CS 263: Counting and Sampling

Nima Anari

slides for

Comparison Arguments

Example: hypercube

 \triangleright Eigvals: k/n \triangleright $\binom{n}{k}$ many

Example: hypercube

 \triangleright Eigvals: k/n \triangleright $\binom{n}{k}$ many

Example: cycle

- Eigvals: $\cos(2\pi k/n)$
- \triangleright One for $k \in [n]$

Example: hypercube

 \triangleright Eigvals: k/n \triangleright $\binom{n}{k}$ many

Example: cycle

- \triangleright Eigvals: $\cos(2\pi k/n)$
- \triangleright One for $k \in [n]$

 $\label{eq:trel} \begin{array}{l} \triangleright \quad \text{Relaxation time (lazy, reversible):} \\ t_{\text{rel}} = \frac{1}{1-\lambda_2} = \Theta \Bigl(\lim_{\varepsilon \to 0} \frac{t_{\text{mix}}(\varepsilon)}{\log(1/\varepsilon)} \Bigr) \end{array} \end{array}$

Example: hypercube

 \triangleright Eigvals: k/n \triangleright $\binom{n}{k}$ many

$$\label{eq:vt} \begin{gathered} \blacktriangleright \text{ Cont. time: } \nu_t = \underbrace{exp(t(P-I))}_{transition \ matrix} \nu_0$$

Example: cycle

- \triangleright Eigvals: $\cos(2\pi k/n)$
- \triangleright One for $k \in [n]$

 $\label{eq:trel} \begin{array}{l} \blacktriangleright \quad \text{Relaxation time (lazy, reversible):} \\ t_{\text{rel}} = \frac{1}{1-\lambda_2} = \Theta \Bigl(\lim_{\varepsilon \to 0} \frac{t_{\text{mix}}(\varepsilon)}{\log(1/\varepsilon)} \Bigr) \end{array} \end{array}$

Example: hypercube

 \triangleright Eigvals: k/n \triangleright $\binom{n}{k}$ many

Example: cycle

- Eigvals: $\cos(2\pi k/n)$
- \triangleright One for $k \in [n]$

 $\label{eq:transform} \begin{array}{l} \textcircled{} & \mbox{Relaxation time (lazy, reversible):} \\ & t_{\text{rel}} = \frac{1}{1-\lambda_2} = \Theta \Big(\lim_{\varepsilon \to 0} \frac{t_{\text{mix}}(\varepsilon)}{\log(1/\varepsilon)} \Big) \end{array}$

 $\begin{array}{l} \textcircled{} \begin{tabular}{ll} \begin{tabular}{ll} \hline \\ \hline \\ \frac{d}{dt} \, \mathcal{D}_{\varphi}(\nu_t \parallel \mu) \leqslant -\rho \, \mathcal{D}_{\varphi}(\nu_t \parallel \mu) \end{array}$

Example: hypercube

 \triangleright Eigvals: k/n \triangleright $\binom{n}{k}$ many

Example: cycle

- Eigvals: $\cos(2\pi k/n)$
- \triangleright One for $k \in [n]$

 $\begin{array}{l} \textcircled{\ } \mathbb{P} \ \ \mbox{Relaxation time (lazy, reversible):} \\ t_{rel} = \frac{1}{1-\lambda_2} = \Theta \Bigl(\lim_{\varepsilon \to 0} \frac{t_{mix}(\varepsilon)}{\log(1/\varepsilon)} \Bigr) \end{array}$

 $\begin{array}{c|c} \hline & \text{Cont. time: } \nu_t = \underbrace{exp(t(P-I))}_{transition \ matrix} \nu_0 \\ \hline & \underbrace{exp(t(P-I))}_{transition \ matrix}$

Example: hypercube

 \triangleright Eigvals: k/n \triangleright $\binom{n}{k}$ many

Example: cycle

- Eigvals: $\cos(2\pi k/n)$
- $rac{cos(2\pi k/n)}{rac{d}} One for k \in [n]$

 $\label{eq:trel} \begin{array}{l} \hline & \text{Relaxation time (lazy, reversible):} \\ & t_{\text{rel}} = \frac{1}{1-\lambda_2} = \Theta \Big(\lim_{\varepsilon \to 0} \frac{t_{\text{mix}}(\varepsilon)}{\log(1/\varepsilon)} \Big) \end{array} \end{array}$

 \triangleright Cont. time: $v_t = \exp(t(P - I)) v_0$ transition matrix time > Functional analysis in cont. time: $\frac{\mathrm{d}}{\mathrm{d}t} \mathcal{D}_{\Phi}(\mathbf{v}_{t} \parallel \boldsymbol{\mu}) \leqslant -\rho \mathcal{D}_{\Phi}(\mathbf{v}_{t} \parallel \boldsymbol{\mu})$ \triangleright Dirichlet form $\mathcal{E}(f, q) =$ $\frac{1}{2} \mathbb{E}_{(x,y) \sim O}[(f(x) - f(y))(g(x) - g(y))]$ > Func. analysis via Dirichlet form: $\mathcal{E}(\Phi'(f), f) \ge 0 \operatorname{Ent}^{\Phi}[f]$

Example: hypercube

 \triangleright Eigvals: k/n \triangleright $\binom{n}{k}$ many

Example: cycle

- Eigvals: $\cos(2\pi k/n)$
- \triangleright One for $k \in [n]$

- $\label{eq:trel} \begin{array}{l} \textcircled{\begin{subarray}{ll} \mathbb{D} \end{array}} & \mbox{Relaxation time (lazy, reversible):} \\ & t_{rel} = \frac{1}{1-\lambda_2} = \Theta \Big(\lim_{\varepsilon \to 0} \frac{t_{mix}(\varepsilon)}{\log(1/\varepsilon)} \Big) \end{array}$
- \triangleright Cont. time: $v_t = \exp(t(P I)) v_0$ transition matrix time > Functional analysis in cont. time: $\frac{\mathrm{d}}{\mathrm{d}t} \mathcal{D}_{\Phi}(\mathbf{v}_{t} \parallel \boldsymbol{\mu}) \leqslant -\rho \mathcal{D}_{\Phi}(\mathbf{v}_{t} \parallel \boldsymbol{\mu})$ \triangleright Dirichlet form $\mathcal{E}(\mathbf{f}, \mathbf{q}) =$ $\frac{1}{2} \mathbb{E}_{(x,y) \sim O}[(f(x) - f(y))(g(x) - g(y))]$ > Func. analysis via Dirichlet form: $\mathcal{E}(\Phi'(f), f) \ge 0 \operatorname{Ent}^{\Phi}[f]$ \triangleright Poincaré: 2 $\mathcal{E}(f, f) \ge \rho \operatorname{Var}[f]$

