CS 263: Counting and Sampling

Nima Anari

slides for

Continuous Time
For function ϕ and $f : \Omega \to \mathbb{R}$ define

$$\text{Ent}^\phi_{\mu}[f] = \mathbb{E}_\mu[\phi \circ f] - \phi(\mathbb{E}_\mu[f]).$$
Review

φ-entropy
For function \(\phi \) and \(f : \Omega \rightarrow \mathbb{R} \) define

\[
\text{Ent}^{\phi}_{\mu}[f] = \mathbb{E}_{\mu}[\phi \circ f] - \phi(\mathbb{E}_{\mu}[f]).
\]

φ-divergence
For measure \(\nu \) and dist \(\mu \) define

\[
\mathcal{D}_\phi(\nu \parallel \mu) = \text{Ent}^{\phi}_{\mu}\left[\frac{\nu}{\mu}\right].
\]
Review

Φ-entropy
For function ϕ and $f : \Omega \rightarrow \mathbb{R}$ define

$$\text{Ent}_\mu^\phi[f] = \mathbb{E}_\mu[\phi \circ f] - \phi(\mathbb{E}_\mu[f]).$$

Φ-divergence
For measure ν and dist μ define

$$\mathcal{D}_\phi(\nu \parallel \mu) = \text{Ent}_\mu^\phi\left[\frac{\nu}{\mu}\right]$$

▶ $\phi(x) = x^2$ vs. $\phi(x) = x \log x$
Review

| **ϕ-entropy** |
|---|---|
| For function ϕ and $f : \Omega \rightarrow \mathbb{R}$ define |
| \[
\text{Ent}^\phi_\mu[f] = \mathbb{E}_\mu[\phi \circ f] - \phi(\mathbb{E}_\mu[f]).
\] |

| **ϕ-divergence** |
|---|---|
| For measure ν and dist μ define |
| \[
\mathcal{D}_\phi(\nu \parallel \mu) = \text{Ent}^\phi_\mu \left[\frac{\nu}{\mu} \right]
\] |

- $\phi(x) = x^2$ vs. $\phi(x) = x \log x$
- x^2 leads to Var and χ^2
Review

φ-entropy

For function ϕ and $f: \Omega \to \mathbb{R}$ define

$$\text{Ent}_\mu^\phi[f] = \mathbb{E}_\mu[\phi \circ f] - \phi(\mathbb{E}_\mu[f]).$$

φ-divergence

For measure ν and dist μ define

$$\mathcal{D}_\phi(\nu \parallel \mu) = \text{Ent}_\mu^\phi\left[\frac{\nu}{\mu}\right].$$

- $\phi(x) = x^2$ vs. $\phi(x) = x \log x$
- x^2 leads to Var and χ^2
- $x \log x$ leads to Ent and \mathcal{D}_{KL}
Review

\(\phi \)-entropy
For function \(\phi \) and \(f : \Omega \to \mathbb{R} \) define

\[
\text{Ent}_\mu^{\phi}[f] = \mathbb{E}_\mu[\phi \circ f] - \phi(\mathbb{E}_\mu[f]).
\]

\(\phi \)-divergence
For measure \(\nu \) and dist \(\mu \) define

\[
\mathcal{D}_\phi(\nu \parallel \mu) = \text{Ent}_\mu^{\phi}\left[\frac{\nu}{\mu}\right]
\]

- \(\phi(x) = x^2 \) vs. \(\phi(x) = x \log x \)
- \(x^2 \) leads to Var and \(\chi^2 \)
- \(x \log x \) leads to Ent and \(\mathcal{D}_{KL} \)

Contraction:

\[
\mathcal{D}_\phi(\nu_N \parallel \mu_N) \leq (1 - \rho) \mathcal{D}_\phi(\nu \parallel \mu)
\]
φ-entropy

For function ϕ and $f : \Omega \rightarrow \mathbb{R}$ define

$$\text{Ent}^\phi_\mu[f] = \mathbb{E}_\mu[\phi \circ f] - \phi(\mathbb{E}_\mu[f]).$$

φ-divergence

For measure ν and dist μ define

$$D_\phi(\nu \parallel \mu) = \text{Ent}^\phi_\mu[\frac{\nu}{\mu}]$$

- $\phi(x) = x^2$ vs. $\phi(x) = x \log x$
- x^2 leads to Var and χ^2
- $x \log x$ leads to Ent and D_{KL}

Contraction:

$$D_\phi(\nuN \parallel \muN) \leq (1 - \rho) D_\phi(\nu \parallel \mu)$$

Lemma: data processing

$$D_\phi(\nuN \parallel \muN) \leq D_\phi(\nu \parallel \mu)$$
Review

ϕ-entropy
For function ϕ and $f : \Omega \rightarrow \mathbb{R}$ define

$$\text{Ent}_{\mu}^{\phi}[f] = \mathbb{E}_{\mu}[\phi \circ f] - \phi(\mathbb{E}_{\mu}[f]).$$

ϕ-divergence
For measure ν and dist μ define

$$\mathcal{D}_{\phi}(\nu \| \mu) = \text{Ent}_{\mu}^{\phi}\left[\frac{\nu}{\mu}\right].$$

- $\phi(x) = x^2$ vs. $\phi(x) = x \log x$
- x^2 leads to Var and χ^2
- $x \log x$ leads to Ent and \mathcal{D}_{KL}

Contraction:

$$\mathcal{D}_{\phi}(\nuN \| \muN) \leq (1 - \rho) \mathcal{D}_{\phi}(\nu \| \mu)$$

Lemma: data processing

$$\mathcal{D}_{\phi}(\nuN \| \muN) \leq \mathcal{D}_{\phi}(\nu \| \mu)$$

- Specializing to χ^2, we have
 $$\rho = 1 - \lambda_2(\mathbb{NN}^\circ)$$

Abelian walks on group G:

$x \mapsto x + z$ sampled i.i.d. from π

Eigvecs are characters χ:

$$\chi(x + y) = \chi(x) \chi(y)$$

Eigvals are $\mathbb{E}_{\pi}[\chi]$
Review

<table>
<thead>
<tr>
<th>(\phi)-entropy</th>
<th>(\phi)-divergence</th>
</tr>
</thead>
<tbody>
<tr>
<td>For function (\phi) and (f : \Omega \to \mathbb{R}) define</td>
<td>For measure (\nu) and dist (\mu) define</td>
</tr>
</tbody>
</table>
| \[
\text{Ent}_\mu^\phi[f] = E_\mu[\phi \circ f] - \phi(E_\mu[f]).
\] | \[
\mathcal{D}_\phi(\nu \parallel \mu) = \text{Ent}_\mu^\phi\left[\frac{\nu}{\mu}\right]
\] |

Contraction:
\[
\mathcal{D}_\phi(\nu_N \parallel \mu_N) \leq (1 - \rho) \mathcal{D}_\phi(\nu \parallel \mu)
\]

Lemma: data processing
\[
\mathcal{D}_\phi(\nu_N \parallel \mu_N) \leq \mathcal{D}_\phi(\nu \parallel \mu)
\]

- Specializing to \(\chi^2\), we have \(\rho = 1 - \lambda_2(\mathbb{N}^\circ)\)
- Abelian walks on group \(G\):
 \[
 x \mapsto x + z \quad \text{sampling i.i.d. from} \ \pi
 \]

