
1/15

CS 263: Counting and Sampling

Nima Anari

slides for

Comparison Arguments



2/15

Review

Example: hypercube

Eigvals: k/n(
n
k

)
many

Example: cycle

Eigvals:

cos(2πk/n)
One for k ∈ [n]

Relaxation time (lazy, reversible):

trel =
1

1−λ2
= Θ

(
limε→0

tmix(ε)
log(1/ε)

)

Cont. time: νt = exp(t(P − I))︸ ︷︷ ︸
transition matrix

ν0

time

Functional analysis in cont. time:
d
dt Dφ(νt ‖ µ) 6 −ρDφ(νt ‖ µ)

Dirichlet form E(f, g) =
1
2 E(x,y)∼Q[(f(x)−f(y))(g(x)−g(y))]

Func. analysis via Dirichlet form:

E(φ ′(f), f) > ρEntφ[f]
Poincaré: 2E(f, f) > ρVar[f]
MLSI: E(f, log f) > ρEnt[f]



2/15

Review

Example: hypercube

Eigvals: k/n(
n
k

)
many

Example: cycle

Eigvals:

cos(2πk/n)
One for k ∈ [n]

Relaxation time (lazy, reversible):

trel =
1

1−λ2
= Θ

(
limε→0

tmix(ε)
log(1/ε)

)

Cont. time: νt = exp(t(P − I))︸ ︷︷ ︸
transition matrix

ν0

time

Functional analysis in cont. time:
d
dt Dφ(νt ‖ µ) 6 −ρDφ(νt ‖ µ)

Dirichlet form E(f, g) =
1
2 E(x,y)∼Q[(f(x)−f(y))(g(x)−g(y))]

Func. analysis via Dirichlet form:

E(φ ′(f), f) > ρEntφ[f]
Poincaré: 2E(f, f) > ρVar[f]
MLSI: E(f, log f) > ρEnt[f]



2/15

Review

Example: hypercube

Eigvals: k/n(
n
k

)
many

Example: cycle

Eigvals:

cos(2πk/n)
One for k ∈ [n]

Relaxation time (lazy, reversible):

trel =
1

1−λ2
= Θ

(
limε→0

tmix(ε)
log(1/ε)

)

Cont. time: νt = exp(t(P − I))︸ ︷︷ ︸
transition matrix

ν0

time

Functional analysis in cont. time:
d
dt Dφ(νt ‖ µ) 6 −ρDφ(νt ‖ µ)

Dirichlet form E(f, g) =
1
2 E(x,y)∼Q[(f(x)−f(y))(g(x)−g(y))]

Func. analysis via Dirichlet form:

E(φ ′(f), f) > ρEntφ[f]
Poincaré: 2E(f, f) > ρVar[f]
MLSI: E(f, log f) > ρEnt[f]



2/15

Review

Example: hypercube

Eigvals: k/n(
n
k

)
many

Example: cycle

Eigvals:

cos(2πk/n)
One for k ∈ [n]

Relaxation time (lazy, reversible):

trel =
1

1−λ2
= Θ

(
limε→0

tmix(ε)
log(1/ε)

)

Cont. time: νt = exp(t(P − I))︸ ︷︷ ︸
transition matrix

ν0

time

Functional analysis in cont. time:
d
dt Dφ(νt ‖ µ) 6 −ρDφ(νt ‖ µ)

Dirichlet form E(f, g) =
1
2 E(x,y)∼Q[(f(x)−f(y))(g(x)−g(y))]

Func. analysis via Dirichlet form:

E(φ ′(f), f) > ρEntφ[f]
Poincaré: 2E(f, f) > ρVar[f]
MLSI: E(f, log f) > ρEnt[f]



2/15

Review

Example: hypercube

Eigvals: k/n(
n
k

)
many

Example: cycle

Eigvals:

cos(2πk/n)
One for k ∈ [n]

Relaxation time (lazy, reversible):

trel =
1

1−λ2
= Θ

(
limε→0

tmix(ε)
log(1/ε)

)

Cont. time: νt = exp(t(P − I))︸ ︷︷ ︸
transition matrix

ν0

time

Functional analysis in cont. time:
d
dt Dφ(νt ‖ µ) 6 −ρDφ(νt ‖ µ)

Dirichlet form E(f, g) =
1
2 E(x,y)∼Q[(f(x)−f(y))(g(x)−g(y))]

Func. analysis via Dirichlet form:

E(φ ′(f), f) > ρEntφ[f]
Poincaré: 2E(f, f) > ρVar[f]
MLSI: E(f, log f) > ρEnt[f]



2/15

Review

Example: hypercube

Eigvals: k/n(
n
k

)
many

Example: cycle

Eigvals:

cos(2πk/n)
One for k ∈ [n]

Relaxation time (lazy, reversible):

trel =
1

1−λ2
= Θ

(
limε→0

tmix(ε)
log(1/ε)

)

Cont. time: νt = exp(t(P − I))︸ ︷︷ ︸
transition matrix

ν0

time

Functional analysis in cont. time:
d
dt Dφ(νt ‖ µ) 6 −ρDφ(νt ‖ µ)

Dirichlet form E(f, g) =
1
2 E(x,y)∼Q[(f(x)−f(y))(g(x)−g(y))]

Func. analysis via Dirichlet form:

E(φ ′(f), f) > ρEntφ[f]
Poincaré: 2E(f, f) > ρVar[f]
MLSI: E(f, log f) > ρEnt[f]



2/15

Review

Example: hypercube

Eigvals: k/n(
n
k

)
many

Example: cycle

Eigvals:

cos(2πk/n)
One for k ∈ [n]

Relaxation time (lazy, reversible):

trel =
1

1−λ2
= Θ

(
limε→0

tmix(ε)
log(1/ε)

)

Cont. time: νt = exp(t(P − I))︸ ︷︷ ︸
transition matrix

ν0

time

Functional analysis in cont. time:
d
dt Dφ(νt ‖ µ) 6 −ρDφ(νt ‖ µ)

Dirichlet form E(f, g) =
1
2 E(x,y)∼Q[(f(x)−f(y))(g(x)−g(y))]

Func. analysis via Dirichlet form:

E(φ ′(f), f) > ρEntφ[f]

Poincaré: 2E(f, f) > ρVar[f]
MLSI: E(f, log f) > ρEnt[f]



2/15

Review

Example: hypercube

Eigvals: k/n(
n
k

)
many

Example: cycle

Eigvals:

cos(2πk/n)
One for k ∈ [n]

Relaxation time (lazy, reversible):

trel =
1

1−λ2
= Θ

(
limε→0

tmix(ε)
log(1/ε)

)

Cont. time: νt = exp(t(P − I))︸ ︷︷ ︸
transition matrix

ν0

time

Functional analysis in cont. time:
d
dt Dφ(νt ‖ µ) 6 −ρDφ(νt ‖ µ)

Dirichlet form E(f, g) =
1
2 E(x,y)∼Q[(f(x)−f(y))(g(x)−g(y))]

Func. analysis via Dirichlet form:

E(φ ′(f), f) > ρEntφ[f]
Poincaré: 2E(f, f) > ρVar[f]

MLSI: E(f, log f) > ρEnt[f]



2/15

Review

Example: hypercube

Eigvals: k/n(
n
k

)
many

Example: cycle

Eigvals:

cos(2πk/n)
One for k ∈ [n]

Relaxation time (lazy, reversible):

trel =
1

1−λ2
= Θ

(
limε→0

tmix(ε)
log(1/ε)

)

Cont. time: νt = exp(t(P − I))︸ ︷︷ ︸
transition matrix

ν0

time

Functional analysis in cont. time:
d
dt Dφ(νt ‖ µ) 6 −ρDφ(νt ‖ µ)

Dirichlet form E(f, g) =
1
2 E(x,y)∼Q[(f(x)−f(y))(g(x)−g(y))]

Func. analysis via Dirichlet form:

E(φ ′(f), f) > ρEntφ[f]
Poincaré: 2E(f, f) > ρVar[f]
MLSI: E(f, log f) > ρEnt[f]



4/15

Comparison Arguments
Direct comparison

Routing

Comparison method

Applications
Canonical paths

Matchings



4/15

Comparison Arguments
Direct comparison

Routing

Comparison method

Applications
Canonical paths

Matchings



5/15

Direct comparison

Suppose we have two chains P, P ′

with the same stationary µ.

Example: Metropolis vs. Glauber

Metropolis: pick v, c

and accept/reject.

Glauber: pick v, then

pick valid c.

Comparison: as long as

Q(x, y) > c ·Q ′(x, y) for x 6= y,

functional inequalities for P ′

transfer to P with a loss of c.

Proof:

Func ineqs are of the form

E(φ ′(f), f) > ρEntφ[f]

But E is a positive Q/Q ′-weighted
combination of

(φ ′(f(x)) − φ ′(f(y)))(f(x) − f(y)).

Because φ is convex, these terms

are always > 0.

So as long as Q(x, y) > c ·Q ′(x, y):

EP(φ
′(f), f) > c · EP ′(φ ′(f), f)



5/15

Direct comparison

Suppose we have two chains P, P ′

with the same stationary µ.

Example: Metropolis vs. Glauber

Metropolis: pick v, c

and accept/reject.

