CS 263: Counting and Sampling

Nima Anari

Stanford
University
slides for

Continuous Time

Review
ϕ-entropy
For function ϕ and $f: \Omega \rightarrow \mathbb{R}$ define

$$
\operatorname{Ent}_{\mu}^{\phi}[f]=\mathbb{E}_{\mu}[\phi \circ f]-\phi\left(\mathbb{E}_{\mu}[f]\right)
$$

Review

ϕ-entropy

For function ϕ and $f: \Omega \rightarrow \mathbb{R}$ define

$$
\operatorname{Ent}_{\mu}^{\phi}[f]=\mathbb{E}_{\mu}[\phi \circ f]-\phi\left(\mathbb{E}_{\mu}[f]\right)
$$

ϕ-divergence

For measure ν and dist μ define

$$
\mathcal{D}_{\phi}(v \| \mu)=\operatorname{Ent}_{\mu}^{\phi}\left[\frac{v}{\mu}\right]
$$

Review

ϕ-entropy

For function ϕ and $f: \Omega \rightarrow \mathbb{R}$ define

$$
\operatorname{Ent}_{\mu}^{\phi}[f]=\mathbb{E}_{\mu}[\phi \circ f]-\phi\left(\mathbb{E}_{\mu}[f]\right)
$$

ϕ-divergence

For measure ν and dist μ define

$$
\mathcal{D}_{\phi}(v \| \mu)=\operatorname{Ent}_{\mu}^{\phi}\left[\frac{v}{\mu}\right]
$$

$D \phi(x)=x^{2}$ vs. $\phi(x)=x \log x$

Review

ϕ-entropy

For function ϕ and $f: \Omega \rightarrow \mathbb{R}$ define

$$
\operatorname{Ent}_{\mu}^{\phi}[f]=\mathbb{E}_{\mu}[\phi \circ f]-\phi\left(\mathbb{E}_{\mu}[f]\right)
$$

ϕ-divergence

For measure ν and dist μ define

$$
\mathcal{D}_{\phi}(v \| \mu)=\operatorname{Ent}_{\mu}^{\phi}\left[\frac{v}{\mu}\right]
$$

$D \phi(x)=x^{2}$ vs. $\phi(x)=x \log x$
© x^{2} leads to Var and χ^{2}

Review

ϕ-entropy

For function ϕ and $\mathrm{f}: \Omega \rightarrow \mathbb{R}$ define

$$
\operatorname{Ent}_{\mu}^{\phi}[f]=\mathbb{E}_{\mu}[\phi \circ f]-\phi\left(\mathbb{E}_{\mu}[f]\right)
$$

ϕ-divergence

For measure v and dist μ define

$$
\mathcal{D}_{\phi}(v \| \mu)=\operatorname{Ent}_{\mu}^{\phi}\left[\frac{v}{\mu}\right]
$$

$D \phi(x)=x^{2}$ vs. $\phi(x)=x \log x$
$D x^{2}$ leads to Var and x^{2}
$D x \log x$ leads to Ent and $\mathcal{D}_{K L}$

Review

ϕ-entropy

For function ϕ and $f: \Omega \rightarrow \mathbb{R}$ define

$$
\operatorname{Ent}_{\mu}^{\phi}[f]=\mathbb{E}_{\mu}[\phi \circ f]-\phi\left(\mathbb{E}_{\mu}[f]\right)
$$

ϕ-divergence

For measure v and dist μ define

$$
\mathcal{D}_{\phi}(v \| \mu)=\operatorname{Ent}_{\mu}^{\phi}\left[\frac{v}{\mu}\right]
$$

$D \phi(x)=x^{2}$ vs. $\phi(x)=x \log x$
$D x^{2}$ leads to Var and χ^{2}
D $x \log x$ leads to Ent and $\mathcal{D}_{K L}$

Contraction:

$$
\mathcal{D}_{\phi}(v N \| \mu N) \leqslant(1-\rho) \mathcal{D}_{\phi}(\nu \| \mu)
$$

Review

ϕ-entropy

For function ϕ and $\mathrm{f}: \Omega \rightarrow \mathbb{R}$ define

$$
\operatorname{Ent}_{\mu}^{\phi}[f]=\mathbb{E}_{\mu}[\phi \circ f]-\phi\left(\mathbb{E}_{\mu}[f]\right)
$$

Contraction:

$$
\mathcal{D}_{\phi}(v N \| \mu N) \leqslant(1-\rho) \mathcal{D}_{\phi}(\nu \| \mu)
$$

Lemma: data processing

$$
\mathcal{D}_{\phi}(\nu N \| \mu N) \leqslant \mathcal{D}_{\phi}(\nu \| \mu)
$$

ϕ-divergence

For measure ν and dist μ define

$$
\mathcal{D}_{\phi}(v \| \mu)=\operatorname{Ent}_{\mu}^{\phi}\left[\frac{v}{\mu}\right]
$$

$D \phi(x)=x^{2}$ vs. $\phi(x)=x \log x$
D x^{2} leads to Var and χ^{2}
D $x \log x$ leads to Ent and $\mathcal{D}_{\mathrm{KL}}$

Review

ϕ-entropy

For function ϕ and $\mathrm{f}: \Omega \rightarrow \mathbb{R}$ define

$$
\operatorname{Ent}_{\mu}^{\phi}[f]=\mathbb{E}_{\mu}[\phi \circ f]-\phi\left(\mathbb{E}_{\mu}[f]\right)
$$

ϕ-divergence

For measure ν and dist μ define

$$
\mathcal{D}_{\phi}(v \| \mu)=\operatorname{Ent}_{\mu}^{\phi}\left[\frac{v}{\mu}\right]
$$

$D \phi(x)=x^{2}$ vs. $\phi(x)=x \log x$
D x^{2} leads to Var and χ^{2}
D $x \log x$ leads to Ent and $\mathcal{D}_{\mathrm{KL}}$

Contraction:

$$
\mathcal{D}_{\phi}(\nu N \| \mu N) \leqslant(1-\rho) \mathcal{D}_{\phi}(\nu \| \mu)
$$

Lemma: data processing

$$
\mathcal{D}_{\phi}(\nu \mathrm{N} \| \mu \mathrm{N}) \leqslant \mathcal{D}_{\phi}(\nu \| \mu)
$$

\checkmark Specializing to χ^{2}, we have

$$
\rho=1-\lambda_{2}\left(N^{\circ}\right)
$$

Review

ϕ-entropy

For function ϕ and $\mathrm{f}: \Omega \rightarrow \mathbb{R}$ define

$$
\operatorname{Ent}_{\mu}^{\phi}[f]=\mathbb{E}_{\mu}[\phi \circ f]-\phi\left(\mathbb{E}_{\mu}[f]\right)
$$

ϕ-divergence

For measure v and dist μ define

$$
\mathcal{D}_{\phi}(v \| \mu)=\operatorname{Ent}_{\mu}^{\phi}\left[\frac{v}{\mu}\right]
$$

$D \phi(x)=x^{2}$ vs. $\phi(x)=x \log x$
D x^{2} leads to Var and χ^{2}
D $x \log x$ leads to Ent and $\mathcal{D}_{\mathrm{KL}}$

Contraction:

$$
\mathcal{D}_{\phi}(\nu N \| \mu N) \leqslant(1-\rho) \mathcal{D}_{\phi}(\nu \| \mu)
$$

Lemma: data processing

$$
\mathcal{D}_{\phi}(\nu \mathrm{N} \| \mu \mathrm{N}) \leqslant \mathcal{D}_{\phi}(\nu \| \mu)
$$

\checkmark Specializing to χ^{2}, we have

$$
\rho=1-\lambda_{2}\left(N^{\circ}\right)
$$

D Abelian walks on group G :

$$
\begin{aligned}
& x \mapsto x+z_{\nwarrow} \\
& \quad \text { sampled i.i.d. from } \pi
\end{aligned}
$$

Review

ϕ-entropy

For function ϕ and $\mathrm{f}: \Omega \rightarrow \mathbb{R}$ define

$$
\operatorname{Ent}_{\mu}^{\phi}[f]=\mathbb{E}_{\mu}[\phi \circ f]-\phi\left(\mathbb{E}_{\mu}[f]\right)
$$

