CS 263: Counting and Sampling

Nima Anari

slides for

Continuous Time

φ-entropy

For function φ and $f:\Omega\to\mathbb{R}$ define

$$\mathsf{Ent}^{\Phi}_{\mu}[f] = \mathbb{E}_{\mu}[\phi \circ f] - \phi(\mathbb{E}_{\mu}[f]).$$

ϕ -entropy

For function φ and $f:\Omega\to\mathbb{R}$ define

$$\mathsf{Ent}^{\Phi}_{\mu}[\mathsf{f}] = \mathbb{E}_{\mu}[\phi \circ \mathsf{f}] - \phi(\mathbb{E}_{\mu}[\mathsf{f}]).$$

ϕ -divergence

For measure ν and dist μ define

$$\mathfrak{D}_{\varphi}(\boldsymbol{\nu}\parallel\boldsymbol{\mu})=\mathsf{Ent}_{\boldsymbol{\mu}}^{\varphi}\bigg[\frac{\boldsymbol{\nu}}{\boldsymbol{\mu}}\bigg]$$

ϕ -entropy

For function φ and $f:\Omega\to\mathbb{R}$ define

$$\mathsf{Ent}^{\Phi}_{\mu}[\mathsf{f}] = \mathbb{E}_{\mu}[\phi \circ \mathsf{f}] - \phi(\mathbb{E}_{\mu}[\mathsf{f}]).$$

ϕ -divergence

For measure ν and dist μ define

$$\mathcal{D}_{\varphi}(\boldsymbol{\nu} \parallel \boldsymbol{\mu}) = \mathsf{Ent}_{\boldsymbol{\mu}}^{\varphi} \bigg[\frac{\boldsymbol{\nu}}{\boldsymbol{\mu}} \bigg]$$

 $\bigspace{-1.5} \bigspace{-1.5} \varphi(x) = x^2 \ \text{vs.} \ \varphi(x) = x \log x \\ \bigspace{-1.5}$

ϕ -entropy

For function φ and $f:\Omega\to\mathbb{R}$ define

$$\mathsf{Ent}^{\Phi}_{\mu}[\mathsf{f}] = \mathbb{E}_{\mu}[\phi \circ \mathsf{f}] - \phi(\mathbb{E}_{\mu}[\mathsf{f}]).$$

ϕ -divergence

For measure ν and dist μ define

$$\mathcal{D}_{\varphi}(\boldsymbol{\nu} \parallel \boldsymbol{\mu}) = \mathsf{Ent}_{\boldsymbol{\mu}}^{\varphi} \bigg[\frac{\boldsymbol{\nu}}{\boldsymbol{\mu}} \bigg]$$

ϕ -entropy

For function φ and $f:\Omega\to\mathbb{R}$ define

$$\mathsf{Ent}^{\Phi}_{\mu}[\mathsf{f}] = \mathbb{E}_{\mu}[\phi \circ \mathsf{f}] - \phi(\mathbb{E}_{\mu}[\mathsf{f}]).$$

ϕ -divergence

For measure ν and dist μ define

$$\mathcal{D}_{\varphi}(\boldsymbol{\nu} \parallel \boldsymbol{\mu}) = \mathsf{Ent}_{\boldsymbol{\mu}}^{\varphi} \bigg[\frac{\boldsymbol{\nu}}{\boldsymbol{\mu}} \bigg]$$

- $\ \ \, \triangleright \ \ \, \varphi(x)=x^2 \text{ vs. } \varphi(x)=x\log x$
- $\triangleright \ x^2$ leads to Var and χ^2
- $\triangleright x \log x$ leads to Ent and $\mathcal{D}_{\mathsf{KL}}$

ϕ -entropy

For function φ and $f:\Omega\to\mathbb{R}$ define

$$\mathsf{Ent}^{\Phi}_{\mu}[f] = \mathbb{E}_{\mu}[\phi \circ f] - \phi(\mathbb{E}_{\mu}[f]).$$

ϕ -divergence

For measure ν and dist μ define

$$\mathcal{D}_{\varphi}(\boldsymbol{\nu} \parallel \boldsymbol{\mu}) = \mathsf{Ent}_{\boldsymbol{\mu}}^{\varphi} \bigg[\frac{\boldsymbol{\nu}}{\boldsymbol{\mu}} \bigg]$$

- $\triangleright \ \varphi(x) = x^2 \text{ vs. } \varphi(x) = x \log x$
- $\triangleright \ x^2$ leads to Var and χ^2
- $\triangleright x \log x$ leads to Ent and $\mathcal{D}_{\mathsf{KL}}$

 $\begin{array}{c} \text{Contraction:}\\ \mathbb{D}_{\varphi}(\nu N \parallel \mu N) \leqslant (1-\rho) \, \mathbb{D}_{\varphi}(\nu \parallel \mu) \end{array}$

ϕ -entropy

For function φ and $f:\Omega\to\mathbb{R}$ define

$$\mathsf{Ent}^{\Phi}_{\mu}[\mathsf{f}] = \mathbb{E}_{\mu}[\phi \circ \mathsf{f}] - \phi(\mathbb{E}_{\mu}[\mathsf{f}]).$$

$\boldsymbol{\varphi}$ -divergence

For measure ν and dist μ define

$$\mathcal{D}_{\varphi}(\boldsymbol{\nu} \parallel \boldsymbol{\mu}) = \mathsf{Ent}_{\boldsymbol{\mu}}^{\varphi} \bigg[\frac{\boldsymbol{\nu}}{\boldsymbol{\mu}} \bigg]$$

- $\triangleright \ \varphi(x) = x^2 \text{ vs. } \varphi(x) = x \log x$
- $\triangleright \ x^2$ leads to Var and χ^2
- $\triangleright x \log x$ leads to Ent and $\mathcal{D}_{\mathsf{KL}}$

 $\begin{array}{c} \text{Contraction:}\\ \mathbb{D}_{\varphi}(\nu N \parallel \mu N) \leqslant (1-\rho) \, \mathbb{D}_{\varphi}(\nu \parallel \mu) \end{array}$

Lemma: data processing

 $\mathfrak{D}_\varphi(\nu N \parallel \mu N) \leqslant \mathfrak{D}_\varphi(\nu \parallel \mu)$

ϕ -entropy

For function φ and $f:\Omega\to\mathbb{R}$ define

$$\mathsf{Ent}^{\Phi}_{\mu}[\mathsf{f}] = \mathbb{E}_{\mu}[\phi \circ \mathsf{f}] - \phi(\mathbb{E}_{\mu}[\mathsf{f}]).$$

$\boldsymbol{\varphi}$ -divergence

For measure ν and dist μ define

$$\mathcal{D}_{\varphi}(\boldsymbol{\nu} \parallel \boldsymbol{\mu}) = \mathsf{Ent}_{\boldsymbol{\mu}}^{\varphi} \bigg[\frac{\boldsymbol{\nu}}{\boldsymbol{\mu}} \bigg]$$

 $\triangleright \ \varphi(x) = x^2 \text{ vs. } \varphi(x) = x \log x$

- $\triangleright \ x^2$ leads to Var and χ^2
- $\triangleright x \log x$ leads to Ent and $\mathcal{D}_{\mathsf{KL}}$

