
1/14

CS 263: Counting and Sampling

Nima Anari

slides for

Continuous Time

2/14

Review

φ-entropy

For function φ and f : Ω → R define

Entφµ [f] = Eµ[φ ◦ f] − φ(Eµ[f]).

φ-divergence

For measure ν and dist µ define

Dφ(ν ‖ µ) = Entφµ
[
ν

µ

]
φ(x) = x2 vs. φ(x) = x log x
x2 leads to Var and χ2

x log x leads to Ent and DKL

Contraction:

Dφ(νN ‖ µN) 6 (1− ρ)Dφ(ν ‖ µ)

Lemma: data processing

Dφ(νN ‖ µN) 6 Dφ(ν ‖ µ)

Specializing to χ2, we have

ρ = 1− λ2(NN◦)

Abelian walks on group G:

x 7→ x+z

sampled i.i.d. from π

Eigvecs are characters χ:

χ(x+ y) = χ(x)χ(y)

Eigvals are Eπ[χ]

2/14

Review

φ-entropy

For function φ and f : Ω → R define

Entφµ [f] = Eµ[φ ◦ f] − φ(Eµ[f]).

φ-divergence

For measure ν and dist µ define

Dφ(ν ‖ µ) = Entφµ
[
ν

µ

]

φ(x) = x2 vs. φ(x) = x log x
x2 leads to Var and χ2

x log x leads to Ent and DKL

Contraction:

Dφ(νN ‖ µN) 6 (1− ρ)Dφ(ν ‖ µ)

Lemma: data processing

Dφ(νN ‖ µN) 6 Dφ(ν ‖ µ)

Specializing to χ2, we have

ρ = 1− λ2(NN◦)

Abelian walks on group G:

x 7→ x+z

sampled i.i.d. from π

Eigvecs are characters χ:

χ(x+ y) = χ(x)χ(y)

Eigvals are Eπ[χ]

2/14

Review

φ-entropy

For function φ and f : Ω → R define

Entφµ [f] = Eµ[φ ◦ f] − φ(Eµ[f]).

φ-divergence

For measure ν and dist µ define

Dφ(ν ‖ µ) = Entφµ
[
ν

µ

]
φ(x) = x2 vs. φ(x) = x log x

x2 leads to Var and χ2

x log x leads to Ent and DKL

Contraction:

Dφ(νN ‖ µN) 6 (1− ρ)Dφ(ν ‖ µ)

Lemma: data processing

Dφ(νN ‖ µN) 6 Dφ(ν ‖ µ)

Specializing to χ2, we have

ρ = 1− λ2(NN◦)

Abelian walks on group G:

x 7→ x+z

sampled i.i.d. from π

Eigvecs are characters χ:

χ(x+ y) = χ(x)χ(y)

Eigvals are Eπ[χ]

2/14

Review

φ-entropy

For function φ and f : Ω → R define

Entφµ [f] = Eµ[φ ◦ f] − φ(Eµ[f]).

φ-divergence

For measure ν and dist µ define

Dφ(ν ‖ µ) = Entφµ
[
ν

µ

]
φ(x) = x2 vs. φ(x) = x log x
x2 leads to Var and χ2

x log x leads to Ent and DKL

Contraction:

Dφ(νN ‖ µN) 6 (1− ρ)Dφ(ν ‖ µ)

Lemma: data processing

Dφ(νN ‖ µN) 6 Dφ(ν ‖ µ)

Specializing to χ2, we have

ρ = 1− λ2(NN◦)

Abelian walks on group G:

x 7→ x+z

sampled i.i.d. from π

Eigvecs are characters χ:

χ(x+ y) = χ(x)χ(y)

Eigvals are Eπ[χ]

2/14

Review

φ-entropy

For function φ and f : Ω → R define

Entφµ [f] = Eµ[φ ◦ f] − φ(Eµ[f]).

φ-divergence

For measure ν and dist µ define

Dφ(ν ‖ µ) = Entφµ
[
ν

µ

]
φ(x) = x2 vs. φ(x) = x log x
x2 leads to Var and χ2

x log x leads to Ent and DKL

Contraction:

Dφ(νN ‖ µN) 6 (1− ρ)Dφ(ν ‖ µ)

Lemma: data processing

Dφ(νN ‖ µN) 6 Dφ(ν ‖ µ)

Specializing to χ2, we have

ρ = 1− λ2(NN◦)

Abelian walks on group G:

x 7→ x+z

sampled i.i.d. from π

Eigvecs are characters χ:

χ(x+ y) = χ(x)χ(y)

Eigvals are Eπ[χ]

2/14

Review

φ-entropy

For function φ and f : Ω → R define

Entφµ [f] = Eµ[φ ◦ f] − φ(Eµ[f]).

φ-divergence

For measure ν and dist µ define

Dφ(ν ‖ µ) = Entφµ
[
ν

µ

]
φ(x) = x2 vs. φ(x) = x log x
x2 leads to Var and χ2

x log x leads to Ent and DKL

Contraction:

Dφ(νN ‖ µN) 6 (1− ρ)Dφ(ν ‖ µ)

Lemma: data processing

Dφ(νN ‖ µN) 6 Dφ(ν ‖ µ)

Specializing to χ2, we have

ρ = 1− λ2(NN◦)

Abelian walks on group G:

x 7→ x+z

sampled i.i.d. from π

Eigvecs are characters χ:

χ(x+ y) = χ(x)χ(y)

Eigvals are Eπ[χ]

2/14

Review

φ-entropy

For function φ and f : Ω → R define

Entφµ [f] = Eµ[φ ◦ f] − φ(Eµ[f]).

φ-divergence

For measure ν and dist µ define

Dφ(ν ‖ µ) = Entφµ
[
ν

µ

]
φ(x) = x2 vs. φ(x) = x log x
x2 leads to Var and χ2

x log x leads to Ent and DKL

Contraction:

Dφ(νN ‖ µN) 6 (1− ρ)Dφ(ν ‖ µ)

Lemma: data processing

Dφ(νN ‖ µN) 6 Dφ(ν ‖ µ)

Specializing to χ2, we have

ρ = 1− λ2(NN◦)

Abelian walks on group G:

x 7→ x+z

sampled i.i.d. from π

Eigvecs are characters χ:

χ(x+ y) = χ(x)χ(y)

Eigvals are Eπ[χ]

2/14

Review

φ-entropy

For function φ and f : Ω → R define

Entφµ [f] = Eµ[φ ◦ f] − φ(Eµ[f]).

φ-divergence

For measure ν and dist µ define

Dφ(ν ‖ µ) = Entφµ
[
ν

µ

]
φ(x) = x2 vs. φ(x) = x log x
x2 leads to Var and χ2

x log x leads to Ent and DKL

Contraction:

Dφ(νN ‖ µN) 6 (1− ρ)Dφ(ν ‖ µ)

Lemma: data processing

Dφ(νN ‖ µN) 6 Dφ(ν ‖ µ)

Specializing to χ2, we have

ρ = 1− λ2(NN◦)

Abelian walks on group G:

x 7→ x+z

sampled i.i.d. from π

Eigvecs are characters χ:

χ(x+ y) = χ(x)χ(y)

Eigvals are Eπ[χ]

2/14

Review

φ-entropy

For function φ and f : Ω → R define

Entφµ [f] = Eµ[φ ◦ f] − φ(Eµ[f]).