ϕ-divergence

For measure ν and dist μ define

$$
\mathcal{D}_{\phi}(v \| \mu)=\operatorname{Ent}_{\mu}^{\phi}\left[\frac{v}{\mu}\right]
$$

$D \phi(x)=x^{2}$ vs. $\phi(x)=x \log x$
$D x^{2}$ leads to Var and x^{2}
D $x \log x$ leads to Ent and $\mathcal{D}_{\mathrm{KL}}$

Contraction:

$$
\mathcal{D}_{\phi}(\nu N \| \mu N) \leqslant(1-\rho) \mathcal{D}_{\phi}(\nu \| \mu)
$$

Lemma: data processing

$$
\mathcal{D}_{\phi}(\nu \mathrm{N} \| \mu \mathrm{N}) \leqslant \mathcal{D}_{\phi}(\nu \| \mu)
$$

\checkmark Specializing to χ^{2}, we have

$$
\rho=1-\lambda_{2}\left(N^{\circ}\right)
$$

D Abelian walks on group G :

$$
x \mapsto x+z_{k}
$$

sampled i.i.d. from π

- Eigvecs are characters χ :

$$
\chi(x+y)=\chi(x) \chi(y)
$$

Review

ϕ-entropy

For function ϕ and $\mathrm{f}: \Omega \rightarrow \mathbb{R}$ define

$$
\operatorname{Ent}_{\mu}^{\phi}[f]=\mathbb{E}_{\mu}[\phi \circ \mathrm{f}]-\phi\left(\mathbb{E}_{\mu}[\mathrm{f}]\right)
$$

ϕ-divergence

For measure ν and dist μ define

$$
\mathcal{D}_{\phi}(v \| \mu)=\operatorname{Ent}_{\mu}^{\phi}\left[\frac{v}{\mu}\right]
$$

$D \phi(x)=x^{2}$ vs. $\phi(x)=x \log x$
$D x^{2}$ leads to Var and χ^{2}
D $x \log x$ leads to Ent and $\mathcal{D}_{\mathrm{KL}}$

Contraction:

$\mathcal{D}_{\phi}(\nu \mathrm{N} \| \mu \mathrm{N}) \leqslant(1-\rho) \mathcal{D}_{\phi}(\nu \| \mu)$

Lemma: data processing

$$
\mathcal{D}_{\phi}(\nu \mathrm{N} \| \mu \mathrm{N}) \leqslant \mathcal{D}_{\phi}(\nu \| \mu)
$$

\checkmark Specializing to χ^{2}, we have

$$
\rho=1-\lambda_{2}\left(N^{\circ}\right)
$$

D Abelian walks on group G :

$$
x \mapsto x+z_{k}
$$

sampled i.i.d. from π

- Eigvecs are characters χ :

$$
\chi(x+y)=\chi(x) \chi(y)
$$

\bigcirc Eigvals are $\mathbb{E}_{\pi}[\chi]$

Fourier Analysis

- Characters
- Examples
- Relaxation time

Continuous Time
\checkmark Functional analysis in continuous time
\checkmark Dirichlet form

Fourier Analysis

- Characters

D Examples
\checkmark Relaxation time
Continuous Time

- Functional analysis in continuous time

D Dirichlet form

Characters

\triangleright We know characters of \mathbb{Z}_{n} :

$$
x(x)=\omega^{x}
$$

for ω an n-th root of unity.

Characters

\triangleright We know characters of \mathbb{Z}_{n} :

$$
x(x)=\omega^{x}
$$

for ω an n-th root of unity.

D There are exactly n of them. ;)

Characters

\triangleright We know characters of \mathbb{Z}_{n} :

$$
x(x)=\omega^{x}
$$

for ω an n-th root of unity.

© There are exactly n of them. ;)
D Characters of $\mathbb{Z}_{\mathfrak{n}_{1}} \times \cdots \times \mathbb{Z}_{\mathfrak{n}_{k}}$:

$$
x \mapsto w_{1}^{x_{1}} \cdots w_{k}^{x_{k}}
$$

Characters

\triangleright We know characters of \mathbb{Z}_{n} :

$$
x(x)=\omega^{x}
$$

for ω an n-th root of unity.

© There are exactly n of them. ;)
D Characters of $\mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{\mathfrak{n}_{k}}$:

$$
x \mapsto w_{1}^{x_{1}} \cdots w_{k}^{x_{k}} .
$$

D For G, we get $|\mathrm{G}|$ characters. $;$

Characters

\triangleright We know characters of \mathbb{Z}_{n} :

$$
x(x)=\omega^{x}
$$

for ω an n-th root of unity.

D We just need to compute

$$
\mathbb{E}_{x \sim \pi}\left[\omega_{1}^{x_{1}} \cdots \omega_{k}^{x_{k}}\right]
$$

for all of these characters.

D There are exactly n of them. :)
\triangleright Characters of $\mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{k}}$:

$$
x \mapsto \omega_{1}^{\chi_{1}} \cdots \omega_{k}^{x_{k}} .
$$

© For G, we get |G| characters. :)

Characters

\triangleright We know characters of \mathbb{Z}_{n} :

$$
x(x)=\omega^{x}
$$

for ω an n-th root of unity.

D We just need to compute

$$
\mathbb{E}_{x \sim \pi}\left[w_{1}^{x_{1}} \cdots w_{k}^{x_{k}}\right]
$$

for all of these characters.
\checkmark The $\omega_{1}=\cdots=\omega_{\mathrm{k}}=1$ character gives us the special 1 eigval.

D There are exactly n of them. ;)
D Characters of $\mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{\mathfrak{n}_{k}}$:

$$
x \mapsto w_{1}^{x_{1}} \cdots w_{k}^{x_{k}} .
$$

D For G, we get $|\mathrm{G}|$ characters. $\mathrm{P}^{\text {: }}$

Characters

\triangleright We know characters of \mathbb{Z}_{n} :

$$
x(x)=\omega^{x}
$$

for ω an n-th root of unity.

D There are exactly n of them. ;)
D Characters of $\mathbb{Z}_{\mathfrak{n}_{1}} \times \cdots \times \mathbb{Z}_{\mathfrak{n}_{k}}$:

$$
x \mapsto w_{1}^{x_{1}} \cdots w_{k}^{x_{k}}
$$

D For G, we get $|\mathrm{G}|$ characters. $;$

D We just need to compute

$$
\mathbb{E}_{x \sim \pi}\left[w_{1}^{x_{1}} \cdots w_{k}^{x_{k}}\right]
$$

for all of these characters.
\checkmark The $\omega_{1}=\cdots=\omega_{\mathrm{k}}=1$ character gives us the special 1 eigval.
D If P is Abelian walk, then $\mathrm{P}^{\circ}=\mathrm{P}^{\top}$ is also Abelian walk. Eigvals are

$$
\mathbb{E}_{x \sim \pi}[\chi(-x)]
$$

Characters

\triangleright We know characters of \mathbb{Z}_{n} :

$$
x(x)=\omega^{x}
$$

for ω an n-th root of unity.

D There are exactly n of them. ;
\triangleright Characters of $\mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{k}}$:

$$
x \mapsto w_{1}^{x_{1}} \cdots w_{k}^{x_{k}}
$$

\bigcirc We just need to compute

$$
\mathbb{E}_{x \sim \pi}\left[w_{1}^{x_{1}} \cdots w_{k}^{x_{k}}\right]
$$

for all of these characters.
© The $\omega_{1}=\cdots=\omega_{\mathrm{k}}=1$ character gives us the special 1 eigval.
D If P is Abelian walk, then $\mathrm{P}^{\circ}=\mathrm{P}^{\top}$ is also Abelian walk. Eigvals are

$$
\mathbb{E}_{x \sim \pi}[x(-x)]
$$

D Since P and P° commute, we have

$$
\lambda_{k}\left(\mathrm{PP}^{\circ}\right)=\left|\lambda_{k}(\mathrm{P})\right|^{2}
$$

D For G, we get $|\mathrm{G}|$ characters. $\mathrm{P}^{\text {: }}$

Characters

\checkmark We know characters of \mathbb{Z}_{n} :

$$
x(x)=\omega^{x}
$$

for ω an n-th root of unity.