Glauber: pick v, then

pick valid c.

Comparison: as long as

Q(x, y) > c ·Q ′(x, y) for x 6= y,

functional inequalities for P ′

transfer to P with a loss of c.

Proof:

Func ineqs are of the form

E(φ ′(f), f) > ρEntφ[f]

But E is a positive Q/Q ′-weighted
combination of

(φ ′(f(x)) − φ ′(f(y)))(f(x) − f(y)).

Because φ is convex, these terms

are always > 0.

So as long as Q(x, y) > c ·Q ′(x, y):

EP(φ
′(f), f) > c · EP ′(φ ′(f), f)



5/15

Direct comparison

Suppose we have two chains P, P ′

with the same stationary µ.

Example: Metropolis vs. Glauber

Metropolis: pick v, c

and accept/reject.

Glauber: pick v, then

pick valid c.

Comparison: as long as

Q(x, y) > c ·Q ′(x, y) for x 6= y,

functional inequalities for P ′

transfer to P with a loss of c.

Proof:

Func ineqs are of the form

E(φ ′(f), f) > ρEntφ[f]

But E is a positive Q/Q ′-weighted
combination of

(φ ′(f(x)) − φ ′(f(y)))(f(x) − f(y)).

Because φ is convex, these terms

are always > 0.

So as long as Q(x, y) > c ·Q ′(x, y):

EP(φ
′(f), f) > c · EP ′(φ ′(f), f)



5/15

Direct comparison

Suppose we have two chains P, P ′

with the same stationary µ.

Example: Metropolis vs. Glauber

Metropolis: pick v, c

and accept/reject.

Glauber: pick v, then

pick valid c.

Comparison: as long as

Q(x, y) > c ·Q ′(x, y) for x 6= y,

functional inequalities for P ′

transfer to P with a loss of c.

Proof:

Func ineqs are of the form

E(φ ′(f), f) > ρEntφ[f]

But E is a positive Q/Q ′-weighted
combination of

(φ ′(f(x)) − φ ′(f(y)))(f(x) − f(y)).

Because φ is convex, these terms

are always > 0.

So as long as Q(x, y) > c ·Q ′(x, y):

EP(φ
′(f), f) > c · EP ′(φ ′(f), f)



5/15

Direct comparison

Suppose we have two chains P, P ′

with the same stationary µ.

Example: Metropolis vs. Glauber

Metropolis: pick v, c

and accept/reject.

Glauber: pick v, then

pick valid c.

Comparison: as long as

Q(x, y) > c ·Q ′(x, y) for x 6= y,

functional inequalities for P ′

transfer to P with a loss of c.

Proof:

Func ineqs are of the form

E(φ ′(f), f) > ρEntφ[f]

But E is a positive Q/Q ′-weighted
combination of

(φ ′(f(x)) − φ ′(f(y)))(f(x) − f(y)).

Because φ is convex, these terms

are always > 0.

So as long as Q(x, y) > c ·Q ′(x, y):

EP(φ
′(f), f) > c · EP ′(φ ′(f), f)



5/15

Direct comparison

Suppose we have two chains P, P ′

with the same stationary µ.

Example: Metropolis vs. Glauber

Metropolis: pick v, c

and accept/reject.

Glauber: pick v, then

pick valid c.

Comparison: as long as

Q(x, y) > c ·Q ′(x, y) for x 6= y,

functional inequalities for P ′

transfer to P with a loss of c.

Proof:

Func ineqs are of the form

E(φ ′(f), f) > ρEntφ[f]

But E is a positive Q/Q ′-weighted
combination of

(φ ′(f(x)) − φ ′(f(y)))(f(x) − f(y)).

Because φ is convex, these terms

are always > 0.

So as long as Q(x, y) > c ·Q ′(x, y):

EP(φ
′(f), f) > c · EP ′(φ ′(f), f)



5/15

Direct comparison

Suppose we have two chains P, P ′

with the same stationary µ.

Example: Metropolis vs. Glauber

Metropolis: pick v, c

and accept/reject.

Glauber: pick v, then

pick valid c.

Comparison: as long as

Q(x, y) > c ·Q ′(x, y) for x 6= y,

functional inequalities for P ′

transfer to P with a loss of c.

Proof:

Func ineqs are of the form

E(φ ′(f), f) > ρEntφ[f]

But E is a positive Q/Q ′-weighted
combination of

(φ ′(f(x)) − φ ′(f(y)))(f(x) − f(y)).

Because φ is convex, these terms

are always > 0.

So as long as Q(x, y) > c ·Q ′(x, y):

EP(φ
′(f), f) > c · EP ′(φ ′(f), f)



6/15

Corollary

Metropolis and Glauber satisfy the same Poincaré and

MLSI up to
q

q− ∆
.

What if P doesn’t have all the moves of P ′?

Direct comparison becomes useless.

Idea: simulate moves of P ′ by multiple of P.

P ′

Main application: when P ′ is the ideal chain, i.e.,

P ′ =1

col vec

µ

row vec



6/15

Corollary

Metropolis and Glauber satisfy the same Poincaré and

MLSI up to
q

q− ∆
.

What if P doesn’t have all the moves of P ′?

Direct comparison becomes useless.

Idea: simulate moves of P ′ by multiple of P.

P ′

Main application: when P ′ is the ideal chain, i.e.,

P ′ =1

col vec

µ

row vec



6/15

Corollary

Metropolis and Glauber satisfy the same Poincaré and

MLSI up to
q

q− ∆
.

What if P doesn’t have all the moves of P ′?

Direct comparison becomes useless.

Idea: simulate moves of P ′ by multiple of P.

P ′

Main application: when P ′ is the ideal chain, i.e.,

P ′ =1

col vec

µ

row vec



6/15

Corollary

Metropolis and Glauber satisfy the same Poincaré and

MLSI up to
q

q− ∆
.

What if P doesn’t have all the moves of P ′?

Direct comparison becomes useless.

Idea: simulate moves of P ′ by multiple of P.

P ′

Main application: when P ′ is the ideal chain, i.e.,

P ′ =1

col vec

µ

row vec



6/15

Corollary

Metropolis and Glauber satisfy the same Poincaré and

MLSI up to
q

q− ∆
.

What if P doesn’t have all the moves of P ′?

Direct comparison becomes useless.

Idea: simulate moves of P ′ by multiple of P.

P ′

Main application: when P ′ is the ideal chain, i.e.,

P ′ =1

col vec

µ

row vec



7/15

Routing

Multi-commodity flow (normalized)

A distribution π over paths

X0 → X1 → · · · → X`

Note: ` can be random

π routing of an ergodic flow Q ′ if

Pπ[X0 = s, X` = t] = Q ′(s, t)

Alt view: to route Q ′, specify
conditional dist on s → t paths:

π(path | X0 = s, X` = t)

s t

Congestion

Suppose π is dist over paths and Q is

ergodic flow. Congestion is

max
{

Ppath∼π[(x→y)∈path]
Q(x,y)

∣∣∣ x 6= y
}

Goal: route Q ′ through Q with low

congestion and length this is just `.

Example: trivial routing

When π = Q ′, length is 1 and conges-

tion is

max
{

Q ′(x,y)
Q(x,y)

}
= max

{
P ′(x,y)
P(x,y)

}



7/15

Routing

Multi-commodity flow (normalized)

A distribution π over paths

X0 → X1 → · · · → X`

Note: ` can be random

π routing of an ergodic flow Q ′ if

Pπ[X0 = s, X` = t] = Q ′(s, t)

Alt view: to route Q ′, specify
conditional dist on s → t paths:

π(path | X0 = s, X` = t)

s t

Congestion

Suppose π is dist over paths and Q is

ergodic flow. Congestion is

max
{

Ppath∼π[(x→y)∈path]
Q(x,y)

∣∣∣ x 6= y
}

Goal: route Q ′ through Q with low

congestion and length this is just `.

Example: trivial routing

When π = Q ′, length is 1 and conges-

tion is

max
{

Q ′(x,y)
Q(x,y)

}
= max

{
P ′(x,y)
P(x,y)

}



7/15

Routing

Multi-commodity flow (normalized)

A distribution π over paths

X0 → X1 → · · · → X`

Note: ` can be random

π routing of an ergodic flow Q ′ if

Pπ[X0 = s, X` = t] = Q ′(s, t)

Alt view: to route Q ′, specify
conditional dist on s → t paths:

π(path | X0 = s, X` = t)

s t

Congestion

Suppose π is dist over paths and Q is

ergodic flow. Congestion is

max
{

Ppath∼π[(x→y)∈path]
Q(x,y)

∣∣∣ x 6= y
}

Goal: route Q ′ through Q with low

congestion and length this is just `.

Example: trivial routing

When π = Q ′, length is 1 and conges-

tion is

max
{

Q ′(x,y)
Q(x,y)

}
= max

{
P ′(x,y)
P(x,y)

}



7/15

Routing

Multi-commodity flow (normalized)

A distribution π over paths

X0 → X1 → · · · → X`

Note: ` can be random

π routing of an ergodic flow Q ′ if

Pπ[X0 = s, X` = t] = Q ′(s, t)

Alt view: to route Q ′, specify
conditional dist on s → t paths:

π(path | X0 = s, X` = t)

s t

Congestion

Suppose π is dist over paths and Q is

ergodic flow. Congestion is

max
{

Ppath∼π[(x→y)∈path]
Q(x,y)

∣∣∣ x 6= y
}

Goal: route Q ′ through Q with low

congestion and length this is just `.

