CS 263: Counting and Sampling

Stanford
S University

slides for

Comparison Arguments

\Review /

Example: hypercube

O<—0
C Eigvals: k/n # ﬂ%
& () many iﬂ >

2/15

\Review

Example: hypercube

C Eigvals: k/n 2 ﬂ%
& () many iﬂ .

€—>
Example: cycle

> Eigvals: <~Q
cos(2mk/n) >)

> Onefork e [n] NG

2/15

\Review

Example: hypercube

C Eigvals: k/n ﬂoﬁi
& () many iﬁ'—) .
C Eigvals: ~Q
cos(2mk/n) >)
> One for k € [n] NG

> Relaxation time (lazy, reversible):

trel = T sz = @(“meao |;én(ix1(/€€))>

2/15

\Review

Example: hypercube B> Cont. time: v = explt(P—1)) vo

C Eigvals: k/n z Zz transition matrix
; !
& (%) many J zg) s fime
<€—>
Example: cycle
C Eigvals: ‘_’O
cos(2mtk/n)
> Oneforke |

> Relaxation time (lazy, reversible):
tel = 753 sz = @(“meao |;én(ix1(/€€))>

2/15

\Review

2CUA S EEREC B> Cont time: vi = exp(t(P—T)) vo

transition matrix

Q«—
C Eigvals: k/n 2 ﬂ% iy
o (}) many O —0—0—0 o>
<€—>

> Functional analysis in cont. time:

Example: cycle LD (ve [1) < —pDg(ve || 1)

C Eigvals: O
cos(2mk/n)
> Oneforke |

> Relaxation time (lazy, reversible):
trel = 17]7\27 = @(Ilme—)O |§én(lx1(/€€))>

2/15

\Review /

Example: hypercube B> Cont time v = exp(t(P—1)) vo

O —s | ——
[> EigVC1|S' k/n z 4 transition matrix
; iy
o (}) many iﬂ ﬂé —O0——0—0 o
> Functional analysis in cont. time:
Example: cycle LD (ve [1) < —pDg(ve || 1)
® Eigvals: {‘-’O & Dirichlet form &(f,g) =

cos(2mk/n) %[E(x,y)NQ[(f(X)—f(y))(g(X)—g(y))]
> Oneforke]

> Relaxation time (lazy, reversible):

trel = T sz = @(“meao |;én(ix1(/€€))>

2/15

\Review /

Example: hypercube B> Cont time: ve = exp(t(P — 1)) vo
~—_——

[> EigVC1|S' k/n 2': EVO transition matrix
; .
o (}) many iﬂ 2,(% —O0——0—0 o>
A > Functional analysis in cont. time:
Example: cycle LD (ve [1) < —pDg(ve || 1)
® Eigvals: <—>O & Dirichlet form &(f,g) =
cos(2mtk/m) 3 Exy~l(F)—F(y)) (g(x)—g(y))]
> Oneforke | Func. analysis via Dirichlet form:

E(¢’(f),f) > p Ent®If]
> Relaxation time (lazy, reversible):

trel = T sz = @(“meao |;én(ix1(/€€))>

2/15

\Review /

Example: hypercube B> Cont time: ve = exp(t(P — 1)) vo
~—_——

[> EigVC1|S' k/n 2': EVO transition matrix
; .
o (}) many iﬂ 2,(% —O0——0—0 o>
A > Functional analysis in cont. time:
Example: cycle LD (ve [1) < —pDg(ve || 1)
® Eigvals: <—>O & Dirichlet form &(f,g) =
cos(2mtk/m) 3 Exy~l(F)—F(y)) (g(x)—g(y))]
> Oneforke | Func. analysis via Dirichlet form:

E(¢’(f),f) > p Ent®If]
> Relaxation time (lazy, reversible): Poincaré: 2&(f, f) > p Varl[f]

trel = T sz = @(hmeao |;én(lx1(/€€))>

2/15

Review
>
zv: zvo
> Eigvals: k/n g}
& () many iﬂ >

Example: cycle

C Eigvals:
cos(2mk/n)

> Oneforke]|

-

> Relaxation time (lazy, reversible):

tmix(e)

trel = 17]77\2 = ®(|im€HO log(1/¢€)

> MLSIEE(f, logf) >

Cont. time: v = exp(t(P—1)) vo
transition matrix

time
—0 O0—0O O—>

Functional analysis in cont. time:
LEDevi [W) < —p Dy (ve [l)

Dirichlet form &(f, g) =

7 Ex,y)~o(F() —f(y)) (g(x) =g (y))]

Func. analysis via Dirichlet form:

E(¢’(f),f) > p Ent®[f]
Poincaré: 2&(f, f) > p Varl[f]
o Entl[f]

J

2/15

Comparison Arguments

> Direct comparison
> Routing
> Comparison method

Applications
> Canonical paths
> Matchings

> Direct comparison
> Routing
> Comparison method

Applications
> Canonical paths
> Matchings

\Direct comparison /

> Suppose we have two chains P, P’
with the same stationary .

5/15

\Direct comparison /

> Suppose we have two chains P, P’
with the same stationary .

Example: Metropolis vs. Glauber

> Metropolis: pick v, ¢

and accept/reject.
O Glauber: pick v, then

pick valid c.

5/15

\Direct comparison

> Suppose we have two chains P, P’
with the same stationary .

Example: Metropolis vs. Glauber

> Metropolis: pick v, ¢
and accept/reject.

O Glauber: pick v, then
pick valid c.

> Comparison: as long as
Q(X,U) ZcC- Q/(Xay) for x 75 Y.
functional inequalities for P’
transfer to P with a loss of c.