Example: hypercube

 \triangleright Eigvals: k/n \triangleright $\binom{n}{k}$ many

Example: cycle

- Eigvals: $cos(2\pi k/n)$
- \triangleright One for $k \in [n]$

 $\label{eq:trel} \begin{array}{l} \triangleright \quad \text{Relaxation time (lazy, reversible):} \\ t_{\text{rel}} = \frac{1}{1-\lambda_2} = \Theta \Big(\lim_{\varepsilon \to 0} \frac{t_{\text{mix}}(\varepsilon)}{\log(1/\varepsilon)} \Big) \end{array} \end{array}$

 \triangleright Cont. time: $v_t = \exp(t(P - I)) v_0$ transition matrix time > Functional analysis in cont. time: $\frac{\mathrm{d}}{\mathrm{d}t} \mathcal{D}_{\Phi}(\mathbf{v}_{t} \parallel \boldsymbol{\mu}) \leqslant -\rho \mathcal{D}_{\Phi}(\mathbf{v}_{t} \parallel \boldsymbol{\mu})$ \triangleright Dirichlet form $\mathcal{E}(\mathbf{f}, \mathbf{q}) =$ $\frac{1}{2} \mathbb{E}_{(x,y) \sim O}[(f(x) - f(y))(g(x) - g(y))]$ > Func. analysis via Dirichlet form: $\mathcal{E}(\Phi'(f), f) \ge 0 \operatorname{Ent}^{\Phi}[f]$ \triangleright Poincaré: $2 \mathcal{E}(f, f) \ge \rho \operatorname{Var}[f]$ \triangleright MLSI: $\mathcal{E}(f, \log f) \ge \rho \operatorname{Ent}[f]$

Comparison Arguments

- \triangleright Direct comparison
- ▷ Routing
- Comparison method

Applications

- \triangleright Canonical paths
- Matchings

Comparison Arguments

- \triangleright Direct comparison
- ▷ Routing
- \triangleright Comparison method

Applications

- \triangleright Canonical paths
- ▷ Matchings

Suppose we have two chains P, P' with the same stationary μ .

Suppose we have two chains P, P' with the same stationary μ .

Example: Metropolis vs. Glauber

- Metropolis: pick v, c and accept/reject.
- \bigcirc Glauber: pick v, then pick valid c.

Suppose we have two chains P, P' with the same stationary μ .

Example: Metropolis vs. Glauber

Metropolis: pick v, c and accept/reject.

- \bigcirc Glauber: pick v, then pick valid c.
- Comparison: as long as $Q(x,y) \ge c \cdot Q'(x,y)$ for $x \ne y$, functional inequalities for P' transfer to P with a loss of c.

Suppose we have two chains P, P' Proof: with the same stationary μ .

Example: Metropolis vs. Glauber

- Metropolis: pick v, c and accept/reject.
- \bigcirc Glauber: pick v, then pick valid c.

Comparison: as long as $Q(x,y) \ge c \cdot Q'(x,y)$ for $x \ne y$, functional inequalities for P' transfer to P with a loss of c.

 \triangleright Suppose we have two chains P, P' with the same stationary μ .

Example: Metropolis vs. Glauber

Metropolis: pick v, cand accept/reject.

- \triangleright Glauber: pick v, then pick valid c.
- Comparison: as long as $Q(x,y) \ge c \cdot Q'(x,y)$ for $x \neq y$, functional inequalities for P' transfer to P with a loss of c.

Proof:

Func ineqs are of the form

 $\mathcal{E}(\Phi'(f), f) \ge \rho \operatorname{Ent}^{\Phi}[f]$

Suppose we have two chains P, P' Prewith the same stationary μ.

Example: Metropolis vs. Glauber

Metropolis: pick v, c and accept/reject.

- \bigcirc Glauber: pick v, then pick valid c.
- Comparison: as long as $Q(x,y) \ge c \cdot Q'(x,y)$ for $x \ne y$, functional inequalities for P' transfer to P with a loss of c.

Proof:

 \triangleright Func ineqs are of the form

 ${\mathcal E}(\varphi'(f),f) \geqslant \rho \, \text{Ent}^\varphi[f]$

But \mathcal{E} is a positive Q/Q'-weighted combination of $(\varphi'(f(x)) - \varphi'(f(y)))(f(x) - f(y)).$ Because φ is convex, these terms are always ≥ 0 .

Suppose we have two chains P, P' Provide the same stationary μ .

Example: Metropolis vs. Glauber

Metropolis: pick v, c and accept/reject.

- \bigcirc Glauber: pick v, then pick valid c.
- Comparison: as long as $Q(x,y) \ge c \cdot Q'(x,y)$ for $x \ne y$, functional inequalities for P' transfer to P with a loss of c.

Proof:

 \triangleright Func ineqs are of the form

 ${\mathcal E}(\varphi'(f),f) \geqslant \rho \, \text{Ent}^\varphi[f]$

But & is a positive Q/Q'-weighted combination of $(\phi'(f(x)) - \phi'(f(y)))(f(x) - f(y)).$ Because ϕ is convex, these terms

are always ≥ 0 .

Metropolis and Glauber satisfy the same Poincaré and MLSI up to

$$\frac{q}{q-\Delta}$$

Metropolis and Glauber satisfy the same Poincaré and MLSI up to

$$\frac{q}{q-\Delta}$$

 \triangleright What if P doesn't have all the moves of P'?

Metropolis and Glauber satisfy the same Poincaré and MLSI up to

$$\frac{\mathsf{q}}{\mathsf{q}-\Delta}.$$

 \triangleright What if P doesn't have all the moves of P'?

Direct comparison becomes useless.

Metropolis and Glauber satisfy the same Poincaré and MLSI up to

$$\frac{\mathsf{q}}{\mathsf{q}-\Delta}.$$

 \triangleright What if P doesn't have all the moves of P'?