- \(\phi(x) = x^2\) vs. \(\phi(x) = x \log x\)
- \(x^2\) leads to \(\text{Var}\) and \(\chi^2\)
- \(x \log x\) leads to \(\text{Ent}\) and \(\mathcal{D}_{KL}\)
Review

\(\phi\)-entropy

For function \(\phi\) and \(f : \Omega \to \mathbb{R}\) define

\[
\text{Ent}_{\mu}^{\phi}[f] = \mathbb{E}_\mu[\phi \circ f] - \phi(\mathbb{E}_\mu[f]).
\]

\(\phi\)-divergence

For measure \(\nu\) and dist \(\mu\) define

\[
\mathcal{D}_{\phi}(\nu \parallel \mu) = \text{Ent}_{\mu}^{\phi}\left[\frac{\nu}{\mu}\right]
\]

- \(\phi(x) = x^2\) vs. \(\phi(x) = x \log x\)
- \(x^2\) leads to \(\text{Var}\) and \(\chi^2\)
- \(x \log x\) leads to \(\text{Ent}\) and \(\mathcal{D}_{KL}\)

Lemma: data processing

\[
\mathcal{D}_{\phi}(\nu_N \parallel \mu_N) \leq (1 - \rho) \mathcal{D}_{\phi}(\nu \parallel \mu)
\]

- Specializing to \(\chi^2\), we have
 \[
 \rho = 1 - \lambda_2(\mathbb{N} \circ \mathbb{N})
 \]
- Abelian walks on group \(G\):
 \[
 x \mapsto x + z \quad \text{sampled i.i.d. from } \pi
 \]
- Eigvecs are characters \(\chi\):
 \[
 \chi(x + y) = \chi(x)\chi(y)
 \]
Review

φ-entropy
For function ϕ and $f : \Omega \to \mathbb{R}$ define
\[
\text{Ent}^\phi_{\mu}[f] = \mathbb{E}_\mu[\phi \circ f] - \phi(\mathbb{E}_\mu[f]).
\]

φ-divergence
For measure ν and dist μ define
\[
\mathcal{D}_\phi(\nu \parallel \mu) = \text{Ent}^\phi_{\mu}\left[\frac{\nu}{\mu}\right]
\]

- $\phi(x) = x^2$ vs. $\phi(x) = x \log x$
- x^2 leads to Var and χ^2
- $x \log x$ leads to Ent and \mathcal{D}_{KL}

Contraction:
\[
\mathcal{D}_\phi(\nu_N \parallel \mu_N) \leq (1 - \rho) \mathcal{D}_\phi(\nu \parallel \mu)
\]

Lemma: data processing
\[
\mathcal{D}_\phi(\nu_N \parallel \mu_N) \leq \mathcal{D}_\phi(\nu \parallel \mu)
\]

- Specializing to χ^2, we have
 \[
 \rho = 1 - \lambda_2(\mathbb{NN}^\circ)
 \]
- Abelian walks on group G: $x \mapsto x + z$ sampled i.i.d. from π
- Eigvecs are characters χ:
 \[
 \chi(x + y) = \chi(x)\chi(y)
 \]
- Eigvals are $\mathbb{E}_\pi[\chi]$
Fourier Analysis
- Characters
- Examples
- Relaxation time

Continuous Time
- Functional analysis in continuous time
- Dirichlet form
Fourier Analysis

- Characters
- Examples
- Relaxation time

Continuous Time

- Functional analysis in continuous time
- Dirichlet form
We know characters of \mathbb{Z}_n:

$$\chi(x) = \omega^x$$

for ω an n-th root of unity.
We know characters of \mathbb{Z}_n:

$$\chi(x) = \omega^x$$

for ω an n-th root of unity.

There are exactly n of them.
- We know characters of \mathbb{Z}_n:
 $$\chi(x) = \omega^x$$
 for ω an n-th root of unity.

- There are exactly n of them.

- Characters of $\mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}$:
 $$x \mapsto \omega_1^{x_1} \cdots \omega_k^{x_k}.$$
We know characters of \mathbb{Z}_n:
\[\chi(x) = \omega^x \]
for ω an n-th root of unity.

There are exactly n of them.

Characters of $\mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}$:
\[x \mapsto \omega_1^{x_1} \cdots \omega_k^{x_k}. \]

For G, we get $|G|$ characters.
We know characters of \mathbb{Z}_n:
$$\chi(x) = \omega^x$$
for ω an n-th root of unity.

There are exactly n of them.

Characters of $\mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}$:
$$\chi \mapsto \omega_1^{x_1} \cdots \omega_k^{x_k}.$$

For G, we get $|G|$ characters.

We just need to compute
$$E_{x \sim \pi} [\omega_1^{x_1} \cdots \omega_k^{x_k}]$$
for all of these characters.
We know characters of \mathbb{Z}_n:

$$\chi(x) = \omega^x$$

for ω an n-th root of unity.

There are exactly n of them.

Characters of $\mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}$:

$$\chi \mapsto \omega_1^{x_1} \cdots \omega_k^{x_k}.$$

For G, we get $|G|$ characters.

We just need to compute

$$E_{x \sim \pi} [\omega_1^{x_1} \cdots \omega_k^{x_k}]$$

for all of these characters.

The $\omega_1 = \cdots = \omega_k = 1$ character gives us the special 1 eigval.

If P is Abelian walk, then $P \circ P^\top$ is also Abelian walk. Eigvals are

$$E_{x \sim \pi} [\chi(-x)]$$

Since P and $P \circ P^\top$ commute, we have

$$\lambda_k(P \circ P^\top) = |\lambda_k(P)|^2$$

Mixing: largest $|\cdot|$ of an eig?
We know characters of \mathbb{Z}_n:
\[
\chi(x) = \omega^x
\]
for ω an n-th root of unity.

There are exactly n of them.

Characters of $\mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}$:
\[
\chi \mapsto \omega_1^{x_1} \cdots \omega_k^{x_k}.
\]
For G, we get $|G|$ characters.

We just need to compute
\[
\mathbb{E}_{x\sim\pi} [\omega_1^{x_1} \cdots \omega_k^{x_k}]
\]
for all of these characters.

The $\omega_1 = \cdots = \omega_k = 1$ character gives us the special 1 eigval.

If P is Abelian walk, then $P^\circ = P^T$ is also Abelian walk. Eigvals are
\[
\mathbb{E}_{x\sim\pi} [\chi(-x)]
\]
Mixing: largest $|\cdot|$ of an eig?
We know characters of \mathbb{Z}_n:

$$\chi(x) = \omega^x$$

for ω an n-th root of unity.

There are exactly n of them.

Characters of $\mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}$:

$$\chi \mapsto \omega_1^{x_1} \cdots \omega_k^{x_k}.$$

For G, we get $|G|$ characters.

We just need to compute

$$\mathbb{E}_{x \sim \pi} [\omega_1^{x_1} \cdots \omega_k^{x_k}]$$

for all of these characters.

The $\omega_1 = \cdots = \omega_k = 1$ character gives us the special 1 eigval.