Example: trivial routing

When π = Q ′, length is 1 and conges-

tion is

max
{

Q ′(x,y)
Q(x,y)

}
= max

{
P ′(x,y)
P(x,y)

}



7/15

Routing

Multi-commodity flow (normalized)

A distribution π over paths

X0 → X1 → · · · → X`

Note: ` can be random

π routing of an ergodic flow Q ′ if

Pπ[X0 = s, X` = t] = Q ′(s, t)

Alt view: to route Q ′, specify
conditional dist on s → t paths:

π(path | X0 = s, X` = t)

s t

Congestion

Suppose π is dist over paths and Q is

ergodic flow. Congestion is

max
{

Ppath∼π[(x→y)∈path]
Q(x,y)

∣∣∣ x 6= y
}

Goal: route Q ′ through Q with low

congestion and length this is just `.

Example: trivial routing

When π = Q ′, length is 1 and conges-

tion is

max
{

Q ′(x,y)
Q(x,y)

}
= max

{
P ′(x,y)
P(x,y)

}



7/15

Routing

Multi-commodity flow (normalized)

A distribution π over paths

X0 → X1 → · · · → X`

Note: ` can be random

π routing of an ergodic flow Q ′ if

Pπ[X0 = s, X` = t] = Q ′(s, t)

Alt view: to route Q ′, specify
conditional dist on s → t paths:

π(path | X0 = s, X` = t)

s t

Congestion

Suppose π is dist over paths and Q is

ergodic flow. Congestion is

max
{

Ppath∼π[(x→y)∈path]
Q(x,y)

∣∣∣ x 6= y
}

Goal: route Q ′ through Q with low

congestion and length this is just `.

Example: trivial routing

When π = Q ′, length is 1 and conges-

tion is

max
{

Q ′(x,y)
Q(x,y)

}
= max

{
P ′(x,y)
P(x,y)

}



7/15

Routing

Multi-commodity flow (normalized)

A distribution π over paths

X0 → X1 → · · · → X`

Note: ` can be random

π routing of an ergodic flow Q ′ if

Pπ[X0 = s, X` = t] = Q ′(s, t)

Alt view: to route Q ′, specify
conditional dist on s → t paths:

π(path | X0 = s, X` = t)

s t

Congestion

Suppose π is dist over paths and Q is

ergodic flow. Congestion is

max
{

Ppath∼π[(x→y)∈path]
Q(x,y)

∣∣∣ x 6= y
}

Goal: route Q ′ through Q with low

congestion and length this is just `.

Example: trivial routing

When π = Q ′, length is 1 and conges-

tion is

max
{

Q ′(x,y)
Q(x,y)

}
= max

{
P ′(x,y)
P(x,y)

}



8/15

P, P ′ reversible with same stationary:

Lemma: direct comparison

Assume routing with length 6 1. If P ′

contracts Dφ at rate ρ ′, P has rate:

ρ = ρ ′

congestion

Lemma: comparison

Assume any routing. If P ′ contracts χ2

at rate ρ ′, P contracts at rate:

ρ = ρ ′

(congestion)·(max length)

Note: for length > 2, we can only

compare Poincaré ineqs. MLSI

does not compare.

Proof:

Will compare Dirichlet forms. For

Poincaré, we care about E(f, f).

Take path X0 → X1 → · · · → X` of

routing π. By Cauchy-Schwarz:

` ·
∑

i(f(Xi+1) − f(Xi))
2 >

(f(X`) − f(X0))
2

Taking expectations we get∑
x,y E[` · 1[(x → y) ∈ path]](f(x) −

f(y))2 > E(x,y)∼Q ′ [(f(x) − f(y))2]

The l.h.s. is at most

(cong) · (max len) ·
E(x,y)∼Q[(f(x) − f(y))2]

This finishes the proof:

EP(f, f) >
EP ′(f,f)

(cong)·(max len)



8/15

P, P ′ reversible with same stationary:

Lemma: direct comparison

Assume routing with length 6 1. If P ′

contracts Dφ at rate ρ ′, P has rate:

ρ = ρ ′

congestion

Lemma: comparison

Assume any routing. If P ′ contracts χ2

at rate ρ ′, P contracts at rate:

ρ = ρ ′

(congestion)·(max length)

Note: for length > 2, we can only

compare Poincaré ineqs. MLSI

does not compare.

Proof:

Will compare Dirichlet forms. For

Poincaré, we care about E(f, f).

Take path X0 → X1 → · · · → X` of

routing π. By Cauchy-Schwarz:

` ·
∑

i(f(Xi+1) − f(Xi))
2 >

(f(X`) − f(X0))
2

Taking expectations we get∑
x,y E[` · 1[(x → y) ∈ path]](f(x) −

f(y))2 > E(x,y)∼Q ′ [(f(x) − f(y))2]

The l.h.s. is at most

(cong) · (max len) ·
E(x,y)∼Q[(f(x) − f(y))2]

This finishes the proof:

EP(f, f) >
EP ′(f,f)

(cong)·(max len)



8/15

P, P ′ reversible with same stationary:

Lemma: direct comparison

Assume routing with length 6 1. If P ′

contracts Dφ at rate ρ ′, P has rate:

ρ = ρ ′

congestion

Lemma: comparison

Assume any routing. If P ′ contracts χ2

at rate ρ ′, P contracts at rate:

ρ = ρ ′

(congestion)·(max length)

Note: for length > 2, we can only

compare Poincaré ineqs. MLSI

does not compare.

Proof:

Will compare Dirichlet forms. For

Poincaré, we care about E(f, f).

Take path X0 → X1 → · · · → X` of

routing π. By Cauchy-Schwarz:

` ·
∑

i(f(Xi+1) − f(Xi))
2 >

(f(X`) − f(X0))
2

Taking expectations we get∑
x,y E[` · 1[(x → y) ∈ path]](f(x) −

f(y))2 > E(x,y)∼Q ′ [(f(x) − f(y))2]

The l.h.s. is at most

(cong) · (max len) ·
E(x,y)∼Q[(f(x) − f(y))2]

This finishes the proof:

EP(f, f) >
EP ′(f,f)

(cong)·(max len)



8/15

P, P ′ reversible with same stationary:

Lemma: direct comparison

Assume routing with length 6 1. If P ′

contracts Dφ at rate ρ ′, P has rate:

ρ = ρ ′

congestion

Lemma: comparison

Assume any routing. If P ′ contracts χ2

at rate ρ ′, P contracts at rate:

ρ = ρ ′

(congestion)·(max length)

Note: for length > 2, we can only

compare Poincaré ineqs. MLSI

does not compare.

Proof:

Will compare Dirichlet forms. For

Poincaré, we care about E(f, f).

Take path X0 → X1 → · · · → X` of

routing π. By Cauchy-Schwarz:

` ·
∑

i(f(Xi+1) − f(Xi))
2 >

(f(X`) − f(X0))
2

Taking expectations we get∑
x,y E[` · 1[(x → y) ∈ path]](f(x) −

f(y))2 > E(x,y)∼Q ′ [(f(x) − f(y))2]

The l.h.s. is at most

(cong) · (max len) ·
E(x,y)∼Q[(f(x) − f(y))2]

This finishes the proof:

EP(f, f) >
EP ′(f,f)

(cong)·(max len)



8/15

P, P ′ reversible with same stationary:

Lemma: direct comparison

Assume routing with length 6 1. If P ′

contracts Dφ at rate ρ ′, P has rate:

ρ = ρ ′

congestion

Lemma: comparison

Assume any routing. If P ′ contracts χ2

at rate ρ ′, P contracts at rate:

ρ = ρ ′

(congestion)·(max length)

Note: for length > 2, we can only

compare Poincaré ineqs. MLSI

does not compare.

Proof:

Will compare Dirichlet forms. For

Poincaré, we care about E(f, f).

Take path X0 → X1 → · · · → X` of

routing π. By Cauchy-Schwarz:

` ·
∑

i(f(Xi+1) − f(Xi))
2 >

(f(X`) − f(X0))
2

Taking expectations we get∑
x,y E[` · 1[(x → y) ∈ path]](f(x) −

f(y))2 > E(x,y)∼Q ′ [(f(x) − f(y))2]

The l.h.s. is at most

(cong) · (max len) ·
E(x,y)∼Q[(f(x) − f(y))2]

This finishes the proof:

EP(f, f) >
EP ′(f,f)

(cong)·(max len)



8/15

P, P ′ reversible with same stationary:

Lemma: direct comparison

Assume routing with length 6 1. If P ′

contracts Dφ at rate ρ ′, P has rate:

ρ = ρ ′

congestion

Lemma: comparison

Assume any routing. If P ′ contracts χ2

at rate ρ ′, P contracts at rate:

ρ = ρ ′

(congestion)·(max length)

Note: for length > 2, we can only

compare Poincaré ineqs. MLSI

does not compare.

Proof:

Will compare Dirichlet forms. For

Poincaré, we care about E(f, f).