φ-divergence

For measure ν and dist µ define

Dφ(ν ‖ µ) = Entφµ
[
ν

µ

]
φ(x) = x2 vs. φ(x) = x log x
x2 leads to Var and χ2

x log x leads to Ent and DKL

Contraction:

Dφ(νN ‖ µN) 6 (1− ρ)Dφ(ν ‖ µ)

Lemma: data processing

Dφ(νN ‖ µN) 6 Dφ(ν ‖ µ)

Specializing to χ2, we have

ρ = 1− λ2(NN◦)

Abelian walks on group G:

x 7→ x+z

sampled i.i.d. from π

Eigvecs are characters χ:

χ(x+ y) = χ(x)χ(y)

Eigvals are Eπ[χ]

2/14

Review

φ-entropy

For function φ and f : Ω → R define

Entφµ [f] = Eµ[φ ◦ f] − φ(Eµ[f]).

φ-divergence

For measure ν and dist µ define

Dφ(ν ‖ µ) = Entφµ
[
ν

µ

]
φ(x) = x2 vs. φ(x) = x log x
x2 leads to Var and χ2

x log x leads to Ent and DKL

Contraction:

Dφ(νN ‖ µN) 6 (1− ρ)Dφ(ν ‖ µ)

Lemma: data processing

Dφ(νN ‖ µN) 6 Dφ(ν ‖ µ)

Specializing to χ2, we have

ρ = 1− λ2(NN◦)

Abelian walks on group G:

x 7→ x+z

sampled i.i.d. from π

Eigvecs are characters χ:

χ(x+ y) = χ(x)χ(y)

Eigvals are Eπ[χ]

2/14

Review

φ-entropy

For function φ and f : Ω → R define

Entφµ [f] = Eµ[φ ◦ f] − φ(Eµ[f]).

φ-divergence

For measure ν and dist µ define

Dφ(ν ‖ µ) = Entφµ
[
ν

µ

]
φ(x) = x2 vs. φ(x) = x log x
x2 leads to Var and χ2

x log x leads to Ent and DKL

Contraction:

Dφ(νN ‖ µN) 6 (1− ρ)Dφ(ν ‖ µ)

Lemma: data processing

Dφ(νN ‖ µN) 6 Dφ(ν ‖ µ)

Specializing to χ2, we have

ρ = 1− λ2(NN◦)

Abelian walks on group G:

x 7→ x+z

sampled i.i.d. from π

Eigvecs are characters χ:

χ(x+ y) = χ(x)χ(y)

Eigvals are Eπ[χ]

4/14

Fourier Analysis
Characters

Examples

Relaxation time

Continuous Time
Functional analysis in continuous time

Dirichlet form

4/14

Fourier Analysis
Characters

Examples

Relaxation time

Continuous Time
Functional analysis in continuous time

Dirichlet form

5/14

Characters

We know characters of Zn:

χ(x) = ωx

for ω an n-th root of unity.

C

There are exactly n of them.

Characters of Zn1
× · · · × Znk

:

x 7→ ωx1

1 · · ·ωxk

k .

For G, we get |G| characters.

We just need to compute

Ex∼π

[
ωx1

1 · · ·ωxk

k

]
for all of these characters.

The ω1 = · · · = ωk = 1 character

gives us the special 1 eigval.

If P is Abelian walk, then P◦ = Pᵀ is

also Abelian walk. Eigvals are

Ex∼π[χ(−x)]

Since P and P◦ commute, we have

λk(PP
◦) = |λk(P)|

2

Mixing: largest |·| of an eig?

5/14

Characters

We know characters of Zn:

χ(x) = ωx

for ω an n-th root of unity.

C

There are exactly n of them.

Characters of Zn1
× · · · × Znk

:

x 7→ ωx1

1 · · ·ωxk

k .

For G, we get |G| characters.

We just need to compute

Ex∼π

[
ωx1

1 · · ·ωxk

k

]
for all of these characters.

The ω1 = · · · = ωk = 1 character

gives us the special 1 eigval.

If P is Abelian walk, then P◦ = Pᵀ is

also Abelian walk. Eigvals are

Ex∼π[χ(−x)]

Since P and P◦ commute, we have

λk(PP
◦) = |λk(P)|

2

Mixing: largest |·| of an eig?

5/14

Characters

We know characters of Zn:

χ(x) = ωx

for ω an n-th root of unity.

C

There are exactly n of them.

Characters of Zn1
× · · · × Znk

:

x 7→ ωx1

1 · · ·ωxk

k .

For G, we get |G| characters.

We just need to compute

Ex∼π

[
ωx1

1 · · ·ωxk

k

]
for all of these characters.

The ω1 = · · · = ωk = 1 character

gives us the special 1 eigval.

If P is Abelian walk, then P◦ = Pᵀ is

also Abelian walk. Eigvals are

Ex∼π[χ(−x)]

Since P and P◦ commute, we have

λk(PP
◦) = |λk(P)|

2

Mixing: largest |·| of an eig?

5/14

Characters

We know characters of Zn:

χ(x) = ωx

for ω an n-th root of unity.

C

There are exactly n of them.

Characters of Zn1
× · · · × Znk

:

x 7→ ωx1

1 · · ·ωxk

k .

For G, we get |G| characters.

We just need to compute

Ex∼π

[
ωx1

1 · · ·ωxk

k

]
for all of these characters.

The ω1 = · · · = ωk = 1 character

gives us the special 1 eigval.

If P is Abelian walk, then P◦ = Pᵀ is

also Abelian walk. Eigvals are

Ex∼π[χ(−x)]

Since P and P◦ commute, we have

λk(PP
◦) = |λk(P)|

2

Mixing: largest |·| of an eig?

5/14

Characters

We know characters of Zn:

χ(x) = ωx

for ω an n-th root of unity.

C

There are exactly n of them.

Characters of Zn1
× · · · × Znk

:

x 7→ ωx1

1 · · ·ωxk

k .

For G, we get |G| characters.

We just need to compute

Ex∼π

[
ωx1

1 · · ·ωxk

k

]
for all of these characters.

The ω1 = · · · = ωk = 1 character

gives us the special 1 eigval.

If P is Abelian walk, then P◦ = Pᵀ is

also Abelian walk. Eigvals are

Ex∼π[χ(−x)]

Since P and P◦ commute, we have

λk(PP
◦) = |λk(P)|

2

Mixing: largest |·| of an eig?

5/14

Characters

We know characters of Zn:

χ(x) = ωx

for ω an n-th root of unity.

C

There are exactly n of them.

Characters of Zn1
× · · · × Znk

:

x 7→ ωx1

1 · · ·ωxk

k .

For G, we get |G| characters.

We just need to compute

Ex∼π

[
ωx1

1 · · ·ωxk

k

]
for all of these characters.

The ω1 = · · · = ωk = 1 character

gives us the special 1 eigval.

If P is Abelian walk, then P◦ = Pᵀ is

also Abelian walk. Eigvals are

Ex∼π[χ(−x)]

Since P and P◦ commute, we have

λk(PP
◦) = |λk(P)|

2

Mixing: largest |·| of an eig?

5/14

Characters

We know characters of Zn:

χ(x) = ωx

for ω an n-th root of unity.

C

There are exactly n of them.

Characters of Zn1
× · · · × Znk

:

x 7→ ωx1

1 · · ·ωxk

k .

For G, we get |G| characters.

We just need to compute

Ex∼π

[
ωx1

1 · · ·ωxk

k

]
for all of these characters.

The ω1 = · · · = ωk = 1 character

gives us the special 1 eigval.

If P is Abelian walk, then P◦ = Pᵀ is

also Abelian walk. Eigvals are

Ex∼π[χ(−x)]

Since P and P◦ commute, we have

λk(PP
◦) = |λk(P)|

2

Mixing: largest |·| of an eig?