- Direct comparison becomes useless.
- \triangleright Idea: simulate moves of P' by multiple of P.

$$O \longrightarrow P' \longrightarrow O$$

Metropolis and Glauber satisfy the same Poincaré and MLSI up to

$$\frac{\mathsf{q}}{\mathsf{q}-\Delta}.$$

 \triangleright What if P doesn't have all the moves of P'?

Direct comparison becomes useless.

 \triangleright Idea: simulate moves of P' by multiple of P.

 \triangleright Main application: when P' is the ideal chain, i.e.,

$$P' = 1 \mu$$

 \swarrow col vec row vec

Multi-commodity flow (normalized)

A distribution π over paths

$$X_0 \to X_1 \to \cdots \to X_\ell$$

Multi-commodity flow (normalized)

A distribution π over paths

$$X_0 \to X_1 \to \dots \to X_\ell$$

\triangleright Note: ℓ can be random

Multi-commodity flow (normalized)

A distribution π over paths

 $X_0 \to X_1 \to \dots \to X_\ell$

Multi-commodity flow (normalized)

A distribution π over paths

 $X_0 \to X_1 \to \dots \to X_\ell$

Note: ℓ can be random
 π routing of an ergodic flow Q' if
 *P*_π[X₀ = s, X_ℓ = t] = Q'(s, t)
 Alt view: to route Q', specify
 conditional dist on s → t paths:
 π(path | X₀ = s, X_ℓ = t)

Multi-commodity flow (normalized)

A distribution π over paths

 $X_0 \to X_1 \to \dots \to X_\ell$

Note: l can be random
 π routing of an ergodic flow Q' if

 $\mathbb{P}_{\pi}[X_0=s,X_\ell=t]=Q^{\,\prime}(s,t)$

 $\label{eq:conditional} \fbox{$$ Alt view: to route Q', specify} \\ \hline $$ conditional dist on $$ $$ $$ $$ $$ t paths: $$ $$ $$

$$\pi(\text{path} \mid X_0 = s, X_\ell = t)$$

Congestion

Suppose π is dist over paths and Q is ergodic flow. Congestion is

$$\text{max} \Big\{ \tfrac{\mathbb{P}_{\text{path}\sim\pi}[(x \rightarrow y) \in \text{path}]}{Q(x,y)} \ \Big| \ x \neq y \Big\}$$

Multi-commodity flow (normalized)

A distribution π over paths

 $X_0 \to X_1 \to \dots \to X_\ell$

▷ Note: ℓ can be random

 $\,\triangleright\,\,\pi$ routing of an ergodic flow Q' if $\mathbb{P}_{\pi}[X_0=s,X_\ell=t]=Q'(s,t)$

$$\pi(\text{path} \mid X_0 = s, X_\ell = t)$$

Congestion

Suppose π is dist over paths and Q is ergodic flow. Congestion is

$$\max \Big\{ \frac{\mathbb{P}_{\mathsf{path}\sim\pi}[(x \rightarrow y) \in \mathsf{path}]}{Q(x,y)} \ \Big| \ x \neq y \Big\}$$

▷ Goal: route Q' through Q with low congestion and length. this is just ℓ

Multi-commodity flow (normalized)

A distribution π over paths

 $X_0 \to X_1 \to \dots \to X_\ell$

▷ Note: ℓ can be random

 $\triangleright \ \pi \ \text{routing} \ \text{of} \ \text{an ergodic flow} \ Q' \ \text{if} \\ \mathbb{P}_{\pi}[X_0 = s, X_\ell = t] = Q'(s,t)$

 $\pi(\text{path} \mid X_0 = s, X_\ell = t)$

Congestion

Suppose π is dist over paths and Q is ergodic flow. Congestion is

$$\max \Big\{ \frac{\mathbb{P}_{\mathsf{path}\sim\pi}[(x \rightarrow y) \in \mathsf{path}]}{Q(x,y)} \ \Big| \ x \neq y \Big\}$$

▷ Goal: route Q' through Q with low congestion and length. this is just ℓ

Example: trivial routing

When $\pi = Q'$, length is 1 and congestion is

$$\max\left\{\frac{Q'(\mathbf{x},\mathbf{y})}{Q(\mathbf{x},\mathbf{y})}\right\} = \max\left\{\frac{P'(\mathbf{x},\mathbf{y})}{P(\mathbf{x},\mathbf{y})}\right\}$$

Lemma: direct comparison

Assume routing with length \leqslant 1. If P' contracts \mathcal{D}_{φ} at rate $\rho',$ P has rate:

$$ho = rac{
ho'}{
m congestion}$$

Lemma: direct comparison

Assume routing with length \leqslant 1. If P' contracts \mathcal{D}_{φ} at rate $\rho',$ P has rate:

$$\rho = \frac{\rho'}{\text{congestion}}$$

Lemma: comparison

Assume any routing. If P' contracts χ^2 at rate $\rho',$ P contracts at rate:

$$\rho = \frac{\rho'}{(\text{congestion}) \cdot (\text{max length})}$$

Lemma: direct comparison

Assume routing with length \leqslant 1. If P' contracts \mathcal{D}_{φ} at rate $\rho',$ P has rate:

$$ho = rac{
ho'}{
m congestion}$$

Lemma: comparison

Assume any routing. If P' contracts χ^2 at rate $\rho',$ P contracts at rate:

 $\rho = \frac{\rho'}{(\text{congestion}) \cdot (\text{max length})}$

▷ Note: for length ≥ 2, we can only compare Poincaré ineqs. MLSI does not compare. ☺

Proof:

Lemma: direct comparison

Assume routing with length \leqslant 1. If P' contracts \mathcal{D}_{φ} at rate $\rho',$ P has rate:

$$ho = rac{
ho'}{
m congestion}$$

Lemma: comparison

Assume any routing. If P' contracts χ^2 at rate $\rho',$ P contracts at rate:

 $\rho = \frac{\rho'}{(\text{congestion}) \cdot (\text{max length})}$

▷ Note: for length ≥ 2, we can only compare Poincaré ineqs. MLSI does not compare. ☺

Lemma: direct comparison

Assume routing with length $\leqslant \,$ 1. If P' contracts ${\cal D}_{\varphi}$ at rate $\rho',$ P has rate:

$$\rho = \frac{\rho'}{\text{congestion}}$$

Lemma: comparison

Assume any routing. If P' contracts χ^2 at rate $\rho',$ P contracts at rate:

 $\rho = \frac{\rho'}{(\text{congestion}) \cdot (\text{max length})}$

▷ Note: for length ≥ 2, we can only compare Poincaré ineqs. MLSI does not compare. ☺

Proof:

Will compare Dirichlet forms. For Poincaré, we care about *E*(f, f).

