CS 263: Counting and Sampling

S Stanford
University
slides for

Continuous Time

\Review /

For function ¢ and f: Q — R define

Entd[f] = Enl¢ o f] — b(E[F).

2/14

\Review

For function ¢ and f: Q — R define

Entd[f] = Enl¢ o f] — b(E[F).

For measure v and dist p define

D — ¢ X]
(VI Entu{FL

2/14

\Review

For function ¢ and f: Q — R define

Entd[f] = Enl¢ o f] — b(E[F).

For measure v and dist p define
v
D (v ||) = Ent? [ﬁ]

> d(x) =x? vs. dp(x) =xlogx

2/14

\Review

For function ¢ and f: Q — R define
Ent? [f] = Epld o f] — d(EL[f]).

¢-divergence
For measure v and dist p define

D — ¢ X]
(VI Entu{FL

> d(x) =x? vs. dp(x) =xlogx
> x? leads to Var and x?

2/14

\Review

For function ¢ and f: Q — R define
Ent? [f] = Epld o f] — d(EL[f]).

¢-divergence
For measure v and dist p define

D — o) X]
o(v I 1) Entu{FL

> d(x) =x? vs. dp(x) =xlogx
> x? leads to Var and x?
> xlogx leads to Ent and Dy

2/14

\Review /

N
Dy(VN | uN) < (T—=p) Dy (v || W)

For function ¢ and f: Q — R define

Entd[f] = Enl¢ o f] — b(E[F).

¢-divergence
For measure v and dist p define

D — o) X]
o(v I 1) Entu{FL

> d(x) =x? vs. dp(x) =xlogx
> x? leads to Var and x?
> xlogx leads to Ent and Dy

2/14

\Review /

Dy (WN [M) = (1 o) Dl [
v < (= v
For function ¢ and f: Q — R define ¢ H Pl "
Lemma: data processing

D (VN || uN) < D (v || 1)

Entd[f] = Enl¢ o f] — b(E[F).

¢-divergence
For measure v and dist p define

D — ¢ X]
(VI E"t”[u

> d(x) =x? vs. dp(x) =xlogx
> x? leads to Var and x?
> xlogx leads to Ent and Dy

2/14

\Review /

Dy (WN [M) = (1 o) Dl [
v < (= v
For function ¢ and f: Q — R define ¢ H Pl "
Lemma: data processing

D (VN || uN) < D (v || 1)

Entd[f] = Enl¢ o f] — b(E[F).

-divergence
s . > Specializing to x2, we have

For measure v and dist p define
p=T1—A2(NN°)

D — ¢ X]
(VI E"t”[u

> d(x) =x? vs. dp(x) =xlogx
> x? leads to Var and x?
> xlogx leads to Ent and Dy

2/14

\Review /

Dy (WN [M) = (1 o) Dl [
v < (= v
For function ¢ and f: Q — R define ¢ H Pl "
Lemma: data processing

Entd[f] = Epld o f] — b (E.[f]). D (VN || kN) < D (v || 1)

¢-divergence

> Specializing to x%, we have
For measure v and dist p define P gtox

p=1—A(NN°)
Dy (v ||) = Ent? [X] > Abelian walks on group G:
B X = x—l—z\

sampled iid. from 7t

> d(x) =x? vs. dp(x) =xlogx
> x? leads to Var and x?
> xlogx leads to Ent and Dy

2/14

\Review /

Dy (WN [M) = (1 o) Dl [
v < (= v
For function ¢ and f: Q — R define ¢ H Pl "
Lemma: data processing

D (VN || uN) < D (v || 1)

Entd[f] = Enl¢ o f] — b(E[F).

¢-divergence

> Specializing to x%, we have
For measure v and dist p define P gtox

p=1—2A2(NN°)
Dy (v ||) = Ent? [X] > Abelian walks on group G:
g B X = x—l—z\
>) . . sompleq iid. from
$(x) =x7 vs. d(x) = xlog x > Eigvecs are characters x:
> x? leads to Var and x? x(x +y) =xx)x()

> xlogx leads to Ent and Dy

2/14

\Review /

Dy (WN [M) = (1 o) Dl [
v < (= v
For function ¢ and f: Q — R define ¢ H Pl "
Lemma: data processing

D (VN || uN) < D (v || 1)

Entd[f] = Enl¢ o f] — b(E[F).