5/15

\Direct comparison /

> Suppose we have two chains P,P’ Proof:
with the same stationary .

Example: Metropolis vs. Glauber
> Metropolis: pick v, ¢
and accept/reject.
O Glauber: pick v, then
pick valid c.
> Comparison: as long as
Q(X)y) ZcC- Ql(xay) for x 7& Y.

functional inequalities for P’
transfer to P with a loss of c.

5/15

\Direct comparison /

> Suppose we have two chains P,P’ Proof:

with the same stationary p. > Funcinegs are of the form
Example: Metropolis vs. Glauber (' (£),f) > p Ent®[f]
b =
> Metropolis: pick v, ¢
and accept/reject.
O Glauber: pick v, then
pick valid c.

> Comparison: as long as
Q(X,U) ZcC- Q/(Xay) for x 75 Y.
functional inequalities for P’
transfer to P with a loss of c.

5/15

\Direct comparison /

> Suppose we have two chains P,P’ Proof:
with the same stationary p. > Func inegs are of the form

Example: Metropolis vs. Glauber e(db’(f),f) > p Ent®[f]

> Metropolis: pick v, ¢
and accept/reject. I:I > But € is a positive Q/Q’-weighted

> Glauber: pick v, then combination of

pick valid c. (' (f(x)) — ¢'(FlY))) (f(x) — f(y)).
Because ¢ is convex, these terms
> Comparison: as long as are always > 0.

Q(X)y) 2 c- Ql(xay) fOI’X 7& Yy,
functional inequalities for P’
transfer to P with a loss of c.

5/15

\Direct comparison /

> Suppose we have two chains P,P’ Proof:
with the same stationary p. > Func inegs are of the form

Example: Metropolis vs. Glauber e(db’(f),f) > p Ent®[f]

> Metropolis: pick v, ¢
and accept/reject. I:I > But € is a positive Q/Q’-weighted

> Glauber: pick v, then combination of

pick valid c. (' (f(x)) — ¢'(FlY))) (f(x) — f(y)).
Because ¢ is convex, these terms
& Comparison: as long as are always > 0.
Qboy) > c- Qlxy) forx 2y, > Soaslongas Q(x,y) = ¢+ Q'(x,y):

functional inequalities for P’

transfer to P with a loss of c. Ep(d'(f),f) = c- Ep(P'(f),)

5/15

Corollary

Metropolis and Glauber satisfy the same Poincaré and
MLSI up to

q—A

6/15

Corollary

Metropolis and Glauber satisfy the same Poincaré and
MLSI up to

.

q—A

> What if P doesn’t have all the moves of P’?

6/15

Corollary

Metropolis and Glauber satisfy the same Poincaré and
MLSI up to
q

q—A

> What if P doesn’t have all the moves of P’?
(> Direct comparison becomes useless,

6/15

Corollary

Metropolis and Glauber satisfy the same Poincaré and
MLSI up to

_q9
q—A

> What if P doesn’t have all the moves of P’?
(> Direct comparison becomes useless,
> Idea: simulate moves of P’ by multiple of P.

O P’ O

6/15

Corollary

Metropolis and Glauber satisfy the same Poincaré and
MLSI up to
_q
q—A
> What if P doesn’t have all the moves of P’?
(> Direct comparison becomes useless,
> Idea: simulate moves of P’ by multiple of P.

AN

> Main application: when P’ is the ideal chain, i.e.,
P/ =lpu
7N

col vec row vec

6/15

\Routing /

Multi-commodity flow (normalized)

A distribution 7t over paths

Xo—=> X1 ==X,

7/15

\Routing /

Multi-commodity flow (normalized)

A distribution 7t over paths

Xo—=> X1 ==X,

> Note: £ can be random

7/15

\Routing /

Multi-commodity flow (normalized)

A distribution 7t over paths

Xo—=> X1 ==X,

> Note: £ can be random
& mrouting of an ergodic flow Q' if
PT[[XO = S)X(’, =t = QI(S,t)

7/15

\Routing /

Multi-commodity flow (normalized)

A distribution 7t over paths

Xo—=> X1 ==X,

> Note: £ can be random
& mrouting of an ergodic flow Q' if
I]:Dn[XO = S)X(’, =t = QI(S,t)

> Alt view: to route Q’, specify
conditional dist on s — t paths:

m(path | Xg = s,X¢ = t)

o

7/15

\Routing /

Multi-commodity flow (normalized)

A distribution 7t over paths Suppose Tt is dist over paths and Q is
ergodic flow. Congestion is

max{ PpothNng}Czs))epOth} ‘ ot y}

Xo—=> X1 ==X,

> Note: £ can be random
& mrouting of an ergodic flow Q' if
I]:Dﬂ[XO = S)X(’, =t = QI(S,t)

> Alt view: to route Q’, specify
conditional dist on s — t paths:

m(path | Xg = s,X¢ = t)

o

7/15

\Routing /

Multi-commodity flow (normalized)

A distribution 7t over paths Suppose Tt is dist over paths and Q is
ergodic flow. Congestion is

max{ PpothNng}Czs))epOth} ‘ ot y}

Xo—=> X1 ==X,

> Note: £ can be random
B mrouting of an ergodic flow Q" if - > Goql: route Q’ through Q with low
PrlXo =5,X¢ =1 = Q' (s,) congestion and lengthe— this is just ¢

> Alt view: to route Q’, specify
conditional dist on s — t paths:

m(path | Xg = s,X¢ = t)

o

7/15

\Routing

J

Multi-commodity flow (normalized)

A distribution 7t over paths

Xo—=> X1 ==X,

> Note: £ can be random
& mrouting of an ergodic flow Q' if
I]:Dﬂ[XO = S)Xf, =t = QI(S,t)

> Alt view: to route Q’, specify
conditional dist on s — t paths:

m(path | Xg = s,X¢ = t)

o

Suppose Tt is dist over paths and Q is
ergodic flow. Congestion is

veo)

max{ "J’POthng(:s))Epoth}

> Goal: route Q’ through Q with low
congestion and length«— this is just ¢

Example: trivial routing

When 7t = Q’, length is 1 and conges-
tion is

max{ Q’(x,y)} _ max{ P'(x,y)}

Q(x,y) P(x,y)

7/15

P, P’ reversible with same stationaruy:

Lemma: direct comparison

Assume routing with length < 1. If P’
contracts Dy, at rate p’, P has rate:

!