Take path X0 → X1 → · · · → X` of

routing π. By Cauchy-Schwarz:

` ·
∑

i(f(Xi+1) − f(Xi))
2 >

(f(X`) − f(X0))
2

Taking expectations we get∑
x,y E[` · 1[(x → y) ∈ path]](f(x) −

f(y))2 > E(x,y)∼Q ′ [(f(x) − f(y))2]

The l.h.s. is at most

(cong) · (max len) ·
E(x,y)∼Q[(f(x) − f(y))2]

This finishes the proof:

EP(f, f) >
EP ′(f,f)

(cong)·(max len)



8/15

P, P ′ reversible with same stationary:

Lemma: direct comparison

Assume routing with length 6 1. If P ′

contracts Dφ at rate ρ ′, P has rate:

ρ = ρ ′

congestion

Lemma: comparison

Assume any routing. If P ′ contracts χ2

at rate ρ ′, P contracts at rate:

ρ = ρ ′

(congestion)·(max length)

Note: for length > 2, we can only

compare Poincaré ineqs. MLSI

does not compare.

Proof:

Will compare Dirichlet forms. For

Poincaré, we care about E(f, f).

Take path X0 → X1 → · · · → X` of

routing π. By Cauchy-Schwarz:

` ·
∑

i(f(Xi+1) − f(Xi))
2 >

(f(X`) − f(X0))
2

Taking expectations we get∑
x,y E[` · 1[(x → y) ∈ path]](f(x) −

f(y))2 > E(x,y)∼Q ′ [(f(x) − f(y))2]

The l.h.s. is at most

(cong) · (max len) ·
E(x,y)∼Q[(f(x) − f(y))2]

This finishes the proof:

EP(f, f) >
EP ′(f,f)

(cong)·(max len)



8/15

P, P ′ reversible with same stationary:

Lemma: direct comparison

Assume routing with length 6 1. If P ′

contracts Dφ at rate ρ ′, P has rate:

ρ = ρ ′

congestion

Lemma: comparison

Assume any routing. If P ′ contracts χ2

at rate ρ ′, P contracts at rate:

ρ = ρ ′

(congestion)·(max length)

Note: for length > 2, we can only

compare Poincaré ineqs. MLSI

does not compare.

Proof:

Will compare Dirichlet forms. For

Poincaré, we care about E(f, f).

Take path X0 → X1 → · · · → X` of

routing π. By Cauchy-Schwarz:

` ·
∑

i(f(Xi+1) − f(Xi))
2 >

(f(X`) − f(X0))
2

Taking expectations we get∑
x,y E[` · 1[(x → y) ∈ path]](f(x) −

f(y))2 > E(x,y)∼Q ′ [(f(x) − f(y))2]

The l.h.s. is at most

(cong) · (max len) ·
E(x,y)∼Q[(f(x) − f(y))2]

This finishes the proof:

EP(f, f) >
EP ′(f,f)

(cong)·(max len)



8/15

P, P ′ reversible with same stationary:

Lemma: direct comparison

Assume routing with length 6 1. If P ′

contracts Dφ at rate ρ ′, P has rate:

ρ = ρ ′

congestion

Lemma: comparison

Assume any routing. If P ′ contracts χ2

at rate ρ ′, P contracts at rate:

ρ = ρ ′

(congestion)·(max length)

Note: for length > 2, we can only

compare Poincaré ineqs. MLSI

does not compare.

Proof:

Will compare Dirichlet forms. For

Poincaré, we care about E(f, f).

Take path X0 → X1 → · · · → X` of

routing π. By Cauchy-Schwarz:

` ·
∑

i(f(Xi+1) − f(Xi))
2 >

(f(X`) − f(X0))
2

Taking expectations we get∑
x,y E[` · 1[(x → y) ∈ path]](f(x) −

f(y))2 > E(x,y)∼Q ′ [(f(x) − f(y))2]

The l.h.s. is at most

(cong) · (max len) ·
E(x,y)∼Q[(f(x) − f(y))2]

This finishes the proof:

EP(f, f) >
EP ′(f,f)

(cong)·(max len)



9/15

Note: if we tried proof for MLSI,

the Cauchy-Schwarz part fails.

Alt: use stronger log-Sobolev ineq

E(
√
f,
√
f) > ρEnt[f]

The comparison method is often

used with ideal chain P ′:

P ′ =1

col vec

µ

row vec

Ideal P ′ mixes instantaneously, so

ρ ′ = 1. We just need to control

congestion and length of routing.

Routing: send µ(s)µ(t) units of
flow from each s to each t.

Example: hypercube

µ = unif on {0, 1}n

P = Glauber

P ′ = 1µ

Routing: go from s to t in n steps:

Xi = (t1, . . . , ti, si+1, . . . , sn)

Note: can ignore the Xi = Xi+1.

Congestion: if I know path goes

through transition x → y, I know

si+1:n, t1:i+1. There are 2n−1

pairs matching. Congestion is∑
matching µ(s)µ(t)

Q(x,y) 6 2n−1·2−n·2−n

2−n·(1/2n)

which is n

Length: at most n , so ρ > 1/n2



9/15

Note: if we tried proof for MLSI,

the Cauchy-Schwarz part fails.

Alt: use stronger log-Sobolev ineq

E(
√
f,
√
f) > ρEnt[f]

The comparison method is often

used with ideal chain P ′:

P ′ =1

col vec

µ

row vec

Ideal P ′ mixes instantaneously, so

ρ ′ = 1. We just need to control

congestion and length of routing.

Routing: send µ(s)µ(t) units of
flow from each s to each t.

Example: hypercube

µ = unif on {0, 1}n

P = Glauber

P ′ = 1µ

Routing: go from s to t in n steps:

Xi = (t1, . . . , ti, si+1, . . . , sn)

Note: can ignore the Xi = Xi+1.

Congestion: if I know path goes

through transition x → y, I know

si+1:n, t1:i+1. There are 2n−1

pairs matching. Congestion is∑
matching µ(s)µ(t)

Q(x,y) 6 2n−1·2−n·2−n

2−n·(1/2n)

which is n

Length: at most n , so ρ > 1/n2



9/15

Note: if we tried proof for MLSI,

the Cauchy-Schwarz part fails.

Alt: use stronger log-Sobolev ineq

E(
√
f,
√
f) > ρEnt[f]

The comparison method is often

used with ideal chain P ′:

P ′ =1

col vec

µ

row vec

Ideal P ′ mixes instantaneously, so

ρ ′ = 1. We just need to control

congestion and length of routing.

Routing: send µ(s)µ(t) units of
flow from each s to each t.

Example: hypercube

µ = unif on {0, 1}n

P = Glauber

P ′ = 1µ

Routing: go from s to t in n steps:

Xi = (t1, . . . , ti, si+1, . . . , sn)

Note: can ignore the Xi = Xi+1.

Congestion: if I know path goes

through transition x → y, I know

si+1:n, t1:i+1. There are 2n−1

pairs matching. Congestion is∑
matching µ(s)µ(t)

Q(x,y) 6 2n−1·2−n·2−n

2−n·(1/2n)

which is n

Length: at most n , so ρ > 1/n2



9/15

Note: if we tried proof for MLSI,

the Cauchy-Schwarz part fails.

Alt: use stronger log-Sobolev ineq

E(
√
f,
√
f) > ρEnt[f]

The comparison method is often

used with ideal chain P ′:

P ′ =1

col vec

µ

row vec

Ideal P ′ mixes instantaneously, so

ρ ′ = 1. We just need to control

congestion and length of routing.

Routing: send µ(s)µ(t) units of
flow from each s to each t.

Example: hypercube

µ = unif on {0, 1}n

P = Glauber

P ′ = 1µ

Routing: go from s to t in n steps:

Xi = (t1, . . . , ti, si+1, . . . , sn)

Note: can ignore the Xi = Xi+1.

Congestion: if I know path goes

through transition x → y, I know

si+1:n, t1:i+1. There are 2n−1

pairs matching. Congestion is∑
matching µ(s)µ(t)

Q(x,y) 6 2n−1·2−n·2−n

2−n·(1/2n)

which is n

Length: at most n , so ρ > 1/n2



9/15

Note: if we tried proof for MLSI,

the Cauchy-Schwarz part fails.

Alt: use stronger log-Sobolev ineq

E(
√
f,
√
f) > ρEnt[f]

The comparison method is often

used with ideal chain P ′:

P ′ =1

col vec

µ

row vec

Ideal P ′ mixes instantaneously, so

ρ ′ = 1. We just need to control

congestion and length of routing.

Routing: send µ(s)µ(t) units of
flow from each s to each t.

Example: hypercube

µ = unif on {0, 1}n

P = Glauber

P ′ = 1µ

Routing: go from s to t in n steps:

Xi = (t1, . . . , ti, si+1, . . . , sn)

Note: can ignore the Xi = Xi+1.

Congestion: if I know path goes

through transition x → y, I know

si+1:n, t1:i+1. There are 2n−1

pairs matching. Congestion is∑
matching µ(s)µ(t)

Q(x,y) 6 2n−1·2−n·2−n

2−n·(1/2n)

which is n

Length: at most n , so ρ > 1/n2



9/15

Note: if we tried proof for MLSI,

the Cauchy-Schwarz part fails.

