mu(t) \leqslant \\
& Q(x, y) \cdot \mathrm{CM}_{r} \mu(r) \longleftarrow 1
\end{aligned}
$$

Canonical paths

Suppose routing is deterministic.
one path per s, t
D Goal: bound cong for $x \rightarrow y$.
D Idea: injective mapping enc from

$$
\{(s, t) \mid(x \rightarrow y) \in \text { st-path }\}
$$

to $\Omega \times[M]: \longleftarrow j u n k /$ side info

$$
(s, t) \mapsto(r, j \cup n k) .
$$

D Want $\mu(s) \mu(t) \leqslant C \cdot \mu(r) Q(x, y)$.
\bigcirc Alt: think of enc as mapping to Ω that is at most M-to- 1 .
0 If it exists, then cong \leqslant

$$
\begin{aligned}
& \sum_{(s \rightarrow t) \ni(x \rightarrow y)} \mu(s) \mu(t) \leqslant \\
& Q(x, y) \cdot \mathrm{CM}_{r} \mu(r) \longleftarrow 1
\end{aligned}
$$

Example: hypercube
$D \mu=$ unif on $\{0,1\}^{n}$

- $\mathrm{P}=$ Glauber

D Route as before

Canonical paths

Suppose routing is deterministic.
one path per s, t
D Goal: bound cong for $x \rightarrow y$.
D Idea: injective mapping enc from

$$
\{(s, t) \mid(x \rightarrow y) \in \text { st-path }\}
$$

to $\Omega \times[M]: \longleftarrow j u n k /$ side info

$$
(s, t) \mapsto(r, j \cup n k) .
$$

D Want $\mu(s) \mu(t) \leqslant C \cdot \mu(r) Q(x, y)$.
\bigcirc Alt: think of enc as mapping to Ω that is at most M-to- 1 .
0 If it exists, then cong \leqslant

$$
\begin{aligned}
& \sum_{(s \rightarrow t) \ni(x \rightarrow y)} \mu(s) \mu(t) \leqslant \\
& Q(x, y) \cdot \mathrm{CM}_{r} \mu(r) \longleftarrow 1
\end{aligned}
$$

Example: hypercube
$D \mu=$ unif on $\{0,1\}^{n}$

- $\mathrm{P}=$ Glauber
- Route as before

D Fix $x \rightarrow y$ where $x_{i} \neq y_{i}$.

Canonical paths

Suppose routing is deterministic.
one path per s, t
D Goal: bound cong for $x \rightarrow y$.
D Idea: injective mapping enc from

$$
\{(s, t) \mid(x \rightarrow y) \in \text { st-path }\}
$$

to $\Omega \times[M]: \longleftarrow j u n k /$ side info

$$
(s, t) \mapsto(r, j \cup n k) .
$$

D Want $\mu(s) \mu(t) \leqslant C \cdot \mu(r) Q(x, y)$.
\bigcirc Alt: think of enc as mapping to Ω that is at most M-to- 1 .
0 If it exists, then cong \leqslant

$$
\begin{aligned}
& \sum_{(s \rightarrow t) \ni(x \rightarrow y)} \mu(s) \mu(t) \leqslant \\
& Q(x, y) \cdot \mathrm{CM}_{r} \mu(r) \longleftarrow 1
\end{aligned}
$$

Example: hypercube
$D \mu=$ unif on $\{0,1\}^{n}$

- $\mathrm{P}=$ Glauber

D Route as before

D Fix $x \rightarrow y$ where $x_{i} \neq y_{i}$.
D Define encoding enc $(s, t)=$

$$
\left(s_{1}, \ldots, s_{i}, t_{i+1}, \ldots, t_{n}\right)
$$

Canonical paths

Suppose routing is deterministic.
one path per s, t
D Goal: bound cong for $x \rightarrow y$.
D Idea: injective mapping enc from

$$
\{(s, t) \mid(x \rightarrow y) \in \text { st-path }\}
$$

to $\Omega \times[M]: \longleftarrow j u n k /$ side info

$$
(s, t) \mapsto(r, j \cup n k) .
$$

D Want $\mu(s) \mu(t) \leqslant C \cdot \mu(r) Q(x, y)$.
\bigcirc Alt: think of enc as mapping to Ω that is at most M-to- 1 .
\bigcirc If it exists, then cong \leqslant

$$
\begin{aligned}
& \sum_{(s \rightarrow t) \ni(x \rightarrow y)} \mu(s) \mu(t) \leqslant \\
& Q(x, y) \cdot C^{\prime} \sum_{r} \mu(r) \longleftarrow 1
\end{aligned}
$$

Example: hypercube
$D \mu=$ unif on $\{0,1\}^{n}$

- $\mathrm{P}=$ Glauber

D Route as before

D Fix $x \rightarrow y$ where $x_{i} \neq y_{i}$.
D Define encoding enc $(s, t)=$

$$
\left(s_{1}, \ldots, s_{i}, t_{i+1}, \ldots, t_{n}\right)
$$

D Injective because there is dec such that $\operatorname{dec}(\operatorname{enc}(s, t))=(s, t)$.