5/14

Characters

We know characters of Zn:

χ(x) = ωx

for ω an n-th root of unity.

C

There are exactly n of them.

Characters of Zn1
× · · · × Znk

:

x 7→ ωx1

1 · · ·ωxk

k .

For G, we get |G| characters.

We just need to compute

Ex∼π

[
ωx1

1 · · ·ωxk

k

]
for all of these characters.

The ω1 = · · · = ωk = 1 character

gives us the special 1 eigval.

If P is Abelian walk, then P◦ = Pᵀ is

also Abelian walk. Eigvals are

Ex∼π[χ(−x)]

Since P and P◦ commute, we have

λk(PP
◦) = |λk(P)|

2

Mixing: largest |·| of an eig?

5/14

Characters

We know characters of Zn:

χ(x) = ωx

for ω an n-th root of unity.

C

There are exactly n of them.

Characters of Zn1
× · · · × Znk

:

x 7→ ωx1

1 · · ·ωxk

k .

For G, we get |G| characters.

We just need to compute

Ex∼π

[
ωx1

1 · · ·ωxk

k

]
for all of these characters.

The ω1 = · · · = ωk = 1 character

gives us the special 1 eigval.

If P is Abelian walk, then P◦ = Pᵀ is

also Abelian walk. Eigvals are

Ex∼π[χ(−x)]

Since P and P◦ commute, we have

λk(PP
◦) = |λk(P)|

2

Mixing: largest |·| of an eig?

6/14

Example: hypercube

Distribution π:

0 w.p. 1/2

1i w.p. 1/2n

There are 2n characters:

x 7→ (±1)x1 · · · (±1)xn

Eigval is #{+1}/n(
n
k

)
of eigvals are

k/n

Spectral gap:

1− (n− 1)/n = 1/n

tmix 6 O(n2)

Example: cycle

Distribution π:

+1 w.p. 1/2

−1 w.p. 1/2

There are n characters:

x 7→ ωx

Eigval is (ω+ω−1)/2

Eigvals are

cos(2πk/n)
Spectral gap:

1− cos(2π/n) ' Θ(1/n2)?

tmix 6 O(n2 logn)?

Not for even n.

6/14

Example: hypercube

Distribution π:

0 w.p. 1/2

1i w.p. 1/2n

There are 2n characters:

x 7→ (±1)x1 · · · (±1)xn

Eigval is #{+1}/n(
n
k

)
of eigvals are

k/n

Spectral gap:

1− (n− 1)/n = 1/n

tmix 6 O(n2)

Example: cycle

Distribution π:

+1 w.p. 1/2

−1 w.p. 1/2

There are n characters:

x 7→ ωx

Eigval is (ω+ω−1)/2

Eigvals are

cos(2πk/n)
Spectral gap:

1− cos(2π/n) ' Θ(1/n2)?

tmix 6 O(n2 logn)?

Not for even n.

6/14

Example: hypercube

Distribution π:

0 w.p. 1/2

1i w.p. 1/2n

There are 2n characters:

x 7→ (±1)x1 · · · (±1)xn

Eigval is #{+1}/n

(
n
k

)
of eigvals are

k/n

Spectral gap:

1− (n− 1)/n = 1/n

tmix 6 O(n2)

Example: cycle

Distribution π:

+1 w.p. 1/2

−1 w.p. 1/2

There are n characters:

x 7→ ωx

Eigval is (ω+ω−1)/2

Eigvals are

cos(2πk/n)
Spectral gap:

1− cos(2π/n) ' Θ(1/n2)?

tmix 6 O(n2 logn)?

Not for even n.

6/14

Example: hypercube

Distribution π:

0 w.p. 1/2

1i w.p. 1/2n

There are 2n characters:

x 7→ (±1)x1 · · · (±1)xn

Eigval is #{+1}/n(
n
k

)
of eigvals are

k/n

Spectral gap:

1− (n− 1)/n = 1/n

tmix 6 O(n2)

Example: cycle

Distribution π:

+1 w.p. 1/2

−1 w.p. 1/2

There are n characters:

x 7→ ωx

Eigval is (ω+ω−1)/2

Eigvals are

cos(2πk/n)
Spectral gap:

1− cos(2π/n) ' Θ(1/n2)?

tmix 6 O(n2 logn)?

Not for even n.

6/14

Example: hypercube

Distribution π:

0 w.p. 1/2

1i w.p. 1/2n

There are 2n characters:

x 7→ (±1)x1 · · · (±1)xn

Eigval is #{+1}/n(
n
k

)
of eigvals are

k/n

Spectral gap:

1− (n− 1)/n = 1/n

tmix 6 O(n2)

Example: cycle

Distribution π:

+1 w.p. 1/2

−1 w.p. 1/2

There are n characters:

x 7→ ωx

Eigval is (ω+ω−1)/2

Eigvals are

cos(2πk/n)
Spectral gap:

1− cos(2π/n) ' Θ(1/n2)?

tmix 6 O(n2 logn)?

Not for even n.

6/14

Example: hypercube

Distribution π:

0 w.p. 1/2

1i w.p. 1/2n

There are 2n characters:

x 7→ (±1)x1 · · · (±1)xn

Eigval is #{+1}/n(
n
k

)
of eigvals are

k/n

Spectral gap:

1− (n− 1)/n = 1/n

tmix 6 O(n2)

Example: cycle

Distribution π:

+1 w.p. 1/2

−1 w.p. 1/2

There are n characters:

x 7→ ωx

Eigval is (ω+ω−1)/2

Eigvals are

cos(2πk/n)
Spectral gap:

1− cos(2π/n) ' Θ(1/n2)?

tmix 6 O(n2 logn)?

Not for even n.

6/14

Example: hypercube

Distribution π:

0 w.p. 1/2

1i w.p. 1/2n

There are 2n characters:

x 7→ (±1)x1 · · · (±1)xn

Eigval is #{+1}/n(
n
k

)
of eigvals are

k/n

Spectral gap:

1− (n− 1)/n = 1/n

tmix 6 O(n2)

Example: cycle

Distribution π:

+1 w.p. 1/2

−1 w.p. 1/2

There are n characters:

x 7→ ωx

Eigval is (ω+ω−1)/2

Eigvals are

cos(2πk/n)
Spectral gap:

1− cos(2π/n) ' Θ(1/n2)?

tmix 6 O(n2 logn)?

Not for even n.

6/14

Example: hypercube

Distribution π:

0 w.p. 1/2

1i w.p. 1/2n

There are 2n characters:

x 7→ (±1)x1 · · · (±1)xn

Eigval is #{+1}/n(
n
k

)
of eigvals are

k/n

Spectral gap:

1− (n− 1)/n = 1/n

tmix 6 O(n2)

Example: cycle

Distribution π:

+1 w.p. 1/2

−1 w.p. 1/2

There are n characters:

x 7→ ωx

Eigval is (ω+ω−1)/2

Eigvals are

cos(2πk/n)
Spectral gap:

1− cos(2π/n) ' Θ(1/n2)?

tmix 6 O(n2 logn)?

Not for even n.

6/14

Example: hypercube

Distribution π:

0 w.p. 1/2

1i w.p. 1/2n

There are 2n characters:

x 7→ (±1)x1 · · · (±1)xn

Eigval is #{+1}/n(
n
k

)
of eigvals are

k/n

Spectral gap:

1− (n− 1)/n = 1/n

tmix 6 O(n2)

Example: cycle

Distribution π:

+1 w.p. 1/2

−1 w.p. 1/2

There are n characters:

x 7→ ωx

Eigval is (ω+ω−1)/2

Eigvals are

cos(2πk/n)
Spectral gap:

1− cos(2π/n) ' Θ(1/n2)?

tmix 6 O(n2 logn)?