¢-divergence S 5
: , > Specializing to x?%, we have
For measure v and dist n define

p=1—2A2(NN°)
Dy (v ||) = Ent? [X] > Abelian walks on group G:
g B X = x—l—z\
>) . . sompleq iid. from
$(x) =x7 vs. d(x) = xlog x > Eigvecs are characters x:
> x? leads to Var and x? x(x +y) =xx)x()

> xlogx leads to Ent and Dy O Eigvals are Ex[x]

2/14

Fourier Analysis
> Characters

> Examples

> Relaxation time

Continuous Time
> Functional analysis in continuous time
> Dirichlet form

> Characters
> Examples
> Relaxation time

Continuous Time
> Functional analysis in continuous time
> Dirichlet form

\Chorocters /

> We know characters of Zy:

X(x) = w*
for w an n-th root of unity.

Cola

5/14

\Chorocters /

> We know characters of Zy:

X(x) = w*
for w an n-th root of unity.

Coa
—O0——0—
‘o.].0°

> There are exactly n of them. ©

5/14

\Chorocters /

> We know characters of Zy:

X(x) = w*
for w an n-th root of unity.

Coa
—O0——0—
‘o.].0°

> There are exactly n of them. ©
O Characters of Zn, X -+ X Zn,:

X1 Xk
X'—)(,U1 -"wk.

5/14

\Chorocters /

> We know characters of Zy:

X(x) = w*
for w an n-th root of unity.

Coa
—O0——0—
‘o.].0°

> There are exactly n of them. ©

O Characters of Zn, X -+ X Zn,:
X = Wi wik

> For G, we get |G| characters. ©

5/14

\Chorocters /

> We know characters of Zy:

) N > We just need to compute
X)) =w
. Eeor[w} - @]

for w an n-th root of unituy.
J for all of these characters.

Coa
—O0——0—
‘o.].0°

> There are exactly n of them. ©

O Characters of Zn, X -+ X Zn,:
X = Wi wik

> For G, we get |G| characters. ©

5/14

\Chorocters

J

> We know characters of Zy:
x(x) = wx
for w an n-th root of unity.

Coa
—O0——0—
‘o.].0°

> There are exactly n of them. ©

O Characters of Zn, X -+ X Zn,:
X = Wi wik

> For G, we get |G| characters. ©

> We just need to compute
Ex-r[w}" - wit]
for all of these characters.

> The wy =--- = wy = 1 character
gives us the special 1 eigval.

5/14

\Chorocters

J

> We know characters of Zy:
x(x) = wx
for w an n-th root of unity.

Cola

> There are exactly n of them. ©

O Characters of Zn, X -+ X Zn,:
X = Wi wik

> For G, we get |G| characters. ©

We just need to compute
Exnw} -]
for all of these characters.

> The wy =--- = wy = 1 character

gives us the special 1 eigval.

> If Pis Abelian walk, then P° = PT is

also Abelian walk. Eigvals are

[EXNTII[X(_X)]

5/14

\Chorocters

J

> We know characters of Zy:
x(x) = wx
for w an n-th root of unity.

Cola

> There are exactly n of them. ©

O Characters of Zn, X -+ X Zn,:
X = Wi wik

> For G, we get |G| characters. ©

We just need to compute
Exnw} -]
for all of these characters.

> The wy =--- = wy = 1 character

gives us the special 1 eigval.

> If Pis Abelian walk, then P° = PT is

also Abelian walk. Eigvals are

[EXNTII[X(_X)]

Since P and P° commute, we have
A (PP°) = A (P)[?

5/14

\Chorocters

J

> We know characters of Zy:
x(x) = wx
for w an n-th root of unity.