 $\begin{array}{c} \text{Contraction:} \\ \mathcal{D}_{\varphi}(\nu N \parallel \mu N) \leqslant (1-\rho) \, \mathcal{D}_{\varphi}(\nu \parallel \mu) \end{array}$

Lemma: data processing

 $\mathfrak{D}_{\varphi}(\nu N \parallel \mu N) \leqslant \mathfrak{D}_{\varphi}(\nu \parallel \mu)$

 $\triangleright~$ Specializing to $\chi^2,$ we have $\label{eq:rho} \rho = 1 - \lambda_2 (NN^\circ)$

ϕ -entropy

For function φ and $f:\Omega\to\mathbb{R}$ define

$$\mathsf{Ent}^{\Phi}_{\mu}[\mathsf{f}] = \mathbb{E}_{\mu}[\phi \circ \mathsf{f}] - \phi(\mathbb{E}_{\mu}[\mathsf{f}]).$$

$\boldsymbol{\varphi}$ -divergence

For measure ν and dist μ define

$$\mathcal{D}_{\varphi}(\boldsymbol{\nu} \parallel \boldsymbol{\mu}) = \mathsf{Ent}_{\boldsymbol{\mu}}^{\varphi} \bigg[\frac{\boldsymbol{\nu}}{\boldsymbol{\mu}} \bigg]$$

- $\triangleright \ x^2$ leads to Var and χ^2
- $\triangleright x \log x$ leads to Ent and $\mathcal{D}_{\mathsf{KL}}$

 $\begin{array}{c} \text{Contraction:}\\ \mathcal{D}_{\varphi}(\nu N \parallel \mu N) \leqslant (1-\rho) \, \mathcal{D}_{\varphi}(\nu \parallel \mu) \end{array}$

Lemma: data processing

 $\mathfrak{D}_{\varphi}(\nu N \parallel \mu N) \leqslant \mathfrak{D}_{\varphi}(\nu \parallel \mu)$

Specializing to χ^2 , we have $\rho = 1 - \lambda_2(NN^\circ)$

Abelian walks on group G: $x \mapsto x+z_{\infty}$

sampled i.i.d. from π

ϕ -entropy

For function φ and $f:\Omega\to\mathbb{R}$ define

$$\mathsf{Ent}^{\Phi}_{\mu}[\mathsf{f}] = \mathbb{E}_{\mu}[\phi \circ \mathsf{f}] - \phi(\mathbb{E}_{\mu}[\mathsf{f}]).$$

$\boldsymbol{\varphi}$ -divergence

For measure ν and dist μ define

$$\mathcal{D}_{\varphi}(\boldsymbol{\nu} \parallel \boldsymbol{\mu}) = \mathsf{Ent}_{\boldsymbol{\mu}}^{\varphi} \bigg[\frac{\boldsymbol{\nu}}{\boldsymbol{\mu}} \bigg]$$

- $\label{eq:phi} \bigcirc \ \varphi(x) = x^2 \text{ vs. } \varphi(x) = x \log x$
- $\triangleright \ x^2$ leads to Var and χ^2
- $\triangleright x \log x$ leads to Ent and $\mathcal{D}_{\mathsf{KL}}$

 $\begin{array}{c} \text{Contraction:}\\ \mathcal{D}_{\varphi}(\nu N \parallel \mu N) \leqslant (1-\rho) \, \mathcal{D}_{\varphi}(\nu \parallel \mu) \end{array}$

Lemma: data processing

 $\mathfrak{D}_{\varphi}(\nu N \parallel \mu N) \leqslant \mathfrak{D}_{\varphi}(\nu \parallel \mu)$

 $\triangleright~$ Specializing to $\chi^2,$ we have $\label{eq:rho} \rho = 1 - \lambda_2 (NN^\circ)$

 \triangleright Abelian walks on group G:

 $x \mapsto x + z$

sampled i.i.d. from π

Eigvecs are characters χ :

 $\chi(x+y) = \chi(x)\chi(y)$

ϕ -entropy

For function φ and $f:\Omega\to\mathbb{R}$ define

$$\mathsf{Ent}^{\Phi}_{\mu}[\mathsf{f}] = \mathbb{E}_{\mu}[\phi \circ \mathsf{f}] - \phi(\mathbb{E}_{\mu}[\mathsf{f}]).$$

$\boldsymbol{\varphi}$ -divergence

For measure ν and dist μ define

$$\mathcal{D}_{\varphi}(\boldsymbol{\nu} \parallel \boldsymbol{\mu}) = \mathsf{Ent}_{\boldsymbol{\mu}}^{\varphi} \bigg[\frac{\boldsymbol{\nu}}{\boldsymbol{\mu}} \bigg]$$

- $\triangleright \ \varphi(x) = x^2 \text{ vs. } \varphi(x) = x \log x$
- $\triangleright \ x^2$ leads to Var and χ^2
- $\triangleright x \log x$ leads to Ent and $\mathcal{D}_{\mathsf{KL}}$

 $\begin{array}{c} \text{Contraction:} \\ \mathcal{D}_{\varphi}(\nu N \parallel \mu N) \leqslant (1-\rho) \, \mathcal{D}_{\varphi}(\nu \parallel \mu) \end{array}$

Lemma: data processing

 $\mathfrak{D}_{\varphi}(\nu N \parallel \mu N) \leqslant \mathfrak{D}_{\varphi}(\nu \parallel \mu)$

 $\triangleright~$ Specializing to $\chi^2,$ we have $\label{eq:rho} \rho = 1 - \lambda_2 (NN^\circ)$

 \triangleright Abelian walks on group G:

 $x \mapsto x + z$

sampled i.i.d. from π

Eigvecs are characters χ :

 $\chi(\mathbf{x} + \mathbf{y}) = \chi(\mathbf{x})\chi(\mathbf{y})$

 \triangleright Eigvals are $\mathbb{E}_{\pi}[\chi]$

Fourier Analysis

- ▷ Characters
- ▷ Examples
- ▷ Relaxation time

Continuous Time

- \triangleright Functional analysis in continuous time
- ▷ Dirichlet form

Fourier Analysis

- ▷ Characters
- ▷ Examples
- ▷ Relaxation time

Continuous Time

- \triangleright Functional analysis in continuous time
- ▷ Dirichlet form

 \triangleright We know characters of \mathbb{Z}_n :

 $\chi(x)=\omega^x$

for ω an n-th root of unity.

 \triangleright We know characters of \mathbb{Z}_n :

 $\chi(x)=\omega^x$

for ω an n-th root of unity.

 \triangleright There are exactly n of them.

 \triangleright We know characters of \mathbb{Z}_n :

 $\chi(x)=\omega^x$

for ω an n-th root of unity.

 \triangleright We know characters of \mathbb{Z}_n :

 $\chi(x)=\omega^x$

for ω an n-th root of unity.

 $\begin{array}{c|c} \triangleright & \text{There are exactly n of them. @} \\ \hline & \text{Characters of $\mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}$:} \\ & x \mapsto \omega_1^{x_1} \cdots \omega_k^{x_k}. \\ \hline & \text{For G, we get $|G|$ characters. @} \end{array}$

 \triangleright We know characters of \mathbb{Z}_n :

 $\chi(x)=\omega^x$

for ω an n-th root of unity.