If P is Abelian walk, then $P^\circ = P^T$ is also Abelian walk. Eigvals are

$$\mathbb{E}_{x \sim \pi} [\chi(-x)]$$

Since P and P° commute, we have

$$\lambda_k(PP^\circ) = |\lambda_k(P)|^2$$
We know characters of \mathbb{Z}_n:

$$\chi(x) = \omega^x$$

for ω an n-th root of unity.

There are exactly n of them.

Characters of $\mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}$:

$$\chi \mapsto \omega_1^{x_1} \cdots \omega_k^{x_k}.$$

For G, we get $|G|$ characters.

We just need to compute

$$E_{x \sim \pi}[\omega_1^{x_1} \cdots \omega_k^{x_k}]$$

for all of these characters.

The $\omega_1 = \cdots = \omega_k = 1$ character gives us the special 1 eigval.

If P is Abelian walk, then $P^\circ = PT$ is also Abelian walk. Eigvals are

$$E_{x \sim \pi}[\chi(-x)]$$

Since P and P° commute, we have

$$\lambda_k(PP^\circ) = |\lambda_k(P)|^2$$

Mixing: largest $|\cdot|$ of an eig?
Example: hypercube

Distribution π:
- 0 w.p. $1/2$
- 1_i w.p. $1/2^n$

Eigval is $\#\{+1\}/n$ (n-th root of n)

Spectral gap: $1 - (n-1)/n = 1/n$
$t_{\text{mix}} \leq O(n^2)$

Example: cycle

Distribution π:
- $+$ w.p. $1/2$
- $-$ w.p. $1/2$

There are n characters: $x \mapsto \omega^x$

Eigval is $($$\omega + \omega - 1$$)/2$

Eigvals are $\cos(2\pi k/n)$

Spectral gap: $1 - \cos(2\pi/n) \approx \Theta(1/n^2)$
$t_{\text{mix}} \leq O(n^2 \log n)$

Not for even n.
Example: hypercube

Distribution π:

- 0 w.p. $1/2$
- 1_i w.p. $1/2n$

There are 2^n characters:

$$x \mapsto (\pm 1)^{x_1} \cdots (\pm 1)^{x_n}$$
Example: hypercube

Distribution π:
- 0 w.p. $1/2$
- 1_i w.p. $1/2n$

- There are 2^n characters:
 \[x \mapsto (\pm 1)^{x_1} \cdots (\pm 1)^{x_n} \]

- Eigval is $\#\{+1\}/n$
Example: hypercube

Distribution π:

- 0 w.p. 1/2
- 1_i w.p. 1/2n

There are 2^n characters:

$$x \mapsto (\pm 1)^{x_1} \cdots (\pm 1)^{x_n}$$

- Eigval is $\#\{+1\}/n$
- $(\binom{n}{k})$ of eigvals are k/n

Spectral gap:

$$1 - \left(\frac{n-1}{n} \right) = \frac{1}{n}$$

$t_{\text{mix}} \leq O(n^2)$

Example: cycle

Distribution π:

+1 w.p. 1/2
-1 w.p. 1/2

There are n characters:

$$x \mapsto \omega^x$$

- Eigvals are $\cos\left(\frac{2\pi k}{n}\right)$
- Spectral gap:
 $$1 - \cos\left(\frac{2\pi}{n}\right) \approx \Theta\left(\frac{1}{n^2}\right)$$
 $$t_{\text{mix}} \leq O(n^2 \log n)$$

Not for even n.

Example: hypercube

Distribution π:
- 0 w.p. $1/2$
- 1_i w.p. $1/2n$

There are 2^n characters:
$$x \mapsto (\pm 1)^{x_1} \cdots (\pm 1)^{x_n}$$

Eigval is $\#\{+1\}/n$

$(\binom{n}{k})$ of eigvals are k/n

Spectral gap:
$$1 - (n - 1)/n = 1/n$$
Example: hypercube

Distribution π:
- 0 w.p. $1/2$
- 1_i w.p. $1/2n$

There are 2^n characters:

$$x \mapsto (\pm 1)^{x_1} \cdots (\pm 1)^{x_n}$$

Eigval is $\#\{+1\}/n$

$(\binom{n}{k})$ of eigvals are k/n

Spectral gap:

$$1 - (n - 1)/n = 1/n$$

$t_{mix} \leq O(n^2)$
Example: hypercube

Distribution π:
- 0 w.p. $1/2$
- 1_i w.p. $1/2n$

There are 2^n characters:
$$x \mapsto (\pm 1)^{x_1} \cdots (\pm 1)^{x_n}$$

Eigval is $\#\{+1\}/n$

$\binom{n}{k}$ of eigvals are k/n

Spectral gap:
$$1 - (n - 1)/n = 1/n$$

$t_{mix} \leq O(n^2)$

Example: cycle

Distribution π:
- +1 w.p. $1/2$
- −1 w.p. $1/2$

There are n characters:
$$x \mapsto \omega^x$$

Eigval is $(\omega + \omega - 1)/2$

Eigvals are $\cos(2\pi k/n)$

Spectral gap:
$$1 - \cos(2\pi/n) \approx \Theta(1/n^2)$$

$t_{mix} \leq O(n^2 \log n)$

Not for even n.
Example: hypercube

<table>
<thead>
<tr>
<th>Distribution π:</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ 0 w.p. $1/2$</td>
</tr>
<tr>
<td>▶ 1_i w.p. $1/2n$</td>
</tr>
</tbody>
</table>

There are 2^n characters:

$$x \mapsto (\pm 1)^{x_1} \cdots (\pm 1)^{x_n}$$

- Eigval is $\#\{+1\}/n$
- $\binom{n}{k}$ of eigvals are k/n
- Spectral gap:
 $$1 - (n-1)/n = 1/n$$
- $t_{\text{mix}} \leq O(n^2)$

Example: cycle

<table>
<thead>
<tr>
<th>Distribution π:</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ $+1$ w.p. $1/2$</td>
</tr>
<tr>
<td>▶ -1 w.p. $1/2$</td>
</tr>
</tbody>
</table>

There are n characters:

$$x \mapsto \omega^x$$

- Eigval is $(\omega + \omega - 1)/2$
- Eigvals are $\cos(2\pi k/n)$
- Spectral gap:
 $$1 - \cos(2\pi/n) \approx \Theta(1/n^2)$$
- $t_{\text{mix}} \leq O(n^2 \log n)$

Not for even n.