D There are exactly n of them. ;)
D Characters of $\mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{k}}$:

$$
x \mapsto w_{1}^{x_{1}} \cdots w_{k}^{x_{k}} .
$$

D For G, we get $|\mathrm{G}|$ characters. $\mathrm{P}^{\text {: }}$
\bigcirc We just need to compute

$$
\mathbb{E}_{x \sim \pi}\left[w_{1}^{x_{1}} \cdots w_{k}^{x_{k}}\right]
$$

for all of these characters.
© The $\omega_{1}=\cdots=\omega_{\mathrm{k}}=1$ character gives us the special 1 eigval.
D If P is Abelian walk, then $\mathrm{P}^{\circ}=\mathrm{P}^{\top}$ is also Abelian walk. Eigvals are

$$
\mathbb{E}_{x \sim \pi}[x(-x)]
$$

D Since P and P° commute, we have

$$
\lambda_{k}\left(P^{\circ}\right)=\left|\lambda_{k}(P)\right|^{2}
$$

\triangle Mixing: largest $|\cdot|$ of an eig?

Example: hypercube

Distribution π :
D 0 w.p. 1/2
$D \mathbb{1}_{\mathfrak{i}}$ w.p. $1 / 2 n$

Example: hypercube

Distribution π :
D 0 w.p. 1/2
$D \mathbb{1}_{\mathfrak{i}}$ w.p. $1 / 2 \mathrm{n}$

D There are 2^{n} characters:

$$
x \mapsto(\pm 1)^{x_{1}} \cdots(\pm 1)^{x_{n}}
$$

Example: hypercube

Distribution π :
D 0 w.p. 1/2
$D \mathbb{1}_{\mathfrak{i}}$ w.p. $1 / 2 \mathrm{n}$

D There are 2^{n} characters:

$$
x \mapsto(\pm 1)^{x_{1}} \cdots(\pm 1)^{x_{n}}
$$

D Eigval is $\#\{+1\} / n$

Example: hypercube

Distribution π :
D 0 w.p. 1/2
$D \mathbb{1}_{\mathfrak{i}}$ w.p. $1 / 2 \mathrm{n}$

D There are 2^{n} characters:

$$
x \mapsto(\pm 1)^{x_{1}} \cdots(\pm 1)^{x_{n}}
$$

D Eigval is $\#\{+1\} / n$
D $\binom{n}{k}$ of eigvals are

$$
\mathrm{k} / \mathrm{n}
$$

Example: hypercube

Distribution π :
D 0 w.p. 1/2
$D \mathbb{1}_{\mathfrak{i}}$ w.p. $1 / 2 \mathrm{n}$

D There are 2^{n} characters:

$$
x \mapsto(\pm 1)^{x_{1}} \cdots(\pm 1)^{x_{n}}
$$

D Eigval is $\#\{+1\} / n$
D $\binom{n}{k}$ of eigvals are

$$
\mathrm{k} / \mathrm{n}
$$

- Spectral gap:

$$
1-(n-1) / n=1 / n
$$

Example: hypercube

Distribution π :
D 0 w.p. 1/2
$D \mathbb{1}_{\mathfrak{i}}$ w.p. $1 / 2 \mathrm{n}$

D There are 2^{n} characters:

$$
x \mapsto(\pm 1)^{x_{1}} \cdots(\pm 1)^{x_{n}}
$$

D Eigval is $\#\{+1\} / n$
$D\binom{n}{k}$ of eigvals are

$$
\mathrm{k} / \mathrm{n}
$$

\checkmark Spectral gap:

$$
1-(n-1) / n=1 / n
$$

$D t_{\text {mix }} \leqslant O\left(n^{2}\right)$

Example: hypercube

Distribution π :
D 0 w.p. 1/2
$D \mathbb{1}_{\mathfrak{i}}$ w.p. $1 / 2 n$

Example: cycle

Distribution π :
$D+1$ w.p. 1/2
D -1 w.p. 1/2

D There are 2^{n} characters:

$$
x \mapsto(\pm 1)^{x_{1}} \cdots(\pm 1)^{x_{n}}
$$

D Eigval is $\#\{+1\} / n$
D $\binom{n}{k}$ of eigvals are

$$
\mathrm{k} / \mathrm{n}
$$

\checkmark Spectral gap:

$$
1-(n-1) / n=1 / n
$$

$D t_{\text {mix }} \leqslant O\left(n^{2}\right)$

Example: hypercube

Distribution π :
D 0 w.p. 1/2
$D \mathbb{1}_{\mathfrak{i}}$ w.p. $1 / 2 n$

Example: cycle

Distribution π :
$D+1$ w.p. 1/2
D -1 w.p. 1/2

D There are 2^{n} characters:

$$
x \mapsto(\pm 1)^{x_{1}} \cdots(\pm 1)^{x_{n}}
$$

D Eigval is $\#\{+1\} / n$
D $\binom{n}{k}$ of eigvals are

$$
\mathrm{k} / \mathrm{n}
$$

\checkmark Spectral gap:

$$
1-(n-1) / n=1 / n
$$

$D t_{\text {mix }} \leqslant O\left(n^{2}\right)$

Example: hypercube

Distribution π :
D 0 w.p. 1/2
© $\mathbb{1}_{i}$ w.p. $1 / 2 n$

D There are 2^{n} characters:

$$
x \mapsto(\pm 1)^{x_{1}} \cdots(\pm 1)^{x_{n}}
$$

\bigcirc Eigval is $\#\{+1\} / n$
D $\binom{n}{k}$ of eigvals are

$$
\mathrm{k} / \mathrm{n}
$$

\checkmark Spectral gap:

$$
1-(n-1) / n=1 / n
$$

$D t_{\text {mix }} \leqslant O\left(n^{2}\right)$

Example: cycle

Distribution π :
$D+1$ w.p. $1 / 2$
D -1 w.p. $1 / 2$

D There are n characters:

$$
x \mapsto \omega^{x}
$$

Example: hypercube

Distribution π :
D 0 w.p. 1/2
$D \mathbb{1}_{\mathfrak{i}}$ w.p. $1 / 2 n$

D There are 2^{n} characters:

$$
x \mapsto(\pm 1)^{x_{1}} \cdots(\pm 1)^{x_{n}}
$$

\bigcirc Eigval is $\#\{+1\} / n$

- $\binom{n}{k}$ of eigvals are

$$
\mathrm{k} / \mathrm{n}
$$

- Spectral gap:

$$
1-(n-1) / n=1 / n
$$

$D \mathrm{t}_{\text {mix }} \leqslant \mathrm{O}\left(\mathrm{n}^{2}\right)$

Example: cycle

Distribution π :
D +1 w.p. $1 / 2$
D -1 w.p. $1 / 2$

D There are n characters:

$$
x \mapsto \omega^{x}
$$

D Eigval is $\left(\omega+\omega^{-1}\right) / 2$

Example: hypercube

Distribution π :
D 0 w.p. 1/2
$D \mathbb{1}_{i}$ w.p. $1 / 2 n$

D There are 2^{n} characters:

$$
x \mapsto(\pm 1)^{x_{1}} \cdots(\pm 1)^{x_{n}}
$$

\bigcirc Eigval is $\#\{+1\} / n$
D $\binom{n}{k}$ of eigvals are

$$
\mathrm{k} / \mathrm{n}
$$

- Spectral gap:

$$
1-(n-1) / n=1 / n
$$

$0 t_{\text {mix }} \leqslant O\left(n^{2}\right)$

Example: cycle

Distribution π :
$D+1$ w.p. $1 / 2$
D -1 w.p. $1 / 2$

D There are n characters:

$$
x \mapsto \omega^{x}
$$

\checkmark Eigval is $\left(\omega+\omega^{-1}\right) / 2$

- Eigvals are

$$
\cos (2 \pi k / n)
$$

Example: hypercube

Distribution π :
D 0 w.p. 1/2
$D \mathbb{1}_{\mathfrak{i}}$ w.p. $1 / 2 n$

D There are 2^{n} characters:

$$
x \mapsto(\pm 1)^{x_{1}} \cdots(\pm 1)^{x_{n}}
$$

\bigcirc Eigval is $\#\{+1\} / n$

- $\binom{n}{k}$ of eigvals are

$$
\mathrm{k} / \mathrm{n}
$$

- Spectral gap:

$$
1-(n-1) / n=1 / n
$$

$D t_{\text {mix }} \leqslant O\left(n^{2}\right)$

Example: cycle

Distribution π :
D +1 w.p. $1 / 2$
D -1 w.p. $1 / 2$

D There are n characters:

$$
x \mapsto \omega^{x}
$$

D Eigval is $\left(\omega+\omega^{-1}\right) / 2$

- Eigvals are

$$
\cos (2 \pi k / n)
$$

- Spectral gap:

$$
1-\cos (2 \pi / n) \simeq \Theta\left(1 / n^{2}\right) ?
$$

Example: hypercube

Distribution π :
D 0 w.p. 1/2
$D \mathbb{1}_{\mathfrak{i}}$ w.p. $1 / 2 n$

D There are 2^{n} characters:

$$
x \mapsto(\pm 1)^{x_{1}} \cdots(\pm 1)^{x_{n}}
$$

\bigcirc Eigval is $\#\{+1\} / n$

- $\binom{n}{k}$ of eigvals are

$$
\mathrm{k} / \mathrm{n}
$$

- Spectral gap:

$$
1-(n-1) / n=1 / n
$$

$D t_{\text {mix }} \leqslant O\left(n^{2}\right)$

Example: cycle

Distribution π :
D +1 w.p. $1 / 2$
D -1 w.p. $1 / 2$

D There are n characters:

$$
x \mapsto \omega^{x}
$$

D Eigval is $\left(\omega+\omega^{-1}\right) / 2$

- Eigvals are

$$
\cos (2 \pi k / n)
$$

- Spectral gap:

$$
1-\cos (2 \pi / n) \simeq \Theta\left(1 / n^{2}\right) ?
$$

$D t_{\text {mix }} \leqslant O\left(n^{2} \log n\right)$?

Example: hypercube

Distribution π :
D 0 w.p. 1/2
$D \mathbb{1}_{\mathfrak{i}}$ w.p. $1 / 2 n$

D There are 2^{n} characters:

$$
x \mapsto(\pm 1)^{x_{1}} \cdots(\pm 1)^{x_{n}}
$$

\bigcirc Eigval is $\#\{+1\} / n$

- $\binom{n}{k}$ of eigvals are

$$
\mathrm{k} / \mathrm{n}
$$

- Spectral gap:

$$
1-(n-1) / n=1 / n
$$

$D t_{\text {mix }} \leqslant O\left(n^{2}\right)$

Example: cycle

Distribution π :
D +1 w.p. $1 / 2$
D -1 w.p. $1 / 2$

D There are n characters:

$$
x \mapsto \omega^{x}
$$

\checkmark Eigval is $\left(\omega+\omega^{-1}\right) / 2$

- Eigvals are

$$
\cos (2 \pi k / n)
$$

- Spectral gap:

$$
1-\cos (2 \pi / n) \simeq \Theta\left(1 / n^{2}\right) ?
$$

$D t_{\text {mix }} \leqslant O\left(n^{2} \log n\right)$? Not for even n.

Relaxation time

Suppose P is time-reversible and lazy:

$$
\lambda_{i}(P) \geqslant 0
$$

\bigcirc Relaxation time: $1 /\left(1-\lambda_{2}(P)\right)$

Relaxation time

Suppose P is time-reversible and lazy:

$$
\lambda_{i}(P) \geqslant 0
$$

D Relaxation time: $1 /\left(1-\lambda_{2}(P)\right)$
\bigcirc Relaxation time does not directly control mixing time :

Relaxation time

Suppose P is time-reversible and lazy:

$$
\lambda_{i}(P) \geqslant 0
$$

\checkmark Relaxation time: $1 /\left(1-\lambda_{2}(P)\right)$
D Relaxation time does not directly control mixing time :-
\checkmark But it controls $\mathrm{t}_{\text {mix }}(\epsilon)$ for tiny ϵ :

Relaxation time

Suppose P is time-reversible and lazy:

$$
\lambda_{i}(P) \geqslant 0
$$

\bigcirc Relaxation time: $1 /\left(1-\lambda_{2}(P)\right)$
\checkmark Relaxation time does not directly control mixing time $:-$

- But it controls $\mathrm{t}_{\text {mix }}(\epsilon)$ for tiny ϵ :

Lemma

$$
t_{\operatorname{mix}}(\epsilon)=O\left(\frac{\log \left(\chi^{2}\left(v_{0} \| \mu\right)\right)+\log (1 / \epsilon)}{1-\lambda_{2}(P)}\right)
$$

Relaxation time

Suppose P is time-reversible and lazy:

$$
\lambda_{i}(P) \geqslant 0
$$

D Relaxation time: $1 /\left(1-\lambda_{2}(\mathrm{P})\right)$
\checkmark Relaxation time does not directly control mixing time $:-$
D But it controls $\mathrm{t}_{\text {mix }}(\epsilon)$ for tiny ϵ :

Lemma

$$
\mathrm{t}_{\operatorname{mix}}(\epsilon)=\mathrm{O}\left(\frac{\log \left(\chi^{2}\left(v_{0} \| \mu\right)\right)+\log (1 / \epsilon)}{1-\lambda_{2}(P)}\right)
$$

D We have

$$
\mathrm{t}_{\text {rel }}=\Theta\left(\lim _{\epsilon \rightarrow 0} \frac{\mathrm{t}_{\text {mix }}(\epsilon)}{\log (1 / \epsilon)}\right)
$$

Relaxation time

Suppose P is time-reversible and lazy: Proof:

$$
\lambda_{i}(P) \geqslant 0
$$

D Relaxation time: $1 /\left(1-\lambda_{2}(\mathrm{P})\right)$
\checkmark Relaxation time does not directly control mixing time $:-$

- But it controls $\mathrm{t}_{\text {mix }}(\epsilon)$ for tiny ϵ :

Lemma

$$
\mathrm{t}_{\operatorname{mix}}(\epsilon)=\mathrm{O}\left(\frac{\log \left(\chi^{2}\left(v_{0} \| \mu\right)\right)+\log (1 / \epsilon)}{1-\lambda_{2}(P)}\right)
$$

D We have

$$
\mathrm{t}_{\text {rel }}=\Theta\left(\lim _{\epsilon \rightarrow 0} \frac{\mathrm{t}_{\text {mix }}(\epsilon)}{\log (1 / \epsilon)}\right)
$$

Relaxation time

Suppose P is time-reversible and lazy: Proof:

$$
\lambda_{i}(P) \geqslant 0
$$

\bigcirc Let v be left eigvec for $\lambda \neq 1$: $\nu \mathrm{P}=\lambda \nu$
D Relaxation time: $1 /\left(1-\lambda_{2}(P)\right)$
\checkmark Relaxation time does not directly control mixing time :
D But it controls $\mathrm{t}_{\text {mix }}(\epsilon)$ for tiny ϵ :

Lemma

$$
\mathrm{t}_{\operatorname{mix}}(\epsilon)=\mathrm{O}\left(\frac{\log \left(\chi^{2}\left(v_{0} \| \mu\right)\right)+\log (1 / \epsilon)}{1-\lambda_{2}(P)}\right)
$$

D We have

$$
\mathrm{t}_{\text {rel }}=\Theta\left(\lim _{\epsilon \rightarrow 0} \frac{\mathrm{t}_{\text {mix }}(\epsilon)}{\log (1 / \epsilon)}\right)
$$

Relaxation time

Suppose P is time-reversible and lazy: Proof:

$$
\lambda_{i}(P) \geqslant 0
$$

D Let v be left eigvec for $\lambda \neq 1$: $\nu \mathrm{P}=\lambda \nu$
\checkmark Relaxation time: $1 /\left(1-\lambda_{2}(P)\right)$
\bigcirc Relaxation time does not directly control mixing time :-
\checkmark But it controls $\mathrm{t}_{\text {mix }}(\epsilon)$ for tiny ϵ :

Lemma

$$
t_{\operatorname{mix}}(\epsilon)=O\left(\frac{\log \left(\chi^{2}\left(v_{0} \| \mu\right)\right)+\log (1 / \epsilon)}{1-\lambda_{2}(P)}\right)
$$

D We have

$$
\mathrm{t}_{\text {rel }}=\Theta\left(\lim _{\epsilon \rightarrow 0} \frac{\mathrm{t}_{\text {mix }}(\epsilon)}{\log (1 / \epsilon)}\right)
$$

D We have $\langle v, \mathbb{1}\rangle=0$, so write

$$
v=\alpha\left(v_{1}-v_{2}\right)+i \beta\left(v_{3}-v_{4}\right)
$$

for dists $v_{1}, v_{2}, v_{3}, v_{4}$.