Cola

> There are exactly n of them. ©

O Characters of Zn, X -+ X Zn,:
X = Wi wik

> For G, we get |G| characters. ©

We just need to compute
Exnw} -]
for all of these characters.

> The wy =--- = wy = 1 character

gives us the special 1 eigval.

> If Pis Abelian walk, then P° = PT is

also Abelian walk. Eigvals are

[EXNTII[X(_X)]

Since P and P° commute, we have
A (PP°) = Ak (P)?
Mixing: largest |-| of an eig?

5/14

Example: hypercube

Distribution 7t O
O owp.1/2
O Tiwp.1/2n 7 7

6/14

Example: hypercube

Distribution 7t O

O owp.1/2

O Tiwp.1/2n z)
||

(> There are 2™ characters:
x = (E1)XT - (E£T)Xn

6/14

Example: hypercube

Distribution 7t O

O owp.1/2

O Tiwp.1/2n z)
||

(> There are 2™ characters:
x = (E1)XT - (E£T)Xn
C Eigvalis #{+1}/n

6/14

Example: hypercube

Distribution 7t O

O owp.1/2

O Tiwp.1/2n z)
||

> There are 2™ characters:
X (E1)X - (£T)Xn
C Eigvalis #{+1}/n
> (3) of eigvals are
k/n

6/14

Example: hypercube

Distribution 7t O

C owp.1/2

O Tiwp.1/2n 7 7
||

> There are 2™ characters:
X = (£ ()
C Eigvalis #{+1}/n
> (3) of eigvals are
k/n
> Spectral gap:
1—-n—1)/n=1/n

6/14

Example: hypercube

Distribution 7t O

C owp.1/2

O Tiwp.1/2n 7 7
||

> There are 2™ characters:

X = (£ ()
C Eigvalis #{+1}/n
> (3) of eigvals are

k/n

> Spectral gap:

1—-n—1)/n=1/n
> tmix < O(n?)

6/14

Example: hypercube

Distribution 7t
C owp.1/2
O Tiwp.1/2n

(> There are 2™ characters:

s (1) (1)

C Eigvalis #{+1}/n
> (3) of eigvals are
k/n
> Spectral gap:
1—-n—1)/n=1/n
B> tmix < O(n?)

Example: cycle

Distribution 7t

[> +1wp.1/2
C —Twp.1/2

Yo

6/14

Example: hypercube

Distribution 7t
C owp.1/2
O Tiwp.1/2n

(> There are 2™ characters:

s (1) (1)

C Eigvalis #{+1}/n
> (3) of eigvals are
k/n
> Spectral gap:
1—-n—1)/n=1/n
B> tmix < O(n?)

Example: cycle

Distribution 7t

[> +1wp.1/2
C —Twp.1/2

Yo

6/14

Example: hypercube

Distribution 7t O

C owp.1/2

O Tiwp.1/2n 7 7
||

> There are 2™ characters:

X = (£ ()
C Eigvalis #{+1}/n
> (3) of eigvals are

k/n

> Spectral gap:

1—-n—1)/n=1/n
> tmix < O(n?)

Example: cycle

Distribution 7 fO<—>O
C +Hlwp.1/2

> —1wp.1/2 q\b<—»o>o

(> There are n characters:
X — WX

6/14

Example: hypercube

Distribution 7t O

C owp.1/2

O Tiwp.1/2n 7 7
||

> There are 2™ characters:

X = (£ ()
C Eigvalis #{+1}/n
> (3) of eigvals are

k/n

> Spectral gap:

1—-n—1)/n=1/n
> tmix < O(n?)