Not for even n.

6/14

Example: hypercube

Distribution π:

0 w.p. 1/2

1i w.p. 1/2n

There are 2n characters:

x 7→ (±1)x1 · · · (±1)xn

Eigval is #{+1}/n(
n
k

)
of eigvals are

k/n

Spectral gap:

1− (n− 1)/n = 1/n

tmix 6 O(n2)

Example: cycle

Distribution π:

+1 w.p. 1/2

−1 w.p. 1/2

There are n characters:

x 7→ ωx

Eigval is (ω+ω−1)/2

Eigvals are

cos(2πk/n)
Spectral gap:

1− cos(2π/n) ' Θ(1/n2)?

tmix 6 O(n2 logn)?

Not for even n.

6/14

Example: hypercube

Distribution π:

0 w.p. 1/2

1i w.p. 1/2n

There are 2n characters:

x 7→ (±1)x1 · · · (±1)xn

Eigval is #{+1}/n(
n
k

)
of eigvals are

k/n

Spectral gap:

1− (n− 1)/n = 1/n

tmix 6 O(n2)

Example: cycle

Distribution π:

+1 w.p. 1/2

−1 w.p. 1/2

There are n characters:

x 7→ ωx

Eigval is (ω+ω−1)/2

Eigvals are

cos(2πk/n)

Spectral gap:

1− cos(2π/n) ' Θ(1/n2)?

tmix 6 O(n2 logn)?

Not for even n.

6/14

Example: hypercube

Distribution π:

0 w.p. 1/2

1i w.p. 1/2n

There are 2n characters:

x 7→ (±1)x1 · · · (±1)xn

Eigval is #{+1}/n(
n
k

)
of eigvals are

k/n

Spectral gap:

1− (n− 1)/n = 1/n

tmix 6 O(n2)

Example: cycle

Distribution π:

+1 w.p. 1/2

−1 w.p. 1/2

There are n characters:

x 7→ ωx

Eigval is (ω+ω−1)/2

Eigvals are

cos(2πk/n)
Spectral gap:

1− cos(2π/n) ' Θ(1/n2)?

tmix 6 O(n2 logn)?

Not for even n.

6/14

Example: hypercube

Distribution π:

0 w.p. 1/2

1i w.p. 1/2n

There are 2n characters:

x 7→ (±1)x1 · · · (±1)xn

Eigval is #{+1}/n(
n
k

)
of eigvals are

k/n

Spectral gap:

1− (n− 1)/n = 1/n

tmix 6 O(n2)

Example: cycle

Distribution π:

+1 w.p. 1/2

−1 w.p. 1/2

There are n characters:

x 7→ ωx

Eigval is (ω+ω−1)/2

Eigvals are

cos(2πk/n)
Spectral gap:

1− cos(2π/n) ' Θ(1/n2)?

tmix 6 O(n2 logn)?

Not for even n.

6/14

Example: hypercube

Distribution π:

0 w.p. 1/2

1i w.p. 1/2n

There are 2n characters:

x 7→ (±1)x1 · · · (±1)xn

Eigval is #{+1}/n(
n
k

)
of eigvals are

k/n

Spectral gap:

1− (n− 1)/n = 1/n

tmix 6 O(n2)

Example: cycle

Distribution π:

+1 w.p. 1/2

−1 w.p. 1/2

There are n characters:

x 7→ ωx

Eigval is (ω+ω−1)/2

Eigvals are

cos(2πk/n)
Spectral gap:

1− cos(2π/n) ' Θ(1/n2)?

tmix 6 O(n2 logn)? Not for even n.

7/14

Relaxation time

Suppose P is time-reversible and lazy:

λi(P) > 0

Relaxation time: 1/(1− λ2(P))

Relaxation time does not directly

control mixing time

But it controls tmix(ε) for tiny ε:

Lemma

tmix(ε) = O
(

log(χ2(ν0‖µ))+log(1/ε)
1−λ2(P)

)
We have

trel = Θ
(

limε→0
tmix(ε)

log(1/ε)

)

Proof:

Let v be left eigvec for λ 6= 1:

vP = λv

We have 〈v, 1〉 = 0, so write

v = α(v1 − v2) + iβ(v3 − v4)

for dists v1, v2, v3, v4.

For t > tmix(ε) we get

‖vPt‖1 6 O(ε) · ‖v‖1
But this means

λt = O(ε)

which means

1− |λ| > Ω
(

log(1/ε)
tmix(ε)

)

7/14

Relaxation time

Suppose P is time-reversible and lazy:

λi(P) > 0

Relaxation time: 1/(1− λ2(P))

Relaxation time does not directly

control mixing time

But it controls tmix(ε) for tiny ε:

Lemma

tmix(ε) = O
(

log(χ2(ν0‖µ))+log(1/ε)
1−λ2(P)

)
We have

trel = Θ
(

limε→0
tmix(ε)

log(1/ε)

)

Proof:

Let v be left eigvec for λ 6= 1:

vP = λv

We have 〈v, 1〉 = 0, so write

v = α(v1 − v2) + iβ(v3 − v4)

for dists v1, v2, v3, v4.

For t > tmix(ε) we get

‖vPt‖1 6 O(ε) · ‖v‖1
But this means

λt = O(ε)

which means

1− |λ| > Ω
(

log(1/ε)
tmix(ε)

)

7/14

Relaxation time

Suppose P is time-reversible and lazy:

λi(P) > 0

Relaxation time: 1/(1− λ2(P))

Relaxation time does not directly

control mixing time

But it controls tmix(ε) for tiny ε:

Lemma

tmix(ε) = O
(

log(χ2(ν0‖µ))+log(1/ε)
1−λ2(P)

)
We have

trel = Θ
(

limε→0
tmix(ε)

log(1/ε)

)

Proof:

Let v be left eigvec for λ 6= 1:

vP = λv

We have 〈v, 1〉 = 0, so write

v = α(v1 − v2) + iβ(v3 − v4)

for dists v1, v2, v3, v4.

For t > tmix(ε) we get

‖vPt‖1 6 O(ε) · ‖v‖1
But this means

λt = O(ε)

which means

1− |λ| > Ω
(

log(1/ε)
tmix(ε)

)

7/14

Relaxation time

Suppose P is time-reversible and lazy:

λi(P) > 0

Relaxation time: 1/(1− λ2(P))

Relaxation time does not directly

control mixing time

But it controls tmix(ε) for tiny ε:

Lemma

tmix(ε) = O
(

log(χ2(ν0‖µ))+log(1/ε)
1−λ2(P)

)

We have

trel = Θ
(

limε→0
tmix(ε)

log(1/ε)

)

Proof:

Let v be left eigvec for λ 6= 1:

vP = λv

We have 〈v, 1〉 = 0, so write

v = α(v1 − v2) + iβ(v3 − v4)

for dists v1, v2, v3, v4.

For t > tmix(ε) we get

‖vPt‖1 6 O(ε) · ‖v‖1
But this means

λt = O(ε)

which means

1− |λ| > Ω
(

log(1/ε)
tmix(ε)

)

7/14

Relaxation time

Suppose P is time-reversible and lazy:

λi(P) > 0

Relaxation time: 1/(1− λ2(P))

Relaxation time does not directly

control mixing time

But it controls tmix(ε) for tiny ε:

Lemma

tmix(ε) = O
(

log(χ2(ν0‖µ))+log(1/ε)
1−λ2(P)

)
We have

trel = Θ
(

limε→0
tmix(ε)

log(1/ε)

)

Proof:

Let v be left eigvec for λ 6= 1:

vP = λv

We have 〈v, 1〉 = 0, so write

v = α(v1 − v2) + iβ(v3 − v4)

for dists v1, v2, v3, v4.

