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A distribution 7t over paths

Xo—=> X1 ==X,

> Note: £ can be random
& mrouting of an ergodic flow Q' if
I]:Dﬂ[XO = S)Xf, =t = QI(S,t)

> Alt view: to route Q’, specify
conditional dist on s — t paths:

m(path | Xg = s,X¢ = t)

o

Suppose Tt is dist over paths and Q is
ergodic flow. Congestion is

veo)

max{ "J’POthng(:s))Epoth}

> Goal: route Q’ through Q with low
congestion and length«— this is just ¢

Example: trivial routing

When 7t = Q’, length is 1 and conges-
tion is

max{ Q’(x,y)} _ max{ P'(x,y)}

Q(x,y) P(x,y)
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(s,t) — (r,junk).
> want u(s)u(t) < C- w(r)Q(x,y).

> Alt: think of enc as mapping to Q
that is at most M-to-1.

> Ifit exists, then cong <

2 (st)3(x—y) H(SIH(t) <
Qx,y) - CMY_ . u(r)<—1

Example: hypercube

v ¢ YV VOV

w = unif on {0, T}™
P = Glauber
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Suppose routing is deternpinisﬂc. Example: hypercube

w = unif on {0, T}™
P = Glauber
Route as before

one path per s, t
> Goal: bound cong for x — .

> Idea: injective mapping enc from
{(syt) | (x = y) € st-path}
to QO x[M]=— junk/side info
(s,t) — (r,junk).
B> want u(s)u(t) < C- u(r)Q(x,y).

> Alt: think of enc as mapping to Q Injective because there is dec
that is at most M-to-1. such that dec(enc(s,t)) = (s, t).

O If it exists, then cong < B uls)u(t) < (2n) - u(r)Qlx,y)

Fix x =y where x; # y;.
Define encoding enc(s, t) =

(S],...,Si,tpr],...,tn)
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2 (s01)5 (xoy) HSIH(t) < When wis uniform, only need
Qbxy) - EM2_, p{r)—1 min{P(x,y) | x = y} > 1/poly(n)
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Unweighted graph, > Make it reversible via Metropolis.
count/sample > Details are unimportant. Just
mOtch@s. make sure P(x,y) > 1/poly(n).

not necessarily perfect > Technically exchange moves can

Markov chain (proposed by [Broder]) be dropped. We keep them for
cleaner exposition.
Move from M to M’ by
Theorem [Jerrum-Sinclair]

O deleting edge OO0

i i o 00 There are canonical paths with
poly(n)-to-1 encoding schemes.

O adding edge

i i (o) i i i > Automatically p(s)u(t) <
‘ poly(n)u(enc(s,t))Q(x,y) because

i i O exchanging edgei ?/) wis uniform.

(©) (0]

> This implies poly(n) mixing! ©
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