Lemma: direct comparison

Assume routing with length $\leqslant \,$ 1. If P' contracts ${\cal D}_{\varphi}$ at rate $\rho',$ P has rate:

$$\rho = \frac{\rho'}{\text{congestion}}$$

Lemma: comparison

Assume any routing. If P' contracts χ^2 at rate $\rho',$ P contracts at rate:

 $\rho = \frac{\rho'}{(\text{congestion}) \cdot (\text{max length})}$

▷ Note: for length ≥ 2, we can only compare Poincaré ineqs. MLSI does not compare. ☺

Proof:

- \triangleright Will compare Dirichlet forms. For Poincaré, we care about $\mathcal{E}(f, f)$.

$$\ell \cdot \underbrace{\sum_{i} (f(X_{i+1}) - f(X_{i}))^2}_{(f(X_{\ell}) - f(X_0))^2} \ge$$

Lemma: direct comparison

Assume routing with length $\leqslant \,$ 1. If P' contracts ${\cal D}_{\varphi}$ at rate $\rho',$ P has rate:

$$\rho = \frac{\rho'}{\text{congestion}}$$

Lemma: comparison

Assume any routing. If P' contracts χ^2 at rate $\rho',$ P contracts at rate:

 $\rho = \frac{\rho'}{(\text{congestion}) \cdot (\text{max length})}$

▷ Note: for length ≥ 2, we can only compare Poincaré ineqs. MLSI does not compare. ☺

Proof:

- Will compare Dirichlet forms. For Poincaré, we care about *E*(f, f).

$$\begin{array}{l} \ell \cdot \sum_i (f(X_{i+1}) - f(X_i))^2 \geqslant \\ (f(X_\ell) - f(X_0))^2 \end{array}$$

> Taking expectations we get
$$\begin{split} \sum_{x,y} \mathbb{E}[\ell \cdot \mathbb{1}[(x \to y) \in \text{path}]](f(x) - f(y))^2 & \geq \mathbb{E}_{(x,y) \sim Q'}[(f(x) - f(y))^2] \end{split}$$

Lemma: direct comparison

Assume routing with length $\leqslant \,$ 1. If P' contracts ${\cal D}_{\varphi}$ at rate $\rho',$ P has rate:

$$ho = rac{
ho'}{
m congestion}$$

Lemma: comparison

Assume any routing. If P' contracts χ^2 at rate $\rho',$ P contracts at rate:

 $\rho = \frac{\rho'}{(\text{congestion}) \cdot (\text{max length})}$

▷ Note: for length ≥ 2, we can only compare Poincaré ineqs. MLSI does not compare. ☺

Proof:

- Will compare Dirichlet forms. For Poincaré, we care about *E*(f, f).

 $\begin{array}{l} \ell \cdot \sum_i (f(X_{i+1}) - f(X_i))^2 \geqslant \\ (f(X_\ell) - f(X_0))^2 \end{array}$

- $\begin{array}{l} \blacktriangleright \quad \text{The l.h.s. is at most} \\ (\text{cong}) \cdot (\text{max len}) \cdot \\ \mathbb{E}_{(x,y) \sim Q}[(f(x) f(y))^2] \end{array}$

Lemma: direct comparison

Assume routing with length \leqslant 1. If P' contracts ${\cal D}_{\varphi}$ at rate $\rho',$ P has rate:

$$ho = rac{
ho'}{
m congestion}$$

Lemma: comparison

Assume any routing. If P' contracts χ^2 at rate $\rho',$ P contracts at rate:

 $\rho = \frac{\rho'}{(\text{congestion}) \cdot (\text{max length})}$

▷ Note: for length ≥ 2, we can only compare Poincaré ineqs. MLSI does not compare. ☺

Proof:

- \triangleright Will compare Dirichlet forms. For Poincaré, we care about $\mathcal{E}(f, f)$.

 $\begin{array}{l} \ell \cdot \sum_{i} (f(X_{i+1}) - f(X_{i}))^2 \geqslant \\ (f(X_{\ell}) - f(X_{0}))^2 \end{array}$

- \triangleright The l.h.s. is at most

 $\begin{aligned} (\text{cong}) \cdot (\text{max len}) \cdot \\ \mathbb{E}_{(x,y) \sim Q}[(f(x) - f(y))^2] \end{aligned}$

 Note: if we tried proof for MLSI, the Cauchy-Schwarz part fails. Note: if we tried proof for MLSI, the Cauchy-Schwarz part fails.
 Alt: use stronger log-Sobolev ineq & (\sqrt{f}, \sqrt{f}) \ge \rho Ent[f] The comparison method is often used with ideal chain P':

> $P' = 1 \mu$ col vec row vec

The comparison method is often used with ideal chain P':

> $P' = 1 \mu$ col vec row vec

The comparison method is often used with ideal chain P':

> $P' = 1 \mu$ col vec row vec

- Note: if we tried proof for MLSI, the Cauchy-Schwarz part fails.
 Alt: use stronger log-Sobolev ineq $\mathcal{E}(\sqrt{f}, \sqrt{f}) \ge \rho \operatorname{Ent}[f]$
- The comparison method is often used with ideal chain P':

Example: hypercube

$$\triangleright \mu = \text{unif on } \{0,1\}^n$$

 \triangleright P = Glauber

$$\triangleright$$
 P' = 1 μ

- The comparison method is often used with ideal chain P':

Example: hypercube

- $\triangleright \mu = \text{unif on } \{0,1\}^n$
- \triangleright P = Glauber
- $\triangleright \ P' = \mathbb{1} \mu$

 \triangleright Routing: go from s to t in n steps: $X_i = (t_1, \ldots, t_i, s_{i+1}, \ldots, s_n)$

- Note: if we tried proof for MLSI, the Cauchy-Schwarz part fails.
 Alt: use stronger log-Sobolev ineq & (\sqrt{f}, \sqrt{f}) \ge \rho Ent[f]
- The comparison method is often used with ideal chain P':

Example: hypercube

- $\triangleright \ \mu = \text{unif on } \{0,1\}^n$
- \triangleright P = Glauber
- $\triangleright P' = \mathbb{1}\mu$

- \triangleright Routing: go from s to t in n steps: $X_i = (t_1, \ldots, t_i, s_{i+1}, \ldots, s_n)$
- \triangleright Note: can ignore the $X_i = X_{i+1}$.