▷ There are exactly n of them. ○ Characters of $\mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}$: $x \mapsto \omega_1^{x_1} \cdots \omega_k^{x_k}$. ▷ For G, we get |G| characters. $\begin{tabular}{ll} & \bigtriangledown & We just need to compute \\ & & \mathbb{E}_{x\sim\pi} \big[\omega_1^{x_1} \cdots \omega_k^{x_k} \big] \\ & for all of these characters. \end{tabular} \end{tabular}$

 \triangleright We know characters of \mathbb{Z}_n :

 $\chi(x)=\omega^x$

for $\boldsymbol{\omega}$ an n-th root of unity.

 $\begin{array}{c|c} \triangleright & \text{There are exactly n of them. @} \\ \hline & \text{Characters of $\mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}$:} \\ & x \mapsto \omega_1^{x_1} \cdots \omega_k^{x_k}. \\ \hline & \text{For G, we get $|G|$ characters. @} \end{array}$

- ▷ We just need to compute $\mathbb{E}_{x \sim \pi} \left[\omega_1^{x_1} \cdots \omega_k^{x_k} \right]$ for all of these characters
- ▷ The $\omega_1 = \cdots = \omega_k = 1$ character gives us the special 1 eigval.

 \triangleright We know characters of \mathbb{Z}_n :

 $\chi(x)=\omega^x$

for ω an n-th root of unity.

 $\begin{array}{c|c} \triangleright & \text{There are exactly } n \text{ of them.} @ \\ \hline & \text{Characters of } \mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k} \text{:} \\ & x \mapsto \omega_1^{x_1} \cdots \omega_k^{x_k} \text{.} \\ \hline & \text{For G, we get } |G| \text{ characters.} @ \end{array}$

- ▷ We just need to compute $\mathbb{E}_{x \sim \pi} \left[\omega_1^{x_1} \cdots \omega_k^{x_k} \right]$ for all of these characters
- $\begin{tabular}{ll} \hline \begin{tabular}{ll} \begin{tabular}{ll} \hline \begin{tabular}{ll} \begin{tabular}{ll} \hline \begin{tabular}{ll} \begin{tabular}{l$
- $\bigcirc~$ If P is Abelian walk, then $P^\circ=P^\intercal$ is also Abelian walk. Eigvals are

 $\mathbb{E}_{x\sim\pi}[\chi(-x)]$

 \triangleright We know characters of \mathbb{Z}_n :

 $\chi(x)=\omega^x$

for ω an n-th root of unity.

 $\begin{array}{c|c} \triangleright & \text{There are exactly } n \text{ of them.} \textcircled{\begin{tabular}{l} \label{eq:characters} \\ \hline & \end{tabular} & \text{Characters of } \mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k} \\ & x \mapsto \omega_1^{x_1} \cdots \omega_k^{x_k} . \\ \hline & \end{tabular} & \text{For G, we get } |G| \text{ characters.} \textcircled{\begin{tabular}{l} \label{eq:characters} \\ \hline \end{tabular} \end{array}$

- ▷ We just need to compute $\mathbb{E}_{x \sim \pi} \left[\omega_1^{x_1} \cdots \omega_k^{x_k} \right]$ for all of these characters
- $\begin{tabular}{ll} \hline \begin{tabular}{ll} \begin{tabular}{ll} \hline \begin{tabular}{ll} \begin{tabular}{ll} \hline \begin{tabular}{ll} \begin{tabular}{l$
- $\bigcirc~$ If P is Abelian walk, then $P^\circ=P^\intercal$ is also Abelian walk. Eigvals are

$$\mathbb{E}_{\mathbf{x}\sim\pi}[\boldsymbol{\chi}(-\mathbf{x})]$$

 $\triangleright~$ Since P and P° commute, we have $\lambda_k(PP^\circ) = |\lambda_k(P)|^2$

 \triangleright We know characters of \mathbb{Z}_n :

 $\chi(x)=\omega^x$

for ω an n-th root of unity.

- ▷ We just need to compute $\mathbb{E}_{x \sim \pi} \left[\omega_1^{x_1} \cdots \omega_k^{x_k} \right]$ for all of these characters
- $\begin{tabular}{ll} \hline \begin{tabular}{ll} \begin{tabular}{ll} \hline \begin{tabular}{ll} \begin{tabular}{ll} \hline \begin{tabular}{ll} \begin{tabular}{l$
- $\bigcirc~$ If P is Abelian walk, then $P^\circ=P^\intercal$ is also Abelian walk. Eigvals are

 $\mathbb{E}_{\mathbf{x}\sim\pi}[\boldsymbol{\chi}(-\mathbf{x})]$

- $\triangleright~$ Since P and P° commute, we have $\lambda_k(PP^\circ) = |\lambda_k(P)|^2$
- \triangleright Mixing: largest $|\cdot|$ of an eig?

Distribution π : \bigcirc 0 w.p. 1/2 \bigcirc 1_i w.p. 1/2n

Distribution π : \bigcirc 0 w.p. 1/2 \bigcirc 1_i w.p. 1/2n

There are 2^n characters:

 $\mathbf{x}\mapsto (\pm 1)^{\mathbf{x}_1}\cdots (\pm 1)^{\mathbf{x}_n}$

Distribution π : \bigcirc 0 w.p. 1/2 \bigcirc 1_i w.p. 1/2n

 \bigcirc There are 2^n characters: $x\mapsto (\pm 1)^{x_1}\cdots (\pm 1)^{x_n}$ \bigcirc Eigval is $\#\{+1\}/n$

Distribution π : \bigcirc 0 w.p. 1/2 \bigcirc 1_i w.p. 1/2n

 $\begin{array}{c|c} \hline & \text{There are } 2^n \text{ characters:} \\ & x \mapsto (\pm 1)^{x_1} \cdots (\pm 1)^{x_n} \\ \hline & \mathbb{D} \text{ Eigval is } \#\{+1\}/n \\ \hline & \begin{pmatrix} n \\ k \end{pmatrix} \text{ of eigvals are} \\ & k/n \end{array}$

Distribution π : \bigcirc 0 w.p. 1/2 \bigcirc 1_i w.p. 1/2n

 \triangleright There are 2^n characters:

 $x\mapsto (\pm 1)^{x_1}\cdots (\pm 1)^{x_n}$

- \triangleright Eigval is $\#\{+1\}/n$
- $\triangleright \binom{n}{k}$ of eigvals are

k/n

▷ Spectral gap:

1-(n-1)/n=1/n

Distribution π : \bigcirc 0 w.p. 1/2 \bigcirc 1_i w.p. 1/2n

 \triangleright There are 2^n characters:

 $x\mapsto (\pm 1)^{x_1}\cdots (\pm 1)^{x_n}$

- \triangleright Eigval is $\#\{+1\}/n$
- $\triangleright \binom{n}{k}$ of eigvals are

 \triangleright Spectral gap:

$$\label{eq:tmix} \begin{split} 1-(n-1)/n &= 1/n \\ \textcircled{}{} \mathbb{D} \ t_{mix} \leqslant O(n^2) \end{split}$$