Example: cycle

Distribution 7 fO<—>O
C +Hlwp.1/2

> —1wp.1/2 q\b<—»o>o

(> There are n characters:
X = w*
C Eigvalis (w+w™1)/2

6/14

Example: hypercube

Distribution 7t ﬁz
C owp.1/2
O Tiwp.1/2n iﬂ)
| €—>

> There are 2™ characters:

X (E1)X - (£T)Xn
C Eigvalis #{+1}/n
> (3) of eigvals are

k/n

> Spectral gap:

1—n—1)/n=1/n
D tmix < O(nz)

Example: cycle
Distribution 7t

C +Hlwp.1/2
C —Twp.1/2

(> There are n characters:
X = w*
C Eigvalis (w+w™1)/2
& Eigvals are
cos(2mk/n)

6/14

Example: hypercube

Distribution 7t O

C owp.1/2

O Tiwp.1/2n 7 7
||

> There are 2™ characters:

X = (£ ()
C Eigvalis #{+1}/n
> (3) of eigvals are

k/n

> Spectral gap:

1—-n—1)/n=1/n
> tmix < O(n?)

Example: cycle

Distribution 7 fO<—>O
C +Hlwp.1/2

> —1wp.1/2 q\b<—>o>o

(> There are n characters:
X = w*
C Eigvalis (w+w™1)/2
& Eigvals are
cos(2mk/n)
> Spectral gap:
1 — cos(27t/n) ~ O(1/n?)?

6/14

Example: hypercube Example: cycle

Distribution 7t O Distribution 7 fO<—>O

C owp.1/2 Z C +Hlwp.1/2 \O

O Tiwp.1/2n g i C —Twp.1/2 ?x /‘
@)

(> There are 2™ characters:
x = (E1)XT - (E£T)Xn

(> There are n characters:

)) X = w*
> ELgvm |§ #+1l/m > Eigvalis (w+w™1)/2
> (3) of eigvals are B> Eigvals are

k/n cos(2mk/n)

> Spectral gap:
1—n—1)/n=1/n
D tmix < O(nz)

> Spectral gap:
1 — cos(27t/n) ~ O(1/n?)?
D tmix < O(nz |Og TL)?

6/14

Example: hypercube

Distribution 7t ﬁz
C owp.1/2
O Tiwp.1/2n iﬂ)
| €—>

> There are 2™ characters:

X (E1)X - (£T)Xn
C Eigvalis #{+1}/n
> (3) of eigvals are

k/n

> Spectral gap:

1—n—1)/n=1/n
D tmix < O(nz)

Example: cycle

Distribution 7t
o +1wp.1/2
C —Twp.1/2

(> There are n characters:
X = w*

C Eigvalis (w+w™1)/2
& Eigvals are

cos(2mk/n)
> Spectral gap:

1 — cos(27t/n) ~ O(1/n?)?

O tmix < O(n?logn)? Not for even n.

6/14

\Reloxotion time /

Suppose P is time-reversible and lazy:

Ai(P) >0

O Relaxation time: 1/(1 — A2 (P))

714

\Reloxotion time

Suppose P is time-reversible and lazy:

Ai(P) >0

O Relaxation time: 1/(1 — A2 (P))

> Relaxation time does not directly
control mixing time @

714

\Reloxotion time /

Suppose P is time-reversible and lazy:

Ai(P) >0

O Relaxation time: 1/(1 — A2 (P))

> Relaxation time does not directly
control mixing time @

> But it controls tyix(€) for tiny e:

714

\Reloxotion time

Suppose P is time-reversible and lazy:
Ai(P) >0

O Relaxation time: 1/(1 — A2 (P))

> Relaxation time does not directly
control mixing time @

> But it controls tyix(€) for tiny e:

Lemma

2
tmix(€) = O('Og(x (V1°J‘§2)2§;°gwe)>

714

\Reloxotion time /

Suppose P is time-reversible and lazy:

Ai(P) >0

O Relaxation time: 1/(1 — A2 (P))

> Relaxation time does not directly
control mixing time @

> But it controls tyix(€) for tiny e:

Lemma

2
tmix(€) = O('Og(x (V1°J‘§2)2§;°gwe)>

> We have
trel = @(lime—>0 |§g(ix1(/€e)))

714

\Reloxotion time /

Suppose P is time-reversible and lazy: Proof:

Ai(P) >0

O Relaxation time: 1/(1 — A2 (P))

> Relaxation time does not directly
control mixing time @

> But it controls tyix(€) for tiny e:

Lemma

2
tmix(€) = O('Og(x (V1°J‘§2)2§;°gwe)>

> We have
trel = @(lime—>0 |§g(ix1(/€e)))

714

\Reloxotion time

J

Suppose P is time-reversible and lazy: Proof:

Ai(P) =0
i(P) vP =Av

O Relaxation time: 1/(1 — A2 (P))

> Relaxation time does not directly
control mixing time @

> But it controls tyix(€) for tiny e:

Lemma

2
tmix(€) = O('Og(x (V1°J‘§2)2§;°gwe)>

> We have
trel = @(lime—>0 |§g(ix1(/€e)))

> Letv be left eigvec for A # 1:

714

\Reloxotion time /

Suppose P is time-reversible and lazy: Proof:
> Letv be left eigvec for A # 1:

A(P) =0

i(P) vP =Av

O Relaxation time: 1/(1 —Az(P)) > We have (v, 1) =0, so write

> Relaxation time does not directly v=a(vi —v2) +1B(vz —v4)
control mixing time @ for dists v1,v3,v3,va.

> But it controls tyix(€) for tiny e:

Lemma

2
tmix(€) = O('Og(x (V1°J‘§2)2§;°gwe))

> We have
trel = @(lime—>0 |§g(ix1(/€e)))

714

\Reloxotion time /

Suppose P is time-reversible and lazy: Proof:
> Letv be left eigvec for A # 1:

Mi(P) >0 vP = Av
O Relaxation time: 1/(1 —Az(P)) > We have (v, 1) =0, so write
> Relaxation time does not directly v=a(vi —v2) +1B(vz —v4)
control mixing time @ for dists vy, va, V3, va.
> But it controls tyix(€) for tiny e: > Fort > tmx(€) we get

VPl < Ole) -Vl

2
tmix(€) = O('Og(x (V1°J‘§2)2§;°gwe))

> We have
trel = @<|im€—>0 k;tg(m%)

714

\Reloxotion time /

Suppose P is time-reversible and lazy: Proof:
> Letv be left eigvec for A # 1:

Mi(P) >0 vP = Av
O Relaxation time: 1/(1 —Az(P)) > We have (v, 1) =0, so write
> Relaxation time does not directly v=a(vi —v2) +1B(vz —v4)
control mixing time @ for dists vy, va, V3, va.
> But it controls tyix(€) for tiny e: > Fort > tmx(€) we get

WP < Ofe) - vl
2 But this means

tmix(€) = O('Og(x (\;oﬂ;\tz)g;;ow/e)) c
At =0(e)

> We have which means

H mix 1 - }\ 2 Q(M)
trel = @<|Im€—>0 k;tg(%) | | tmix(e)

714

Corollary

Under Dobrushin, we have t, = O(n); in other words

A2 <1—=0(1/n).

8/14

Corollary

Under Dobrushin, we have t, = O(n); in other words
A2 <1T—0Q(1/n).
> Another proof that hypercube has

7\2 < 1 —Q(]/T\.)

8/14

Corollary

Under Dobrushin, we have t, = O(n); in other words
A2 < 1T—0Q(1/n).
> Another proof that hypercube has
A2 <1-0(1/n)

> First proof that Glauber for coloring with > 2A colors
has
)\2 < 1— Q(1/n)

8/14

Corollary

Under Dobrushin, we have t, = O(n); in other words
A <1—-0Q(1/n).
> Another proof that hypercube has
A2 <1-0(1/n)

> First proof that Glauber for coloring with > 2A colors
has
)\2 < 1— Q(1/n)

> Note: going back from A, to tmix gives us non-tight
bound of O(n?). ®

8/14

> Characters
> Examples
> Relaxation time

Continuous Time
> Functional analysis in continuous time
> Dirichlet form

Fourier Analysis
> Characters

> Examples

> Relaxation time

> Functional analysis in continuous time
> Dirichlet form

\Continuous time

> So far, we have been running

Markov chains in discrete time:

Xo — X »—>---»—>XTtn—>...

tis integer

10/14

\Continuous time /

> So far, we have been running
Markov chains in discrete time:

Xo — X »—>---»—>XTtn—>...
tis integer
> We can run a chain in continuous

time via Poisson clock:
time

NI

ring

10/14

\Continuous time /

> So far, we have been running
Markov chains in discrete time:

Xo—~> X1 X ...
4
tis integer
> We can run a chain in continuous

time via Poisson clock:
time

NI

ring

> Every ring, take one step of P.