_ P
P = congestion

8/15

P, P’ reversible with same stationaruy:

Lemma: direct comparison

Assume routing with length < 1. If P’
contracts Dy, at rate p’, P has rate:

!

_ P
P = congestion

Lemma: comparison

Assume any routing. If P/ contracts x2
at rate p’, P contracts at rate:

!

— P
P = (congestion)- (max length)

8/15

P, P’ reversible with same stationaruy:

Lemma: direct comparison

Assume routing with length < 1. If P/
contracts Dy, at rate p’, P has rate:

!

_ P
P = congestion

Lemma: comparison

Assume any routing. If P/ contracts x2
at rate p’, P contracts at rate:

!

— P
P = (congestion)- (max length)

> Note: for length > 2, we can only
compare Poincare ineqgs. MLSI
does not compare. @

8/15

P, P’ reversible with same stationaruy:

Lemma: direct comparison

Assume routing with length < 1. If P/
contracts Dy, at rate p’, P has rate:

!

_ P
P = congestion

Lemma: comparison

Assume any routing. If P/ contracts x2
at rate p’, P contracts at rate:

!

— P
P = (congestion)- (max length)

> Note: for length > 2, we can only
compare Poincare ineqgs. MLSI
does not compare. @

8/15

P, P’ reversible with same stationaruy:

Lemma: direct comparison

Assume routing with length < 1. If P/
contracts Dy, at rate p’, P has rate:

!

_ P
P = congestion

Lemma: comparison

Assume any routing. If P/ contracts x2
at rate p’, P contracts at rate:

!

_ p
P = (congestion)- (max length)

> Note: for length > 2, we can only
compare Poincare ineqgs. MLSI
does not compare. @

Proof:
> Will compare Dirichlet forms. For

Poincare, we care about E(f, f).

8/15

P, P’ reversible with same stationaruy: Proof:

> Will compare Dirichlet forms. For

Lemma: direct comparison Poincaré, we care about &(f, f).

Assume routing with length < 1. If P* > Take path Xg — X7 — - -+ — X; of

contracts Dy, at rate p’, P has rate: routing 7. By Cauchy-Schwarz:
o= 2 03 (F(Xig1) — f(X1))? =
COngeS“On (f(Xe) _ f(Xo))z

Lemma: comparison

Assume any routing. If P/ contracts x2
at rate p’, P contracts at rate:

!

— P
P = (congestion)- (max length)

> Note: for length > 2, we can only
compare Poincare ineqgs. MLSI
does not compare. @

8/15

P, P’ reversible with sarme stationary; 7O

> Will compare Dirichlet forms. For

Lemma: direct comparison Poincaré, we care about &(f, f).

Assume routing with length < 1. If P* > Take path Xg — X7 — - -+ — X; of

contracts Dy, at rate p’, P has rate: routing 7. By Cauchy-Schwarz:
o= 2 03 (F(Xig1) — f(X1))? =
Congestlon (f(Xe) _ f(Xo))z
> Toking expectatons we e
Assume any routing. If P’ contracts x2 2,y EI- T[(x = y) € pathl](f(x) —
at rate p’, P contracts at rate: f(y))? = E(xy)-q (F(x) — f(y))?]

!

— P
P = (congestion)- (max length)

> Note: for length > 2, we can only
compare Poincare ineqgs. MLSI
does not compare. @

8/15

P, P’ reversible with same stationary: Proof:

> Will compare Dirichlet forms. For

Lemma: direct comparison Poincaré, we care about &(f, f).

Assume routing with length < 1. If P* > Take path Xg — X7 — - -+ — X; of

contracts Dy, at rate p’, P has rate: routing 7. By Cauchy-Schwarz:
o= 2 03 (F(Xig1) — f(X1))? =
Congestlon (f(Xe) _ f(Xo))z
> Toking expectatons we e
Assume any routing. If P’ contracts x2 2,y EI- T[(x = y) € pathl](f(x) —
at rate p’, P contracts at rate: f(y))? = E(xy)-q (F(x) — f(y))?]

g > Thelhs.is at most

— P
P = (congestion)- (max length)

(cong) - (max len) -

_ 2
> Note: for length > 2, we can only E (x,y)~[(f(x) = f(y))“]

compare Poincare ineqgs. MLSI
does not compare. @

8/15

P, P’ reversible with same stationary: Proof:

> Will compare Dirichlet forms. For

Lemma: direct comparison Poincaré, we care about &(f, f).

Assume routing with length < 1. If P* > Take path Xg — X7 — - -+ — X; of

contracts Dy, at rate p’, P has rate: routing 7. By Cauchy-Schwarz:
o= 2 03 (F(Xig1) — f(X1))? =
congestion (f(X(’,) o f(XO))Z
> Toking expectatons we e
Assume any routing. If P/ contracts x2 2 xy [E[e x = y) € IOOth]](f(X)Z—
at rate p’, P contracts at rate: f(Y))? = E(xy)~q[(f(x) — f(y))]

_ 0! > The lh.s. is at most
P = (congestion)- (max length) (cong) . (mox Ien) .