Canonical paths

Suppose routing is deterministic.
one path per s, t
D Goal: bound cong for $x \rightarrow y$.
D Idea: injective mapping enc from

$$
\{(s, t) \mid(x \rightarrow y) \in \text { st-path }\}
$$

to $\Omega \times[M]: \longleftarrow j u n k /$ side info

$$
(s, t) \mapsto(r, j \cup n k) .
$$

D Want $\mu(s) \mu(t) \leqslant C \cdot \mu(r) Q(x, y)$.
\bigcirc Alt: think of enc as mapping to Ω that is at most M-to- 1 .
\bigcirc If it exists, then cong \leqslant

$$
\begin{aligned}
& \sum_{(s \rightarrow t) \ni(x \rightarrow y)} \mu(s) \mu(t) \leqslant \\
& Q(x, y) \cdot C M \sum_{r} \mu(r) \longleftarrow 1
\end{aligned}
$$

Example: hypercube
$D \mu=$ unif on $\{0,1\}^{n}$

- $\mathrm{P}=$ Glauber

D Route as before

D Fix $x \rightarrow y$ where $x_{i} \neq y_{i}$.
D Define encoding enc $(s, t)=$

$$
\left(s_{1}, \ldots, s_{i}, t_{i+1}, \ldots, t_{n}\right)
$$

\bigcirc Injective because there is dec such that $\operatorname{dec}(\operatorname{enc}(s, t))=(s, t)$.
$\bigcirc \mu(s) \mu(t) \leqslant(2 n) \cdot \mu(r) Q(x, y)$

Canonical paths

Suppose routing is deterministic.
one path per s, t
D Goal: bound cong for $x \rightarrow y$.
D Idea: injective mapping enc from

$$
\{(s, t) \mid(x \rightarrow y) \in \text { st-path }\}
$$

to $\Omega \times[\mathrm{M}]: \longleftarrow$ junk/side info

$$
(s, t) \mapsto(r, j \cup n k) .
$$

D Want $\mu(s) \mu(t) \leqslant C \cdot \mu(r) Q(x, y)$.
\bigcirc Alt: think of enc as mapping to Ω that is at most M-to- 1 .
\bigcirc If it exists, then cong \leqslant

$$
\begin{aligned}
& \sum_{(s \rightarrow t) \ni(x \rightarrow y)} \mu(s) \mu(t) \leqslant \\
& Q(x, y) \cdot C M \sum_{r} \mu(r) \longleftarrow 1
\end{aligned}
$$

Example: hypercube

$D \mu=$ unif on $\{0,1\}^{n}$

- $\mathrm{P}=$ Glauber

D Route as before

D Fix $x \rightarrow y$ where $x_{i} \neq y_{i}$.
D Define encoding enc $(s, t)=$

$$
\left(s_{1}, \ldots, s_{i}, t_{i+1}, \ldots, t_{n}\right)
$$

D Injective because there is dec such that $\operatorname{dec}(\operatorname{enc}(s, t))=(s, t)$.
$D \mu(s) \mu(t) \leqslant(2 n) \cdot \mu(r) Q(x, y)$
When μ is uniform, only need

$$
\min \{P(x, y) \mid x \rightarrow y\} \geqslant 1 / \operatorname{poly}(n)
$$

Matchings

Unweighted graph, count/sample matchings.
not necessarily perfect

Matchings

Unweighted graph, count/sample matchings.

not necessarily perfect

Markov chain (proposed by [Broder])

Move from M to M^{\prime} by

$$
\left.\left.\left.\begin{array}{lllll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \begin{array}{lll}
\text { deleting edge } & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \begin{array}{llll}
\text { adding edge } & 0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 & \text { exchanging edge } \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Matchings

Unweighted graph, count/sample matchings.

not necessarily perfect
D Make it reversible via Metropolis.

Markov chain (proposed by [Broder])

Move from M to M^{\prime} by

$$
\left.\left.\begin{array}{llllll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \begin{array}{lll}
\text { deleting edge } & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \begin{array}{llll}
\text { adding edge } & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 & \text { exchanging edge } \\
0 & 0 & 0 & 0 \\
0 & 0 & 0
\end{array}
$$

Matchings

Unweighted graph, count/sample matchings.