- ▷ Note: if we tried proof for MLSI, the Cauchy-Schwarz part fails.
 ▷ Alt: use stronger log-Sobolev ineq £(√f, √f) ≥ ρ Ent[f]
- The comparison method is often used with ideal chain P':

 $P' = \mathbb{1} \mu$

Example: hypercube

- $\triangleright \ \mu = \text{unif on } \{0,1\}^n$
- \triangleright P = Glauber
- $\triangleright P' = \mathbb{1}\mu$

- \triangleright Routing: go from s to t in n steps: $X_i = (t_1, \ldots, t_i, s_{i+1}, \ldots, s_n)$
- \triangleright Note: can ignore the $X_i = X_{i+1}$.
- $\begin{array}{|c|c|} \hline & \text{Congestion: if I know path goes} \\ & \text{through transition } x \rightarrow y, \text{I know} \\ & s_{i+1:n}, t_{1:i+1}. \text{ There are } 2^{n-1} \\ & \text{pairs matching. Congestion is} \\ & \frac{\sum_{\text{matching } \mu(s)\mu(t)}{Q(x,y)} \leqslant \frac{2^{n-1} \cdot 2^{-n} \cdot 2^{-n}}{2^{-n} \cdot (1/2n)} \\ & \text{which is } n \textcircled{\textcircled{}}$

- ▷ Note: if we tried proof for MLSI, the Cauchy-Schwarz part fails.
 ▷ Alt: use stronger log-Sobolev ineq £(√f, √f) ≥ ρ Ent[f]
- The comparison method is often used with ideal chain P':

Example: hypercube

- $\bigcirc \ \mu = \text{unif on } \{0,1\}^n$
- \triangleright P = Glauber
- \triangleright P' = 1 μ

- \triangleright Routing: go from s to t in n steps: $X_i = (t_1, \dots, t_i, s_{i+1}, \dots, s_n)$
- \triangleright Note: can ignore the $X_i = X_{i+1}$.
- Congestion: if I know path goes through transition $x \to y$, I know $s_{i+1:n}, t_{1:i+1}$. There are 2^{n-1} pairs matching. Congestion is $\frac{\sum_{\text{matching } \mu(s)\mu(t)}{Q(x,y)} \leqslant \frac{2^{n-1} \cdot 2^{-n} \cdot 2^{-n}}{2^{-n} \cdot (1/2n)}$ which is n

 \triangleright Length: at most n , so $\rho \geqslant 1/n^2$

> This is not tight for the hypercube (tight $\rho = 1/n$).

- > This is not tight for the hypercube (tight $\rho = 1/n$).
- Unavoidable. Any routing in the hypercube has

 $\mathbb{E}[\text{length}] \geqslant \Omega(n)$

```
and cong is at least avg len.
```

- ▷ This is not tight for the hypercube (tight $\rho = 1/n$). ⊖
- Unavoidable. Any routing in the hypercube has

and cong is at least avg len.

Example: cycle

- $\triangleright \ \mu = \text{uniform}$
- \triangleright P = rand walk
- \triangleright P' = ideal

- > This is not tight for the hypercube (tight $\rho = 1/n$).
- Unavoidable. Any routing in the hypercube has

and cong is at least avg len.

Example: cycle

- $\triangleright \ \mu = \text{uniform}$
- \triangleright P = rand walk
- \triangleright P' = ideal
- ▷ Routing: go clockwise!

- > This is not tight for the hypercube (tight $\rho = 1/n$).
- Unavoidable. Any routing in the hypercube has

and cong is at least avg len.

Example: cycle

- $\triangleright \ \mu = \text{uniform}$
- \triangleright P = rand walk
- \triangleright P' = ideal

 \triangleright Routing: go clockwise! \triangleright cong = O(n), len = O(n)

- > This is not tight for the hypercube (tight $\rho = 1/n$).
- Unavoidable. Any routing in the hypercube has

and cong is at least avg len.

Example: cycle

- $\triangleright \ \mu = \text{uniform}$
- \triangleright P = rand walk
- \triangleright P' = ideal

 \triangleright cong = O(n), len = O(n) \bigcirc

tiaht

 \triangleright Implies $\rho = 1/\Omega(n^2)$

- > This is not tight for the hypercube (tight $\rho = 1/n$).
- Unavoidable. Any routing in the hypercube has

and cong is at least avg len.

Example: cycle

- $\triangleright \ \mu = \text{uniform}$
- \triangleright P = rand walk
- \triangleright P' = ideal
 - Routing: go clockwise!
- \triangleright cong = O(n), len = O(n) Θ
- \triangleright Implies $\rho = 1/\Omega(n^2)$

- $\triangleright \ \mu \propto \mathsf{deg}$
- \triangleright P = rand walk
- \triangleright P' = ideal

- > This is not tight for the hypercube (tight $\rho = 1/n$).
- Unavoidable. Any routing in the hypercube has

and cong is at least avg len.

Example: cycle

- $\triangleright \ \mu = \text{uniform}$
- \triangleright P = rand walk
- \triangleright P' = ideal

- ▷ Routing: go clockwise!
- $\,\triangleright\,$ cong = O(n), len = O(n) $\textcircled{\mbox{\scriptsize o}}$
- \triangleright Implies $\rho = 1/\Omega(n^2)$

Example: simple random walk

- $\triangleright \ \mu \propto \mathsf{deg}$
- \triangleright P = rand walk
- \triangleright P' = ideal

▷ Routing: take any path.

- > This is not tight for the hypercube (tight $\rho = 1/n$).
- Unavoidable. Any routing in the hypercube has

and cong is at least avg len.

Example: cycle

- $\triangleright \ \mu = \text{uniform}$
- \triangleright P = rand walk
- \triangleright P' = ideal

- ▷ Routing: go clockwise!
- \triangleright cong = O(n), len = O(n) \bigcirc
- \triangleright Implies $\rho = 1/\Omega(n^2)$

- $\triangleright \ \mu \propto \mathsf{deg}$
- \triangleright P = rand walk
- \triangleright P' = ideal

- ▷ Routing: take any path.
- \triangleright len = O(n) Θ

- > This is not tight for the hypercube (tight $\rho = 1/n$).
- Unavoidable. Any routing in the hypercube has

and cong is at least avg len.