Example: hypercube

Distribution π:
- 0 w.p. $1/2$
- 1_i w.p. $1/2n$

- There are 2^n characters:
 $$ x \mapsto (\pm 1)^{x_1} \cdots (\pm 1)^{x_n} $$
- Eigval is $\#\{+1\}/n$
- $(\binom{n}{k})$ of eigvals are k/n
- Spectral gap:
 $$ 1 - (n - 1)/n = 1/n $$
- $t_{\text{mix}} \leq O(n^2)$

Example: cycle

Distribution π:
- $+1$ w.p. $1/2$
- -1 w.p. $1/2$

- There are n characters:
 $$ x \mapsto \omega^x $$
- Eigvals are $\cos(2\pi k/n)$
- Spectral gap:
 $$ 1 - \cos(2\pi/n) \approx \Theta(1/n^2) $$
- $t_{\text{mix}} \leq O(n^2 \log n)$

Note: Not for even n.
Example: hypercube

Distribution π:
- 0 w.p. $1/2$
- 1_i w.p. $1/2n$

There are 2^n characters:

$x \mapsto (\pm 1)^{x_1} \cdots (\pm 1)^{x_n}$

Eigval is $\#\{+1\}/n$

$\binom{n}{k}$ of eigvals are k/n

Spectral gap:

$1 - (n - 1)/n = 1/n$

$t_{mix} \leq \Theta(n^2)$

Example: cycle

Distribution π:
- $+1$ w.p. $1/2$
- -1 w.p. $1/2$

There are n characters:

$x \mapsto \omega^x$

Eigval is $(\omega + \omega^{-1})/2$

Spectral gap:

$1 - \cos(2\pi/n) \approx \Theta(1/n^2)$

$t_{mix} \leq \Theta(n^2 \log n)$

Not for even n.
Example: hypercube

Distribution π:
- 0 w.p. $1/2$
- 1_i w.p. $1/2n$

- There are 2^n characters:
 $x \mapsto (\pm 1)^{x_1} \cdots (\pm 1)^{x_n}$
- Eigval is $\#\{+1\}/n$
- $\binom{n}{k}$ of eigvals are k/n
- Spectral gap:
 $1 - (n - 1)/n = 1/n$
- $t_{mix} \leq O(n^2)$

Example: cycle

Distribution π:
- $+1$ w.p. $1/2$
- -1 w.p. $1/2$

- There are n characters:
 $x \mapsto \omega^x$
- Eigval is $(\omega + \omega^{-1})/2$
- Eigvals are $\cos(2\pi k/n)$
Example: hypercube

Distribution π:
- 0 w.p. $1/2$
- 1_i w.p. $1/2n$

- There are 2^n characters:
 \[x \mapsto (\pm 1)^{x_1} \cdots (\pm 1)^{x_n} \]
- Eigval is $\#\{+1\}/n$
- $\binom{n}{k}$ of eigvals are k/n
- Spectral gap:
 \[1 - (n - 1)/n = 1/n \]
- $t_{mix} \leq O(n^2)$

Example: cycle

Distribution π:
- $+1$ w.p. $1/2$
- -1 w.p. $1/2$

- There are n characters:
 \[x \mapsto \omega^x \]
- Eigval is $\frac{\omega + \omega^{-1}}{2}$
- Eigvals are $\cos(2\pi k/n)$
- Spectral gap:
 \[1 - \cos(2\pi/n) \simeq \Theta(1/n^2) \]
Example: hypercube

Distribution π:
- 0 w.p. 1/2
- 1_i w.p. 1/2n

There are 2^n characters:
$x \mapsto (\pm 1)^{x_1} \cdots (\pm 1)^{x_n}$

Eigval is $\#\{+1\}/n$

$n \choose k$ of eigvals are k/n

Spectral gap:
$1 - (n - 1)/n = 1/n$

$t_{\text{mix}} \leq O(n^2)$

Example: cycle

Distribution π:
- +1 w.p. 1/2
- -1 w.p. 1/2

There are n characters:
$x \mapsto \omega^x$

Eigval is $(\omega + \omega^{-1})/2$

Eigvals are $\cos(2\pi k/n)$

Spectral gap:
$1 - \cos(2\pi/n) \simeq \Theta(1/n^2)$?

$t_{\text{mix}} \leq O(n^2 \log n)$?
Example: hypercube

Distribution π:
- 0 w.p. 1/2
- I_i w.p. 1/2n

There are 2^n characters:
$x \mapsto (\pm 1)^{x_1} \cdots (\pm 1)^{x_n}$

Eigval is $\#\{+1\}/n$
$(\binom{n}{k})$ of eigvals are k/n

Spectral gap:
$1 - (n - 1)/n = 1/n$

$t_{mix} \leq O(n^2)$

Example: cycle

Distribution π:
- $+1$ w.p. 1/2
- -1 w.p. 1/2

There are n characters:
$x \mapsto \omega^x$

Eigval is $(\omega + \omega^{-1})/2$

Eigvals are $\cos(2\pi k/n)$

Spectral gap:
$1 - \cos(2\pi/n) \simeq \Theta(1/n^2)$?

$t_{mix} \leq O(n^2 \log n)$? Not for even n.
Relaxation time

Suppose P is time-reversible and lazy:

$$\lambda_i(P) \geq 0$$

Relaxation time: $1/(1 - \lambda_2(P))$
Relaxation time

Suppose P is time-reversible and lazy:

$$\lambda_i(P) \geq 0$$

▶ Relaxation time: $1/(1 - \lambda_2(P))$

▶ Relaxation time does not directly control mixing time 😞
Suppose P is time-reversible and lazy:

$$\lambda_i(P) \geq 0$$

- Relaxation time: $1/(1 - \lambda_2(P))$
- Relaxation time does not directly control mixing time 😞
- But it controls $t_{\text{mix}}(\epsilon)$ for tiny ϵ.
Relaxation time

Suppose P is time-reversible and lazy:

$$\lambda_i(P) \geq 0$$

- **Relaxation time:** $1/(1 - \lambda_2(P))$
- Relaxation time does not directly control mixing time 😞
- But it controls $t_{\text{mix}}(\epsilon)$ for tiny ϵ:

Lemma

$$t_{\text{mix}}(\epsilon) = O\left(\frac{\log(\chi^2(\nu_0 || \mu)) + \log(1/\epsilon)}{1 - \lambda_2(P)}\right)$$
Relaxation time

Suppose P is time-reversible and lazy:

$$\lambda_i(P) \geq 0$$

- Relaxation time: $1/(1 - \lambda_2(P))$
- Relaxation time does not directly control mixing time 😞
- But it controls $t_{\text{mix}}(\epsilon)$ for tiny ϵ:

Lemma

$$t_{\text{mix}}(\epsilon) = O\left(\frac{\log(\chi^2(\nu_0 \parallel \mu)) + \log(1/\epsilon)}{1 - \lambda_2(P)}\right)$$

- We have

$$t_{\text{rel}} = \Theta\left(\lim_{\epsilon \to 0} \frac{t_{\text{mix}}(\epsilon)}{\log(1/\epsilon)}\right)$$
Relaxation time

Suppose P is time-reversible and lazy:

\[\lambda_1(P) \geq 0 \]

- **Relaxation time:** $1/(1 - \lambda_2(P))$
- Relaxation time does not directly control mixing time 😞
- But it controls $t_{\text{mix}}(\epsilon)$ for tiny ϵ:

\[
t_{\text{mix}}(\epsilon) = O \left(\frac{\log(\chi^2(\nu_0\|\mu)) + \log(1/\epsilon)}{1 - \lambda_2(P)} \right)
\]

- We have

\[
t_{\rel} = \Theta \left(\lim_{\epsilon \to 0} \frac{t_{\text{mix}}(\epsilon)}{\log(1/\epsilon)} \right)
\]
Suppose P is time-reversible and lazy:

$$\lambda_i(P) \geq 0$$

- **Relaxation time:** $1/(1 - \lambda_2(P))$
- Relaxation time does not directly control mixing time 😞
- But it controls $t_{\text{mix}}(\epsilon)$ for tiny ϵ:

Lemma

$$t_{\text{mix}}(\epsilon) = O\left(\frac{\log\left(\chi^2(\nu_0 \| \mu)\right) + \log(1/\epsilon)}{1 - \lambda_2(P)}\right)$$