_ 2
> Note: for length > 2, we can only . _[E_(X’y)”Q[(f(x) fly))“]
compare Poincare ineqs. MLS| O This finishes the proof:

Eps(£,f)
does not compare. @ Ep(f,) > Tone ot

8/15

> Note: if we tried proof for MLSI,
the Cauchy-Schwarz part fails. @

9/15

> Note: if we tried proof for MLSI,
the Cauchy-Schwarz part fails. @

> Alt: use stronger

E(VF, V) = pEntlf]

9/15

> Note: if we tried proof for MLSI,
the Cauchy-Schwarz part fails. @

> Alt: use stronger

E(VF, V) = pEntlf]

> The comparison method is often
used with chain P”:

P/ =1
7

col vec row vec

9/15

> Note: if we tried proof for MLSI,

the Cauchy-Schwarz part fails. @
Alt: use stronger

E(VF, V) = pEntlf]

The comparison method is often
used with chain P’

P/ =lu

7N

col vec row vec
Ideal P/ mixes instantaneously, so
p’ = 1. We just need to control

and of routing.

9/15

> Note: if we tried proof for MLSI,

the Cauchy-Schwarz part fails. @
Alt: use stronger

E(VF, V) = pEntlf]

The comparison method is often
used with chain P’

P/ =lu

7N

col vec row vec
Ideal P/ mixes instantaneously, so
p’ = 1. We just need to control

and of routing.

Routing: send u(s)u(t) units of
flow from each s to each t.

9/15

> Note: if we tried proof for MLSI,

the Cauchy-Schwarz part fails. @

> Alt: use stronger log-Sobolev ineq

E(VF, V) = pEntlf]

The comparison method is often
used with ideal chain P’:

P/ =lu

7N

col vec row vec
Ideal P/ mixes instantaneously, so
p’ = 1. We just need to control
congestion and length of routing.

Routing: send u(s)u(t) units of
flow from each s to each t.

Example: hypercube

& w=unifon {0, 1"

> P = Glauber
O P =1u

7

9/15

> Note: if we tried proof for MLSI,

the Cauchy-Schwarz part fails. @

> Alt: use stronger log-Sobolev ineq

E(VF, V) = pEntlf]

The comparison method is often
used with ideal chain P’:

P/ =lu

7N

col vec row vec
Ideal P/ mixes instantaneously, so
p’ = 1. We just need to control
congestion and length of routing.

Routing: send u(s)u(t) units of
flow from each s to each t.

Example: hypercube

& w=unifon {0, 1" Y
> P = Glauber
O P =1u

> Routing: go from s to t in n steps:
Xi: (t])"‘)ti)si—F])"')sn)

9/15

> Note: if we tried proof for MLSI,

the Cauchy-Schwarz part fails. @

> Alt: use stronger log-Sobolev ineq

E(VF, V) = pEntlf]

The comparison method is often
used with ideal chain P’:

P/ =lu

7N

col vec row vec
Ideal P/ mixes instantaneously, so
p’ = 1. We just need to control
congestion and length of routing.

Routing: send u(s)u(t) units of
flow from each s to each t.

Example: hypercube

& w=unifon {0, 1" Y
> P = Glauber
O P =1u

> Routing: go from s to t in n steps:
Xi = (t])"‘)ti)si—F])"‘)sT\.)
> Note: can ignore the X; = Xi,1.

9/15

> Note: if we tried proof for MLSI,

the Cauchy-Schwarz part fails. @
Alt: use stronger

E(VF, V) = pEntlf]

The comparison method is often
used with chain P”:
P/ =lu
7N

col vec row vec

Ideal P/ mixes instantaneously, so
p’ = 1. We just need to control
and of routing.

Routing: send u(s)u(t) units of
flow from each s to each t.

Example: hypercube

1= unif on {0, 11" Y
P = Glauber

P/ =1pn

Routing: go from s to t in n steps:
Xi = (tlv-wtiasi—!—l)---)sn)
Note: can ignore the X; = Xi41.

vy © Vo9

if | know path goes
through transition x — y, | know
Sit1:m, t1:ir1. There are 2n—1
pairs matching. Congestion is

Zmotching p(s)p(t) < on—=1.p-—m y-n
Q(x,y) = 27 (1/2n)

which is n ©

> Note: if we tried proof for MLSI,

the Cauchy-Schwarz part fails. @
Alt: use stronger

E(VF, V) = pEntlf]

The comparison method is often
used with chain P’

P/ =lu

7N

col vec row vec
Ideal P/ mixes instantaneously, so
p’ = 1. We just need to control

and of routing.

Routing: send u(s)u(t) units of
flow from each s to each t.

Example: hypercube

1= unif on {0, 11" Y
P = Glauber

P/ =1pn

Routing: go from s to t in n steps:

Xi = (tlv--)tiasi—l—h---)sn)
Note: can ignore the X; = Xi41.

vy © Vo9

if | know path goes
through transition x — y, | know
Sit1:m, t1:ir1. There are 2n—1
pairs matching. Congestion is
2 matching H(s)1(t) & Pl

Q(x,y) = 2 n(1/2n)
whichisn ©
>3 atmostn®,so p > 1/n?

> This is not tight for the hypercube
(tight p=1/n). ®

10/15

> This is not tight for the hypercube
(tight p=1/n). ®

> Unavoidable. Any routing in the
hypercube has

Ellength] > Q(n)
and cong is at least avg len.