10/14

\Continuous time /

> So far, we have been running
Markov chains in discrete time:

Xo—~> X1 X ...
4
tis integer
> We can run a chain in continuous

time via Poisson clock:
time

NI

ring

> Every ring, take one step of P.
> X position at time t € Rxo

10/14

\Continuous time /

> So far, we have been running & To olgorithmicollg simulate Xi:

Markov chains in discrete time: draw n ~ Poisson(t) and take n
discrete steps

Xo — X r—)---r—>XTt»—>...
tis integer
> We can run a chain in continuous

time via Poisson clock:
time

NI

ring

(> Every ring, take one step of P.
> X position at time t € Rxg

10/14

\Continuous time /

> So far, we have been running > To algorithmically simulate X:
Markov chains in discrete time: draw n ~ Poisson(t) and take n
discrete steps

> How is X, distributed given Xy?

Xo — X r—)---r—>XTt»—>...
tis integer
> We can run a chain in continuous

time via Poisson clock:
time

NI

ring

(> Every ring, take one step of P.
> X position at time t € Rxg

10/14

\Continuous time /

> So far, we have been running & To olgorithmicollg simulate Xi:
Markov chains in discrete time: draw n ~ Poisson(t) and take n
discrete steps

> How is X, distributed given Xy?

> Approximate the process as
> We can run a chain in continuous € € € € € € € time

time via Poisson clock: L L L R
time where in each interval we take

W /O_’ transition of P w.p. €.

ring

Xo — X r—>---r—>Xth—>...

tis integer

(> Every ring, take one step of P.
> X position at time t € Rxg

10/14

\Continuous time /

> So far, we have been running & To olgorithmicollg simulate Xi:
Markov chains in discrete time: draw n ~ Poisson(t) and take n
discrete steps

> How is X, distributed given Xy?

> Approximate the process as
> We can run a chain in continuous € € € € € € € time
time via Poisson clock: —
time where in each interval we take
W /O_’ transition of P w.p. €.
> Result at time t:

ring

Xo — X r—>---r—>Xth—>...

tis integer

(1—e)I+eP)Y€ = exp(t(P 1))

transition matrix

(> Every ring, take one step of P.
> X position at time t € Rxg

10/14

\Continuous time

J

> So far, we have been running
Markov chains in discrete time:

Xo — X r—>---r—>XTt»—>...
tis integer
> We can run a chain in continuous

time via Poisson clock:
time

NI

ring

(> Every ring, take one step of P.
> X position at time t € Rxg

\VAV,

To algorithmically simulate Xy:

draw n ~ Poisson(t) and take n
discrete steps

How is Xy distributed given X?

Approximate the process as

€ € € € € € € time
L

where in each interval we take
transition of P w.p. €.

Result at time t:
(1—e)I+eP)Y€ = exp(t(P 1))
transition matrix
Ultimate lazification! @

10/14

\Functionol analysis in continuous time /

> What happens to functional
analysis in continuous time?

1/14

\Functionol analysis in continuous time /

> What happens to functional
analysis in continuous time?

 In discrete time we want
De(VP) < (T=p) Dy (v || 1)

1/14

\Functionol analysis in continuous time /

> What happens to functional
analysis in continuous time?

In discrete time we want
Dp(VP [w) < (1T —p) Dy (v || 1)
> Analogue in continuous time:
LDg(ve | W) < —pDy(ve || 1)
where v¢ = vgexp(t(P —1)).

1/14

\Functionol analysis in continuous time /

> What happens to functional
analysis in continuous time?