Alt: use stronger log-Sobolev ineq

E(
√
f,
√
f) > ρEnt[f]

The comparison method is often

used with ideal chain P ′:

P ′ =1

col vec

µ

row vec

Ideal P ′ mixes instantaneously, so

ρ ′ = 1. We just need to control

congestion and length of routing.

Routing: send µ(s)µ(t) units of
flow from each s to each t.

Example: hypercube

µ = unif on {0, 1}n

P = Glauber

P ′ = 1µ

Routing: go from s to t in n steps:

Xi = (t1, . . . , ti, si+1, . . . , sn)

Note: can ignore the Xi = Xi+1.

Congestion: if I know path goes

through transition x → y, I know

si+1:n, t1:i+1. There are 2n−1

pairs matching. Congestion is∑
matching µ(s)µ(t)

Q(x,y) 6 2n−1·2−n·2−n

2−n·(1/2n)

which is n

Length: at most n , so ρ > 1/n2



9/15

Note: if we tried proof for MLSI,

the Cauchy-Schwarz part fails.

Alt: use stronger log-Sobolev ineq

E(
√
f,
√
f) > ρEnt[f]

The comparison method is often

used with ideal chain P ′:

P ′ =1

col vec

µ

row vec

Ideal P ′ mixes instantaneously, so

ρ ′ = 1. We just need to control

congestion and length of routing.

Routing: send µ(s)µ(t) units of
flow from each s to each t.

Example: hypercube

µ = unif on {0, 1}n

P = Glauber

P ′ = 1µ

Routing: go from s to t in n steps:

Xi = (t1, . . . , ti, si+1, . . . , sn)

Note: can ignore the Xi = Xi+1.

Congestion: if I know path goes

through transition x → y, I know

si+1:n, t1:i+1. There are 2n−1

pairs matching. Congestion is∑
matching µ(s)µ(t)

Q(x,y) 6 2n−1·2−n·2−n

2−n·(1/2n)

which is n

Length: at most n , so ρ > 1/n2



9/15

Note: if we tried proof for MLSI,

the Cauchy-Schwarz part fails.

Alt: use stronger log-Sobolev ineq

E(
√
f,
√
f) > ρEnt[f]

The comparison method is often

used with ideal chain P ′:

P ′ =1

col vec

µ

row vec

Ideal P ′ mixes instantaneously, so

ρ ′ = 1. We just need to control

congestion and length of routing.

Routing: send µ(s)µ(t) units of
flow from each s to each t.

Example: hypercube

µ = unif on {0, 1}n

P = Glauber

P ′ = 1µ

Routing: go from s to t in n steps:

Xi = (t1, . . . , ti, si+1, . . . , sn)

Note: can ignore the Xi = Xi+1.

Congestion: if I know path goes

through transition x → y, I know

si+1:n, t1:i+1. There are 2n−1

pairs matching. Congestion is∑
matching µ(s)µ(t)

Q(x,y) 6 2n−1·2−n·2−n

2−n·(1/2n)

which is n

Length: at most n , so ρ > 1/n2



9/15

Note: if we tried proof for MLSI,

the Cauchy-Schwarz part fails.

Alt: use stronger log-Sobolev ineq

E(
√
f,
√
f) > ρEnt[f]

The comparison method is often

used with ideal chain P ′:

P ′ =1

col vec

µ

row vec

Ideal P ′ mixes instantaneously, so

ρ ′ = 1. We just need to control

congestion and length of routing.

Routing: send µ(s)µ(t) units of
flow from each s to each t.

Example: hypercube

µ = unif on {0, 1}n

P = Glauber

P ′ = 1µ

Routing: go from s to t in n steps:

Xi = (t1, . . . , ti, si+1, . . . , sn)

Note: can ignore the Xi = Xi+1.

Congestion: if I know path goes

through transition x → y, I know

si+1:n, t1:i+1. There are 2n−1

pairs matching. Congestion is∑
matching µ(s)µ(t)

Q(x,y) 6 2n−1·2−n·2−n

2−n·(1/2n)

which is n

Length: at most n , so ρ > 1/n2



9/15

Note: if we tried proof for MLSI,

the Cauchy-Schwarz part fails.

Alt: use stronger log-Sobolev ineq

E(
√
f,
√
f) > ρEnt[f]

The comparison method is often

used with ideal chain P ′:

P ′ =1

col vec

µ

row vec

Ideal P ′ mixes instantaneously, so

ρ ′ = 1. We just need to control

congestion and length of routing.

Routing: send µ(s)µ(t) units of
flow from each s to each t.

Example: hypercube

µ = unif on {0, 1}n

P = Glauber

P ′ = 1µ

Routing: go from s to t in n steps:

Xi = (t1, . . . , ti, si+1, . . . , sn)

Note: can ignore the Xi = Xi+1.

Congestion: if I know path goes

through transition x → y, I know

si+1:n, t1:i+1. There are 2n−1

pairs matching. Congestion is∑
matching µ(s)µ(t)

Q(x,y) 6 2n−1·2−n·2−n

2−n·(1/2n)

which is n

Length: at most n , so ρ > 1/n2



10/15

This is not tight for the hypercube

(tight ρ = 1/n).

Unavoidable. Any routing in the

hypercube has

E[length] > Ω(n)

and cong is at least avg len.

Example: cycle

µ = uniform

P = rand walk

P ′ = ideal

Routing: go clockwise!

cong = O(n), len = O(n)

Implies ρ =1/Ω(n2)

tight

Example: simple random walk

µ ∝ deg
P = rand walk

P ′ = ideal

Routing: take any path.

len = O(n)

Congestions is at most∑
s,t µ(s)µ(t)
1/2m 6 O(m)

Implies ρ =1/Ω(mn)

tight

Dumbbell graph:



10/15

This is not tight for the hypercube

(tight ρ = 1/n).

Unavoidable. Any routing in the

hypercube has

E[length] > Ω(n)

and cong is at least avg len.

Example: cycle

µ = uniform

P = rand walk

P ′ = ideal

Routing: go clockwise!

cong = O(n), len = O(n)

Implies ρ =1/Ω(n2)

tight

Example: simple random walk

µ ∝ deg
P = rand walk

P ′ = ideal

Routing: take any path.

len = O(n)

Congestions is at most∑
s,t µ(s)µ(t)
1/2m 6 O(m)

Implies ρ =1/Ω(mn)

tight

Dumbbell graph:



10/15

This is not tight for the hypercube

(tight ρ = 1/n).

Unavoidable. Any routing in the

hypercube has

E[length] > Ω(n)

and cong is at least avg len.

Example: cycle

µ = uniform

P = rand walk

P ′ = ideal

Routing: go clockwise!

cong = O(n), len = O(n)

Implies ρ =1/Ω(n2)

tight

Example: simple random walk

µ ∝ deg
P = rand walk

P ′ = ideal

Routing: take any path.

len = O(n)

Congestions is at most∑
s,t µ(s)µ(t)
1/2m 6 O(m)

Implies ρ =1/Ω(mn)

tight

Dumbbell graph:



10/15

This is not tight for the hypercube

(tight ρ = 1/n).

Unavoidable. Any routing in the

hypercube has

E[length] > Ω(n)

and cong is at least avg len.

Example: cycle

µ = uniform

P = rand walk

P ′ = ideal

Routing: go clockwise!

cong = O(n), len = O(n)

Implies ρ =1/Ω(n2)

tight

Example: simple random walk

µ ∝ deg
P = rand walk

P ′ = ideal

Routing: take any path.

len = O(n)

Congestions is at most∑
s,t µ(s)µ(t)
1/2m 6 O(m)

Implies ρ =1/Ω(mn)

tight

Dumbbell graph:



10/15

This is not tight for the hypercube

(tight ρ = 1/n).

Unavoidable. Any routing in the

hypercube has

E[length] > Ω(n)

and cong is at least avg len.

Example: cycle

µ = uniform

P = rand walk

P ′ = ideal

Routing: go clockwise!

cong = O(n), len = O(n)

Implies ρ =1/Ω(n2)

tight

Example: simple random walk

µ ∝ deg
P = rand walk

P ′ = ideal

Routing: take any path.

len = O(n)

Congestions is at most∑
s,t µ(s)µ(t)
1/2m 6 O(m)

Implies ρ =1/Ω(mn)

tight

Dumbbell graph:



10/15

This is not tight for the hypercube

(tight ρ = 1/n).

Unavoidable. Any routing in the

hypercube has

E[length] > Ω(n)

and cong is at least avg len.

Example: cycle

µ = uniform

P = rand walk

P ′ = ideal

Routing: go clockwise!

cong = O(n), len = O(n)

Implies ρ =1/Ω(n2)

tight

Example: simple random walk

µ ∝ deg
P = rand walk

P ′ = ideal

Routing: take any path.

len = O(n)

Congestions is at most∑
s,t µ(s)µ(t)
1/2m 6 O(m)

Implies ρ =1/Ω(mn)

tight

Dumbbell graph:



10/15

This is not tight for the hypercube

(tight ρ = 1/n).

Unavoidable. Any routing in the

hypercube has

E[length] > Ω(n)

and cong is at least avg len.