10/15

> This is not tight for the hypercube
(tight p=1/n). ®
> Unavoidable. Any routing in the
hypercube has
Ellength] > Q(n)
and cong is at least avg len.

Example: cycle

& u = uniform fo‘_’o
> P =rand walk O

O P/ =ideal x‘oj

10/15

> This is not tight for the hypercube
(tight p=1/n). ®

> Unavoidable. Any routing in the
hypercube has

Ellength] > Q(n)
and cong is at least avg len.

Example: cycle

& u = uniform fo‘_’o
> P =rand walk O

O P/ =ideal x‘oj

> Routing: go clockwise!

10/15

> This is not tight for the hypercube
(tight p=1/n). ®
> Unavoidable. Any routing in the
hypercube has
Ellength] > Q(n)
and cong is at least avg len.

Example: cycle
& u = uniform O<Q

> P =rand walk Of

O P/ =ideal x‘oj

> Routing: go clockwise!
> cong=0(n),len=0(n) ©

10/15

> This is not tight for the hypercube
(tight p=1/n). ®
> Unavoidable. Any routing in the
hypercube has
Ellength] > Q(n)
and cong is at least avg len.

Example: cycle

C u = uniform fo‘_’o
> P =rand walk O

O P/ =ideal x‘oj

> Routing: go clockwise!
> cong=0(n),len=0(n) ©

C Implies p :1/Q$(n2) e

tight 10/15

O This is not tight for the hypercube R2elaale) CHR A0 I -REe lale laa R 2o 1[5

(tight p=1/n). ®

d
> Unavoidable. Any routing in the B o egd " L
hypercube has > P =rand wa
> P’ =ideal

Ellength] > Q(n)
and cong is at least avg len.

Example: cycle

C u = uniform fo‘_’o
> P =rand walk O

O P/ =ideal x‘oj

> Routing: go clockwise!
> cong=0(n),len=0(n) ©

C Implies p :1/Q$(n2) e

tight 10/15

O This is not tight for the hypercube R2elaale) CHR A0 I -REe lale laa R 2o 1[5

(tight p=1/n). ®

d
> Unavoidable. Any routing in the E e egd " L
hypercube has P/: rgn wa
Ellength] > Q(n) B P’ =ideal
and cong is at least avg len. > Routing: take any path.
Example: cycle
> u = uniform O<Q

> P =rand walk Of

O P/ =ideal x‘oj

> Routing: go clockwise!
> cong=0(n),len=0(n) ©

C Implies p :1/Q$(n2) e

tight 10/15

O This is not tight for the hypercube R2elaale) CHR A0 I -REe lale laa R 2o 1[5

(tight p=1/n). ®

d
> Unavoidable. Any routing in the E e egd " L
hypercube has P/_ rand wa
Ellength] > Q(n) B P’ =ideal
and cong is at least avg len. o Routing' take any path.
Example: cycle B len=0(n)®

> u=uniform 7
> P =rand walk O

O P/ =ideal x‘oj

> Routing: go clockwise!
> cong=0(n),len=0(n) ©
e Implies p =1/Q(n?) ©

A

tight 10/15

O This is not tight for the hypercube R2elaale) CHR A0 I -REe lale laa R 2o 1[5

(tight p=1/n). ®

d
> Unavoidable. Any routing in the e egd " L
hypercube has P = i v
P’/ = ideal

Ellength] > Q(n)

and cong is at least avg len. Routing: take any path.

Example: cycle len =0(n) ©
Congestions is at most
> p = uniform OO0 9

/ Soan(s)u(t) o
> P =rand walk O T < O(m)
> P’ =ideal \O

> Routing: go clockwise!
> cong=0(n),len=0(n) ©

e Implies p =1/Q(n?) ©
A
tight

\VAAVAAVERVAAVAV

10/15

O This is not tight for the hypercube R2elaale) CHR A0 I -REe lale laa R 2o 1[5

(tight p=1/n). ®

d
> Unavoidable. Any routing in the B o egd " L
hypercube has & P/: rand wa
Ellength] > Q(n) B P’ =ideal
and cong is at least avg len. > Routing: take any path.
Example: cycle B len=0(n)®
_ > Congestions is at most
> p=uniform fOHO T ¢ o)
> P =rand walk O 1/2m \.m
. > Implies p =1/Q(mn
C P/ =ideal \O plies p =1/Q(\)

C Routing: go clockwise! tight

> cong=0(n),len=0(n) ©

C Implies p :1/Q$(n2) e

tight 10/15

O This is not tight for the hypercube R2elaale) CHR A0 I -REe lale laa R 2o 1[5

(tight p=1/n). ®

& d

> Unavoidable. Any routing in the > ;Lic egd " "

hypercube has - rgn wa

Ellength] > Q(n) B P’ =ideal

and cong is at least avg len. > Routing: take any path.
Example: cycle > len=0(n)®
> " o e) > Congestions is at most

b = et Toon(su()
> P =rand walk Of T < O(m)
> P/ =ideal NO C Implies p =1/Q(mn) ©

> Routing: go clockwise!
> cong=0(n),len=0(n) ©

e Implies p =1/Q(n?) ©
A
tight

10/15

> Direct comparison
> Routing
> Comparison method

Applications
> Canonical paths
> Matchings

Comparison Arguments
> Direct comparison

> Routing

> Comparison method

> Canonical paths
> Matchings

\Cononicol paths /

Suppose routing is detempinistic.

one path per s, t

12/15

\Cononicol paths /

Suppose routing is detempimstic.

one path per s, t
> Goal: bound cong for x — .