Example: cycle

- $\triangleright \ \mu = \text{uniform}$
- \triangleright P = rand walk
- \triangleright P' = ideal

- ▷ Routing: go clockwise!
- \triangleright cong = O(n), len = O(n) \bigcirc
- \triangleright Implies $\rho = 1/\Omega(n^2)$

- $\triangleright \ \mu \propto \mathsf{deg}$
- \triangleright P = rand walk
- \triangleright P' = ideal

- ▷ Routing: take any path.
- \triangleright len = O(n) Θ

- > This is not tight for the hypercube (tight $\rho = 1/n$).
- Unavoidable. Any routing in the hypercube has

and cong is at least avg len.

Example: cycle

- $\triangleright \ \mu = \text{uniform}$
- \triangleright P = rand walk
- \triangleright P' = ideal

- Routing: go clockwise!
- \triangleright cong = O(n), len = O(n) \bigcirc
- \triangleright Implies $\rho = 1/\Omega(n^2)$

- $\triangleright \ \mu \propto \mathsf{deg}$
- \triangleright P = rand walk
- \triangleright P' = ideal

- \triangleright Routing: take any path.
- \triangleright len = O(n) o

- > This is not tight for the hypercube (tight $\rho = 1/n$).
- Unavoidable. Any routing in the hypercube has

and cong is at least avg len.

Example: cycle

- $\triangleright \ \mu = \text{uniform}$
- \triangleright P = rand walk
- \triangleright P' = ideal

- Routing: go clockwise!
- $\,\triangleright\,$ cong = O(n), len = O(n) ${\mbox{\ensuremath{\textcircled{}}}}$
- \triangleright Implies $\rho = 1/\Omega(n^2)$

Example: simple random walk

- $\triangleright \ \mu \propto \mathsf{deg}$
- \triangleright P = rand walk
- \triangleright P' = ideal

- \triangleright Routing: take any path.
- \triangleright len = O(n) Θ

> Implies
$$\rho = 1/\Omega(\mathfrak{mn})$$

Dumbbell graph:

tight

Comparison Arguments

- \triangleright Direct comparison
- ▷ Routing
- \triangleright Comparison method

Applications

- \triangleright Canonical paths
- ▷ Matchings

Comparison Arguments

- \triangleright Direct comparison
- ▷ Routing
- \triangleright Comparison method

Applications

- \triangleright Canonical paths
- ▷ Matchings

Suppose routing is deterministic.

Suppose routing is deterministic.

one path per s, t

 \triangleright Goal: bound cong for $x \to y$.

Suppose routing is deterministic.

one path per s, t

 \triangleright Goal: bound cong for $x \to y$.

Suppose routing is deterministic. one path per s, t \triangleright Goal: bound cong for $x \rightarrow y$. ▷ Idea: injective mapping enc from $\{(s,t) \mid (x \rightarrow y) \in st\text{-path}\}$ to $\Omega \times [M]$ iunk/side info $(s,t) \mapsto (r,junk).$ \triangleright Want $\mu(s)\mu(t) \leq C \cdot \mu(r)O(x,y)$.

Suppose routing is deterministic.

one path per s, t

 \triangleright Goal: bound cong for $x \to y$.

▷ Idea: injective mapping enc from $\{(s,t) \mid (x \rightarrow y) \in st\text{-path}\}$ to $\Omega \times [M]$ → junk/side info

 $(s,t) \mapsto (r,junk).$

- $\label{eq:point_states} \textstyle \textstyle \bigcirc \ \mbox{Want} \ \mu(s)\mu(t) \leqslant C \cdot \mu(r)Q(x,y).$
- $\begin{tabular}{ll} $$ Alt: think of enc as mapping to $$ $$ $$ $$ $$ that is at most $$ M-to-1. $ \end{tabular} $$$

Suppose routing is deterministic.

one path per s, t

 \triangleright Goal: bound cong for $x \to y$.

▷ Idea: injective mapping enc from $\{(s,t) | (x \rightarrow y) \in st\text{-path}\}$

to $\Omega \times [M]$ - junk/side info

 $(s,t)\mapsto (r,junk).$

- $\label{eq:point_states} \textstyle \textstyle \bigcirc \ \mbox{Want} \ \mu(s)\mu(t) \leqslant C \cdot \mu(r)Q(x,y).$
- $\begin{tabular}{ll} $$ Alt: think of enc as mapping to $$ $$ $$ $$ $$ that is at most $$ M-to-1. $ \end{tabular} $$$
- $\,\triangleright\,$ If it exists, then cong $\leqslant\,$

$$\sum_{\substack{(s \to t) \ni (x \to y) \\ Q(x, y) \cdot CM \sum_{r} \mu(r) \longleftarrow 1}} \mu(s)\mu(t) \leqslant$$

Suppose routing is deterministic.

one path per s, t

- \triangleright Goal: bound cong for $x \to y$.
- ▷ Idea: injective mapping enc from $\{(s,t) | (x \rightarrow y) \in st\text{-path}\}$

to $\Omega \times [M]$:---- junk/side info

 $(s,t)\mapsto (r,junk).$

- $\label{eq:point_states} \textstyle \textstyle \bigcirc \ \mbox{Want} \ \mu(s)\mu(t) \leqslant C \cdot \mu(r)Q(x,y).$
- $\triangleright~$ If it exists, then cong $\leqslant~$

$$\sum_{\substack{(s \to t) \ni (x \to y) \\ Q(x, y) \cdot CM \sum_{r} \mu(r) \longleftarrow 1}} \mu(s)\mu(t) \leqslant$$

Example: hypercube

- $\triangleright \ \mu = \text{unif on } \{0,1\}^n$
- \triangleright P = Glauber
- ▷ Route as before

Suppose routing is deterministic.

one path per s, t

- \triangleright Goal: bound cong for $x \to y$.
- ▷ Idea: injective mapping enc from $\{(s,t) | (x \rightarrow y) \in st\text{-path}\}$

to $\Omega \times [M]$ in junk/side info

 $(s,t)\mapsto (r,junk).$

- $\label{eq:point_states} \textstyle \textstyle \bigcirc \ \mbox{Want} \ \mu(s)\mu(t) \leqslant C \cdot \mu(r)Q(x,y).$
- $\begin{tabular}{ll} $$ Alt: think of enc as mapping to $$ $$ $$ $$ $$ that is at most $$ M-to-1. $ \end{tabular} $$$
- $\,\triangleright\,$ If it exists, then cong $\leqslant\,$

 $\begin{array}{c} \sum_{(s \to t) \ni (x \to y)} \mu(s) \mu(t) \leqslant \\ Q(x, y) \cdot CM \sum_{r} \mu(r) \longleftarrow 1 \end{array}$

Example: hypercube

- $\triangleright \ \mu = \text{unif on } \{0,1\}^n$
- \triangleright P = Glauber
- Route as before

$$\triangleright$$
 Fix $x \to y$ where $x_i \neq y_i$.