Example: cycle

µ = uniform

P = rand walk

P ′ = ideal

Routing: go clockwise!

cong = O(n), len = O(n)

Implies ρ =1/Ω(n2)

tight

Example: simple random walk

µ ∝ deg
P = rand walk

P ′ = ideal

Routing: take any path.

len = O(n)

Congestions is at most∑
s,t µ(s)µ(t)
1/2m 6 O(m)

Implies ρ =1/Ω(mn)

tight
Dumbbell graph:



10/15

This is not tight for the hypercube

(tight ρ = 1/n).

Unavoidable. Any routing in the

hypercube has

E[length] > Ω(n)

and cong is at least avg len.

Example: cycle

µ = uniform

P = rand walk

P ′ = ideal

Routing: go clockwise!

cong = O(n), len = O(n)

Implies ρ =1/Ω(n2)

tight

Example: simple random walk

µ ∝ deg
P = rand walk

P ′ = ideal

Routing: take any path.

len = O(n)

Congestions is at most∑
s,t µ(s)µ(t)
1/2m 6 O(m)

Implies ρ =1/Ω(mn)

tight
Dumbbell graph:



10/15

This is not tight for the hypercube

(tight ρ = 1/n).

Unavoidable. Any routing in the

hypercube has

E[length] > Ω(n)

and cong is at least avg len.

Example: cycle

µ = uniform

P = rand walk

P ′ = ideal

Routing: go clockwise!

cong = O(n), len = O(n)

Implies ρ =1/Ω(n2)

tight

Example: simple random walk

µ ∝ deg
P = rand walk

P ′ = ideal

Routing: take any path.

len = O(n)

Congestions is at most∑
s,t µ(s)µ(t)
1/2m 6 O(m)

Implies ρ =1/Ω(mn)

tight
Dumbbell graph:



10/15

This is not tight for the hypercube

(tight ρ = 1/n).

Unavoidable. Any routing in the

hypercube has

E[length] > Ω(n)

and cong is at least avg len.

Example: cycle

µ = uniform

P = rand walk

P ′ = ideal

Routing: go clockwise!

cong = O(n), len = O(n)

Implies ρ =1/Ω(n2)

tight

Example: simple random walk

µ ∝ deg
P = rand walk

P ′ = ideal

Routing: take any path.

len = O(n)

Congestions is at most∑
s,t µ(s)µ(t)
1/2m 6 O(m)

Implies ρ =1/Ω(mn)

tight
Dumbbell graph:



10/15

This is not tight for the hypercube

(tight ρ = 1/n).

Unavoidable. Any routing in the

hypercube has

E[length] > Ω(n)

and cong is at least avg len.

Example: cycle

µ = uniform

P = rand walk

P ′ = ideal

Routing: go clockwise!

cong = O(n), len = O(n)

Implies ρ =1/Ω(n2)

tight

Example: simple random walk

µ ∝ deg
P = rand walk

P ′ = ideal

Routing: take any path.

len = O(n)

Congestions is at most∑
s,t µ(s)µ(t)
1/2m 6 O(m)

Implies ρ =1/Ω(mn)

tight

Dumbbell graph:



10/15

This is not tight for the hypercube

(tight ρ = 1/n).

Unavoidable. Any routing in the

hypercube has

E[length] > Ω(n)

and cong is at least avg len.

Example: cycle

µ = uniform

P = rand walk

P ′ = ideal

Routing: go clockwise!

cong = O(n), len = O(n)

Implies ρ =1/Ω(n2)

tight

Example: simple random walk

µ ∝ deg
P = rand walk

P ′ = ideal

Routing: take any path.

len = O(n)

Congestions is at most∑
s,t µ(s)µ(t)
1/2m 6 O(m)

Implies ρ =1/Ω(mn)

tight
Dumbbell graph:



11/15

Comparison Arguments
Direct comparison

Routing

Comparison method

Applications
Canonical paths

Matchings



11/15

Comparison Arguments
Direct comparison

Routing

Comparison method

Applications
Canonical paths

Matchings



12/15

Canonical paths

Suppose routing is deterministic

one path per s, t

.

Goal: bound cong for x → y.

Idea: injective mapping enc from
{(s, t) | (x → y) ∈ st-path}

to Ω×[M] junk/side info:

(s, t) 7→ (r, junk).

Want µ(s)µ(t) 6 C · µ(r)Q(x, y).

Alt: think of enc as mapping to Ω

that is at most M-to-1.

If it exists, then cong 6∑
(s→t)3(x→y) µ(s)µ(t) 6
Q(x, y) · CM

∑
r µ(r) 1

Example: hypercube

µ = unif on {0, 1}n

P = Glauber

Route as before

Fix x → y where xi 6= yi.

Define encoding enc(s, t) =
(s1, . . . , si, ti+1, . . . , tn)

Injective because there is dec
such that dec(enc(s, t)) = (s, t).

µ(s)µ(t) 6 (2n) · µ(r)Q(x, y)

When µ is uniform, only need

min{P(x, y) | x → y} > 1/poly(n)



12/15

Canonical paths

Suppose routing is deterministic

one path per s, t

.

Goal: bound cong for x → y.

Idea: injective mapping enc from
{(s, t) | (x → y) ∈ st-path}

to Ω×[M] junk/side info:

(s, t) 7→ (r, junk).

Want µ(s)µ(t) 6 C · µ(r)Q(x, y).

Alt: think of enc as mapping to Ω

that is at most M-to-1.

If it exists, then cong 6∑
(s→t)3(x→y) µ(s)µ(t) 6
Q(x, y) · CM

∑
r µ(r) 1

Example: hypercube

µ = unif on {0, 1}n

P = Glauber

Route as before

Fix x → y where xi 6= yi.

Define encoding enc(s, t) =
(s1, . . . , si, ti+1, . . . , tn)

Injective because there is dec
such that dec(enc(s, t)) = (s, t).

µ(s)µ(t) 6 (2n) · µ(r)Q(x, y)

When µ is uniform, only need

min{P(x, y) | x → y} > 1/poly(n)



12/15

Canonical paths

Suppose routing is deterministic

one path per s, t

.

Goal: bound cong for x → y.

Idea: injective mapping enc from
{(s, t) | (x → y) ∈ st-path}

to Ω×[M] junk/side info:

(s, t) 7→ (r, junk).

Want µ(s)µ(t) 6 C · µ(r)Q(x, y).

Alt: think of enc as mapping to Ω

that is at most M-to-1.

If it exists, then cong 6∑
(s→t)3(x→y) µ(s)µ(t) 6
Q(x, y) · CM

∑
r µ(r) 1

Example: hypercube

µ = unif on {0, 1}n

P = Glauber

Route as before

Fix x → y where xi 6= yi.

Define encoding enc(s, t) =
(s1, . . . , si, ti+1, . . . , tn)

Injective because there is dec
such that dec(enc(s, t)) = (s, t).

µ(s)µ(t) 6 (2n) · µ(r)Q(x, y)

When µ is uniform, only need

min{P(x, y) | x → y} > 1/poly(n)



12/15

Canonical paths

Suppose routing is deterministic

one path per s, t

.

Goal: bound cong for x → y.

Idea: injective mapping enc from
{(s, t) | (x → y) ∈ st-path}

to Ω×[M] junk/side info:

(s, t) 7→ (r, junk).

Want µ(s)µ(t) 6 C · µ(r)Q(x, y).

Alt: think of enc as mapping to Ω

that is at most M-to-1.

If it exists, then cong 6∑
(s→t)3(x→y) µ(s)µ(t) 6
Q(x, y) · CM

∑
r µ(r) 1

Example: hypercube

µ = unif on {0, 1}n

P = Glauber

Route as before

Fix x → y where xi 6= yi.

Define encoding enc(s, t) =
(s1, . . . , si, ti+1, . . . , tn)

Injective because there is dec
such that dec(enc(s, t)) = (s, t).

µ(s)µ(t) 6 (2n) · µ(r)Q(x, y)

When µ is uniform, only need

min{P(x, y) | x → y} > 1/poly(n)



12/15

Canonical paths

Suppose routing is deterministic

one path per s, t

.

Goal: bound cong for x → y.

Idea: injective mapping enc from
{(s, t) | (x → y) ∈ st-path}

to Ω×[M] junk/side info:

(s, t) 7→ (r, junk).

Want µ(s)µ(t) 6 C · µ(r)Q(x, y).

Alt: think of enc as mapping to Ω

that is at most M-to-1.

If it exists, then cong 6∑
(s→t)3(x→y) µ(s)µ(t) 6
Q(x, y) · CM

∑
r µ(r) 1

Example: hypercube

µ = unif on {0, 1}n

P = Glauber

Route as before

Fix x → y where xi 6= yi.

Define encoding enc(s, t) =
(s1, . . . , si, ti+1, . . . , tn)

Injective because there is dec
such that dec(enc(s, t)) = (s, t).

µ(s)µ(t) 6 (2n) · µ(r)Q(x, y)

When µ is uniform, only need

min{P(x, y) | x → y} > 1/poly(n)



12/15

Canonical paths

Suppose routing is deterministic

one path per s, t

.

Goal: bound cong for x → y.

Idea: injective mapping enc from
{(s, t) | (x → y) ∈ st-path}

to Ω×[M] junk/side info:

(s, t) 7→ (r, junk).

Want µ(s)µ(t) 6 C · µ(r)Q(x, y).

Alt: think of enc as mapping to Ω

that is at most M-to-1.