12/15

\Cononicol paths

Suppose routing is deterr?inistic.
one path per s, t
> Goal: bound cong for x — .
> Idea: injective mapping enc from
{(syt) | (x = y) € st-path}
to Q x[M]=— junk/side info
(s,t) — (r,junk).

12/15

\Cononicol paths /

Suppose routing is deterr?inisﬁc.

one path per s, t
> Goal: bound cong for x — .
> Idea: injective mapping enc from
{(syt) | (x = y) € st-path}
to Q x[M]=— junk/side info
(s,t) — (r,junk).
Ju(t

G want u(s)u(t) < C- u(r)Q(x,y).

12/15

\Cononicol paths /

Suppose routing is deternpinisﬁc.

one path per s, t
> Goal: bound cong for x — .

> Idea: injective mapping enc from
{(syt) | (x = y) € st-path}
to Q x[M]=— junk/side info
(syt) — (r,junk).
G want pu(s)u(t) < C- u(r)Q(x,y).

> Alt: think of enc as mapping to Q
that is at most M-to-1.

12/15

\Cononicol paths /

Suppose routing is deternpinisﬂc.

one path per s, t
> Goal: bound cong for x — .

> Idea: injective mapping enc from
{(syt) | (x = y) € st-path}
to QO x[M]=— junk/side info
(s,t) — (r,junk).
want u(s)u(t) < C- p(r)Q(x, y).

Alt: think of enc as mapping to Q
that is at most M-to-1.

If it exists, then cong <

2 (st)3(x—y) H(SIH(t) <
Qlxy) - CMY_, u(r)«—1

\VAV,

12/15

\Cononicol paths /

Suppose routing is deternpinisﬂc. Example: hypercube

one path per s, t & w=unifon{o, 1"
& Goal: bound cong for x — y. > P = Glauber

> Idea: injective mapping enc from
{(syt) | (x = y) € st-path}
to QO x[M]=— junk/side info
(s,t) — (r,junk).
B> want u(s)u(t) < C- p(r)Qx,y),

> Alt: think of enc as mapping to Q
that is at most M-to-1.

> Ifit exists, then cong <

2 (st)3(x—y) H(SIH(t) <
Qlxy) - CMY_, u(r)«—1

> Route as before

12/15

\Cononicol paths /

Suppose routing is deternpinisﬂc. Example: hypercube

one path per s, t & w=unifon{o, 1"
& Goal: bound cong for x — y. > P = Glauber

> Idea: injective mapping enc from
{(syt) | (x = y) € st-path}
to QO x[M]=— junk/side info
(s,t) — (r,junk).
B> want u(s)u(t) < C- p(r)Qx,y),

> Alt: think of enc as mapping to Q
that is at most M-to-1.

> Ifit exists, then cong <

2 (st)3(x—y) H(SIH(t) <
Qlxy) - CMY_, u(r)«—1

> Route as before

O Fix x — y where xi # yi.

12/15

\Cononicol paths /

Suppose routing is deternpinisﬂc. Example: hypercube

one path per s, t & w=unifon{o, 1"
& Goal: bound cong for x — y. > P = Glauber

> Idea: injective mapping enc from
{(syt) | (x = y) € st-path}
to QO x[M]=— junk/side info
(s,t) — (r,junk).
want u(s)u(t) < C- u(r)Q(x,y). (51500 86ttty)

Alt: think of enc as mapping to Q
that is at most M-to-1.

If it exists, then cong <

2 (st)3(x—y) H(SIH(t) <
Qx,y) - CMY_ . u(r)<—1

> Route as before

> Fixx — y where x; # y;.
> Define encoding enc(s,t) =

\VAV,

12/15

\Cononicol paths /

Suppose routing is deternpinisﬂc. Example: hypercube

w = unif on {0, T}™
P = Glauber
Route as before

one path per s, t
> Goal: bound cong for x — .

> Idea: injective mapping enc from
{(syt) | (x = y) € st-path}
to QO x[M]=— junk/side info
(s,t) — (r,junk).
want u(s)u(t) < C- p(r)Q(x, y).

Alt: think of enc as mapping to Q
that is at most M-to-1.

If it exists, then cong <

2 (st)3(x—y) H(SIH(t) <
Qx,y) - CMY_ . u(r)<—1

Fix x =y where x; # y;.
Define encoding enc(s, t) =
(S1yeveySiytittyeeeytn)
Injective because there is dec
such that dec(enc(s,t)) = (s, t).

\VARAVAAVERVAVAV,

\VAV,

12/15

\Cononicol paths

J

Suppose routing is deternpinisﬂc.
one path per s, t
> Goal: bound cong for x — .
> Idea: injective mapping enc from
{(syt) | (x = y) € st-path}
to QO x[M]=— junk/side info
(s,t) — (r,junk).
> want u(s)u(t) < C- w(r)Q(x,y).

> Alt: think of enc as mapping to Q
that is at most M-to-1.

> Ifit exists, then cong <

2 (st)3(x—y) H(SIH(t) <
Qx,y) - CMY_ . u(r)<—1

Example: hypercube

v ¢ YV VOV

w = unif on {0, T}™
P = Glauber
Route as before

Fix x =y where x; # y;.
Define encoding enc(s, t) =
(S1yeveySiytittyeeeytn)
Injective because there is dec
such that dec(enc(s,t)) = (s, t).

r(su(t) < (2n) - u(r)Q(x,y)

12/15

\Cononicol paths /

Suppose routing is deternpinisﬂc. Example: hypercube

w = unif on {0, T}™
P = Glauber
Route as before

one path per s, t
> Goal: bound cong for x — .