Relaxation time

Suppose P is time-reversible and lazy: Proof:

$$
\lambda_{i}(P) \geqslant 0
$$

D Let v be left eigvec for $\lambda \neq 1$:

$$
v \mathrm{P}=\lambda v
$$

\checkmark Relaxation time: $1 /\left(1-\lambda_{2}(P)\right)$
\checkmark Relaxation time does not directly control mixing time :
\checkmark But it controls $\mathrm{t}_{\text {mix }}(\epsilon)$ for tiny ϵ :
D We have $\langle v, \mathbb{1}\rangle=0$, so write

$$
v=\alpha\left(v_{1}-v_{2}\right)+i \beta\left(v_{3}-v_{4}\right)
$$

for dists $v_{1}, v_{2}, v_{3}, v_{4}$.
D For $t \geqslant t_{\text {mix }}(\epsilon)$ we get $\left\|v \mathrm{P}^{\mathrm{t}}\right\|_{1} \leqslant \mathrm{O}(\epsilon) \cdot\|v\|_{1}$

Lemma

$$
t_{\operatorname{mix}}(\epsilon)=O\left(\frac{\log \left(\chi^{2}\left(v_{0} \| \mu\right)\right)+\log (1 / \epsilon)}{1-\lambda_{2}(P)}\right)
$$

D We have

$$
\mathrm{t}_{\text {rel }}=\Theta\left(\lim _{\epsilon \rightarrow 0} \frac{\mathrm{t}_{\text {mix }}(\epsilon)}{\log (1 / \epsilon)}\right)
$$

Relaxation time

Suppose P is time-reversible and lazy: Proof:

$$
\lambda_{i}(P) \geqslant 0
$$

\bigcirc Let v be left eigvec for $\lambda \neq 1$:

$$
v \mathrm{P}=\lambda v
$$

\checkmark Relaxation time: $1 /\left(1-\lambda_{2}(P)\right)$
\bigcirc Relaxation time does not directly control mixing time :
\checkmark But it controls $\mathrm{t}_{\text {mix }}(\epsilon)$ for tiny ϵ :

Lemma

$$
t_{\text {mix }}(\epsilon)=O\left(\frac{\log \left(\chi^{2}\left(v_{0} \| \mu\right)\right)+\log (1 / \epsilon)}{1-\lambda_{2}(P)}\right)
$$

- We have

$$
\mathrm{t}_{\text {rel }}=\Theta\left(\lim _{\epsilon \rightarrow 0} \frac{\mathrm{t}_{\text {mix }}(\epsilon)}{\log (1 / \epsilon)}\right)
$$

D We have $\langle v, \mathbb{1}\rangle=0$, so write

$$
v=\alpha\left(v_{1}-v_{2}\right)+i \beta\left(v_{3}-v_{4}\right)
$$

for dists $v_{1}, v_{2}, v_{3}, v_{4}$.
D For $t \geqslant t_{\text {mix }}(\epsilon)$ we get

$$
\left\|v \mathrm{P}^{\mathrm{t}}\right\|_{1} \leqslant \mathrm{O}(\epsilon) \cdot\|v\|_{1}
$$

\bigcirc But this means

$$
\lambda^{\mathrm{t}}=\mathrm{O}(\epsilon)
$$

which means

$$
1-|\lambda| \geqslant \Omega\left(\frac{\log (1 / \epsilon)}{\mathrm{t}_{\operatorname{mix}}(\epsilon)}\right)
$$

Corollary
Under Dobrushin, we have $\mathrm{t}_{\text {rel }}=\mathrm{O}(\mathrm{n})$; in other words

$$
\lambda_{2} \leqslant 1-\Omega(1 / n) .
$$

Corollary
Under Dobrushin, we have $\mathrm{t}_{\text {rel }}=\mathrm{O}(\mathrm{n})$; in other words

$$
\lambda_{2} \leqslant 1-\Omega(1 / n)
$$

D Another proof that hypercube has

$$
\lambda_{2} \leqslant 1-\Omega(1 / n)
$$

Corollary

Under Dobrushin, we have $t_{\text {rel }}=O(n)$; in other words

$$
\lambda_{2} \leqslant 1-\Omega(1 / n) .
$$

D Another proof that hypercube has

$$
\lambda_{2} \leqslant 1-\Omega(1 / n)
$$

D First proof that Glauber for coloring with $>2 \Delta$ colors has

$$
\lambda_{2} \leqslant 1-\Omega(1 / n)
$$

Corollary

Under Dobrushin, we have $\mathrm{t}_{\text {rel }}=\mathrm{O}(\mathrm{n})$; in other words

$$
\lambda_{2} \leqslant 1-\Omega(1 / n) .
$$

D Another proof that hypercube has

$$
\lambda_{2} \leqslant 1-\Omega(1 / n)
$$

D First proof that Glauber for coloring with $>2 \Delta$ colors has

$$
\lambda_{2} \leqslant 1-\Omega(1 / n)
$$

\bigcirc Note: going back from λ_{2} to $t_{\text {mix }}$ gives us non-tight bound of $\mathrm{O}\left(\mathrm{n}^{2}\right)$. :

Fourier Analysis

- Characters

D Examples
\checkmark Relaxation time
Continuous Time

- Functional analysis in continuous time

D Dirichlet form

Fourier Analysis

- Characters
- Examples
- Relaxation time

Continuous Time
D Functional analysis in continuous time

- Dirichlet form

Continuous time

\bigcirc So far, we have been running
Markov chains in discrete time:

$$
\begin{aligned}
X_{0} \mapsto X_{1} \mapsto \cdots & \mapsto X_{t} \mapsto \ldots \\
t & \text { is integer }
\end{aligned}
$$

Continuous time

\bigcirc So far, we have been running
Markov chains in discrete time:

$$
\begin{aligned}
& X_{0} \mapsto X_{1} \mapsto \cdots \mapsto X_{t} \mapsto \ldots \\
& \text { t is integer }
\end{aligned}
$$

- We can run a chain in continuous time via Poisson clock:

Continuous time

\bigcirc So far, we have been running
Markov chains in discrete time:

$$
\left.\begin{array}{rl}
X_{0} \mapsto X_{1} \mapsto & \cdots
\end{array}\right) \underset{\text { t }}{ } \mathrm{X}_{\mathrm{t}} \mapsto \ldots
$$

- We can run a chain in continuous
time via Poisson clock:

D Every ring, take one step of P.