For t > tmix(ε) we get

‖vPt‖1 6 O(ε) · ‖v‖1
But this means

λt = O(ε)

which means

1− |λ| > Ω
(

log(1/ε)
tmix(ε)

)

7/14

Relaxation time

Suppose P is time-reversible and lazy:

λi(P) > 0

Relaxation time: 1/(1− λ2(P))

Relaxation time does not directly

control mixing time

But it controls tmix(ε) for tiny ε:

Lemma

tmix(ε) = O
(

log(χ2(ν0‖µ))+log(1/ε)
1−λ2(P)

)
We have

trel = Θ
(

limε→0
tmix(ε)

log(1/ε)

)

Proof:

Let v be left eigvec for λ 6= 1:

vP = λv

We have 〈v, 1〉 = 0, so write

v = α(v1 − v2) + iβ(v3 − v4)

for dists v1, v2, v3, v4.

For t > tmix(ε) we get

‖vPt‖1 6 O(ε) · ‖v‖1
But this means

λt = O(ε)

which means

1− |λ| > Ω
(

log(1/ε)
tmix(ε)

)

7/14

Relaxation time

Suppose P is time-reversible and lazy:

λi(P) > 0

Relaxation time: 1/(1− λ2(P))

Relaxation time does not directly

control mixing time

But it controls tmix(ε) for tiny ε:

Lemma

tmix(ε) = O
(

log(χ2(ν0‖µ))+log(1/ε)
1−λ2(P)

)
We have

trel = Θ
(

limε→0
tmix(ε)

log(1/ε)

)

Proof:

Let v be left eigvec for λ 6= 1:

vP = λv

We have 〈v, 1〉 = 0, so write

v = α(v1 − v2) + iβ(v3 − v4)

for dists v1, v2, v3, v4.

For t > tmix(ε) we get

‖vPt‖1 6 O(ε) · ‖v‖1
But this means

λt = O(ε)

which means

1− |λ| > Ω
(

log(1/ε)
tmix(ε)

)

7/14

Relaxation time

Suppose P is time-reversible and lazy:

λi(P) > 0

Relaxation time: 1/(1− λ2(P))

Relaxation time does not directly

control mixing time

But it controls tmix(ε) for tiny ε:

Lemma

tmix(ε) = O
(

log(χ2(ν0‖µ))+log(1/ε)
1−λ2(P)

)
We have

trel = Θ
(

limε→0
tmix(ε)

log(1/ε)

)

Proof:

Let v be left eigvec for λ 6= 1:

vP = λv

We have 〈v, 1〉 = 0, so write

v = α(v1 − v2) + iβ(v3 − v4)

for dists v1, v2, v3, v4.

For t > tmix(ε) we get

‖vPt‖1 6 O(ε) · ‖v‖1
But this means

λt = O(ε)

which means

1− |λ| > Ω
(

log(1/ε)
tmix(ε)

)

7/14

Relaxation time

Suppose P is time-reversible and lazy:

λi(P) > 0

Relaxation time: 1/(1− λ2(P))

Relaxation time does not directly

control mixing time

But it controls tmix(ε) for tiny ε:

Lemma

tmix(ε) = O
(

log(χ2(ν0‖µ))+log(1/ε)
1−λ2(P)

)
We have

trel = Θ
(

limε→0
tmix(ε)

log(1/ε)

)

Proof:

Let v be left eigvec for λ 6= 1:

vP = λv

We have 〈v, 1〉 = 0, so write

v = α(v1 − v2) + iβ(v3 − v4)

for dists v1, v2, v3, v4.

For t > tmix(ε) we get

‖vPt‖1 6 O(ε) · ‖v‖1

But this means

λt = O(ε)

which means

1− |λ| > Ω
(

log(1/ε)
tmix(ε)

)

7/14

Relaxation time

Suppose P is time-reversible and lazy:

λi(P) > 0

Relaxation time: 1/(1− λ2(P))

Relaxation time does not directly

control mixing time

But it controls tmix(ε) for tiny ε:

Lemma

tmix(ε) = O
(

log(χ2(ν0‖µ))+log(1/ε)
1−λ2(P)

)
We have

trel = Θ
(

limε→0
tmix(ε)

log(1/ε)

)

Proof:

Let v be left eigvec for λ 6= 1:

vP = λv

We have 〈v, 1〉 = 0, so write

v = α(v1 − v2) + iβ(v3 − v4)

for dists v1, v2, v3, v4.

For t > tmix(ε) we get

‖vPt‖1 6 O(ε) · ‖v‖1
But this means

λt = O(ε)

which means

1− |λ| > Ω
(

log(1/ε)
tmix(ε)

)

8/14

Corollary

Under Dobrushin, we have trel = O(n); in other words

λ2 6 1−Ω(1/n).

Another proof that hypercube has

λ2 6 1−Ω(1/n)

First proof that Glauber for coloring with > 2∆ colors

has

λ2 6 1−Ω(1/n)

Note: going back from λ2 to tmix gives us non-tight
bound of O(n2).

8/14

Corollary

Under Dobrushin, we have trel = O(n); in other words

λ2 6 1−Ω(1/n).

Another proof that hypercube has

λ2 6 1−Ω(1/n)

First proof that Glauber for coloring with > 2∆ colors

has

λ2 6 1−Ω(1/n)

Note: going back from λ2 to tmix gives us non-tight
bound of O(n2).

8/14

Corollary

Under Dobrushin, we have trel = O(n); in other words

λ2 6 1−Ω(1/n).

Another proof that hypercube has

λ2 6 1−Ω(1/n)

First proof that Glauber for coloring with > 2∆ colors

has

λ2 6 1−Ω(1/n)

Note: going back from λ2 to tmix gives us non-tight
bound of O(n2).

8/14

Corollary

Under Dobrushin, we have trel = O(n); in other words

λ2 6 1−Ω(1/n).

Another proof that hypercube has

λ2 6 1−Ω(1/n)

First proof that Glauber for coloring with > 2∆ colors

has

λ2 6 1−Ω(1/n)

Note: going back from λ2 to tmix gives us non-tight
bound of O(n2).

9/14

Fourier Analysis
Characters

Examples

Relaxation time

Continuous Time
Functional analysis in continuous time

Dirichlet form

9/14

Fourier Analysis
Characters

Examples

Relaxation time

Continuous Time
Functional analysis in continuous time

Dirichlet form

10/14

Continuous time

So far, we have been running

Markov chains in discrete time:

X0 7→ X1 7→ · · · 7→Xt

t is integer

7→ . . .

We can run a chain in continuous

time via Poisson clock:

time

ring

Every ring, take one step of P.

Xt: position at time t ∈ R>0

To algorithmically simulate Xt:

draw n ∼ Poisson(t) and take n

discrete steps

How is Xt distributed given X0?

Approximate the process as

timeε ε ε ε ε ε ε

where in each interval we take

transition of P w.p. ε.

Result at time t:

((1− ε)I+ εP)t/ε︸ ︷︷ ︸
transition matrix

→ exp(t(P − I))

Ultimate lazification!

10/14

Continuous time

So far, we have been running

Markov chains in discrete time:

X0 7→ X1 7→ · · · 7→Xt

t is integer

7→ . . .