Distribution π : \bigcirc 0 w.p. 1/2 \bigcirc 1_i w.p. 1/2n

Example: cycle

Distribution π : \bigcirc +1 w.p. 1/2 \bigcirc -1 w.p. 1/2

 \triangleright There are 2^n characters:

 $x\mapsto (\pm 1)^{x_1}\cdots (\pm 1)^{x_n}$

- \triangleright Eigval is $\#\{+1\}/n$
- $\triangleright \binom{n}{k}$ of eigvals are

 \triangleright Spectral gap:

$$\label{eq:tmix} \begin{split} 1-(n-1)/n &= 1/n \\ \textcircled{} \begin{subarray}{c} t_{mix} \leqslant O(n^2) \end{subarray} \end{split}$$

Distribution π : \bigcirc 0 w.p. 1/2 \bigcirc 1_i w.p. 1/2n

Example: cycle

Distribution π : \bigcirc +1 w.p. 1/2 \bigcirc -1 w.p. 1/2

 \triangleright There are 2^n characters:

 $x\mapsto (\pm 1)^{x_1}\cdots (\pm 1)^{x_n}$

- \triangleright Eigval is $\#\{+1\}/n$
- $\triangleright \binom{n}{k}$ of eigvals are

 \triangleright Spectral gap:

$$\label{eq:tmix} \begin{split} 1-(n-1)/n &= 1/n \\ \textcircled{} \begin{subarray}{c} t_{mix} \leqslant O(n^2) \end{subarray} \end{split}$$

Distribution π : \bigcirc 0 w.p. 1/2 \bigcirc 1_i w.p. 1/2n

Example: cycle

Distribution π : \bigcirc +1 w.p. 1/2 \bigcirc -1 w.p. 1/2

 \triangleright There are 2^n characters: $x \mapsto (\pm 1)^{x_1} \cdots (\pm 1)^{x_n}$

- \triangleright Eigval is $\#\{+1\}/n$
- $\triangleright \binom{n}{k}$ of eigvals are

k/n

 \triangleright Spectral gap:

$$\label{eq:tmix} \begin{split} 1-(n-1)/n &= 1/n \\ \ensuremath{\mathbb{D}} \ t_{\text{mix}} \leqslant O(n^2) \end{split}$$

 \triangleright There are n characters:

$$x\mapsto\omega^x$$

Distribution π : \bigcirc 0 w.p. 1/2 \bigcirc 1_i w.p. 1/2n

Example: cycle

Distribution π : \bigcirc +1 w.p. 1/2 \bigcirc -1 w.p. 1/2

▷ There are 2^{n} characters: $x \mapsto (\pm 1)^{x_{1}} \cdots (\pm 1)^{x_{n}}$ ▷ Eigval is $\#\{+1\}/n$ ▷ $\binom{n}{k}$ of eigvals are k/n▷ Spectral gap: 1 - (n - 1)/n = 1/n

 $\triangleright t_{mix} \leqslant O(n^2)$

 $\begin{tabular}{ll} \hline & \end{tabular} \begin{tabular}{ll} \hline & \end{tabular} \end{ta$

Distribution π : \bigcirc 0 w.p. 1/2 \bigcirc 1_i w.p. 1/2n

Example: cycle

Distribution π : \bigcirc +1 w.p. 1/2 \bigcirc -1 w.p. 1/2

▷ There are 2^n characters: $x \mapsto (\pm 1)^{x_1} \cdots (\pm 1)^{x_n}$ ▷ Eigval is $\#\{+1\}/n$ ▷ $\binom{n}{k}$ of eigvals are k/n▷ Spectral gap:

$$\label{eq:tmix} \begin{split} &1-(n-1)/n=1/n\\ \mathbb{D} \ t_{mix} \leqslant O(n^2) \end{split}$$

▷ There are n characters: $x \mapsto \omega^{x}$ ▷ Eigval is $(\omega + \omega^{-1})/2$ ▷ Eigvals are $\cos(2\pi k/n)$

Distribution π : \bigcirc 0 w.p. 1/2 \bigcirc 1_i w.p. 1/2n

Example: cycle

Distribution π : \bigcirc +1 w.p. 1/2 \bigcirc -1 w.p. 1/2

▷ There are 2^{n} characters: $x \mapsto (\pm 1)^{x_{1}} \cdots (\pm 1)^{x_{n}}$ ▷ Eigval is $\#\{+1\}/n$ ▷ $\binom{n}{k}$ of eigvals are k/n▷ Spectral gap: 1 - (n - 1)/n = 1/n

 $\triangleright t_{mix} \leqslant O(n^2)$

- \triangleright There are n characters:
 - $x\mapsto \omega^x$

$$>$$
 Eigval is $(\omega+\omega^{-1})/2$

▷ Eigvals are

 $\cos(2\pi k/n)$

 \bigcirc Spectral gap: $1-\cos(2\pi/n)\simeq \Theta(1/n^2)?$

Distribution π : \bigcirc 0 w.p. 1/2 \bigcirc 1_i w.p. 1/2n

Example: cycle

Distribution π : \bigcirc +1 w.p. 1/2 \bigcirc -1 w.p. 1/2

 ▷ There are 2ⁿ characters: $x \mapsto (\pm 1)^{x_1} \cdots (\pm 1)^{x_n}$ ▷ Eigval is #{+1}/n
▷ $\binom{n}{k}$ of eigvals are k/n ▷ Spectral gap: 1 - (n - 1)/n = 1/n ▷ t_{mix} ≤ O(n²)

- \triangleright There are n characters:
 - $x\mapsto \omega^x$

$$\triangleright$$
 Eigval is $(\omega+\omega^{-1})/2$

▷ Eigvals are

 $\cos(2\pi k/n)$

 \bigcirc Spectral gap:
$$\label{eq:tau} \begin{split} 1-\cos(2\pi/n)\simeq \Theta(1/n^2)? \\ \boxdot t_{mix} \leqslant O(n^2\log n)? \end{split}$$
Example: hypercube

Distribution π : \bigcirc 0 w.p. 1/2 \bigcirc 1_i w.p. 1/2n

Example: cycle

Distribution π : \bigcirc +1 w.p. 1/2 \bigcirc -1 w.p. 1/2

 $\begin{array}{c|c} \hline & \text{There are } 2^n \text{ characters:} \\ & x \mapsto (\pm 1)^{x_1} \cdots (\pm 1)^{x_n} \\ \hline & \mathbb{E} \text{ igval is } \# \{+1\}/n \\ \hline & \binom{n}{k} \text{ of eigvals are} \\ & k/n \\ \hline & \mathbb{D} \text{ Spectral gap:} \end{array}$

- \triangleright There are n characters:
 - $x\mapsto \omega^x$

$$>$$
 Eigval is $(\omega + \omega^{-1})/2$

▷ Eigvals are

 $\cos(2\pi k/n)$

Suppose P is time-reversible and lazy:

 $\lambda_i(P) \geqslant 0$

 \triangleright Relaxation time: $1/(1 - \lambda_2(P))$

Suppose P is time-reversible and lazy:

 $\lambda_{\mathfrak{i}}(P) \geqslant 0$

- \triangleright Relaxation time: $1/(1 \lambda_2(P))$
- Relaxation time does not directly control mixing time ⁽²⁾