In discrete time we want
Dp(VP [w) < (1T —p) Dy (v || 1)
> Analogue in continuous time:
LDg(ve | W) < —pDy(ve || 1)
where v¢ = vgexp(t(P —1)).
> Corollary: we get
Dp(ve [w) <e - Dy(vo |l 1

1/14

\Functionol analysis in continuous time /

> What happens to functional
analysis in continuous time?

In discrete time we want
Dp(VP [w) < (1T —p) Dy (v || 1)
> Analogue in continuous time:
LDg(ve | W) < —pDy(ve || 1)
where v¢ = vgexp(t(P —1)).
> Corollary: we get
Dp(ve [w) <e - Dy(vo |l 1

> By comparing to dty we get
continuous mixing time bounds. ©

1/14

\Functionol analysis in continuous time /

> What happens to functional Fact: discrete is stronger

analysis in continuous time? Discrete-time contraction implies
In discrete time we want continuous-time contraction.
Dp(vP [[) < (1T —=p) Dy (v | 1)
> Analogue in continuous time:
LDg(ve | W) < —pDy(ve || 1)
where v¢ = vgexp(t(P —1)).
> Corollary: we get
Dp(ve [w) <e - Dy(vo |l 1
> By comparing to dty we get
continuous mixing time bounds. ©

1/14

\Functionol analysis in continuous time /

> What happens to functional Fact: discrete is stronger

analysis in continuous times Discrete-time contraction implies
In discrete time we want continuous-time contraction.

De(VP W) < (T=p) D (V[W) proot
> Analogue in continuous time:

LDy(ve | W) < —pDglve ||)
where v¢ = vgexp(t(P —1)).
> Corollary: we get
Dd)(vt ” FL) <e e @q)(\/o H LL)

> By comparing to dty we get
continuous mixing time bounds. ©

1/14

\Functionol analysis in continuous time /

> What happens to functional Fact: discrete is stronger

analysis in continuous time? Discrete-time contraction implies
In discrete time we want continuous-time contraction.
Dp(VP [) < (1T=p) D (v || 1)

Proof:
> Analogue in continuous time: > Will show (1 —)T+ eP contracts
%ﬂb(vt W) <—pDg(ve [1) Dy by 1 —ep. Taking e — 0 gives
where vi = vo exp(t(P —1)). what we want.

> Corollary: we get

Dp(ve [w) <e - Dy(vo |l 1
> By comparing to dty we get
continuous mixing time bounds. ©

1/14

\Functionol analysis in continuous time /

> What happens to functional Fact: discrete is stronger

analysis in continuous time? Discrete-time contraction implies
In discrete time we want continuous-time contraction.
Dp(VP [) < (1T=p) D (v || 1)

Proof:
> Analogue in continuous time: > Will show (1 —)1+ eP contracts
%@M\’t [1) < =pDg(ve || 1) Dy by 1 —ep. Taking e — 0 gives
where vi = vo exp(t(P —1)). what we want.
> Corollary: we get > Because ¢ is convex:
Dpve [[w) <e 7 Dylvo |l 1 Dp((T—€)v+evP [p) <
> By comparing to dv we get (T—€e)De(v | 1w +eDy(vP || 1)

continuous mixing time bounds. ©

1/14

\Functionol analysis in continuous time /

> What happens to functional Fact: discrete is stronger

analysis in continuous time? Discrete-time contraction implies
In discrete time we want continuous-time contraction.

Dep(VP |) < (1 —p) Dy (v || 1)

Proof:
> Analogue in continuous time: > Will show (1 —)1+ eP contracts
%@M\’t [1) < =pDg(ve || 1) Dy by 1 —ep. Taking e — 0 gives
where vi = vo exp(t(P —1)). what we want.
> Corollary: we get > Because ¢ is convex:
Dpve [[w) <e 7 Dylvo |l 1 Dp((T—€)v+evP [p) <
> By comparing to dv we get (T—€e)De(v | 1w +eDy(vP || 1)

continuous mixing time bounds. ® > But thisis < (1 —ep) Dy (v || p). ©

1/14

> Discrete can be strictly stronger:

o o

1214

> Discrete can be strictly stronger:

o o

> But, for time-reversible and lazy
; ; 2. el
chains in X sayeigs = 00r A, = —A,

discrete time < continuous time

1214

> Discrete can be strictly stronger:

o o

> But, for time-reversible and lazy
chains in x%: say eigs 3 0 Orf\ —
discrete time «» continuous time
> x? contraction in continuous time
is dictated by eigs of