\checkmark Make it reversible via Metropolis.
D Details are unimportant. Just make sure $P(x, y) \geqslant 1 / \operatorname{poly}(n)$.
not necessarily perfect

Markov chain (proposed by [Broder])

Move from M to M^{\prime} by

$$
\begin{array}{lllll}
\mathrm{O} & \mathrm{O} \\
\mathrm{O} & \mathrm{O} \\
\mathrm{O} \\
\mathrm{O}
\end{array} \xrightarrow{\text { deleting edge }} \mathrm{O} \mathrm{O}
$$

$$
\begin{array}{lllll}
\mathrm{O} & \mathrm{O} & \mathrm{O} \\
\mathrm{O} & \mathrm{O} \\
\mathrm{O}
\end{array} \xrightarrow{\text { adding edge }} \mathrm{O} \mathrm{O} \mathrm{O}
$$

$\mathrm{O} \mathrm{O} \mathrm{O} \xrightarrow{\mathrm{O}} \mathrm{O}$

Matchings

Unweighted graph, count/sample matchings.

D Make it reversible via Metropolis.
D Details are unimportant. Just make sure $P(x, y) \geqslant 1 / \operatorname{poly}(n)$.
not necessarily perfect
\checkmark Technically exchange moves can be dropped. We keep them for cleaner exposition.
Move from M to M^{\prime} by

$\mathrm{O} \mathrm{O} \mathrm{O} \xrightarrow{\text { adding edge }} \mathrm{O} \mathrm{O} \mathrm{O}$

Matchings

Unweighted graph, count/sample
matchings.
not necessarily perfect

Markov chain (proposed by [Broder])

Move from M to $M^{\prime} b y$

$\mathrm{O} \mathrm{O} \mathrm{O} \xrightarrow{\mathrm{O}} \mathrm{O} \xrightarrow{\text { exchanging edge }} 0$

D Make it reversible via Metropolis.
D Details are unimportant. Just make sure $P(x, y) \geqslant 1 / \operatorname{poly}(n)$.
\checkmark Technically exchange moves can be dropped. We keep them for cleaner exposition.

Theorem [Jerrum-Sinclair]

There are canonical paths with poly(n)-to-1 encoding schemes.

Matchings

Unweighted graph, count/sample
matchings.
not necessarily perfect
Markov chain (proposed by [Broder])
Move from M to $M^{\prime} b y$

Matchings

Unweighted graph, count/sample
matchings.

not necessarily perfect

Markov chain (proposed by [Broder])

Move from M to $M^{\prime} b y$

To move from s to t, we look at $s \oplus t$:

To move from s to t, we look at $s \oplus t$:

\checkmark This is a collection of alternating paths and cycles.

To move from s to t, we look at $s \oplus t$:

\checkmark This is a collection of alternating paths and cycles.
\checkmark We move from s to t one path/cycle at a time and unravel each path/cycle vertex-by-vertex.

To move from s to t, we look at $s \oplus t$:

\triangleright This is a collection of alternating paths and cycles.

- We move from s to tone path/cycle at a time and unravel each path/cycle vertex-by-vertex.
\checkmark To make it deterministic, we fix an arbitrary order on all paths/cycles. For each cycle, we also fix an arbitrary start location.

To move from s to t, we look at $s \oplus t$:

\checkmark This is a collection of alternating paths and cycles.
© We move from s to t one path/cycle at a time and unravel each path/cycle vertex-by-vertex.
\checkmark To make it deterministic, we fix an arbitrary order on all paths/cycles. For each cycle, we also fix an arbitrary start location.

D Example: let's unravel path, then cycle, and start cycle from top-left:
(1) $00000 c c c c$

To move from s to t, we look at $s \oplus t$:

D This is a collection of alternating paths and cycles.

- We move from s to tone path/cycle at a time and unravel each path/cycle vertex-by-vertex.
\checkmark To make it deterministic, we fix an arbitrary order on all paths/cycles. For each cycle, we also fix an arbitrary start location. alo

D Example: let's unravel path, then cycle, and start cycle from top-left:

(2) $\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}$

To move from s to t, we look at $s \oplus t$:

D This is a collection of alternating paths and cycles.
© We move from s to t one path/cycle at a time and unravel each path/cycle vertex-by-vertex.
\checkmark To make it deterministic, we fix an arbitrary order on all paths/cycles. For each cycle, we also fix an arbitrary start location.