- We have

$$t_{\text{rel}} = \Theta\left(\lim_{\epsilon \to 0} \frac{t_{\text{mix}}(\epsilon)}{\log(1/\epsilon)}\right)$$
Relaxation time

Suppose P is time-reversible and lazy:

$$\lambda_i(P) \geq 0$$

- **Relaxation time:** $1/(1 - \lambda_2(P))$
- Relaxation time does not directly control mixing time 😞
- But it controls $t_{\text{mix}}(\epsilon)$ for tiny ϵ:

Lemma

$$t_{\text{mix}}(\epsilon) = O\left(\frac{\log(\chi^2(\nu_0\|\mu)) + \log(1/\epsilon)}{1 - \lambda_2(P)}\right)$$

- We have $t_{\text{rel}} = \Theta\left(\lim_{\epsilon \to 0} \frac{t_{\text{mix}}(\epsilon)}{\log(1/\epsilon)}\right)$

Proof:

- Let ν be left eigvec for $\lambda \neq 1$:
 $$\nu P = \lambda \nu$$
- We have $\langle \nu, 1 \rangle = 0$, so write
 $$\nu = \alpha(\nu_1 - \nu_2) + i\beta(\nu_3 - \nu_4)$$
 for dists $\nu_1, \nu_2, \nu_3, \nu_4$.
Relaxation time

Suppose P is time-reversible and lazy:

$$\lambda_i(P) \geq 0$$

- **Relaxation time:** $1/(1 - \lambda_2(P))$
- Relaxation time does not directly control mixing time 😞
- But it controls $t_{\text{mix}}(\epsilon)$ for tiny ϵ:

Lemma

$$t_{\text{mix}}(\epsilon) = O\left(\frac{\log(\chi^2(\nu_0 \| \mu)) + \log(1/\epsilon)}{1 - \lambda_2(P)}\right)$$

- We have

$$t_{\text{rel}} = \Theta\left(\lim_{\epsilon \to 0} \frac{t_{\text{mix}}(\epsilon)}{\log(1/\epsilon)}\right)$$

Proof:

- Let ν be left eigvec for $\lambda \neq 1$:
 $$\nu P = \lambda \nu$$
- We have $\langle \nu, 1 \rangle = 0$, so write
 $$\nu = \alpha(\nu_1 - \nu_2) + i\beta(\nu_3 - \nu_4)$$
 for dists $\nu_1, \nu_2, \nu_3, \nu_4$.
- For $t \geq t_{\text{mix}}(\epsilon)$ we get
 $$\|\nu P^t\|_1 \leq O(\epsilon) \cdot \|\nu\|_1$$
Relaxation time

Suppose P is time-reversible and lazy:

$$\lambda_i(P) \geq 0$$

- Relaxation time: $1/(1 - \lambda_2(P))$
- Relaxation time does not directly control mixing time 😞
- But it controls $t_{\text{mix}}(\epsilon)$ for tiny ϵ:

Lemma

$$t_{\text{mix}}(\epsilon) = O\left(\frac{\log(\chi^2(\nu_0\|\mu)) + \log(1/\epsilon)}{1 - \lambda_2(P)}\right)$$

- We have

$$t_{\text{rel}} = \Theta\left(\lim_{\epsilon \to 0} \frac{t_{\text{mix}}(\epsilon)}{\log(1/\epsilon)}\right)$$

Proof:

- Let ν be left eigvec for $\lambda \neq 1$:

$$\nu P = \lambda \nu$$

- We have $\langle \nu, 1 \rangle = 0$, so write

$$\nu = \alpha (\nu_1 - \nu_2) + i\beta (\nu_3 - \nu_4)$$

for dists $\nu_1, \nu_2, \nu_3, \nu_4$.

- For $t \geq t_{\text{mix}}(\epsilon)$ we get

$$\|\nu P^t\|_1 \leq O(\epsilon) \cdot \|\nu\|_1$$

- But this means

$$\lambda^t = O(\epsilon)$$

which means

$$1 - |\lambda| \geq \Omega\left(\frac{\log(1/\epsilon)}{t_{\text{mix}}(\epsilon)}\right)$$
Corollary

Under Dobrushin, we have $t_{rel} = O(n)$; in other words

$$\lambda_2 \leq 1 - \Omega(1/n).$$
Corollary

Under Dobrushin, we have $t_{\text{rel}} = O(n)$; in other words

$$\lambda_2 \leq 1 - \Omega(1/n).$$

Another proof that hypercube has

$$\lambda_2 \leq 1 - \Omega(1/n)$$
Corollary

Under Dobrushin, we have $t_{\text{rel}} = O(n)$; in other words

$$\lambda_2 \leq 1 - \Omega(1/n).$$

- Another proof that hypercube has
 $$\lambda_2 \leq 1 - \Omega(1/n)$$

- First proof that Glauber for coloring with $> 2\Delta$ colors has
 $$\lambda_2 \leq 1 - \Omega(1/n)$$
Corollary
Under Dobrushin, we have \(t_{\text{rel}} = O(n) \); in other words
\[
\lambda_2 \leq 1 - \Omega(1/n).
\]

- Another proof that hypercube has
 \[
 \lambda_2 \leq 1 - \Omega(1/n)
 \]

- First proof that Glauber for coloring with \(> 2\Delta \) colors has
 \[
 \lambda_2 \leq 1 - \Omega(1/n)
 \]

- Note: going back from \(\lambda_2 \) to \(t_{\text{mix}} \) gives us non-tight bound of \(O(n^2) \). 😞
Fourier Analysis
- Characters
- Examples
- Relaxation time

Continuous Time
- Functional analysis in continuous time
- Dirichlet form
Fourier Analysis

- Characters
- Examples
- Relaxation time

Continuous Time

- Functional analysis in continuous time
- Dirichlet form
Continuous time

So far, we have been running Markov chains in discrete time:

\[X_0 \rightarrow X_1 \rightarrow \cdots \rightarrow X_t \rightarrow \cdots \]

\(t \) is integer
Continuous time

- So far, we have been running Markov chains in **discrete time**:
 \[X_0 \rightarrow X_1 \rightarrow \cdots \rightarrow X_t \rightarrow \cdots \]

 \[t \text{ is integer} \]

- We can run a chain in **continuous time** via Poisson clock:

 ![Diagram showing time progression with Poisson clock](image)

 \[\text{draw } n \sim \text{Poisson}(t) \text{ and take } n \text{ discrete steps} \]

 \[\text{How is } X_t \text{ distributed given } X_0? \]

 \[\text{Approximate the process as time } \epsilon \text{ where in each interval we take transition of } P \text{ w.p. } \epsilon. \]

 \[\text{Result at time } t: (1 - \epsilon I + \epsilon P)^{t/\epsilon} \]

 \[\text{transition matrix} \rightarrow \exp(t(P - I)) \]

 \[\text{Ultimate lazification!} \]
Continuous time

So far, we have been running Markov chains in discrete time:

\[X_0 \mapsto X_1 \mapsto \cdots \mapsto X_t \mapsto \ldots \]

\(t \) is integer

We can run a chain in continuous time via Poisson clock:

Every ring, take one step of \(P \).