Continuous time

D So far, we have been running
Markov chains in discrete time:

$$
\begin{aligned}
& X_{0} \mapsto X_{1} \mapsto \cdots \mapsto X_{t} \mapsto \ldots \\
& \text { t is integer }
\end{aligned}
$$

- We can run a chain in continuous
time via Poisson clock:

\checkmark Every ring, take one step of P.
© X_{t} : position at time $t \in \mathbb{R}_{\geqslant 0}$

Continuous time

D So far, we have been running Markov chains in discrete time:

$$
\begin{aligned}
& X_{0} \mapsto X_{1} \mapsto \cdots \mapsto X_{t} \mapsto \ldots \\
& \text { t is integer }
\end{aligned}
$$

- We can run a chain in continuous time via Poisson clock:

D Every ring, take one step of P.
© X_{t} : position at time $t \in \mathbb{R}_{\geqslant 0}$
D To algorithmically simulate X_{t} : draw $n \sim \operatorname{Poisson}(\mathrm{t})$ and take n discrete steps

Continuous time

D So far, we have been running Markov chains in discrete time:

$$
\begin{aligned}
& X_{0} \mapsto X_{1} \mapsto \cdots \mapsto \\
& \mapsto X_{t} \mapsto \ldots \\
& \text { t is integer }
\end{aligned}
$$

- We can run a chain in continuous time via Poisson clock:

D Every ring, take one step of P .

- X_{t} : position at time $t \in \mathbb{R}_{\geqslant 0}$
\checkmark To algorithmically simulate X_{t} : draw $n \sim \operatorname{Poisson}(t)$ and take n discrete steps
D How is X_{t} distributed given X_{0} ?

Continuous time

D So far, we have been running Markov chains in discrete time:

$$
\begin{aligned}
& X_{0} \mapsto X_{1} \mapsto \cdots \mapsto \\
& \mapsto X_{t} \mapsto \ldots \\
& \text { t is integer }
\end{aligned}
$$

- We can run a chain in continuous time via Poisson clock:

D Every ring, take one step of P.
$\bigcirc X_{t}$: position at time $t \in \mathbb{R}_{\geqslant 0}$
\checkmark To algorithmically simulate X_{t} : draw $n \sim \operatorname{Poisson}(\mathrm{t})$ and take n discrete steps
D How is X_{t} distributed given X_{0} ?
D Approximate the process as

where in each interval we take transition of P w.p. ϵ.

Continuous time

D So far, we have been running Markov chains in discrete time:

$$
\begin{aligned}
& X_{0} \mapsto X_{1} \mapsto \cdots \mapsto \\
& \mapsto X_{t} \mapsto \ldots \\
& \text { t is integer }
\end{aligned}
$$

- We can run a chain in continuous time via Poisson clock:

D Every ring, take one step of P .
$D X_{t}$: position at time $t \in \mathbb{R}_{\geqslant 0}$
\checkmark To algorithmically simulate X_{t} : draw $n \sim \operatorname{Poisson}(\mathrm{t})$ and take n discrete steps
D How is X_{t} distributed given X_{0} ?
\bigcirc Approximate the process as

where in each interval we take transition of P w.p. ϵ.

- Result at time t :

$$
\underbrace{((1-\epsilon) \mathrm{I}+\epsilon \mathrm{P})^{\mathrm{t} / \epsilon}}_{\text {transition matrix }} \rightarrow \exp (\mathrm{t}(\mathrm{P}-\mathrm{I}))
$$

Continuous time

D So far, we have been running Markov chains in discrete time:

$$
\begin{aligned}
& X_{0} \mapsto X_{1} \mapsto \cdots \mapsto \\
& \mapsto X_{t} \mapsto \ldots \\
& \text { t is integer }
\end{aligned}
$$

- We can run a chain in continuous time via Poisson clock:

\checkmark Every ring, take one step of P.
$D X_{t}$: position at time $t \in \mathbb{R}_{\geqslant 0}$
\checkmark To algorithmically simulate X_{t} : draw $n \sim \operatorname{Poisson}(\mathrm{t})$ and take n discrete steps
D How is X_{t} distributed given X_{0} ?
\bigcirc Approximate the process as

where in each interval we take transition of P w.p. ϵ.
- Result at time t :

$$
\underbrace{((1-\epsilon) I+\epsilon P)^{t / \epsilon}}_{\text {transition matrix }} \rightarrow \exp (t(P-I))
$$

- Ultimate lazification! :

Functional analysis in continuous time

\bigcirc What happens to functional analysis in continuous time?

Functional analysis in continuous time

- What happens to functional analysis in continuous time?
\checkmark In discrete time we want

$$
\mathcal{D}_{\phi}(\nu P \| \mu) \leqslant(1-\rho) \mathcal{D}_{\phi}(v \| \mu)
$$

Functional analysis in continuous time

- What happens to functional analysis in continuous time?
\bigcirc In discrete time we want

$$
\mathcal{D}_{\phi}(v \mathrm{P} \| \mu) \leqslant(1-\rho) \mathcal{D}_{\phi}(v \| \mu)
$$

\bigcirc Analogue in continuous time:

$$
\begin{aligned}
& \quad \frac{\mathrm{d}}{\mathrm{dt}} \mathcal{D}_{\phi}\left(v_{\mathrm{t}} \| \mu\right) \leqslant-\rho \mathcal{D}_{\phi}\left(v_{\mathrm{t}} \| \mu\right) \\
& \text { where } v_{\mathrm{t}}=v_{0} \exp (\mathrm{t}(\mathrm{P}-\mathrm{I})) .
\end{aligned}
$$

Functional analysis in continuous time

- What happens to functional analysis in continuous time?
\bigcirc In discrete time we want

$$
\mathcal{D}_{\phi}(v \mathrm{P} \| \mu) \leqslant(1-\rho) \mathcal{D}_{\phi}(v \| \mu)
$$

\bigcirc Analogue in continuous time:

$$
\frac{\mathrm{d}}{\mathrm{dt}} \mathcal{D}_{\phi}\left(v_{\mathrm{t}} \| \mu\right) \leqslant-\rho \mathcal{D}_{\phi}\left(v_{\mathrm{t}} \| \mu\right)
$$

$$
\text { where } v_{t}=v_{0} \exp (t(P-I))
$$

© Corollary: we get

$$
\mathcal{D}_{\phi}\left(v_{\mathrm{t}} \| \mu\right) \leqslant e^{-\mathrm{t} \rho} \cdot \mathcal{D}_{\phi}\left(v_{0} \| \mu\right)
$$

Functional analysis in continuous time

- What happens to functional analysis in continuous time?
\bigcirc In discrete time we want

$$
\mathcal{D}_{\phi}(v P \| \mu) \leqslant(1-\rho) \mathcal{D}_{\phi}(v \| \mu)
$$

\bigcirc Analogue in continuous time:

$$
\frac{\mathrm{d}}{\mathrm{dt}} \mathcal{D}_{\phi}\left(v_{\mathrm{t}} \| \mu\right) \leqslant-\rho \mathcal{D}_{\phi}\left(v_{\mathrm{t}} \| \mu\right)
$$

where $v_{t}=v_{0} \exp (t(P-I))$.
\bigcirc Corollary: we get

$$
\mathcal{D}_{\phi}\left(v_{\mathrm{t}} \| \mu\right) \leqslant e^{-\mathrm{t} \rho} \cdot \mathcal{D}_{\phi}\left(v_{0} \| \mu\right)
$$

\bigcirc By comparing to $d_{T V}$ we get
continuous mixing time bounds.

Functional analysis in continuous time

D What happens to functional analysis in continuous time?
\checkmark In discrete time we want

$$
\mathcal{D}_{\phi}(v P \| \mu) \leqslant(1-\rho) \mathcal{D}_{\phi}(v \| \mu)
$$

\bigcirc Analogue in continuous time:

$$
\frac{\mathrm{d}}{\mathrm{dt}} \mathcal{D}_{\phi}\left(v_{\mathrm{t}} \| \mu\right) \leqslant-\rho \mathcal{D}_{\phi}\left(v_{\mathrm{t}} \| \mu\right)
$$

where $v_{t}=v_{0} \exp (t(P-I))$.
D Corollary: we get

$$
\mathcal{D}_{\phi}\left(v_{\mathrm{t}} \| \mu\right) \leqslant e^{-\mathrm{t} \rho} \cdot \mathcal{D}_{\phi}\left(v_{0} \| \mu\right)
$$

\bigcirc By comparing to $d_{T V}$ we get continuous mixing time bounds.

Fact: discrete is stronger

Discrete-time contraction implies continuous-time contraction.