D Example: let's unravel path, then cycle, and start cycle from top-left:

(3) $\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}$

To move from s to t, we look at $s \oplus t$:

D This is a collection of alternating paths and cycles.
© We move from s to t one path/cycle at a time and unravel each path/cycle vertex-by-vertex.
\checkmark To make it deterministic, we fix an arbitrary order on all paths/cycles. For each cycle, we also fix an arbitrary start location.

D Example: let's unravel path, then cycle, and start cycle from top-left:

(3) $\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 0 & -0 & 0 & 0 & 0\end{array}$

(4) $\begin{array}{cccc}0 & 0 & -0 & 0 \\ 0 & 0 & 0 & 0\end{array}$

To move from s to t, we look at $s \oplus t$:

D This is a collection of alternating paths and cycles.
© We move from s to t one path/cycle at a time and unravel each path/cycle vertex-by-vertex.
\checkmark To make it deterministic, we fix an arbitrary order on all paths/cycles. For each cycle, we also fix an arbitrary start location.

D Example: let's unravel path, then cycle, and start cycle from top-left:
(4) $\begin{array}{ccccc}0 & 0 & 0 & 0 & 0 \\ 0 & -0 & 0 & 0 & 0\end{array}$

(3) $\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 0 & -0 & 0 & 0 & 0\end{array}$
(5) $\begin{array}{ccccc}0 & 0 & 0 & 0 & 0 \\ 0 & -0 & 0 & 0 & 0\end{array}$

To move from s to t, we look at $s \oplus t$:

D This is a collection of alternating paths and cycles.
© We move from s to tone path/cycle at a time and unravel each path/cycle vertex-by-vertex.
\checkmark To make it deterministic, we fix an arbitrary order on all paths/cycles. For each cycle, we also fix an arbitrary start location.

D Example: let's unravel path, then cycle, and start cycle from top-left:

(3) $\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 0 & -0 & 0 & 0 & 0\end{array}$
(5) $\begin{array}{lllll}0 & 0 & -0 & 0 & 0 \\ 0 & -0 & 0 & 0 & 0\end{array}$

To move from s to t, we look at $s \oplus t$:

D This is a collection of alternating paths and cycles.
© We move from s to t one path/cycle at a time and unravel each path/cycle vertex-by-vertex.
D To make it deterministic, we fix an arbitrary order on all paths/cycles. For each cycle, we also fix an arbitrary start location.

D Example: let's unravel path, then cycle, and start cycle from top-left:

(3) $\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 0 & -0 & 0 & 0 & 0\end{array}$

(5) $\begin{array}{lllll}0 & 0 & -0 & 0 & 0 \\ 0 & -0 & 0 & 0 & 0\end{array}$
(6)

D For $x \rightarrow y$ transition, we can define encoding:

$$
\operatorname{enc}(s, t)=(s \oplus t \oplus x-\underbrace{\text { couple of edges }}_{\text {around current vertex }}, \underbrace{\text { couple of edges }}_{j u n k / \text { side info }})
$$

D For $x \rightarrow y$ transition, we can define encoding:

$$
\text { enc }(s, t)=(s \oplus t \oplus x-\underbrace{\text { couple of edges }}_{\text {around current vertex }}, \underbrace{\text { couple of edges }}_{\text {junk/side info }})
$$

D Example:

$s \oplus t \oplus x:$

D For $x \rightarrow y$ transition, we can define encoding:

$$
\operatorname{enc}(s, t)=(s \oplus t \oplus x-\underbrace{\text { couple of edges }}_{\text {around current vertex }}, \underbrace{\text { couple of edges }}_{\text {junk/side info }})
$$

\triangleright Example:
couple of edges

$$
\left.x: \begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 \\
0 & -0 & 0 & 0 & 0
\end{array}\right] \quad y: \begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array} 0
$$

$$
s \oplus t \oplus x:
$$

\bigcirc Injective because we can recover $s \oplus t \oplus x$ from enc (s, t) and thus $s \oplus t$. So we can start unraveling x backward to get s and forward to get t.
D For $x \rightarrow y$ transition, we can define encoding:

$$
\text { enc }(s, t)=(s \oplus t \oplus x-\underbrace{\text { couple of edges }}_{\text {around current vertex }}, \underbrace{\text { couple of edges }}_{\text {junk/side info }})
$$

\triangleright Example:
couple of edges

$$
\left.x: \begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 \\
0 & -0 & 0 & 0 & 0
\end{array}\right] \quad y: \begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array} 0
$$

\bigcirc Injective because we can recover $s \oplus t \oplus x$ from enc (s, t) and thus $s \oplus t$. So we can start unraveling x backward to get s and forward to get t.
\bigcirc Thus the chain mixes in poly (n) time. ©