Approximate the process as time \(\epsilon \) where in each interval we take transition of \(P \) w.p. \(\epsilon \).

Result at time \(t \):

\[((1 - \epsilon) I + \epsilon P)^{t/\epsilon} \]
Continuous time

- So far, we have been running Markov chains in **discrete time**:
 \[X_0 \mapsto X_1 \mapsto \cdots \mapsto X_t \mapsto \cdots \]
 \(t \) is integer

- We can run a chain in **continuous time** via Poisson clock:

 - Every ring, take one step of \(P \).
 - \(X_t \): position at time \(t \in \mathbb{R}_{\geq 0} \)
Continuous time

So far, we have been running Markov chains in **discrete time**:
\[X_0 \mapsto X_1 \mapsto \cdots \mapsto X_t \mapsto \cdots \]

\(t \) is integer

We can run a chain in **continuous time** via Poisson clock:

To algorithmically simulate \(X_t \): draw \(n \sim \text{Poisson}(t) \) and take \(n \) discrete steps

Every ring, take one step of \(P \).

\(X_t \): position at time \(t \in \mathbb{R}_{\geq 0} \)
Continuous time

- So far, we have been running Markov chains in discrete time:
 \[X_0 \mapsto X_1 \mapsto \cdots \mapsto X_t \mapsto \cdots \]
 \(t \) is integer

- We can run a chain in continuous time via Poisson clock:
 - Every ring, take one step of \(P \).
 - \(X_t \): position at time \(t \in \mathbb{R}_{\geq 0} \)

- To algorithmically simulate \(X_t \):
 - draw \(n \sim \text{Poisson}(t) \) and take \(n \) discrete steps

- How is \(X_t \) distributed given \(X_0 \)?
Continuous time

- So far, we have been running Markov chains in **discrete time**:
 \[X_0 \mapsto X_1 \mapsto \ldots \mapsto X_t \mapsto \ldots \]
 \(t \) is integer

- We can run a chain in **continuous time** via Poisson clock:

 ![Diagram showing a Poisson clock with rings and steps](image)

 - Every ring, take one step of \(P \).
 - \(X_t \): position at time \(t \in \mathbb{R}_{\geq 0} \)

- To algorithmically simulate \(X_t \):
 - draw \(n \sim \text{Poisson}(t) \) and take \(n \) discrete steps

- How is \(X_t \) distributed given \(X_0 \)?

- Approximate the process as

 \[\epsilon \epsilon \epsilon \epsilon \epsilon \epsilon \epsilon \epsilon \text{ time} \]
 where in each interval we take transition of \(P \) w.p. \(\epsilon \).
Continuous time

- So far, we have been running Markov chains in **discrete time**:
 \[X_0 \mapsto X_1 \mapsto \cdots \mapsto X_t \mapsto \cdots \]
 \(t \) is integer

- We can run a chain in **continuous time** via Poisson clock:

 - Every ring, take one step of \(P \).
 - \(X_t \): position at time \(t \in \mathbb{R}_{\geq 0} \)

- To algorithmically simulate \(X_t \):
 - draw \(n \sim \text{Poisson}(t) \) and take \(n \) discrete steps
 - How is \(X_t \) distributed given \(X_0 \)?

- Approximate the process as

 \[
 \text{result at time } t: \quad \underbrace{((1 - \epsilon)I + \epsilon P)^{t/\epsilon}}_{\text{transition matrix}} \rightarrow \exp(t(P - I))
 \]

 where in each interval we take transition of \(P \) w.p. \(\epsilon \).
Continuous time

- So far, we have been running Markov chains in **discrete time**:
 \[X_0 \mapsto X_1 \mapsto \cdots \mapsto X_t \mapsto \cdots \]
 \(t \) is integer

- We can run a chain in **continuous time** via Poisson clock:
 - Every ring, take one step of \(P \).
 - \(X_t \): position at time \(t \in \mathbb{R}_{\geq 0} \)

- To algorithmically simulate \(X_t \):
 - draw \(n \sim \text{Poisson}(t) \) and take \(n \) discrete steps

- How is \(X_t \) distributed given \(X_0 \)?

- Approximate the process as

 \[
 \begin{align*}
 \text{time} & : \epsilon \epsilon \epsilon \epsilon \epsilon \epsilon \epsilon \\
 \text{transition of } P & \text{ w.p. } \epsilon.
 \end{align*}
 \]

 where in each interval we take transition of \(P \) w.p. \(\epsilon \).

- Result at time \(t \):
 \[
 ((1 - \epsilon)I + \epsilon P)^{t/\epsilon} \rightarrow \exp(t(P-I))
 \]

- **Ultimate lazification! 😊**
What happens to functional analysis in continuous time?

In discrete time we want

\[D\phi(\nu P \parallel \mu) \leq (1 - \rho) D\phi(\nu \parallel \mu) \]

Analogue in continuous time:

\[\frac{d}{dt} D\phi(\nu_t \parallel \mu) \leq -\rho D\phi(\nu_t \parallel \mu) \]

where \(\nu_t = \nu_0 \exp(t(P - I)) \).

Corollary: we get

\[D\phi(\nu_t \parallel \mu) \leq e^{-t\rho} \cdot D\phi(\nu_0 \parallel \mu) \]

By comparing to \(d_{TV} \) we get continuous mixing time bounds.

Fact: discrete is stronger

Discrete-time contraction implies continuous-time contraction.

Proof: will show \((1 - \epsilon) I + \epsilon P\) contracts \(D\phi \) by \(1 - \epsilon \rho \). Taking \(\epsilon \to 0 \) gives what we want.

Because \(\phi \) is convex:

\[D\phi((1 - \epsilon)\nu + \epsilon \nu P \parallel \mu) \leq (1 - \epsilon) D\phi(\nu \parallel \mu) + \epsilon D\phi(\nu P \parallel \mu) \]

But this is \(\leq (1 - \epsilon \rho) D\phi(\nu \parallel \mu) \).
What happens to functional analysis in continuous time?

In discrete time we want

$$\mathcal{D}_\phi(\nu P \parallel \mu) \leq (1 - \rho) \mathcal{D}_\phi(\nu \parallel \mu)$$

Analogue in continuous time:

$$\frac{d}{dt} \mathcal{D}_\phi(\nu_t \parallel \mu) \leq -\rho \mathcal{D}_\phi(\nu_t \parallel \mu)$$

where

$$\nu_t = \nu_0 \exp(t(P - I))$$

Corollary: we get

$$\mathcal{D}_\phi(\nu_t \parallel \mu) \leq e^{-t\rho} \cdot \mathcal{D}_\phi(\nu_0 \parallel \mu)$$

By comparing to \(dTV\) we get continuous mixing time bounds.

Fact: discrete is stronger

Discrete-time contraction implies continuous-time contraction.

Proof: Will show \((1 - \epsilon) I + \epsilon P\) contracts \(\mathcal{D}_\phi\) by \(1 - \epsilon \rho\). Taking \(\epsilon \to 0\) gives what we want.

Because \(\phi\) is convex:

$$\mathcal{D}_\phi((1 - \epsilon) \nu + \epsilon \nu P \parallel \mu) \leq (1 - \epsilon) \mathcal{D}_\phi(\nu \parallel \mu) + \epsilon \mathcal{D}_\phi(\nu P \parallel \mu)$$

But this is \(\leq (1 - \epsilon \rho) \mathcal{D}_\phi(\nu \parallel \mu)\).
What happens to functional analysis in continuous time?