Functional analysis in continuous time

D What happens to functional analysis in continuous time?
\bigcirc In discrete time we want

$$
\mathcal{D}_{\phi}(v P \| \mu) \leqslant(1-\rho) \mathcal{D}_{\phi}(v \| \mu)
$$

\bigcirc Analogue in continuous time:

$$
\frac{\mathrm{d}}{\mathrm{dt}} \mathcal{D}_{\phi}\left(v_{\mathrm{t}} \| \mu\right) \leqslant-\rho \mathcal{D}_{\phi}\left(v_{\mathrm{t}} \| \mu\right)
$$

where $v_{t}=v_{0} \exp (t(P-I))$.
D Corollary: we get

$$
\mathcal{D}_{\phi}\left(v_{\mathrm{t}} \| \mu\right) \leqslant e^{-\mathrm{t} \rho} \cdot \mathcal{D}_{\phi}\left(v_{0} \| \mu\right)
$$

\bigcirc By comparing to $d_{T V}$ we get continuous mixing time bounds.

Fact: discrete is stronger

Discrete-time contraction implies continuous-time contraction.

Proof:

Functional analysis in continuous time

D What happens to functional analysis in continuous time?
\checkmark In discrete time we want

$$
\mathcal{D}_{\phi}(\nu P \| \mu) \leqslant(1-\rho) \mathcal{D}_{\phi}(\nu \| \mu)
$$

D Analogue in continuous time:

$$
\frac{\mathrm{d}}{\mathrm{dt}} \mathcal{D}_{\phi}\left(v_{\mathrm{t}} \| \mu\right) \leqslant-\rho \mathcal{D}_{\phi}\left(v_{\mathrm{t}} \| \mu\right)
$$

where $v_{t}=v_{0} \exp (t(P-I))$.
D Corollary: we get

$$
\mathcal{D}_{\phi}\left(v_{\mathrm{t}} \| \mu\right) \leqslant e^{-\mathrm{t} \rho} \cdot \mathcal{D}_{\phi}\left(v_{0} \| \mu\right)
$$

\bigcirc By comparing to $d_{T V}$ we get continuous mixing time bounds.

Fact: discrete is stronger

Discrete-time contraction implies continuous-time contraction.

Proof:

D Will show $(1-\epsilon) I+\epsilon P$ contracts \mathcal{D}_{ϕ} by $1-\epsilon \rho$. Taking $\epsilon \rightarrow 0$ gives what we want.

Functional analysis in continuous time

D What happens to functional analysis in continuous time?
\checkmark In discrete time we want

$$
\mathcal{D}_{\phi}(\nu P \| \mu) \leqslant(1-\rho) \mathcal{D}_{\phi}(\nu \| \mu)
$$

D Analogue in continuous time:

$$
\frac{\mathrm{d}}{\mathrm{dt}} \mathcal{D}_{\phi}\left(v_{\mathrm{t}} \| \mu\right) \leqslant-\rho \mathcal{D}_{\phi}\left(v_{\mathrm{t}} \| \mu\right)
$$

where $v_{t}=v_{0} \exp (t(P-I))$.
D Corollary: we get

$$
\mathcal{D}_{\phi}\left(v_{\mathrm{t}} \| \mu\right) \leqslant e^{-\mathrm{t} \rho} \cdot \mathcal{D}_{\phi}\left(v_{0} \| \mu\right)
$$

\bigcirc By comparing to $d_{T V}$ we get continuous mixing time bounds.

Fact: discrete is stronger

Discrete-time contraction implies continuous-time contraction.

Proof:

D Will show $(1-\epsilon) I+\epsilon P$ contracts \mathcal{D}_{ϕ} by $1-\epsilon \rho$. Taking $\epsilon \rightarrow 0$ gives what we want.
\bigcirc Because ϕ is convex:

$$
\begin{gather*}
\mathcal{D}_{\phi}((1-\epsilon) v+\epsilon v P \| \mu) \leqslant \\
(1-\epsilon) \mathcal{D}_{\phi}(v \| \mu)+\epsilon \mathcal{D}_{\phi}(v P \| \mu)
\end{gather*}
$$

Functional analysis in continuous time

D What happens to functional analysis in continuous time?
\checkmark In discrete time we want

$$
\mathcal{D}_{\phi}(\nu P \| \mu) \leqslant(1-\rho) \mathcal{D}_{\phi}(\nu \| \mu)
$$

D Analogue in continuous time:

$$
\frac{\mathrm{d}}{\mathrm{dt}} \mathcal{D}_{\phi}\left(v_{\mathrm{t}} \| \mu\right) \leqslant-\rho \mathcal{D}_{\phi}\left(v_{\mathrm{t}} \| \mu\right)
$$

where $v_{t}=v_{0} \exp (t(P-I))$.
D Corollary: we get

$$
\mathcal{D}_{\phi}\left(v_{\mathrm{t}} \| \mu\right) \leqslant e^{-\mathrm{t} \mathrm{\rho} \rho} \cdot \mathcal{D}_{\phi}\left(v_{0} \| \mu\right)
$$

\bigcirc By comparing to $d_{T V}$ we get continuous mixing time bounds.

Fact: discrete is stronger

Discrete-time contraction implies continuous-time contraction.

Proof:
D Will show $(1-\epsilon) I+\epsilon P$ contracts \mathcal{D}_{ϕ} by $1-\epsilon \rho$. Taking $\epsilon \rightarrow 0$ gives what we want.
\bigcirc Because ϕ is convex:

$$
\mathcal{D}_{\phi}((1-\epsilon) v+\epsilon v P \| \mu) \leqslant
$$

$$
(1-\epsilon) \mathcal{D}_{\phi}(\nu \| \mu)+\epsilon \mathcal{D}_{\phi}(v P \| \mu)
$$

D But this is $\leqslant(1-\epsilon \rho) \mathcal{D}_{\phi}(v \| \mu)$. :
\checkmark Discrete can be strictly stronger:

\bigcirc Discrete can be strictly stronger:

- But, for time-reversible and lazy chains in χ^{2}. say eigs $\geqslant 0$ or $\lambda_{n} \geqslant-\lambda_{2}$ discrete time \leftrightarrow continuous time
\bigcirc Discrete can be strictly stronger:

\checkmark But, for time-reversible and lazy chains in χ^{2} : say eigs $\geqslant 0$ or $\lambda_{n} \geqslant-\lambda_{2}$ discrete time \leftrightarrow continuous time
- x^{2} contraction in continuous time is dictated by eigs of

$$
\left(\mathrm{P}+\mathrm{P}^{\circ}\right) / 2
$$

\bigcirc Discrete can be strictly stronger:

- But, for time-reversible and lazy chains in χ^{2} : say eigs $\geqslant 0$ or $\lambda_{n} \geqslant-\lambda_{2}$ discrete time \leftrightarrow continuous time
- χ^{2} contraction in continuous time is dictated by eigs of

$$
\left(\mathrm{P}+\mathrm{P}^{\circ}\right) / 2
$$

- Sketch:

$$
\begin{gathered}
(\mathrm{I}+\epsilon(\mathrm{P}-\mathrm{I}))\left(\mathrm{I}+\epsilon\left(\mathrm{P}^{\circ}-\mathrm{I}\right)\right)= \\
\mathrm{I}+\epsilon\left(\mathrm{P}+\mathrm{P}^{\circ}-2 \mathrm{I}\right)+\mathrm{O}\left(\epsilon^{2}\right)
\end{gathered}
$$

\bigcirc Discrete can be strictly stronger:

\checkmark But, for time-reversible and lazy chains in χ^{2} :

```
say eigs \geqslant0 or \lambdan}\geqslant-\mp@subsup{\lambda}{2}{
```

D For lazy reversible P, we have gap of PP° is approximately gap of $\left(\mathrm{P}+\mathrm{P}^{\circ}\right) / 2$. :
discrete time \leftrightarrow continuous time