Suppose routing is deterministic.

one path per s, t

- \triangleright Goal: bound cong for $x \to y$.
- ▷ Idea: injective mapping enc from $\{(s,t) | (x \rightarrow y) \in st\text{-path}\}$
 - to $\Omega \times [M]$ in junk/side info

 $(s,t)\mapsto (r,junk).$

- $\label{eq:point_states} \textstyle \textstyle \bigcirc \ \mbox{Want} \ \ \mu(s)\mu(t) \leqslant C \cdot \mu(r)Q(x,y).$
- $\begin{tabular}{ll} $$ Alt: think of enc as mapping to $$ $$ $$ $$ $$ that is at most $$ M-to-1. $ \end{tabular} $$$
- $\,\triangleright\,$ If it exists, then cong $\leqslant\,$

 $\begin{array}{c} \sum_{(s \rightarrow t) \ni (x \rightarrow y)} \mu(s) \mu(t) \leqslant \\ Q(x,y) \cdot CM \sum_{r} \mu(r) \longleftarrow 1 \end{array}$

Example: hypercube

- $\triangleright \ \mu = \text{unif on } \{0,1\}^n$
- \triangleright P = Glauber
- ▷ Route as before

▷ Define encoding
$$enc(s,t) = (s_1, \dots, s_i, t_{i+1}, \dots, t_n)$$

Suppose routing is deterministic.

one path per s, t

- \triangleright Goal: bound cong for $x \to y$.
- ▷ Idea: injective mapping enc from $\{(s,t) | (x \rightarrow y) \in st\text{-path}\}$
 - to $\Omega \times [M]$ in junk/side info

 $(s,t)\mapsto (r,junk).$

- $\label{eq:point_states} \textstyle \textstyle \bigcirc \ \mbox{Want} \ \ \mu(s)\mu(t) \leqslant C \cdot \mu(r)Q(x,y).$
- $\triangleright~$ Alt: think of enc as mapping to Ω that is at most M-to-1.
- $\,\triangleright\,$ If it exists, then cong $\leqslant\,$

 $\begin{array}{c} \sum_{\substack{(s \rightarrow t) \ni (x \rightarrow y) \\ Q(x,y) \cdot CM \sum_{r} \mu(r) \longleftarrow 1}} \mu(s) \mu(t) \leqslant \\ \end{array}$

Example: hypercube

- $\triangleright \ \mu = \text{unif on } \{0,1\}^n$
- \triangleright P = Glauber
- ▷ Route as before

- \triangleright Define encoding enc(s,t) =

 $(s_1,\ldots,s_i,t_{i+1},\ldots,t_n)$

▷ Injective because there is dec such that dec(enc(s,t)) = (s,t).

Suppose routing is deterministic.

one path per s, t

- \triangleright Goal: bound cong for $x \to y$.
- ▷ Idea: injective mapping enc from $\{(s,t) | (x \rightarrow y) \in st\text{-path}\}$
 - to $\Omega \times [M]$ \leftarrow junk/side info

 $(s,t)\mapsto (r,junk).$

- $\label{eq:point_states} \ensuremath{\triangleright} \ \mbox{Want} \ \mu(s)\mu(t) \leqslant C \cdot \mu(r)Q(x,y).$
- $\triangleright~$ Alt: think of enc as mapping to Ω that is at most M-to-1.
- $\,\triangleright\,$ If it exists, then cong $\leqslant\,$

 $\begin{array}{c} \sum_{\substack{(s \rightarrow t) \ni (x \rightarrow y) \\ Q(x,y) \cdot CM \sum_{r} \mu(r) \longleftarrow 1}} \mu(s) \mu(t) \leqslant \\ \end{array}$

Example: hypercube

- $\triangleright \ \mu = \text{unif on } \{0,1\}^n$
- \triangleright P = Glauber
- ▷ Route as before

- $\label{eq:rescaled} \begin{tabular}{ll} $$ $$ Fix $x \to y$ where $x_i \neq y_i$. \end{tabular}$
- \triangleright Define encoding enc(s,t) =

 $(s_1,\ldots,s_i,t_{i+1},\ldots,t_n)$

- \triangleright Injective because there is dec such that dec(enc(s,t)) = (s,t).
- $\label{eq:multiplicative} \square \ \mu(s)\mu(t) \leqslant (2n)\cdot \mu(r)Q(x,y)$

Suppose routing is deterministic.

one path per s, t

- \triangleright Goal: bound cong for $x \to y$.
- ▷ Idea: injective mapping enc from $\{(s,t) | (x \rightarrow y) \in st\text{-path}\}$
 - to $\Omega \times [M]$ in M junk/side info

 $(s,t)\mapsto (r,junk).$

- $\label{eq:point_states} \ensuremath{\triangleright} \ \mbox{Want} \ \mu(s)\mu(t) \leqslant C \cdot \mu(r)Q(x,y).$
- $\triangleright~$ Alt: think of enc as mapping to Ω that is at most M-to-1.
- \triangleright If it exists, then cong \leqslant

 $\begin{array}{c} \sum_{(s \rightarrow t) \ni (x \rightarrow y)} \mu(s) \mu(t) \leqslant \\ Q(x,y) \cdot CM \sum_{r} \mu(r) \longleftarrow 1 \end{array}$

Example: hypercube

- $\triangleright \ \mu = \text{unif on } \{0,1\}^n$
- \triangleright P = Glauber
- ▷ Route as before

- ig> Define encoding $\operatorname{enc}(s,t) =$

 $(s_1,\ldots,s_i,t_{i+1},\ldots,t_n)$

- > Injective because there is dec such that dec(enc(s,t)) = (s,t).
- $\label{eq:multiplicative} \square \ \mu(s)\mu(t) \leqslant (2n)\cdot \mu(r)Q(x,y)$

When μ is uniform, only need $\label{eq:min} \min\{P(x,y) \mid x \to y\} \geqslant 1/\mathsf{poly}(n)$

Unweighted graph, count/sample matchings.

not necessarily perfect

Unweighted graph, count/sample matchings.

not necessarily perfect

Unweighted graph, count/sample matchings.

not necessarily perfect

Make it reversible via Metropolis.