If it exists, then cong 6∑
(s→t)3(x→y) µ(s)µ(t) 6
Q(x, y) · CM

∑
r µ(r) 1

Example: hypercube

µ = unif on {0, 1}n

P = Glauber

Route as before

Fix x → y where xi 6= yi.

Define encoding enc(s, t) =
(s1, . . . , si, ti+1, . . . , tn)

Injective because there is dec
such that dec(enc(s, t)) = (s, t).

µ(s)µ(t) 6 (2n) · µ(r)Q(x, y)

When µ is uniform, only need

min{P(x, y) | x → y} > 1/poly(n)



12/15

Canonical paths

Suppose routing is deterministic

one path per s, t

.

Goal: bound cong for x → y.

Idea: injective mapping enc from
{(s, t) | (x → y) ∈ st-path}

to Ω×[M] junk/side info:

(s, t) 7→ (r, junk).

Want µ(s)µ(t) 6 C · µ(r)Q(x, y).

Alt: think of enc as mapping to Ω

that is at most M-to-1.

If it exists, then cong 6∑
(s→t)3(x→y) µ(s)µ(t) 6
Q(x, y) · CM

∑
r µ(r) 1

Example: hypercube

µ = unif on {0, 1}n

P = Glauber

Route as before

Fix x → y where xi 6= yi.

Define encoding enc(s, t) =
(s1, . . . , si, ti+1, . . . , tn)

Injective because there is dec
such that dec(enc(s, t)) = (s, t).

µ(s)µ(t) 6 (2n) · µ(r)Q(x, y)

When µ is uniform, only need

min{P(x, y) | x → y} > 1/poly(n)



12/15

Canonical paths

Suppose routing is deterministic

one path per s, t

.

Goal: bound cong for x → y.

Idea: injective mapping enc from
{(s, t) | (x → y) ∈ st-path}

to Ω×[M] junk/side info:

(s, t) 7→ (r, junk).

Want µ(s)µ(t) 6 C · µ(r)Q(x, y).

Alt: think of enc as mapping to Ω

that is at most M-to-1.

If it exists, then cong 6∑
(s→t)3(x→y) µ(s)µ(t) 6
Q(x, y) · CM

∑
r µ(r) 1

Example: hypercube

µ = unif on {0, 1}n

P = Glauber

Route as before

Fix x → y where xi 6= yi.

Define encoding enc(s, t) =
(s1, . . . , si, ti+1, . . . , tn)

Injective because there is dec
such that dec(enc(s, t)) = (s, t).

µ(s)µ(t) 6 (2n) · µ(r)Q(x, y)

When µ is uniform, only need

min{P(x, y) | x → y} > 1/poly(n)



12/15

Canonical paths

Suppose routing is deterministic

one path per s, t

.

Goal: bound cong for x → y.

Idea: injective mapping enc from
{(s, t) | (x → y) ∈ st-path}

to Ω×[M] junk/side info:

(s, t) 7→ (r, junk).

Want µ(s)µ(t) 6 C · µ(r)Q(x, y).

Alt: think of enc as mapping to Ω

that is at most M-to-1.

If it exists, then cong 6∑
(s→t)3(x→y) µ(s)µ(t) 6
Q(x, y) · CM

∑
r µ(r) 1

Example: hypercube

µ = unif on {0, 1}n

P = Glauber

Route as before

Fix x → y where xi 6= yi.

Define encoding enc(s, t) =
(s1, . . . , si, ti+1, . . . , tn)

Injective because there is dec
such that dec(enc(s, t)) = (s, t).

µ(s)µ(t) 6 (2n) · µ(r)Q(x, y)

When µ is uniform, only need

min{P(x, y) | x → y} > 1/poly(n)



12/15

Canonical paths

Suppose routing is deterministic

one path per s, t

.

Goal: bound cong for x → y.

Idea: injective mapping enc from
{(s, t) | (x → y) ∈ st-path}

to Ω×[M] junk/side info:

(s, t) 7→ (r, junk).

Want µ(s)µ(t) 6 C · µ(r)Q(x, y).

Alt: think of enc as mapping to Ω

that is at most M-to-1.

If it exists, then cong 6∑
(s→t)3(x→y) µ(s)µ(t) 6
Q(x, y) · CM

∑
r µ(r) 1

Example: hypercube

µ = unif on {0, 1}n

P = Glauber

Route as before

Fix x → y where xi 6= yi.

Define encoding enc(s, t) =
(s1, . . . , si, ti+1, . . . , tn)

Injective because there is dec
such that dec(enc(s, t)) = (s, t).

µ(s)µ(t) 6 (2n) · µ(r)Q(x, y)

When µ is uniform, only need

min{P(x, y) | x → y} > 1/poly(n)



12/15

Canonical paths

Suppose routing is deterministic

one path per s, t

.

Goal: bound cong for x → y.

Idea: injective mapping enc from
{(s, t) | (x → y) ∈ st-path}

to Ω×[M] junk/side info:

(s, t) 7→ (r, junk).

Want µ(s)µ(t) 6 C · µ(r)Q(x, y).

Alt: think of enc as mapping to Ω

that is at most M-to-1.

If it exists, then cong 6∑
(s→t)3(x→y) µ(s)µ(t) 6
Q(x, y) · CM

∑
r µ(r) 1

Example: hypercube

µ = unif on {0, 1}n

P = Glauber

Route as before

Fix x → y where xi 6= yi.

Define encoding enc(s, t) =
(s1, . . . , si, ti+1, . . . , tn)

Injective because there is dec
such that dec(enc(s, t)) = (s, t).

µ(s)µ(t) 6 (2n) · µ(r)Q(x, y)

When µ is uniform, only need

min{P(x, y) | x → y} > 1/poly(n)



12/15

Canonical paths

Suppose routing is deterministic

one path per s, t

.

Goal: bound cong for x → y.

Idea: injective mapping enc from
{(s, t) | (x → y) ∈ st-path}

to Ω×[M] junk/side info:

(s, t) 7→ (r, junk).

Want µ(s)µ(t) 6 C · µ(r)Q(x, y).

Alt: think of enc as mapping to Ω

that is at most M-to-1.

If it exists, then cong 6∑
(s→t)3(x→y) µ(s)µ(t) 6
Q(x, y) · CM

∑
r µ(r) 1

Example: hypercube

µ = unif on {0, 1}n

P = Glauber

Route as before

Fix x → y where xi 6= yi.

Define encoding enc(s, t) =
(s1, . . . , si, ti+1, . . . , tn)

Injective because there is dec
such that dec(enc(s, t)) = (s, t).

µ(s)µ(t) 6 (2n) · µ(r)Q(x, y)

When µ is uniform, only need

min{P(x, y) | x → y} > 1/poly(n)



13/15

Matchings

Unweighted graph,

count/sample

matchings

not necessarily perfect

.

Markov chain (proposed by [Broder])

Move from M to M ′ by

deleting edge

adding edge

exchanging edge

Make it reversible via Metropolis.

Details are unimportant. Just

make sure P(x, y) > 1/poly(n).
Technically exchange moves can

be dropped. We keep them for

cleaner exposition.

Theorem [Jerrum-Sinclair]

There are canonical paths with

poly(n)-to-1 encoding schemes.

Automatically µ(s)µ(t) 6
poly(n)µ(enc(s, t))Q(x, y) because
µ is uniform.

This implies poly(n) mixing!



13/15

Matchings

Unweighted graph,

count/sample

matchings

not necessarily perfect

.

Markov chain (proposed by [Broder])

Move from M to M ′ by

deleting edge

adding edge

exchanging edge

Make it reversible via Metropolis.

Details are unimportant. Just

make sure P(x, y) > 1/poly(n).
Technically exchange moves can

be dropped. We keep them for

cleaner exposition.

Theorem [Jerrum-Sinclair]

There are canonical paths with

poly(n)-to-1 encoding schemes.

Automatically µ(s)µ(t) 6
poly(n)µ(enc(s, t))Q(x, y) because
µ is uniform.

This implies poly(n) mixing!



13/15

Matchings

Unweighted graph,

count/sample

matchings

not necessarily perfect

.

Markov chain (proposed by [Broder])

Move from M to M ′ by

deleting edge

adding edge

exchanging edge

Make it reversible via Metropolis.

Details are unimportant. Just

make sure P(x, y) > 1/poly(n).
Technically exchange moves can

be dropped. We keep them for

cleaner exposition.

Theorem [Jerrum-Sinclair]

There are canonical paths with

poly(n)-to-1 encoding schemes.

Automatically µ(s)µ(t) 6
poly(n)µ(enc(s, t))Q(x, y) because
µ is uniform.

This implies poly(n) mixing!



13/15

Matchings

Unweighted graph,

count/sample

matchings

not necessarily perfect

.

Markov chain (proposed by [Broder])

Move from M to M ′ by

deleting edge

adding edge

exchanging edge

Make it reversible via Metropolis.

Details are unimportant. Just

make sure P(x, y) > 1/poly(n).

Technically exchange moves can

be dropped. We keep them for

cleaner exposition.

Theorem [Jerrum-Sinclair]

There are canonical paths with

poly(n)-to-1 encoding schemes.

Automatically µ(s)µ(t) 6
poly(n)µ(enc(s, t))Q(x, y) because
µ is uniform.