In discrete time we want
\[\mathcal{D}_\phi(\nu P \parallel \mu) \leq (1 - \rho) \mathcal{D}_\phi(\nu \parallel \mu) \]

Analogue in continuous time:
\[\frac{d}{dt} \mathcal{D}_\phi(\nu_t \parallel \mu) \leq -\rho \mathcal{D}_\phi(\nu_t \parallel \mu) \]
where \(\nu_t = \nu_0 \exp(t(P - I)) \).
Functional analysis in continuous time

- What happens to functional analysis in continuous time?

- In discrete time we want
 \[D_\phi(\nu P \parallel \mu) \leq (1 - \rho) D_\phi(\nu \parallel \mu) \]

- Analogue in continuous time:
 \[\frac{d}{dt} D_\phi(\nu_t \parallel \mu) \leq -\rho D_\phi(\nu_t \parallel \mu) \]
 where \(\nu_t = \nu_0 \exp(t(P - I)) \).

- Corollary: we get
 \[D_\phi(\nu_t \parallel \mu) \leq e^{-t\rho} \cdot D_\phi(\nu_0 \parallel \mu) \]
What happens to functional analysis in continuous time?

In discrete time we want
\[D_\phi(\nu P \parallel \mu) \leq (1 - \rho) D_\phi(\nu \parallel \mu) \]

Analogue in continuous time:
\[\frac{d}{dt} D_\phi(\nu_t \parallel \mu) \leq -\rho D_\phi(\nu_t \parallel \mu) \]
where \(\nu_t = \nu_0 \exp(t(P - I)) \).

Corollary: we get
\[D_\phi(\nu_t \parallel \mu) \leq e^{-t\rho} \cdot D_\phi(\nu_0 \parallel \mu) \]

By comparing to \(d_{TV} \) we get continuous mixing time bounds. 😊
What happens to functional analysis in continuous time?

In discrete time we want
\[\mathcal{D}_\phi(\nu P \parallel \mu) \leq (1 - \rho) \mathcal{D}_\phi(\nu \parallel \mu) \]

Analogue in continuous time:
\[\frac{d}{dt} \mathcal{D}_\phi(\nu_t \parallel \mu) \leq -\rho \mathcal{D}_\phi(\nu_t \parallel \mu) \]
where \(\nu_t = \nu_0 \exp(t(P - I)) \).

Corollary: we get
\[\mathcal{D}_\phi(\nu_t \parallel \mu) \leq e^{-t\rho} \cdot \mathcal{D}_\phi(\nu_0 \parallel \mu) \]

By comparing to \(d_{TV} \) we get continuous mixing time bounds.
What happens to functional analysis in continuous time?

In discrete time we want
\[\mathcal{D}_\phi(\nu P \parallel \mu) \leq (1 - \rho) \mathcal{D}_\phi(\nu \parallel \mu) \]

Analogue in continuous time:
\[\frac{d}{dt} \mathcal{D}_\phi(\nu_t \parallel \mu) \leq -\rho \mathcal{D}_\phi(\nu_t \parallel \mu) \]
where \(\nu_t = \nu_0 \exp(t(P - I)) \).

Corollary: we get
\[\mathcal{D}_\phi(\nu_t \parallel \mu) \leq e^{-t \rho} \cdot \mathcal{D}_\phi(\nu_0 \parallel \mu) \]

By comparing to \(d_{TV} \) we get continuous mixing time bounds. 😊

Fact: discrete is stronger

Discrete-time contraction implies continuous-time contraction.

Proof:
What happens to functional analysis in continuous time?

In discrete time we want
\[D_\phi(\nu P \parallel \mu) \leq (1 - \rho) D_\phi(\nu \parallel \mu) \]

Analogue in continuous time:
\[\frac{d}{dt} D_\phi(\nu_t \parallel \mu) \leq -\rho D_\phi(\nu_t \parallel \mu) \]
where \(\nu_t = \nu_0 \exp(t(P - I)). \)

Corollary: we get
\[D_\phi(\nu_t \parallel \mu) \leq e^{-\rho t} \cdot D_\phi(\nu_0 \parallel \mu) \]

By comparing to \(d_{TV} \) we get continuous mixing time bounds.

Fact: discrete is stronger
Discrete-time contraction implies continuous-time contraction.

Proof:
Will show \((1 - \epsilon)I + \epsilon P\) contracts \(D_\phi \) by \(1 - \epsilon \rho\). Taking \(\epsilon \to 0 \) gives what we want.
What happens to functional analysis in continuous time?

In discrete time we want

\[\mathcal{D}_\phi(\nu P \parallel \mu) \leq (1 - \rho) \mathcal{D}_\phi(\nu \parallel \mu) \]

Analogue in continuous time:

\[\frac{d}{dt} \mathcal{D}_\phi(\nu_t \parallel \mu) \leq -\rho \mathcal{D}_\phi(\nu_t \parallel \mu) \]

where \(\nu_t = \nu_0 \exp(t(P - I)) \).

Corollary: we get

\[\mathcal{D}_\phi(\nu_t \parallel \mu) \leq e^{-\rho t} \cdot \mathcal{D}_\phi(\nu_0 \parallel \mu) \]

By comparing to \(d_{TV} \) we get continuous mixing time bounds.

Fact: discrete is stronger

Discrete-time contraction implies continuous-time contraction.

Proof:

- Will show \((1 - \epsilon)I + \epsilon P \) contracts \(\mathcal{D}_\phi \) by \(1 - \epsilon \rho \). Taking \(\epsilon \to 0 \) gives what we want.

- Because \(\phi \) is convex:

\[\mathcal{D}_\phi((1 - \epsilon)\nu + \epsilon \nu P \parallel \mu) \leq (1 - \epsilon) \mathcal{D}_\phi(\nu \parallel \mu) + \epsilon \mathcal{D}_\phi(\nu P \parallel \mu) \]
Functional analysis in continuous time

What happens to functional analysis in continuous time?

In discrete time we want

\[D_\phi(\nu P \| \mu) \leq (1 - \rho) D_\phi(\nu \| \mu) \]

Analogue in continuous time:

\[\frac{d}{dt} D_\phi(\nu_t \| \mu) \leq -\rho D_\phi(\nu_t \| \mu) \]

where \(\nu_t = \nu_0 \exp(t(P - I)) \).

Corollary: we get

\[D_\phi(\nu_t \| \mu) \leq e^{-\rho t} \cdot D_\phi(\nu_0 \| \mu) \]

By comparing to \(d_{TV} \) we get continuous mixing time bounds.

Fact: discrete is stronger

Discrete-time contraction implies continuous-time contraction.

Proof:

Will show \((1 - \epsilon)I + \epsilon P \) contracts \(D_\phi \) by \(1 - \epsilon \rho \). Taking \(\epsilon \to 0 \) gives what we want.