We can run a chain in continuous

time via Poisson clock:

time

ring

Every ring, take one step of P.

Xt: position at time t ∈ R>0

To algorithmically simulate Xt:

draw n ∼ Poisson(t) and take n

discrete steps

How is Xt distributed given X0?

Approximate the process as

timeε ε ε ε ε ε ε

where in each interval we take

transition of P w.p. ε.

Result at time t:

((1− ε)I+ εP)t/ε︸ ︷︷ ︸
transition matrix

→ exp(t(P − I))

Ultimate lazification!

10/14

Continuous time

So far, we have been running

Markov chains in discrete time:

X0 7→ X1 7→ · · · 7→Xt

t is integer

7→ . . .

We can run a chain in continuous

time via Poisson clock:

time

ring

Every ring, take one step of P.

Xt: position at time t ∈ R>0

To algorithmically simulate Xt:

draw n ∼ Poisson(t) and take n

discrete steps

How is Xt distributed given X0?

Approximate the process as

timeε ε ε ε ε ε ε

where in each interval we take

transition of P w.p. ε.

Result at time t:

((1− ε)I+ εP)t/ε︸ ︷︷ ︸
transition matrix

→ exp(t(P − I))

Ultimate lazification!

10/14

Continuous time

So far, we have been running

Markov chains in discrete time:

X0 7→ X1 7→ · · · 7→Xt

t is integer

7→ . . .

We can run a chain in continuous

time via Poisson clock:

time

ring

Every ring, take one step of P.

Xt: position at time t ∈ R>0

To algorithmically simulate Xt:

draw n ∼ Poisson(t) and take n

discrete steps

How is Xt distributed given X0?

Approximate the process as

timeε ε ε ε ε ε ε

where in each interval we take

transition of P w.p. ε.

Result at time t:

((1− ε)I+ εP)t/ε︸ ︷︷ ︸
transition matrix

→ exp(t(P − I))

Ultimate lazification!

10/14

Continuous time

So far, we have been running

Markov chains in discrete time:

X0 7→ X1 7→ · · · 7→Xt

t is integer

7→ . . .

We can run a chain in continuous

time via Poisson clock:

time

ring

Every ring, take one step of P.

Xt: position at time t ∈ R>0

To algorithmically simulate Xt:

draw n ∼ Poisson(t) and take n

discrete steps

How is Xt distributed given X0?

Approximate the process as

timeε ε ε ε ε ε ε

where in each interval we take

transition of P w.p. ε.

Result at time t:

((1− ε)I+ εP)t/ε︸ ︷︷ ︸
transition matrix

→ exp(t(P − I))

Ultimate lazification!

10/14

Continuous time

So far, we have been running

Markov chains in discrete time:

X0 7→ X1 7→ · · · 7→Xt

t is integer

7→ . . .

We can run a chain in continuous

time via Poisson clock:

time

ring

Every ring, take one step of P.

Xt: position at time t ∈ R>0

To algorithmically simulate Xt:

draw n ∼ Poisson(t) and take n

discrete steps

How is Xt distributed given X0?

Approximate the process as

timeε ε ε ε ε ε ε

where in each interval we take

transition of P w.p. ε.

Result at time t:

((1− ε)I+ εP)t/ε︸ ︷︷ ︸
transition matrix

→ exp(t(P − I))

Ultimate lazification!

10/14

Continuous time

So far, we have been running

Markov chains in discrete time:

X0 7→ X1 7→ · · · 7→Xt

t is integer

7→ . . .

We can run a chain in continuous

time via Poisson clock:

time

ring

Every ring, take one step of P.

Xt: position at time t ∈ R>0

To algorithmically simulate Xt:

draw n ∼ Poisson(t) and take n

discrete steps

How is Xt distributed given X0?

Approximate the process as

timeε ε ε ε ε ε ε

where in each interval we take

transition of P w.p. ε.

Result at time t:

((1− ε)I+ εP)t/ε︸ ︷︷ ︸
transition matrix

→ exp(t(P − I))

Ultimate lazification!

10/14

Continuous time

So far, we have been running

Markov chains in discrete time:

X0 7→ X1 7→ · · · 7→Xt

t is integer

7→ . . .

We can run a chain in continuous

time via Poisson clock:

time

ring

Every ring, take one step of P.

Xt: position at time t ∈ R>0

To algorithmically simulate Xt:

draw n ∼ Poisson(t) and take n

discrete steps

How is Xt distributed given X0?

Approximate the process as

timeε ε ε ε ε ε ε

where in each interval we take

transition of P w.p. ε.

Result at time t:

((1− ε)I+ εP)t/ε︸ ︷︷ ︸
transition matrix

→ exp(t(P − I))

Ultimate lazification!

10/14

Continuous time

So far, we have been running

Markov chains in discrete time:

X0 7→ X1 7→ · · · 7→Xt

t is integer

7→ . . .

We can run a chain in continuous

time via Poisson clock:

time

ring

Every ring, take one step of P.

Xt: position at time t ∈ R>0

To algorithmically simulate Xt:

draw n ∼ Poisson(t) and take n

discrete steps

How is Xt distributed given X0?

Approximate the process as

timeε ε ε ε ε ε ε

where in each interval we take

transition of P w.p. ε.

Result at time t:

((1− ε)I+ εP)t/ε︸ ︷︷ ︸
transition matrix

→ exp(t(P − I))

Ultimate lazification!

11/14

Functional analysis in continuous time

What happens to functional

analysis in continuous time?

In discrete time we want

Dφ(νP ‖ µ) 6 (1− ρ)Dφ(ν ‖ µ)

Analogue in continuous time:
d
dt Dφ(νt ‖ µ) 6 −ρDφ(νt ‖ µ)

where νt = ν0 exp(t(P − I)).

Corollary: we get

Dφ(νt ‖ µ) 6 e−tρ ·Dφ(ν0 ‖ µ)

By comparing to dTV we get

continuous mixing time bounds.

Fact: discrete is stronger

Discrete-time contraction implies

continuous-time contraction.

Proof:

Will show (1− ε)I+ εP contracts

Dφ by 1− ερ. Taking ε → 0 gives

what we want.

Because φ is convex:

Dφ((1− ε)ν+ ενP ‖ µ) 6
(1− ε)Dφ(ν ‖ µ) + εDφ(νP ‖ µ)

But this is 6 (1− ερ)Dφ(ν ‖ µ).

11/14

Functional analysis in continuous time

What happens to functional

analysis in continuous time?

In discrete time we want

Dφ(νP ‖ µ) 6 (1− ρ)Dφ(ν ‖ µ)

Analogue in continuous time:
d
dt Dφ(νt ‖ µ) 6 −ρDφ(νt ‖ µ)

where νt = ν0 exp(t(P − I)).

Corollary: we get

Dφ(νt ‖ µ) 6 e−tρ ·Dφ(ν0 ‖ µ)

By comparing to dTV we get

continuous mixing time bounds.

Fact: discrete is stronger

Discrete-time contraction implies

continuous-time contraction.

Proof:

Will show (1− ε)I+ εP contracts

Dφ by 1− ερ. Taking ε → 0 gives

what we want.

Because φ is convex:

Dφ((1− ε)ν+ ενP ‖ µ) 6
(1− ε)Dφ(ν ‖ µ) + εDφ(νP ‖ µ)

But this is 6 (1− ερ)Dφ(ν ‖ µ).

11/14

Functional analysis in continuous time

What happens to functional

analysis in continuous time?