This implies poly(n) mixing!



13/15

Matchings

Unweighted graph,

count/sample

matchings

not necessarily perfect

.

Markov chain (proposed by [Broder])

Move from M to M ′ by

deleting edge

adding edge

exchanging edge

Make it reversible via Metropolis.

Details are unimportant. Just

make sure P(x, y) > 1/poly(n).
Technically exchange moves can

be dropped. We keep them for

cleaner exposition.

Theorem [Jerrum-Sinclair]

There are canonical paths with

poly(n)-to-1 encoding schemes.

Automatically µ(s)µ(t) 6
poly(n)µ(enc(s, t))Q(x, y) because
µ is uniform.

This implies poly(n) mixing!



13/15

Matchings

Unweighted graph,

count/sample

matchings

not necessarily perfect

.

Markov chain (proposed by [Broder])

Move from M to M ′ by

deleting edge

adding edge

exchanging edge

Make it reversible via Metropolis.

Details are unimportant. Just

make sure P(x, y) > 1/poly(n).
Technically exchange moves can

be dropped. We keep them for

cleaner exposition.

Theorem [Jerrum-Sinclair]

There are canonical paths with

poly(n)-to-1 encoding schemes.

Automatically µ(s)µ(t) 6
poly(n)µ(enc(s, t))Q(x, y) because
µ is uniform.

This implies poly(n) mixing!



13/15

Matchings

Unweighted graph,

count/sample

matchings

not necessarily perfect

.

Markov chain (proposed by [Broder])

Move from M to M ′ by

deleting edge

adding edge

exchanging edge

Make it reversible via Metropolis.

Details are unimportant. Just

make sure P(x, y) > 1/poly(n).
Technically exchange moves can

be dropped. We keep them for

cleaner exposition.

Theorem [Jerrum-Sinclair]

There are canonical paths with

poly(n)-to-1 encoding schemes.

Automatically µ(s)µ(t) 6
poly(n)µ(enc(s, t))Q(x, y) because
µ is uniform.

This implies poly(n) mixing!



13/15

Matchings

Unweighted graph,

count/sample

matchings

not necessarily perfect

.

Markov chain (proposed by [Broder])

Move from M to M ′ by

deleting edge

adding edge

exchanging edge

Make it reversible via Metropolis.

Details are unimportant. Just

make sure P(x, y) > 1/poly(n).
Technically exchange moves can

be dropped. We keep them for

cleaner exposition.

Theorem [Jerrum-Sinclair]

There are canonical paths with

poly(n)-to-1 encoding schemes.

Automatically µ(s)µ(t) 6
poly(n)µ(enc(s, t))Q(x, y) because
µ is uniform.

This implies poly(n) mixing!



14/15

To move from s to t, we look at s⊕ t:

This is a collection of alternating

paths and cycles.

We move from s to t one

path/cycle at a time and unravel

each path/cycle vertex-by-vertex.

To make it deterministic, we fix an

arbitrary order on all

paths/cycles. For each cycle, we

also fix an arbitrary start location.

Example: let’s unravel path, then

cycle, and start cycle from top-left:

1 2

3 4

5 6

7



14/15

To move from s to t, we look at s⊕ t:

This is a collection of alternating

paths and cycles.

We move from s to t one

path/cycle at a time and unravel

each path/cycle vertex-by-vertex.

To make it deterministic, we fix an

arbitrary order on all

paths/cycles. For each cycle, we

also fix an arbitrary start location.

Example: let’s unravel path, then

cycle, and start cycle from top-left:

1 2

3 4

5 6

7



14/15

To move from s to t, we look at s⊕ t:

This is a collection of alternating

paths and cycles.

We move from s to t one

path/cycle at a time and unravel

each path/cycle vertex-by-vertex.

To make it deterministic, we fix an

arbitrary order on all

paths/cycles. For each cycle, we

also fix an arbitrary start location.

Example: let’s unravel path, then

cycle, and start cycle from top-left:

1 2

3 4

5 6

7



14/15

To move from s to t, we look at s⊕ t:

This is a collection of alternating

paths and cycles.

We move from s to t one

path/cycle at a time and unravel

each path/cycle vertex-by-vertex.

To make it deterministic, we fix an

arbitrary order on all

paths/cycles. For each cycle, we

also fix an arbitrary start location.

Example: let’s unravel path, then

cycle, and start cycle from top-left:

1 2

3 4

5 6

7



14/15

To move from s to t, we look at s⊕ t:

This is a collection of alternating

paths and cycles.

We move from s to t one

path/cycle at a time and unravel

each path/cycle vertex-by-vertex.

To make it deterministic, we fix an

arbitrary order on all

paths/cycles. For each cycle, we

also fix an arbitrary start location.

Example: let’s unravel path, then

cycle, and start cycle from top-left:

1

2

3 4

5 6

7



14/15

To move from s to t, we look at s⊕ t:

This is a collection of alternating

paths and cycles.

We move from s to t one

path/cycle at a time and unravel

each path/cycle vertex-by-vertex.

To make it deterministic, we fix an

arbitrary order on all

paths/cycles. For each cycle, we

also fix an arbitrary start location.

Example: let’s unravel path, then

cycle, and start cycle from top-left:

1 2

3 4

5 6

7



14/15

To move from s to t, we look at s⊕ t:

This is a collection of alternating

paths and cycles.

We move from s to t one

path/cycle at a time and unravel

each path/cycle vertex-by-vertex.

To make it deterministic, we fix an

arbitrary order on all

paths/cycles. For each cycle, we

also fix an arbitrary start location.

Example: let’s unravel path, then

cycle, and start cycle from top-left:

1 2

3

4

5 6

7



14/15

To move from s to t, we look at s⊕ t:

This is a collection of alternating

paths and cycles.

We move from s to t one

path/cycle at a time and unravel

each path/cycle vertex-by-vertex.

To make it deterministic, we fix an

arbitrary order on all

paths/cycles. For each cycle, we

also fix an arbitrary start location.

Example: let’s unravel path, then

cycle, and start cycle from top-left:

1 2

3 4

5 6

7



14/15

To move from s to t, we look at s⊕ t:

This is a collection of alternating

paths and cycles.

We move from s to t one

path/cycle at a time and unravel

each path/cycle vertex-by-vertex.

To make it deterministic, we fix an

arbitrary order on all

paths/cycles. For each cycle, we

also fix an arbitrary start location.

Example: let’s unravel path, then

cycle, and start cycle from top-left:

1 2

3 4

5

6

7



14/15

To move from s to t, we look at s⊕ t:

This is a collection of alternating

paths and cycles.

We move from s to t one

path/cycle at a time and unravel

each path/cycle vertex-by-vertex.

To make it deterministic, we fix an

arbitrary order on all

paths/cycles. For each cycle, we

also fix an arbitrary start location.

Example: let’s unravel path, then

cycle, and start cycle from top-left:

1 2

3 4

5 6

7



14/15

To move from s to t, we look at s⊕ t:

This is a collection of alternating

paths and cycles.

We move from s to t one

path/cycle at a time and unravel

each path/cycle vertex-by-vertex.

To make it deterministic, we fix an

arbitrary order on all

paths/cycles. For each cycle, we

also fix an arbitrary start location.

Example: let’s unravel path, then

cycle, and start cycle from top-left:

1 2

3 4

5 6

7



15/15

For x → y transition, we can define encoding:

enc(s, t) = (s⊕ t⊕ x− couple of edges︸ ︷︷ ︸
around current vertex

, couple of edges︸ ︷︷ ︸
junk/side info

)

Example:

x : y : s⊕ t⊕ x :

couple of edges

Injective because we can recover s⊕ t⊕ x from enc(s, t) and thus s⊕ t. So

we can start unraveling x backward to get s and forward to get t.

Thus the chain mixes in poly(n) time.



15/15

For x → y transition, we can define encoding:

enc(s, t) = (s⊕ t⊕ x− couple of edges︸ ︷︷ ︸
around current vertex

, couple of edges︸ ︷︷ ︸
junk/side info

)

Example:

x : y : s⊕ t⊕ x :

couple of edges

Injective because we can recover s⊕ t⊕ x from enc(s, t) and thus s⊕ t. So

we can start unraveling x backward to get s and forward to get t.

Thus the chain mixes in poly(n) time.



15/15

For x → y transition, we can define encoding:

enc(s, t) = (s⊕ t⊕ x− couple of edges︸ ︷︷ ︸
around current vertex

, couple of edges︸ ︷︷ ︸
junk/side info

)

Example:

x : y : s⊕ t⊕ x :

couple of edges

Injective because we can recover s⊕ t⊕ x from enc(s, t) and thus s⊕ t. So

we can start unraveling x backward to get s and forward to get t.

Thus the chain mixes in poly(n) time.



15/15

For x → y transition, we can define encoding:

enc(s, t) = (s⊕ t⊕ x− couple of edges︸ ︷︷ ︸
around current vertex

, couple of edges︸ ︷︷ ︸
junk/side info

)

Example:

x : y : s⊕ t⊕ x :

couple of edges

Injective because we can recover s⊕ t⊕ x from enc(s, t) and thus s⊕ t. So

we can start unraveling x backward to get s and forward to get t.

Thus the chain mixes in poly(n) time.