Because \(\phi \) is convex:

\[D_\phi((1 - \epsilon)\nu + \epsilon \nu P \| \mu) \leq (1 - \epsilon) D_\phi(\nu \| \mu) + \epsilon D_\phi(\nu P \| \mu) \]

But this is \(\leq (1 - \epsilon \rho) D_\phi(\nu \| \mu) \).
Discrete can be strictly stronger:
Discrete can be strictly stronger:

But, for time-reversible and lazy chains in χ^2:

- say eigs ≥ 0 or $\lambda_n \geq -\lambda_2$
- discrete time \leftrightarrow continuous time

Sketch:

$$(I + \epsilon(P - I))(I + \epsilon(P \circ - I)) = I + \epsilon(P + P \circ - 2I) + O(\epsilon^2)$$

For lazy reversible P, we have gap of P is approximately gap of $(P + P \circ) / 2$.

Corollary: prove continuous-time contraction if easier, and don’t worry about it. Easier because of Dirichlet form!
Discrete can be strictly stronger:

But, for time-reversible and lazy chains in χ^2: say eigs ≥ 0 or $\lambda_n \geq -\lambda_2$

discrete time \leftrightarrow continuous time

χ^2 contraction in continuous time is dictated by eigs of

$$(P + P^\circ)/2$$
Discrete can be strictly stronger:

But, for time-reversible and lazy chains in χ^2: say $\text{eigs} \succeq 0$ or $\lambda_n \succeq -\lambda_2$

discrete time \leftrightarrow continuous time

χ^2 contraction in continuous time is dictated by eigs of

$$\frac{(P + P^\circ)}{2}$$

Sketch:

$$(I + \epsilon(P - I))(I + \epsilon(P^\circ - I)) = I + \epsilon(P + P^\circ - 2I) + O(\epsilon^2)$$
Discrete can be strictly stronger:

But, for time-reversible and lazy chains in χ^2:
- say eigs ≥ 0 or $\lambda_n \geq -\lambda_2$
- discrete time \leftrightarrow continuous time

χ^2 contraction in continuous time is dictated by eigs of

$$(P + P^\circ)/2$$

Sketch:

$$(I + \epsilon(P - I))(I + \epsilon(P^\circ - I)) = I + \epsilon(P + P^\circ - 2I) + O(\epsilon^2)$$

For lazy reversible P, we have gap of PP° is approximately gap of $(P + P^\circ)/2$. 😊
Discrete can be **strictly stronger**:

But, for time-reversible and lazy chains in χ^2:

- say $\text{eigs} \geq 0$ or $\lambda_n \geq -\lambda_2$

 discrete time \leftrightarrow continuous time

χ^2 contraction in continuous time is dictated by eigs of

$$\frac{(P + P^\circ)}{2}$$

Sketch:

$$\left(I + \epsilon(P - I)\right) \left(I + \epsilon(P^\circ - I)\right) = I + \epsilon(P + P^\circ - 2I) + O(\epsilon^2)$$

For lazy reversible P, we have gap of PP° is approximately gap of $\frac{(P + P^\circ)}{2}$. 😊

Corollary: prove **continuous-time contraction** if easier, and don’t worry about it.
Discrete can be strictly stronger:

But, for time-reversible and lazy chains in χ^2:
- say eigs ≥ 0 or $\lambda_n \geq -\lambda_2$
- discrete time \leftrightarrow continuous time

χ^2 contraction in continuous time is dictated by eigs of

$$(P + P^\circ)/2$$

Sketch:

$$(I + \epsilon(P - I))(I + \epsilon(P^\circ - I)) = I + \epsilon(P + P^\circ - 2I) + O(\epsilon^2)$$

For lazy reversible P, we have gap of PP° is approximately gap of $(P + P^\circ)/2$.

Corollary: prove continuous-time contraction if easier, and don’t worry about it.

Easier because of Dirichlet form!
Dirichlet form

Assume P is time-reversible.
Assume P is time-reversible.

Let’s expand $\frac{d}{dt} D_\phi (\nu_t \parallel \mu)$. We have $\frac{d}{dt} E_\mu [\phi(\nu_t/\mu)] =$

$$E_\mu \left[\phi' \left(\frac{\nu_t}{\mu} \right) \frac{d}{dt} \frac{\nu_t}{\mu} \right]$$
Assume P is time-reversible.

Let's expand $\frac{d}{dt} D_{\phi}(\nu_t \parallel \mu)$. We have $\frac{d}{dt} E_\mu[\phi(\nu_t/\mu)] = E_\mu[\phi'(\frac{\nu_t}{\mu}) \frac{d}{dt} \frac{\nu_t}{\mu}]$.

But $\frac{d}{dt} \nu_t = \nu_t(P - I)$, and we can write above as

$$-\frac{1}{2} \sum_{x, y} Q(x, y) \left(\phi'(\frac{\nu_t(x)}{\mu(x)}) - \phi'(\frac{\nu_t(y)}{\mu(y)}) \right) \left(\frac{\nu_t(x)}{\mu(x)} - \frac{\nu_t(y)}{\mu(y)} \right)$$
Dirichlet form

Assume P is time-reversible.

Let's expand $\frac{d}{dt} D\phi(\nu_t \parallel \mu)$. We have $\frac{d}{dt} E_\mu[\phi(\nu_t/\mu)] =
\mathbb{E}_\mu\left[\phi'\left(\frac{\nu_t}{\mu}\right) \frac{d}{dt} \frac{\nu_t}{\mu}\right]$.

But $\frac{d}{dt} \nu_t = \nu_t(P - I)$, and we can write above as

$$-\frac{1}{2} \sum_{x,y} Q(x, y) \left(\phi'\left(\frac{\nu_t(x)}{\mu(x)}\right) - \phi'\left(\frac{\nu_t(y)}{\mu(y)}\right) \right) \left(\frac{\nu_t(x)}{\mu(x)} - \frac{\nu_t(y)}{\mu(y)} \right)$$

Dirichlet form

Define $\mathcal{E}(f, g)$ for functions $f, g : \Omega \rightarrow \mathbb{R}$ as

$$\frac{1}{2} \mathbb{E}_{(x,y) \sim Q} [(f(x) - f(y)) (g(x) - g(y))] .$$
Dirichlet form

Assume P is time-reversible.

Let’s expand $\frac{d}{dt} D_\phi(\nu_t \parallel \mu)$. We have $\frac{d}{dt} E_\mu[\phi(\nu_t/\mu)] = E_\mu[\phi'(\frac{\nu_t}{\mu}) \frac{d}{dt} \frac{\nu_t}{\mu}]$

But $\frac{d}{dt} \nu_t = \nu_t (P - I)$, and we can write above as

$$-\frac{1}{2} \sum_{x,y} Q(x,y) \left(\phi'\left(\frac{\nu_t(x)}{\mu(x)}\right) - \phi'\left(\frac{\nu_t(y)}{\mu(y)}\right) \right) \left(\frac{\nu_t(x)}{\mu(x)} - \frac{\nu_t(y)}{\mu(y)} \right)$$

Dirichlet form

Define $\mathcal{E}(f, g)$ for functions $f, g: \Omega \rightarrow \mathbb{R}$ as

$$\frac{1}{2} \mathbb{E}_{(x,y) \sim Q} [(f(x) - f(y))(g(x) - g(y))] .$$

Poincaré: $2 \mathcal{E}(f, f) \geq \rho \text{Var}[f]$
MLSI: $\mathcal{E}(f, \log f) \geq \rho \text{Ent}[f]$
Just need to lower bound ε