Suppose P is time-reversible and lazy:

 $\lambda_{\mathfrak{i}}(P) \geqslant 0$

- \triangleright Relaxation time: $1/(1 \lambda_2(P))$
- Relaxation time does not directly control mixing time ⁽²⁾
- \triangleright But it controls $t_{\text{mix}}(\varepsilon)$ for tiny ε :

Suppose P is time-reversible and lazy:

 $\lambda_i(P) \geqslant 0$

- \triangleright Relaxation time: $1/(1 \lambda_2(P))$
- Relaxation time does not directly control mixing time ⁽²⁾
- \triangleright But it controls $t_{\text{mix}}(\varepsilon)$ for tiny ε :

Lemma

 $t_{\text{mix}}(\varepsilon) = O \Big(\tfrac{\log(\chi^2(\nu_0 \| \mu)) + \log(1/\varepsilon)}{1 - \lambda_2(P)} \Big)$

Suppose P is time-reversible and lazy:

 $\lambda_i(P) \geqslant 0$

- \triangleright Relaxation time: $1/(1 \lambda_2(P))$
- Relaxation time does not directly control mixing time ⁽²⁾
- \triangleright But it controls $t_{\text{mix}}(\varepsilon)$ for tiny ε :

Lemma

$$t_{\text{mix}}(\varepsilon) = O \Big(\tfrac{\log(\chi^2(\nu_0 \| \mu)) + \log(1/\varepsilon)}{1 - \lambda_2(P)} \Big)$$

▷ We have

$$t_{\mathsf{rel}} = \Theta \Big(\mathsf{lim}_{\varepsilon \to 0} \, \tfrac{t_{\mathsf{mix}}(\varepsilon)}{\mathsf{log}(1/\varepsilon)} \Big)$$

Suppose P is time-reversible and lazy: Proof:

 $\lambda_i(P) \geqslant 0$

- \triangleright Relaxation time: $1/(1 \lambda_2(P))$
- Relaxation time does not directly control mixing time ⁽²⁾
- \triangleright But it controls $t_{\text{mix}}(\varepsilon)$ for tiny ε :

Lemma

$$t_{\text{mix}}(\varepsilon) = O \Big(\tfrac{\log(\chi^2(\nu_0 \| \mu)) + \log(1/\varepsilon)}{1 - \lambda_2(P)} \Big)$$

▷ We have

$$t_{\mathsf{rel}} = \Theta \Big(\mathsf{lim}_{\varepsilon \to 0} \, \tfrac{t_{\mathsf{mix}}(\varepsilon)}{\mathsf{log}(1/\varepsilon)} \Big)$$

Suppose P is time-reversible and lazy: Proof:

 $\lambda_i(P) \geqslant 0$

- \triangleright Relaxation time: $1/(1 \lambda_2(P))$
- Relaxation time does not directly control mixing time ⁽²⁾
- $\,\triangleright\,$ But it controls $t_{\text{mix}}(\varepsilon)$ for tiny ε :

Lemma

$$t_{\text{mix}}(\varepsilon) = O \Big(\tfrac{\log(\chi^2(\nu_0 \| \mu)) + \log(1/\varepsilon)}{1 - \lambda_2(P)} \Big)$$

▷ We have

$$t_{\mathsf{rel}} = \Theta \Big(\mathsf{lim}_{\varepsilon \to 0} \, \tfrac{t_{\mathsf{mix}}(\varepsilon)}{\mathsf{log}(1/\varepsilon)} \Big)$$

$$Let v be left eigvec for \lambda \neq 1: vP = \lambda v$$

Suppose P is time-reversible and lazy: Proof:

 $\lambda_i(P) \geqslant 0$

- \triangleright Relaxation time: $1/(1 \lambda_2(P))$
- Relaxation time does not directly control mixing time ⁽²⁾
- \triangleright But it controls $t_{mix}(\varepsilon)$ for tiny ε :

Lemma

$$t_{\text{mix}}(\varepsilon) = O \Big(\tfrac{\log(\chi^2(\nu_0 \| \mu)) + \log(1/\varepsilon)}{1 - \lambda_2(P)} \Big)$$

▷ We have

$$t_{\mathsf{rel}} = \Theta \Big(\mathsf{lim}_{\varepsilon \to 0} \, \tfrac{t_{\mathsf{mix}}(\varepsilon)}{\mathsf{log}(1/\varepsilon)} \Big)$$

- ▷ We have $\langle v, 1 \rangle = 0$, so write $v = \alpha(v_1 - v_2) + i\beta(v_3 - v_4)$

for dists v_1, v_2, v_3, v_4 .

Suppose P is time-reversible and lazy: Proof:

 $\lambda_i(P) \geqslant 0$

- \triangleright Relaxation time: $1/(1 \lambda_2(P))$
- Relaxation time does not directly control mixing time ⁽²⁾
- \triangleright But it controls $t_{mix}(\epsilon)$ for tiny ϵ :

 $t_{\mathsf{mix}}(\varepsilon) = O\Big(\tfrac{\log(\chi^2(\nu_0 \| \mu)) + \log(1/\varepsilon)}{1 - \lambda_2(P)} \Big)$

▷ We have

Lemma

$$t_{\mathsf{rel}} = \Theta \Big(\mathsf{lim}_{\varepsilon \to 0} \, \tfrac{t_{\mathsf{mix}}(\varepsilon)}{\mathsf{log}(1/\varepsilon)} \Big)$$

$$\begin{tabular}{l} & \blacktriangleright \end{tabular} \begin{tabular}{l} & \blacktriangleright \end{tabular} \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{l} & \bullet \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{l} & \bullet \end{tabular} \end{$$

for dists v_1, v_2, v_3, v_4 .

$$\bigcirc \mbox{ For } t \geqslant t_{\text{mix}}(\varepsilon) \mbox{ we get} \\ \|\nu P^t\|_1 \leqslant O(\varepsilon) \cdot \|\nu\|$$

Suppose P is time-reversible and lazy: Proof:

 $\lambda_i(P) \geqslant 0$

- \triangleright Relaxation time: $1/(1 \lambda_2(P))$
- Relaxation time does not directly control mixing time ⁽²⁾
- $\,\triangleright\,$ But it controls $t_{\mathsf{mix}}(\varepsilon)$ for tiny ε :

Lemma

$$t_{\text{mix}}(\varepsilon) = O \Big(\tfrac{\log(\chi^2(\nu_0 \| \mu)) + \log(1/\varepsilon)}{1 - \lambda_2(P)} \Big)$$

▷ We have

$$t_{\text{rel}} = \Theta \Big(\text{lim}_{\varepsilon \to 0} \, \tfrac{t_{\text{mix}}(\varepsilon)}{\text{log}(1/\varepsilon)} \Big)$$

- \triangleright We have $\langle \nu, \mathbb{1} \rangle =$ 0, so write $\nu = \alpha (\nu_1 \nu_2) + i \beta (\nu_3 \nu_4)$

for dists v_1, v_2, v_3, v_4 .