> Idea: injective mapping enc from
{(syt) | (x = y) € st-path}
to QO x[M]=— junk/side info
(s,t) — (r,junk).
B> want u(s)u(t) < C- u(r)Q(x,y).

> Alt: think of enc as mapping to Q Injective because there is dec
that is at most M-to-1. such that dec(enc(s,t)) = (s, t).

O If it exists, then cong < B uls)u(t) < (2n) - u(r)Qlx,y)

Fix x =y where x; # y;.
Define encoding enc(s, t) =

(S],...,Si,tpr],...,tn)

\VARAVAAVERVAVAV,

2 (s01)5 (xoy) HSIH(t) < When wis uniform, only need
Qbxy) - EM2_, p{r)—1 min{P(x,y) | x = y} > 1/poly(n)

12/15

\Motchings /
Unweighted graph,
count/sample m
matchings.
AN

not necessarily perfect

13/15

\Motchings /
Unweighted graph,
count/sample M
matchings.
AN

not necessarily perfect

Markov chain (proposed by [Broder])

Move from M to M’ by

i i O deleting edge OO0
—_—
(0] (O]

i i O adding edge i i i
R ——
(o]
i i O exchanging edgei Co/)
R ————
o (0]

13/15

\Motchings /
Unweighted graph, > Make it reversible via Metropolis.
count/sample
matchings.

N

not necessarily perfect

Markov chain (proposed by [Broder])

Move from M to M’ by

i i O deleting edge OO0
—_—
(0] (O]

i i O adding edge i i i
R ——
(o]
i i O exchanging edgei Co/)
R ————
o (0]

13/15

\Motchings /

Unweighted graph, > Make it reversible via Metropolis.
count/sample > Details are unimportant. Just
mOtchin\gs. make sure P(x,y) > 1/poly(n).

not necessarily perfect

Markov chain (proposed by [Broder])

Move from M to M’ by

i i O deleting edge OO0
—_—
(0] (O]

i i O adding edge i i i
R ——
(o]
i i O exchanging edgei Co/)
R ————
o (0]

13/15

\Motchings

Unweighted graph, > Make it reversible via Metropolis.
count/sample > Details are unimportant. Just
mgtchm\gs. make sure P(x,y) > 1/poly(n).

not necessarily perfect > Technically exchange moves can

Markov chain (proposed by [Broder]) ?IZ S;ngigbz}/foieep them for

Move from M to M’ by

i i O deleting edge OO0
—
o (o)

i i O adding edge i i i
e
(o]
i i O exchanging edgei (3/)
_—
o (0]

J

13/15

\Motchings /

Unweighted graph, > Make it reversible via Metropolis.

count/sample m > Details are unimportant. Just

matchings. make sure P(x,y) > 1/poly(n).
ot ne;ssorilg perfect > Technically exchange moves can

Markov chain (proposed by [Broder]) be dropped. We keep them for
cleaner exposition.
Move from M to M’ by
Theorem [Jerrum-Sinclair]

O deleting edge OO0
i i o 00 There are canonical paths with
poly(n)-to-1 encoding schemes.

i i O adding edge i i i
R ——
(o]
i i O exchanging edgei Co/)
R ————
o (0]

13/15

\Motchings /

Unweighted graph, > Make it reversible via Metropolis.

count/sample M > Details are unimportant. Just

matchings. make sure P(x,y) > 1/poly(n).
ot ne;ssomlg perfect > Technically exchange moves can

Markov chain (proposed by [Broder]) be dropped. We keep them for
cleaner exposition.
Move from M to M’ by
Theorem [Jerrum-Sinclair]

O deleting edge OO0
i i o 00 There are canonical paths with
poly(n)-to-1 encoding schemes.
O adding edge
i i (o) i i i > Automatically p(s)u(t) <

s
poly(n)u(enc(s,t))Q(x,y) because

i i O exchanging edge i ?/3 i is uniform.
(o] (o]

13/15

\Motchings /

Unweighted graph, > Make it reversible via Metropolis.
count/sample > Details are unimportant. Just
mOtch@s. make sure P(x,y) > 1/poly(n).

not necessarily perfect > Technically exchange moves can

Markov chain (proposed by [Broder]) be dropped. We keep them for
cleaner exposition.
Move from M to M’ by
Theorem [Jerrum-Sinclair]

O deleting edge OO0

i i o 00 There are canonical paths with
poly(n)-to-1 encoding schemes.

O adding edge

i i (o) i i i > Automatically p(s)u(t) <
‘ poly(n)u(enc(s,t))Q(x,y) because

i i O exchanging edgei ?/) wis uniform.

(©) (0]

> This implies poly(n) mixing! ©

13/15

To move from s to t, we look at s @ t:

380 84

14/15

To move from s to t, we look at s @ t:

O O—=0 O—O
O=0 O O=O

(> This is a collection of
paths and cycles.

14/15

To move from s to t, we look at s @ t:

O O—=0 O—O
O=0 O O=O

(> This is a collection of
paths and cycles.

> We move from s to t one
path/cycle at a time and unravel

each path/cycle vertex-by-vertex.

14/15

To move from s to t, we look at s @ t:

(B

o

O O—=0 O—O
O=0 O O=O

This is a collection of
paths and cycles.

We move from s to t one
path/cycle at a time and unravel

each path/cycle vertex-by-vertex.

To make it , we fix an
arbitrary order on all
paths/cycles. For each cycle, we

also fix an arbitrary start location.

14/15

To move from s to t, we look at s @ t:

(B

o

O O—=0 O—O
O=0 O O=O

This is a collection of
paths and cycles.