(P+P°)/2

1214

> Discrete can be strictly stronger:

o o

> But, for time-reversible and lazy

chains in x%: say eigs 3 0 orf\ —

discrete time «+» continuous time

> x? contraction in continuous time

is dictated by eigs of

(P+P°)/2
> Sketch:
(I+eP-1D))(I+€P°—-1)) =
14 e(P 4 P° —2I) + O(e?)

1214

Discrete can be

o o

But, for time-reversible and
chains in x%: “

> For lazy reversible P, we have gap
of PP° is approximately gap of
say eigs = 0 or A, = —As (P+P°)/2.©

discrete time « continuous time

x? contraction in continuous time
is dictated by eigs of

(P+P°)/2
Sketch:

(I+eP—-1)(I+e(P°—-1) =
[+ e(P+P°—2I)+ O(e?)

12/14

(> Discrete can be

o o

> But, for time-reversible and
chains in x%: 7

> For lazy reversible P, we have gap
of PP° is approximately gap of
say eigs = 0 or A, = —As (P+P°)/2.©

discrete time «» continuous time > Corollary: prove

> x? contraction in continuous time if easier, and don’t
is dictated by eigs of worry about it.

(P+P°)/2
> Sketch:

(I+eP—-1)(I+e(P°—-1) =
[+ e(P+P°—2I)+ O(e?)

12/14

(> Discrete can be

o o

For lazy reversible P, we have ga
> But, for time-reversible and > Y 9ap
el

of PP° is approximately gap of

chains in Xz: say eigs = 0 or A, = —As (P+P°)/2.©
discrete time «» continuous time > Corollary: prove
> x2 contraction in continuous time if easier, and don’t
is dictated by eigs of worry about it.
(P+P°)/2 > Easier because of !
> Sketch:

(I+eP—-1)(I+e(P°—-1) =
[+ e(P+P°—2I)+ O(e?)

12/14

\Dirichlet form /

> Assume P is time-reversible.

13/14

\Dirichlet form /

> Assume P is time-reversible.
B Let's expand < Dy (ve ||). We have L E[d(ve/p)] =

Eufor () 4]

13/14

\Dirichlet form /

> Assume P is time-reversible.
B Let's expand < Dy (ve ||). We have L E[d(ve/p)] =

[Eu[@b'(%:) %%:}

> But %vt = v¢(P —1I), and we can write above as

ve(x)\ 4/ vi(y) vi(x) vi(y)
—3 Xy Qx >U< ()) d’(u(g)))(u(x) u(y))

13/14

\Dirichlet form /

> Assume P is time-reversible.
B Let's expand < Dy (ve ||). We have L E[d(ve/p)] =
culo () 3]
> But %vt = v¢(P —1I), and we can write above as
vi(x) N vi(y) vi(x) _Vt(y)
—2 Xy QY < (4)> ¢ <u(y)>> (u(X) u(y))
irichlet form
Define £(f, g) for functions f,g: Q — R as

I

1

7 E(x,y)~(f(x) —f(y)) (g(x) — g(y))I.

13/14

\Dirichlet form /

> Assume P is time-reversible.
B Let's expand < Dy (ve ||). We have L E[d(ve/p)] =
culo () 3]
> But %vt = v¢(P —1I), and we can write above as
vi(x) N vi(y) vi(x) _Vt(y)
—2 Xy QY < (4)> ¢ <u(y)>> (u(X) u(y))
irichlet form
Define £(f, g) for functions f,g: Q — R as

I

 Epey~ollf60 — 1) (909 — g(y))]

Poincaré: 2 &(f, f) > p Varlf] MLSI: E(f, log f) > p Ent][f]

13/14

Just need to lower bound &