- $\label{eq:transform} \begin{array}{l} \ensuremath{\mathbb{D}} & \mbox{For} \ t \geqslant t_{\mbox{mix}}(\varepsilon) \ \mbox{we get} \\ & \| \nu P^t \|_1 \leqslant O(\varepsilon) \cdot \| \nu \|_1 \end{array} \end{array}$
- \triangleright But this means

 $\lambda^t = O(\varepsilon)$

which means

$$1-|\lambda| \geqslant \Omega \Big(\tfrac{\log(1/\varepsilon)}{t_{\mathsf{mix}}(\varepsilon)} \Big)$$

Under Dobrushin, we have $t_{\text{rel}} = O(n)$; in other words

```
\lambda_2 \leq 1 - \Omega(1/n).
```

Under Dobrushin, we have $t_{\mathsf{rel}} = O(n)$; in other words

 $\lambda_2 \leq 1 - \Omega(1/n).$

 \triangleright Another proof that hypercube has

 $\lambda_2 \leqslant 1 - \Omega(1/n)$

Under Dobrushin, we have $t_{\mathsf{rel}} = O(n)$; in other words

 $\lambda_2 \leqslant 1 - \Omega(1/n).$

 \triangleright Another proof that hypercube has

 $\lambda_2 \leqslant 1 - \Omega(1/n)$

 $\,\triangleright\,$ First proof that Glauber for coloring with $>2\Delta$ colors has

 $\lambda_2 \leqslant 1 - \Omega(1/n)$

Under Dobrushin, we have $t_{\mathsf{rel}} = O(n)$; in other words

 $\lambda_2 \leqslant 1 - \Omega(1/n).$

 \triangleright Another proof that hypercube has

 $\lambda_2 \leqslant 1 - \Omega(1/n)$

 $\triangleright\,$ First proof that Glauber for coloring with $>2\Delta$ colors has

 $\lambda_2 \leqslant 1 - \Omega(1/n)$

 \triangleright Note: going back from λ_2 to t_{mix} gives us non-tight bound of $O(n^2).$

Fourier Analysis

- ▷ Characters
- ▷ Examples
- ▷ Relaxation time

Continuous Time

- \triangleright Functional analysis in continuous time
- ▷ Dirichlet form

Fourier Analysis

- ▷ Characters
- ▷ Examples
- Relaxation time

Continuous Time

- \triangleright Functional analysis in continuous time
- Dirichlet form

So far, we have been running Markov chains in discrete time:

$$X_0 \mapsto X_1 \mapsto \cdots \mapsto X_t \mapsto \cdots \uparrow t \text{ is integer}$$

So far, we have been running Markov chains in discrete time:

$$X_0 \mapsto X_1 \mapsto \cdots \mapsto X_t \mapsto \cdots$$

t is integer

We can run a chain in continuous time via Poisson clock:

So far, we have been running Markov chains in discrete time:

$$X_0 \mapsto X_1 \mapsto \cdots \mapsto X_t \mapsto \cdots$$

t is integer

We can run a chain in continuous time via Poisson clock:

 \triangleright Every ring, take one step of P.

So far, we have been running Markov chains in discrete time:

$$X_0 \mapsto X_1 \mapsto \cdots \mapsto X_t \mapsto \cdots \uparrow t$$
 is integer

We can run a chain in continuous time via Poisson clock:

- \triangleright Every ring, take one step of P.
- $\,\triangleright\,\, X_t :$ position at time $t \in \mathbb{R}_{\geqslant 0}$

So far, we have been running Markov chains in discrete time:

$$X_0 \mapsto X_1 \mapsto \cdots \mapsto X_t \mapsto \cdots \uparrow t \text{ is integer}$$

We can run a chain in continuous time via Poisson clock:

- \triangleright Every ring, take one step of P.
- $\,\triangleright\,\, X_t :$ position at time $t \in \mathbb{R}_{\geqslant 0}$

To algorithmically simulate X_t: draw n ~ Poisson(t) and take n discrete steps

So far, we have been running Markov chains in discrete time:

$$X_0 \mapsto X_1 \mapsto \cdots \mapsto X_t \mapsto \cdots$$

t is integer

We can run a chain in continuous time via Poisson clock:

- \triangleright Every ring, take one step of P.
- $\,\triangleright\,\, X_t :$ position at time $t \in \mathbb{R}_{\geqslant 0}$

- To algorithmically simulate X_t: draw n ~ Poisson(t) and take n discrete steps
- \triangleright How is X_t distributed given X_0 ?

So far, we have been running Markov chains in discrete time:

$$X_0 \mapsto X_1 \mapsto \cdots \mapsto X_t \mapsto \cdots$$

t is integer

We can run a chain in continuous time via Poisson clock:

- \triangleright Every ring, take one step of P.
- $\,\triangleright\,\, X_t :$ position at time $t \in \mathbb{R}_{\geqslant 0}$

- \triangleright To algorithmically simulate $X_t:$ draw $n \sim \text{Poisson}(t)$ and take n discrete steps
- \triangleright How is X_t distributed given X_0 ?
- Approximate the process as

where in each interval we take transition of P w.p. ϵ .

So far, we have been running Markov chains in discrete time:

$$X_0 \mapsto X_1 \mapsto \cdots \mapsto X_t \mapsto \cdots$$

t is integer

We can run a chain in continuous time via Poisson clock:

- \triangleright Every ring, take one step of P.
- $\,\triangleright\,\, X_t :$ position at time $t \in \mathbb{R}_{\geqslant 0}$

- \triangleright How is X_t distributed given X₀?
- Approximate the process as

εεεεεεεtime ⊢⊢⊢⊢⊢⊢

where in each interval we take transition of P w.p. ϵ .

> Result at time t:

$$\underbrace{((1-\epsilon)I+\epsilon P)^{t/\epsilon}}_{\text{transition matrix}} \to \exp(t(P-I))$$

transition matrix

So far, we have been running Markov chains in discrete time:

$$X_0 \mapsto X_1 \mapsto \cdots \mapsto X_t \mapsto \cdots$$

t is integer

We can run a chain in continuous time via Poisson clock:

- \triangleright Every ring, take one step of P.
- $\,\triangleright\,\, X_t$: position at time $t\in \mathbb{R}_{\geqslant 0}$

- \triangleright How is X_t distributed given X₀?
- Approximate the process as

εεεεεεεtime ├──

where in each interval we take transition of P w.p. ϵ .

Result at time t:

$$\underbrace{((1-\epsilon)I + \epsilon P)^{t/\epsilon}}_{\text{transition matrix}} \rightarrow \exp(t(P-I))$$

> Ultimate lazification!

What happens to functional analysis in continuous time?

