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X = Wi wik

> For G, we get |G| characters. ©

We just need to compute
Exnw} - ]
for all of these characters.

> The wy =--- = wy = 1 character
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> If Pis Abelian walk, then P° = PT is
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Since P and P° commute, we have
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Under Dobrushin, we have t, = O(n); in other words
A <1—-0Q(1/n).
> Another proof that hypercube has
A2 <1-0(1/n)

> First proof that Glauber for coloring with > 2A colors
has
)\2 < 1— Q(1/n)

> Note: going back from A, to tmix gives us non-tight
bound of O(n?). ®
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> So far, we have been running
Markov chains in discrete time:

Xo — X r—>---r—>XTt»—>...
tis integer
> We can run a chain in continuous

time via Poisson clock:
time

NI

ring

(> Every ring, take one step of P.
> X position at time t € Rxg

\VAV,

To algorithmically simulate Xy:

draw n ~ Poisson(t) and take n
discrete steps

How is Xy distributed given X?

Approximate the process as

€ € € € € € € time
L

where in each interval we take
transition of P w.p. €.

Result at time t:
(1—e)I+eP)Y€ = exp(t(P 1))
transition matrix
Ultimate lazification! @
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Just need to lower bound &