Unweighted graph, count/sample matchings.

not necessarily perfect

> Make it reversible via Metropolis.

Details are unimportant. Just make sure $P(x, y) \ge 1/poly(n)$.

not necessarily perfect

- > Make it reversible via Metropolis.
- > Details are unimportant. Just make sure $P(x, y) \ge 1/poly(n)$.
- Technically exchange moves can be dropped. We keep them for cleaner exposition.

Unweighted graph, count/sample matchings.

not necessarily perfect

$$\begin{array}{ccc} \bullet & adding edge \\ \bullet & \bullet & \bullet \\ \hline \end{array} \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet$$

- > Make it reversible via Metropolis.
- Details are unimportant. Just make sure $P(x, y) \ge 1/poly(n)$.
- Technically exchange moves can be dropped. We keep them for cleaner exposition.

Theorem [Jerrum-Sinclair]

There are canonical paths with $\mathsf{poly}(\mathfrak{n})$ -to-1 encoding schemes.

Unweighted graph, count/sample matchings.

not necessarily perfect

o exchanging edge o o

- > Make it reversible via Metropolis.
- Details are unimportant. Just make sure $P(x, y) \ge 1/poly(n)$.
- Technically exchange moves can be dropped. We keep them for cleaner exposition.

Theorem [Jerrum-Sinclair]

There are canonical paths with $\mathsf{poly}(\mathfrak{n})$ -to-1 encoding schemes.

Unweighted graph, count/sample matchings.

not necessarily perfect

- > Make it reversible via Metropolis.
- Details are unimportant. Just make sure $P(x, y) \ge 1/poly(n)$.
- Technically exchange moves can be dropped. We keep them for cleaner exposition.

Theorem [Jerrum-Sinclair]

There are canonical paths with $\mathsf{poly}(\mathfrak{n})$ -to-1 encoding schemes.

- \triangleright This implies poly(n) mixing!

This is a collection of alternating paths and cycles.

- This is a collection of alternating paths and cycles.
- We move from s to t one path/cycle at a time and unravel each path/cycle vertex-by-vertex.

- This is a collection of alternating paths and cycles.
- We move from s to t one path/cycle at a time and unravel each path/cycle vertex-by-vertex.
- To make it deterministic, we fix an arbitrary order on all paths/cycles. For each cycle, we also fix an arbitrary start location.

- This is a collection of alternating paths and cycles.
- We move from s to t one path/cycle at a time and unravel each path/cycle vertex-by-vertex.
- To make it deterministic, we fix an arbitrary order on all paths/cycles. For each cycle, we also fix an arbitrary start location.

Example: let's unravel path, then cycle, and start cycle from top-left:

- This is a collection of alternating paths and cycles.
- We move from s to t one path/cycle at a time and unravel each path/cycle vertex-by-vertex.
- To make it deterministic, we fix an arbitrary order on all paths/cycles. For each cycle, we also fix an arbitrary start location.

Example: let's unravel path, then cycle, and start cycle from top-left:

- This is a collection of alternating paths and cycles.
- We move from s to t one path/cycle at a time and unravel each path/cycle vertex-by-vertex.
- To make it deterministic, we fix an arbitrary order on all paths/cycles. For each cycle, we also fix an arbitrary start location.

Example: let's unravel path, then cycle, and start cycle from top-left:

3 0 0 0 0 0

- This is a collection of alternating paths and cycles.
- We move from s to t one path/cycle at a time and unravel each path/cycle vertex-by-vertex.
- To make it deterministic, we fix an arbitrary order on all paths/cycles. For each cycle, we also fix an arbitrary start location.

- Example: let's unravel path, then cycle, and start cycle from top-left:

- This is a collection of alternating paths and cycles.
- We move from s to t one path/cycle at a time and unravel each path/cycle vertex-by-vertex.
- To make it deterministic, we fix an arbitrary order on all paths/cycles. For each cycle, we also fix an arbitrary start location.

- Example: let's unravel path, then cycle, and start cycle from top-left:

5 0 0 0 0 0

To move from \underline{s} to $\underline{t},$ we look at $\underline{s}\oplus\underline{t}.$

- This is a collection of alternating paths and cycles.
- We move from s to t one path/cycle at a time and unravel each path/cycle vertex-by-vertex.
- To make it deterministic, we fix an arbitrary order on all paths/cycles. For each cycle, we also fix an arbitrary start location.

- Example: let's unravel path, then cycle, and start cycle from top-left:

To move from \underline{s} to $\underline{t},$ we look at $\underline{s}\oplus\underline{t}.$

- This is a collection of alternating paths and cycles.
- We move from s to t one path/cycle at a time and unravel each path/cycle vertex-by-vertex.
- To make it deterministic, we fix an arbitrary order on all paths/cycles. For each cycle, we also fix an arbitrary start location.

Example: let's unravel path, then cycle, and start cycle from top-left:

$$\mathsf{enc}(s,t) = (s \oplus t \oplus x - \underbrace{\mathsf{couple} \text{ of edges}}_{\mathsf{around current vertex}}, \underbrace{\mathsf{couple} \text{ of edges}}_{\mathsf{junk/side info}})$$

$$\mathsf{enc}(s,t) = (s \oplus t \oplus x - \underbrace{\mathsf{couple} \text{ of edges}}_{\mathsf{around current vertex}}, \underbrace{\mathsf{couple} \text{ of edges}}_{\mathsf{junk/side info}})$$

 \triangleright Example:

▷ Injective because we can recover $s \oplus t \oplus x$ from enc(s, t) and thus $s \oplus t$. So we can start unraveling x backward to get s and forward to get t.

- ▷ Injective because we can recover $s \oplus t \oplus x$ from enc(s, t) and thus $s \oplus t$. So we can start unraveling x backward to get s and forward to get t.
- \triangleright Thus the chain mixes in $\mathsf{poly}(n)$ time.

 \square