- What happens to functional analysis in continuous time?
- \triangleright In discrete time we want

 $\mathfrak{D}_{\varphi}(\nu P \parallel \mu) \leqslant (1 - \rho) \, \mathfrak{D}_{\varphi}(\nu \parallel \mu)$

- What happens to functional analysis in continuous time?
- \triangleright In discrete time we want

 $\mathfrak{D}_{\varphi}(\nu P \parallel \mu) \leqslant (1 - \rho) \, \mathfrak{D}_{\varphi}(\nu \parallel \mu)$

 \triangleright Analogue in continuous time:

$$\label{eq:product} \begin{split} \frac{d}{dt}\, \mathcal{D}_{\varphi}(\nu_t \parallel \mu) \leqslant -\rho\, \mathcal{D}_{\varphi}(\nu_t \parallel \mu) \\ \text{where } \nu_t = \nu_0 \, \text{exp}(t(P-I)). \end{split}$$

- What happens to functional analysis in continuous time?
- \triangleright In discrete time we want

 $\mathfrak{D}_{\varphi}(\nu P \parallel \mu) \leqslant (1 - \rho) \, \mathfrak{D}_{\varphi}(\nu \parallel \mu)$

 \triangleright Analogue in continuous time:

$$\begin{split} & \frac{d}{dt}\,\mathcal{D}_{\varphi}(\nu_t\parallel\mu)\leqslant-\rho\,\mathcal{D}_{\varphi}(\nu_t\parallel\mu)\\ & \text{where }\nu_t=\nu_0\,\text{exp}(t(P-I)). \end{split}$$

▷ Corollary: we get

 $\mathfrak{D}_{\varphi}(\nu_t \parallel \mu) \leqslant e^{-t\rho} \cdot \mathfrak{D}_{\varphi}(\nu_0 \parallel \mu)$

- What happens to functional analysis in continuous time?
- \triangleright In discrete time we want

 $\mathfrak{D}_{\varphi}(\nu P \parallel \mu) \leqslant (1-\rho) \, \mathfrak{D}_{\varphi}(\nu \parallel \mu)$

 \triangleright Analogue in continuous time:

$$\label{eq:product} \begin{split} \frac{d}{dt}\, \mathcal{D}_{\varphi}(\nu_t \parallel \mu) \leqslant -\rho\, \mathcal{D}_{\varphi}(\nu_t \parallel \mu) \\ \text{where } \nu_t = \nu_0 \, \text{exp}(t(P-I)). \end{split}$$

 \triangleright Corollary: we get

 $\mathfrak{D}_{\varphi}(\nu_t \parallel \mu) \leqslant e^{-t\rho} \cdot \mathfrak{D}_{\varphi}(\nu_0 \parallel \mu)$

 By comparing to d_{TV} we get continuous mixing time bounds.

- What happens to functional analysis in continuous time?
- \triangleright In discrete time we want

 $\mathcal{D}_{\varphi}(\nu P \parallel \mu) \leqslant (1 - \rho) \mathcal{D}_{\varphi}(\nu \parallel \mu)$

 \triangleright Analogue in continuous time:

$$\label{eq:product} \begin{split} \frac{d}{dt}\, \mathcal{D}_{\varphi}(\nu_t \parallel \mu) \leqslant -\rho\, \mathcal{D}_{\varphi}(\nu_t \parallel \mu) \\ \text{where } \nu_t = \nu_0 \, \text{exp}(t(P-I)). \end{split}$$

▷ Corollary: we get

 $\mathfrak{D}_{\varphi}(\nu_t \parallel \mu) \leqslant e^{-t\rho} \cdot \mathfrak{D}_{\varphi}(\nu_0 \parallel \mu)$

By comparing to d_{TV} we get continuous mixing time bounds.

Fact: discrete is stronger

Discrete-time contraction implies continuous-time contraction.

- What happens to functional analysis in continuous time?
- \triangleright In discrete time we want

 $\mathcal{D}_{\Phi}(\boldsymbol{\nu} P \parallel \boldsymbol{\mu}) \leqslant (1 - \rho) \mathcal{D}_{\Phi}(\boldsymbol{\nu} \parallel \boldsymbol{\mu})$

 \triangleright Analogue in continuous time:

$$\label{eq:product} \begin{split} \frac{d}{dt}\, \mathfrak{D}_{\varphi}(\nu_t \parallel \mu) \leqslant -\rho\, \mathfrak{D}_{\varphi}(\nu_t \parallel \mu) \\ \text{where } \nu_t = \nu_0 \, \text{exp}(t(P-I)). \end{split}$$

 \triangleright Corollary: we get

 $\mathfrak{D}_{\varphi}(\nu_t \parallel \mu) \leqslant e^{-t\rho} \cdot \mathfrak{D}_{\varphi}(\nu_0 \parallel \mu)$

 By comparing to d_{TV} we get continuous mixing time bounds.

Fact: discrete is stronger

Discrete-time contraction implies continuous-time contraction.

Proof:

- What happens to functional analysis in continuous time?
- \triangleright In discrete time we want

 $\mathcal{D}_{\varphi}(\nu P \parallel \mu) \leqslant (1 - \rho) \mathcal{D}_{\varphi}(\nu \parallel \mu)$

 \triangleright Analogue in continuous time:

$$\label{eq:product} \begin{split} \frac{d}{dt}\, \mathfrak{D}_{\varphi}(\nu_t \parallel \mu) \leqslant -\rho\, \mathfrak{D}_{\varphi}(\nu_t \parallel \mu) \\ \text{where } \nu_t = \nu_0 \, \text{exp}(t(P-I)). \end{split}$$

▷ Corollary: we get

 $\mathcal{D}_{\varphi}(\nu_t \parallel \mu) \leqslant e^{-t\rho} \cdot \mathcal{D}_{\varphi}(\nu_0 \parallel \mu)$

 By comparing to d_{TV} we get continuous mixing time bounds.

Fact: discrete is stronger

Discrete-time contraction implies continuous-time contraction.

Proof:

- What happens to functional analysis in continuous time?
- \triangleright In discrete time we want

 $\mathcal{D}_{\Phi}(\boldsymbol{\nu} P \parallel \boldsymbol{\mu}) \leqslant (1 - \rho) \mathcal{D}_{\Phi}(\boldsymbol{\nu} \parallel \boldsymbol{\mu})$

 \triangleright Analogue in continuous time:

$$\label{eq:product} \begin{split} \frac{d}{dt}\, \mathfrak{D}_{\varphi}(\nu_t \parallel \mu) \leqslant -\rho\, \mathfrak{D}_{\varphi}(\nu_t \parallel \mu) \\ \text{where } \nu_t = \nu_0 \, \text{exp}(t(P-I)). \end{split}$$

 \triangleright Corollary: we get

 $\mathfrak{D}_{\varphi}(\nu_t \parallel \mu) \leqslant e^{-t\rho} \cdot \mathfrak{D}_{\varphi}(\nu_0 \parallel \mu)$

 By comparing to d_{TV} we get continuous mixing time bounds. ^(C)

Fact: discrete is stronger

Discrete-time contraction implies continuous-time contraction.

Proof:

$$\triangleright$$
 Because ϕ is convex:

 $\begin{array}{l} \mathcal{D}_{\Phi}((1-\varepsilon)\nu+\varepsilon\nu P\parallel\mu)\leqslant\\ (1-\varepsilon)\,\mathcal{D}_{\Phi}(\nu\parallel\mu)+\varepsilon\,\mathcal{D}_{\Phi}(\nu P\parallel\mu) \end{array}$

- What happens to functional analysis in continuous time?
- \triangleright In discrete time we want

 $\mathcal{D}_{\varphi}(\nu P \parallel \mu) \leqslant (1 - \rho) \mathcal{D}_{\varphi}(\nu \parallel \mu)$

 \triangleright Analogue in continuous time:

$$\label{eq:product} \begin{split} \frac{d}{dt}\, \mathfrak{D}_{\varphi}(\nu_t \parallel \mu) \leqslant -\rho\, \mathfrak{D}_{\varphi}(\nu_t \parallel \mu) \\ \text{where } \nu_t = \nu_0 \, \text{exp}(t(P-I)). \end{split}$$

 \triangleright Corollary: we get

 $\mathfrak{D}_{\varphi}(\nu_t \parallel \mu) \leqslant e^{-t\rho} \cdot \mathfrak{D}_{\varphi}(\nu_0 \parallel \mu)$

By comparing to d_{TV} we get continuous mixing time bounds.