We move from s to t one
path/cycle at a time and unravel

each path/cycle vertex-by-vertex.

To make it , we fix an
arbitrary order on all
paths/cycles. For each cycle, we

also fix an arbitrary start location.

o

Example: let’s unravel path, then
cycle, and start cycle from top-left:

O O0O0OO0O0
OO0OO0O0O0

14/15

To move from s to t, we look at s @ t:

(B

o

O O—=0 O—O
O=0 O O=O

This is a collection of
paths and cycles.

We move from s to t one
path/cycle at a time and unravel

each path/cycle vertex-by-vertex.

To make it , we fix an
arbitrary order on all
paths/cycles. For each cycle, we

also fix an arbitrary start location.

> Example: let’s unravel path, then

cycle, and start cycle from top-left:

O O0O0OO0O0
OO0OO0O0O0

OO0 00O
OO0OO0O0O0

14/15

To move from s to t, we look at s @ t: > Example: let’s unravel path, then

0 0—0 0—0 cycle, and start cycle from top-left:

0-0 0 O-0 00000 00000
1 2
ooooo ooooo

(> This is a collection of
paths and cycles.

O O0O0OO0O0

> We move from s to t one 0o-0 0 O O

path/cycle at a time and unravel

each path/cycle vertex-by-vertex.
> To make it , we fix an

arbitrary order on all

paths/cycles. For each cycle, we

also fix an arbitrary start location.

14/15

To move from s to t, we look at s @ t: > Example: let’s unravel path, then

0 0-0 0—O cycle, and start cycle from top-left:
Oo=0 O O=O O 0000 O 0O0OO0O0
1 2
O O0O0OO0O0 O O0OO0OO0O0
> Thisis a collection of
paths and cycles. 0000 O 0 0-0 0 O
> We move from s to t one 0o-0 0 O O 0-0 0 O O

path/cycle at a time and unravel
each path/cycle vertex-by-vertex.
> To make it , we fix an
arbitrary order on all
paths/cycles. For each cycle, we
also fix an arbitrary start location.

14/15

To move from s to t, we look at s @ t:

(B

o

o

O O—=0 O—O
O=0 O O=O

This is a collection of
paths and cycles.

We move from s to t one
path/cycle at a time and unravel

each path/cycle vertex-by-vertex.

To make it , we fix an
arbitrary order on all

paths/cycles. For each cycle, we

also fix an arbitrary start location.

> Example: let’s unravel path, then

cycle, and start cycle from top-left:

OO0 OO
O O0OO0O

O 00O
Oo=0 O O

O O=0 O
Oo-=0 O O

(0]
(0]

(0]

OO0 00O
OO0OO0O0O0

O O0=0 OO
O0-=0 O OO

14/15

To move from s to t, we look at s @ t:

(B

o

o

O O—=0 O—O
O=0 O O=O

This is a collection of
paths and cycles.

We move from s to t one
path/cycle at a time and unravel

each path/cycle vertex-by-vertex.

To make it , we fix an
arbitrary order on all

paths/cycles. For each cycle, we

also fix an arbitrary start location.

> Example: let’s unravel path, then

cycle, and start cycle from top-left:

OO0 OO
O O0OO0O

O 00O
Oo=0 O O

O O=0 O
Oo-=0 O O

(0]
(0]

(0]

(o}

©

(olNeRye]
(olNelNe]

O O0=0
O0=0 O

O 0=0
O0=0 O

o
o

(@]
o

o
o

(@]

14/15

To move from s to t, we look at s @ t:

(B

o

o

O O—=0 O—O
O=0 O O=O

This is a collection of
paths and cycles.

We move from s to t one
path/cycle at a time and unravel

each path/cycle vertex-by-vertex.

To make it , we fix an
arbitrary order on all

paths/cycles. For each cycle, we

also fix an arbitrary start location.

> Example: let’s unravel path, then

cycle, and start cycle from top-left:

O O0O0OO0O0 OOO
OO0OO0O0O0 (olNelNe]
Oo0OO0OO0Oo OO—O
Oo=-0 O O O O0=0 O
O O0-0 OO @OO—O
Oo=-0 O O O O0=0 O
OO—OO—O

O—=0 O O=O

o
o

(@]
o

o
o

(@]

14/15

> For x — y transition, we can define encoding:

enc(s,t) = (s ®t @ x— couple of edges , couple of edges)

around current vertex junk/side info

15/15

> For x — y transition, we can define encoding:

enc(s,t) = (s ®t @ x— couple of edges , couple of edges)

around current vertex junk/side info

> Example:

couple of edges

15/15

> For x — y transition, we can define encoding:

enc(s,t) = (s ®t @ x— couple of edges , couple of edges)

around current vertex junk/side info
> Example:
couple of edges
OO0O0OO0O .O 00 OO (%‘-O (02 @)
X: : sOtdx:
Oo=O0 O O O Oo=0 O O O O O O O=0O
() because we can recover s ® t @ x from enc(s, t) and thus s @ t. So

we can start unraveling x backward to get s and forward to get t.

15/15

> For x — y transition, we can define encoding:

enc(s,t) = (s ®t @ x— couple of edges , couple of edges)

around current vertex junk/side info
> Example:
couple of edges
OO0O0OO0O .O 00 OO (%‘-O (02 @)
X y: sOtDx:
Oo=O0 O O O Oo=0 O O O O O O O=0O
() because we can recover s ® t @ x from enc(s, t) and thus s @ t. So

we can start unraveling x backward to get s and forward to get t.
> Thus the chain mixes in poly(n) time. ©

15/15