- χ^{2} contraction in continuous time is dictated by eigs of

$$
\left(\mathrm{P}+\mathrm{P}^{\circ}\right) / 2
$$

\bigcirc Sketch:

$$
\begin{gathered}
(\mathrm{I}+\epsilon(\mathrm{P}-\mathrm{I}))\left(\mathrm{I}+\epsilon\left(\mathrm{P}^{\circ}-\mathrm{I}\right)\right)= \\
\mathrm{I}+\epsilon\left(\mathrm{P}+\mathrm{P}^{\circ}-2 \mathrm{I}\right)+\mathrm{O}\left(\epsilon^{2}\right)
\end{gathered}
$$

\bigcirc Discrete can be strictly stronger:

\checkmark But, for time-reversible and lazy chains in χ^{2} :

$$
\text { say eigs } \geqslant 0 \text { or } \lambda_{n} \geqslant-\lambda_{2}
$$

discrete time \leftrightarrow continuous time

- x^{2} contraction in continuous time is dictated by eigs of

$$
\left(\mathrm{P}+\mathrm{P}^{\circ}\right) / 2
$$

\bigcirc Sketch:

$$
\begin{gathered}
(\mathrm{I}+\epsilon(\mathrm{P}-\mathrm{I}))\left(\mathrm{I}+\epsilon\left(\mathrm{P}^{\circ}-\mathrm{I}\right)\right)= \\
\mathrm{I}+\epsilon\left(\mathrm{P}+\mathrm{P}^{\circ}-2 \mathrm{I}\right)+\mathrm{O}\left(\epsilon^{2}\right)
\end{gathered}
$$

- For lazy reversible P, we have gap of PP° is approximately gap of $\left(\mathrm{P}+\mathrm{P}^{\circ}\right) / 2$. .
\bigcirc Corollary: prove continuous-time contraction if easier, and don't worry about it.
\bigcirc Discrete can be strictly stronger:

\checkmark But, for time-reversible and lazy chains in χ^{2} : say eigs $\geqslant 0$ or $\lambda_{n} \geqslant-\lambda_{2}$ discrete time \leftrightarrow continuous time
- x^{2} contraction in continuous time is dictated by eigs of

$$
\left(\mathrm{P}+\mathrm{P}^{\circ}\right) / 2
$$

- For lazy reversible P, we have gap of PP° is approximately gap of $\left(\mathrm{P}+\mathrm{P}^{\circ}\right) / 2$. .
\bigcirc Corollary: prove continuous-time contraction if easier, and don't worry about it.
\checkmark Easier because of Dirichlet form!
\bigcirc Sketch:

$$
\begin{gathered}
(\mathrm{I}+\epsilon(\mathrm{P}-\mathrm{I}))\left(\mathrm{I}+\epsilon\left(\mathrm{P}^{\circ}-\mathrm{I}\right)\right)= \\
\mathrm{I}+\epsilon\left(\mathrm{P}+\mathrm{P}^{\circ}-2 \mathrm{I}\right)+\mathrm{O}\left(\epsilon^{2}\right)
\end{gathered}
$$

Dirichlet form
D Assume P is time-reversible.

Dirichlet form

D Assume P is time-reversible.
D Let's expand $\frac{\mathrm{d}}{\mathrm{dt}} \mathcal{D}_{\phi}\left(v_{\mathrm{t}} \| \mu\right)$. We have $\frac{\mathrm{d}}{\mathrm{dt}} \mathbb{E}_{\mu}\left[\phi\left(\nu_{\mathrm{t}} / \mu\right)\right]=$

$$
\mathbb{E}_{\mu}\left[\phi^{\prime}\left(\frac{v_{t}}{\mu}\right) \frac{\mathrm{d}}{\mathrm{dt}} \frac{v_{\mathrm{t}}}{\mu}\right]
$$

Dirichlet form

D Assume P is time-reversible.
D Let's expand $\frac{\mathrm{d}}{\mathrm{dt}} \mathcal{D}_{\phi}\left(v_{\mathrm{t}} \| \mu\right)$. We have $\frac{\mathrm{d}}{\mathrm{dt}} \mathbb{E}_{\mu}\left[\phi\left(\nu_{\mathrm{t}} / \mu\right)\right]=$

$$
\mathbb{E}_{\mu}\left[\phi^{\prime}\left(\frac{v_{\mathrm{t}}}{\mu}\right) \frac{\mathrm{d}}{\mathrm{dt}} \frac{v_{\mathrm{t}}}{\mu}\right]
$$

D But $\frac{d}{d t} v_{t}=v_{t}(P-I)$, and we can write above as

$$
-\frac{1}{2} \sum_{x, y} Q(x, y)\left(\phi^{\prime}\left(\frac{v_{t}(x)}{\mu(x)}\right)-\phi^{\prime}\left(\frac{v_{t}(y)}{\mu(y)}\right)\right)\left(\frac{\nu_{t}(x)}{\mu(x)}-\frac{v_{t}(y)}{\mu(y)}\right)
$$

Dirichlet form

D Assume P is time-reversible.
D Let's expand $\frac{\mathrm{d}}{\mathrm{dt}} \mathcal{D}_{\phi}\left(v_{\mathrm{t}} \| \mu\right)$. We have $\frac{\mathrm{d}}{\mathrm{dt}} \mathbb{E}_{\mu}\left[\phi\left(v_{\mathrm{t}} / \mu\right)\right]=$

$$
\mathbb{E}_{\mu}\left[\phi^{\prime}\left(\frac{v_{t}}{\mu}\right) \frac{\mathrm{d}}{\mathrm{dt}} \frac{v_{t}}{\mu}\right]
$$

\bigcirc But $\frac{\mathrm{d}}{\mathrm{dt}} v_{\mathrm{t}}=v_{\mathrm{t}}(\mathrm{P}-\mathrm{I})$, and we can write above as

$$
-\frac{1}{2} \sum_{x, y} Q(x, y)\left(\phi^{\prime}\left(\frac{v_{t}(x)}{\mu(x)}\right)-\phi^{\prime}\left(\frac{v_{t}(y)}{\mu(y)}\right)\right)\left(\frac{\nu_{t}(x)}{\mu(x)}-\frac{v_{t}(y)}{\mu(y)}\right)
$$

Dirichlet form

Define $\mathcal{E}(f, g)$ for functions $f, g: \Omega \rightarrow \mathbb{R}$ as

$$
\frac{1}{2} \mathbb{E}_{(x, y) \sim Q}[(f(x)-f(y))(g(x)-g(y))]
$$

Dirichlet form

D Assume P is time-reversible.
D Let's expand $\frac{\mathrm{d}}{\mathrm{dt}} \mathcal{D}_{\phi}\left(v_{\mathrm{t}} \| \mu\right)$. We have $\frac{\mathrm{d}}{\mathrm{dt}} \mathbb{E}_{\mu}\left[\phi\left(v_{\mathrm{t}} / \mu\right)\right]=$

$$
\mathbb{E}_{\mu}\left[\phi^{\prime}\left(\frac{v_{\mathrm{t}}}{\mu}\right) \frac{\mathrm{d}}{\mathrm{dt}} \frac{v_{\mathrm{t}}}{\mu}\right]
$$

\bigcirc But $\frac{\mathrm{d}}{\mathrm{dt}} v_{\mathrm{t}}=v_{\mathrm{t}}(\mathrm{P}-\mathrm{I})$, and we can write above as

$$
-\frac{1}{2} \sum_{x, y} Q(x, y)\left(\phi^{\prime}\left(\frac{v_{t}(x)}{\mu(x)}\right)-\phi^{\prime}\left(\frac{v_{t}(y)}{\mu(y)}\right)\right)\left(\frac{v_{t}(x)}{\mu(x)}-\frac{v_{t}(y)}{\mu(y)}\right)
$$

Dirichlet form

Define $\mathcal{E}(f, g)$ for functions $f, g: \Omega \rightarrow \mathbb{R}$ as

$$
\frac{1}{2} \mathbb{E}_{(x, y) \sim Q}[(f(x)-f(y))(g(x)-g(y))]
$$

Poincaré: $2 \mathcal{E}(f, f) \geqslant \rho \operatorname{Var}[f]$

Just need to lower bound \mathcal{E}