Fact: discrete is stronger

Discrete-time contraction implies continuous-time contraction.

Proof:

$$\triangleright$$
 Because ϕ is convex:

 $\begin{array}{l} \mathcal{D}_{\Phi}((1-\varepsilon)\nu + \varepsilon\nu P \parallel \mu) \leqslant \\ (1-\varepsilon) \mathcal{D}_{\Phi}(\nu \parallel \mu) + \varepsilon \mathcal{D}_{\Phi}(\nu P \parallel \mu) \end{array}$

 \triangleright But this is $\leqslant (1 - \epsilon \rho) \mathcal{D}_{\varphi}(\nu \parallel \mu)$.

discrete time \leftrightarrow continuous time

discrete time \leftrightarrow continuous time

 $\triangleright \chi^2$ contraction in continuous time is dictated by eigs of

 $(P + P^{\circ})/2$

discrete time \leftrightarrow continuous time

 $\,\triangleright\,\,\chi^2$ contraction in continuous time is dictated by eigs of

$$(P + P^{\circ})/2$$

▷ Sketch:

$$\begin{split} (I + \varepsilon (P - I))(I + \varepsilon (P^{\circ} - I)) &= \\ I + \varepsilon (P + P^{\circ} - 2I) + O(\varepsilon^2) \end{split}$$

Discrete can be strictly stronger:

But, for time-reversible and lazy chains in χ^2 : say eigs ≥ 0 or $\lambda_n \ge -\lambda_2$

discrete time \leftrightarrow continuous time

 $\,\triangleright\,\,\chi^2$ contraction in continuous time is dictated by eigs of

$$(P + P^{\circ})/2$$

▷ Sketch:

$$\begin{split} (I + \varepsilon (P - I))(I + \varepsilon (P^{\circ} - I)) &= \\ I + \varepsilon (P + P^{\circ} - 2I) + O(\varepsilon^2) \end{split}$$

For lazy reversible P, we have gap of PP° is approximately gap of $(P + P^{\circ})/2$.

Discrete can be strictly stronger:

But, for time-reversible and lazy chains in χ^2 : say eigs ≥ 0 or $\lambda_n \ge -\lambda_2$

discrete time \leftrightarrow continuous time

 $\,\triangleright\,\,\chi^2$ contraction in continuous time is dictated by eigs of

$$(P + P^{\circ})/2$$

▷ Sketch:

$$\begin{split} (I + \varepsilon (P - I))(I + \varepsilon (P^{\circ} - I)) &= \\ I + \varepsilon (P + P^{\circ} - 2I) + O(\varepsilon^2) \end{split}$$

- For lazy reversible P, we have gap of PP° is approximately gap of $(P + P^{\circ})/2$.
- Corollary: prove continuous-time contraction if easier, and don't worry about it.

Discrete can be strictly stronger:

But, for time-reversible and lazy chains in χ^2 : say eigs ≥ 0 or $\lambda_n \ge -\lambda_2$

discrete time \leftrightarrow continuous time

 $\,\triangleright\,\,\chi^2$ contraction in continuous time is dictated by eigs of

$$(P + P^{\circ})/2$$

Sketch:

$$\begin{split} (I + \varepsilon (P - I))(I + \varepsilon (P^\circ - I)) &= \\ I + \varepsilon (P + P^\circ - 2I) + O(\varepsilon^2) \end{split}$$

- For lazy reversible P, we have gap of PP° is approximately gap of $(P + P^{\circ})/2$.
- Corollary: prove continuous-time contraction if easier, and don't worry about it.
- Easier because of Dirichlet form!

▷ Assume P is time-reversible.

▷ Assume P is time-reversible.

$$\mathbb{E}_{\mu} \Big[\varphi' \Big(\tfrac{\nu_t}{\mu} \Big) \, \tfrac{d}{dt} \tfrac{\nu_t}{\mu} \Big]$$

▷ Assume P is time-reversible.

 $\begin{array}{l} \textcircled{} \quad \mathbb{B}\text{ut} \ \frac{d}{dt}\nu_t = \nu_t(\mathsf{P}-I) \text{, and we can write above as} \\ \qquad \quad -\frac{1}{2}\sum_{x,y}Q(x,y)\Big(\varphi'\Big(\frac{\nu_t(x)}{\mu(x)}\Big) - \varphi'\Big(\frac{\nu_t(y)}{\mu(y)}\Big)\Big)\left(\frac{\nu_t(x)}{\mu(x)} - \frac{\nu_t(y)}{\mu(y)}\right) \end{array}$

▷ Assume P is time-reversible.

 \triangleright But $\frac{d}{dt}v_t = v_t(P - I)$, and we can write above as

$$-\frac{1}{2}\sum_{x,y}Q(x,y)\left(\varphi'\left(\frac{\nu_t(x)}{\mu(x)}\right)-\varphi'\left(\frac{\nu_t(y)}{\mu(y)}\right)\right)\left(\frac{\nu_t(x)}{\mu(x)}-\frac{\nu_t(y)}{\mu(y)}\right)$$

Dirichlet form

Define $\mathcal{E}(f,g)$ for functions $f,g:\Omega\to\mathbb{R}$ as

$$\frac{1}{2}\mathbb{E}_{(\mathbf{x},\mathbf{y})\sim Q}\left[\left(f(\mathbf{x})-f(\mathbf{y})\right)\left(g(\mathbf{x})-g(\mathbf{y})\right)\right].$$

▷ Assume P is time-reversible.

 \triangleright But $\frac{d}{dt}v_t = v_t(P - I)$, and we can write above as

$$-\frac{1}{2}\sum_{x,y}Q(x,y)\left(\varphi'\left(\frac{\nu_{t}(x)}{\mu(x)}\right)-\varphi'\left(\frac{\nu_{t}(y)}{\mu(y)}\right)\right)\left(\frac{\nu_{t}(x)}{\mu(x)}-\frac{\nu_{t}(y)}{\mu(y)}\right)$$

Dirichlet form

Define $\boldsymbol{\epsilon}(f,g)$ for functions $f,g:\Omega\to\mathbb{R}$ as

$$\frac{1}{2}\mathbb{E}_{(x,y)\sim Q}\left[\left(f(x)-f(y)\right)\left(g(x)-g(y)\right)\right].$$

Poincaré: $2 \mathcal{E}(f, f) \ge \rho \operatorname{Var}[f]$

 $\mathsf{MLSI:} \ \mathcal{E}(f, \mathsf{log} \ f) \ge \rho \ \mathsf{Ent}[f]$

Just need to lower bound &