In discrete time we want

Dφ(νP ‖ µ) 6 (1− ρ)Dφ(ν ‖ µ)

Analogue in continuous time:
d
dt Dφ(νt ‖ µ) 6 −ρDφ(νt ‖ µ)

where νt = ν0 exp(t(P − I)).

Corollary: we get

Dφ(νt ‖ µ) 6 e−tρ ·Dφ(ν0 ‖ µ)

By comparing to dTV we get

continuous mixing time bounds.

Fact: discrete is stronger

Discrete-time contraction implies

continuous-time contraction.

Proof:

Will show (1− ε)I+ εP contracts

Dφ by 1− ερ. Taking ε → 0 gives

what we want.

Because φ is convex:

Dφ((1− ε)ν+ ενP ‖ µ) 6
(1− ε)Dφ(ν ‖ µ) + εDφ(νP ‖ µ)

But this is 6 (1− ερ)Dφ(ν ‖ µ).

11/14

Functional analysis in continuous time

What happens to functional

analysis in continuous time?

In discrete time we want

Dφ(νP ‖ µ) 6 (1− ρ)Dφ(ν ‖ µ)

Analogue in continuous time:
d
dt Dφ(νt ‖ µ) 6 −ρDφ(νt ‖ µ)

where νt = ν0 exp(t(P − I)).

Corollary: we get

Dφ(νt ‖ µ) 6 e−tρ ·Dφ(ν0 ‖ µ)

By comparing to dTV we get

continuous mixing time bounds.

Fact: discrete is stronger

Discrete-time contraction implies

continuous-time contraction.

Proof:

Will show (1− ε)I+ εP contracts

Dφ by 1− ερ. Taking ε → 0 gives

what we want.

Because φ is convex:

Dφ((1− ε)ν+ ενP ‖ µ) 6
(1− ε)Dφ(ν ‖ µ) + εDφ(νP ‖ µ)

But this is 6 (1− ερ)Dφ(ν ‖ µ).

11/14

Functional analysis in continuous time

What happens to functional

analysis in continuous time?

In discrete time we want

Dφ(νP ‖ µ) 6 (1− ρ)Dφ(ν ‖ µ)

Analogue in continuous time:
d
dt Dφ(νt ‖ µ) 6 −ρDφ(νt ‖ µ)

where νt = ν0 exp(t(P − I)).

Corollary: we get

Dφ(νt ‖ µ) 6 e−tρ ·Dφ(ν0 ‖ µ)

By comparing to dTV we get

continuous mixing time bounds.

Fact: discrete is stronger

Discrete-time contraction implies

continuous-time contraction.

Proof:

Will show (1− ε)I+ εP contracts

Dφ by 1− ερ. Taking ε → 0 gives

what we want.

Because φ is convex:

Dφ((1− ε)ν+ ενP ‖ µ) 6
(1− ε)Dφ(ν ‖ µ) + εDφ(νP ‖ µ)

But this is 6 (1− ερ)Dφ(ν ‖ µ).

11/14

Functional analysis in continuous time

What happens to functional

analysis in continuous time?

In discrete time we want

Dφ(νP ‖ µ) 6 (1− ρ)Dφ(ν ‖ µ)

Analogue in continuous time:
d
dt Dφ(νt ‖ µ) 6 −ρDφ(νt ‖ µ)

where νt = ν0 exp(t(P − I)).

Corollary: we get

Dφ(νt ‖ µ) 6 e−tρ ·Dφ(ν0 ‖ µ)

By comparing to dTV we get

continuous mixing time bounds.

Fact: discrete is stronger

Discrete-time contraction implies

continuous-time contraction.

Proof:

Will show (1− ε)I+ εP contracts

Dφ by 1− ερ. Taking ε → 0 gives

what we want.

Because φ is convex:

Dφ((1− ε)ν+ ενP ‖ µ) 6
(1− ε)Dφ(ν ‖ µ) + εDφ(νP ‖ µ)

But this is 6 (1− ερ)Dφ(ν ‖ µ).

11/14

Functional analysis in continuous time

What happens to functional

analysis in continuous time?

In discrete time we want

Dφ(νP ‖ µ) 6 (1− ρ)Dφ(ν ‖ µ)

Analogue in continuous time:
d
dt Dφ(νt ‖ µ) 6 −ρDφ(νt ‖ µ)

where νt = ν0 exp(t(P − I)).

Corollary: we get

Dφ(νt ‖ µ) 6 e−tρ ·Dφ(ν0 ‖ µ)

By comparing to dTV we get

continuous mixing time bounds.

Fact: discrete is stronger

Discrete-time contraction implies

continuous-time contraction.

Proof:

Will show (1− ε)I+ εP contracts

Dφ by 1− ερ. Taking ε → 0 gives

what we want.

Because φ is convex:

Dφ((1− ε)ν+ ενP ‖ µ) 6
(1− ε)Dφ(ν ‖ µ) + εDφ(νP ‖ µ)

But this is 6 (1− ερ)Dφ(ν ‖ µ).

11/14

Functional analysis in continuous time

What happens to functional

analysis in continuous time?

In discrete time we want

Dφ(νP ‖ µ) 6 (1− ρ)Dφ(ν ‖ µ)

Analogue in continuous time:
d
dt Dφ(νt ‖ µ) 6 −ρDφ(νt ‖ µ)

where νt = ν0 exp(t(P − I)).

Corollary: we get

Dφ(νt ‖ µ) 6 e−tρ ·Dφ(ν0 ‖ µ)

By comparing to dTV we get

continuous mixing time bounds.

Fact: discrete is stronger

Discrete-time contraction implies

continuous-time contraction.

Proof:

Will show (1− ε)I+ εP contracts

Dφ by 1− ερ. Taking ε → 0 gives

what we want.

Because φ is convex:

Dφ((1− ε)ν+ ενP ‖ µ) 6
(1− ε)Dφ(ν ‖ µ) + εDφ(νP ‖ µ)

But this is 6 (1− ερ)Dφ(ν ‖ µ).

11/14

Functional analysis in continuous time

What happens to functional

analysis in continuous time?

In discrete time we want

Dφ(νP ‖ µ) 6 (1− ρ)Dφ(ν ‖ µ)

Analogue in continuous time:
d
dt Dφ(νt ‖ µ) 6 −ρDφ(νt ‖ µ)

where νt = ν0 exp(t(P − I)).

Corollary: we get

Dφ(νt ‖ µ) 6 e−tρ ·Dφ(ν0 ‖ µ)

By comparing to dTV we get

continuous mixing time bounds.

Fact: discrete is stronger

Discrete-time contraction implies

continuous-time contraction.

Proof:

Will show (1− ε)I+ εP contracts

Dφ by 1− ερ. Taking ε → 0 gives

what we want.

Because φ is convex:

Dφ((1− ε)ν+ ενP ‖ µ) 6
(1− ε)Dφ(ν ‖ µ) + εDφ(νP ‖ µ)

But this is 6 (1− ερ)Dφ(ν ‖ µ).

11/14

Functional analysis in continuous time

What happens to functional

analysis in continuous time?

In discrete time we want

Dφ(νP ‖ µ) 6 (1− ρ)Dφ(ν ‖ µ)

Analogue in continuous time:
d
dt Dφ(νt ‖ µ) 6 −ρDφ(νt ‖ µ)

where νt = ν0 exp(t(P − I)).

Corollary: we get

Dφ(νt ‖ µ) 6 e−tρ ·Dφ(ν0 ‖ µ)

By comparing to dTV we get

continuous mixing time bounds.

Fact: discrete is stronger

Discrete-time contraction implies

continuous-time contraction.

Proof:

Will show (1− ε)I+ εP contracts

Dφ by 1− ερ. Taking ε → 0 gives

what we want.

Because φ is convex:

Dφ((1− ε)ν+ ενP ‖ µ) 6
(1− ε)Dφ(ν ‖ µ) + εDφ(νP ‖ µ)

But this is 6 (1− ερ)Dφ(ν ‖ µ).

12/14

Discrete can be strictly stronger:

But, for time-reversible and lazy

say eigs > 0 or λn > −λ2
chains in χ2:

discrete time ↔ continuous time

χ2 contraction in continuous time

is dictated by eigs of

(P + P◦)/2

Sketch:

(I+ ε(P − I))(I+ ε(P◦ − I)) =
I+ ε(P + P◦ − 2I) +O(ε2)

For lazy reversible P, we have gap

of PP◦ is approximately gap of

(P + P◦)/2.

Corollary: prove continuous-time

contraction if easier, and don’t

worry about it.

Easier because of Dirichlet form!

12/14

Discrete can be strictly stronger:

But, for time-reversible and lazy

say eigs > 0 or λn > −λ2
chains in χ2:

discrete time ↔ continuous time

χ2 contraction in continuous time

is dictated by eigs of

(P + P◦)/2

Sketch:

(I+ ε(P − I))(I+ ε(P◦ − I)) =
I+ ε(P + P◦ − 2I) +O(ε2)

For lazy reversible P, we have gap

of PP◦ is approximately gap of

(P + P◦)/2.

Corollary: prove continuous-time

contraction if easier, and don’t

worry about it.

Easier because of Dirichlet form!

12/14

Discrete can be strictly stronger:

But, for time-reversible and lazy

say eigs > 0 or λn > −λ2
chains in χ2:

discrete time ↔ continuous time

χ2 contraction in continuous time

is dictated by eigs of

(P + P◦)/2

Sketch:

(I+ ε(P − I))(I+ ε(P◦ − I)) =
I+ ε(P + P◦ − 2I) +O(ε2)

For lazy reversible P, we have gap

of PP◦ is approximately gap of

(P + P◦)/2.

Corollary: prove continuous-time

contraction if easier, and don’t

worry about it.

Easier because of Dirichlet form!

12/14

Discrete can be strictly stronger:

But, for time-reversible and lazy

say eigs > 0 or λn > −λ2
chains in χ2:

discrete time ↔ continuous time

χ2 contraction in continuous time

is dictated by eigs of

(P + P◦)/2

Sketch:

(I+ ε(P − I))(I+ ε(P◦ − I)) =
I+ ε(P + P◦ − 2I) +O(ε2)

For lazy reversible P, we have gap

of PP◦ is approximately gap of

(P + P◦)/2.

Corollary: prove continuous-time

contraction if easier, and don’t

worry about it.

Easier because of Dirichlet form!

12/14

Discrete can be strictly stronger:

But, for time-reversible and lazy

say eigs > 0 or λn > −λ2
chains in χ2:

discrete time ↔ continuous time

χ2 contraction in continuous time

is dictated by eigs of

(P + P◦)/2

Sketch:

(I+ ε(P − I))(I+ ε(P◦ − I)) =
I+ ε(P + P◦ − 2I) +O(ε2)

For lazy reversible P, we have gap

of PP◦ is approximately gap of

(P + P◦)/2.

Corollary: prove continuous-time

contraction if easier, and don’t

worry about it.

Easier because of Dirichlet form!

12/14

Discrete can be strictly stronger:

But, for time-reversible and lazy

say eigs > 0 or λn > −λ2
chains in χ2:

discrete time ↔ continuous time

χ2 contraction in continuous time

is dictated by eigs of

(P + P◦)/2

Sketch:

(I+ ε(P − I))(I+ ε(P◦ − I)) =
I+ ε(P + P◦ − 2I) +O(ε2)

For lazy reversible P, we have gap

of PP◦ is approximately gap of

(P + P◦)/2.

Corollary: prove continuous-time

contraction if easier, and don’t

worry about it.

Easier because of Dirichlet form!

12/14

Discrete can be strictly stronger:

But, for time-reversible and lazy

say eigs > 0 or λn > −λ2
chains in χ2:

discrete time ↔ continuous time

χ2 contraction in continuous time

is dictated by eigs of

(P + P◦)/2

Sketch:

(I+ ε(P − I))(I+ ε(P◦ − I)) =
I+ ε(P + P◦ − 2I) +O(ε2)

For lazy reversible P, we have gap

of PP◦ is approximately gap of

(P + P◦)/2.

Corollary: prove continuous-time

contraction if easier, and don’t

worry about it.

Easier because of Dirichlet form!

13/14

Dirichlet form

Assume P is time-reversible.

Let’s expand d
dt Dφ(νt ‖ µ). We have d

dt Eµ[φ(νt/µ)] =

Eµ

[
φ ′

(
νt

µ

)
d
dt

νt

µ

]
But d

dtνt = νt(P − I), and we can write above as

−1
2

∑
x,yQ(x, y)

(
φ ′

(
νt(x)
µ(x)

)
− φ ′

(
νt(y)
µ(y)

))(
νt(x)
µ(x) −

νt(y)
µ(y)

)
Dirichlet form

Define E(f, g) for functions f, g : Ω → R as

1

2
E(x,y)∼Q[(f(x) − f(y)) (g(x) − g(y))] .

Poincaré: 2E(f, f) > ρVar[f] MLSI: E(f, log f) > ρEnt[f]

13/14

Dirichlet form

Assume P is time-reversible.

Let’s expand d
dt Dφ(νt ‖ µ). We have d

dt Eµ[φ(νt/µ)] =

Eµ

[
φ ′

(
νt

µ

)
d
dt

νt

µ

]

But d
dtνt = νt(P − I), and we can write above as

−1
2

∑
x,yQ(x, y)

(
φ ′

(
νt(x)
µ(x)

)
− φ ′

(
νt(y)
µ(y)

))(
νt(x)
µ(x) −

νt(y)
µ(y)

)
Dirichlet form

Define E(f, g) for functions f, g : Ω → R as

1

2
E(x,y)∼Q[(f(x) − f(y)) (g(x) − g(y))] .

Poincaré: 2E(f, f) > ρVar[f] MLSI: E(f, log f) > ρEnt[f]

13/14

Dirichlet form

Assume P is time-reversible.

Let’s expand d
dt Dφ(νt ‖ µ). We have d

dt Eµ[φ(νt/µ)] =

Eµ

[
φ ′

(
νt

µ

)
d
dt

νt

µ

]
But d

dtνt = νt(P − I), and we can write above as

−1
2

∑
x,yQ(x, y)

(
φ ′

(
νt(x)
µ(x)

)
− φ ′

(
νt(y)
µ(y)

))(
νt(x)
µ(x) −

νt(y)
µ(y)

)

Dirichlet form

Define E(f, g) for functions f, g : Ω → R as

1

2
E(x,y)∼Q[(f(x) − f(y)) (g(x) − g(y))] .

Poincaré: 2E(f, f) > ρVar[f] MLSI: E(f, log f) > ρEnt[f]

13/14

Dirichlet form

Assume P is time-reversible.

Let’s expand d
dt Dφ(νt ‖ µ). We have d

dt Eµ[φ(νt/µ)] =

Eµ

[
φ ′

(
νt

µ

)
d
dt

νt

µ

]
But d

dtνt = νt(P − I), and we can write above as

−1
2

∑
x,yQ(x, y)

(
φ ′

(
νt(x)
µ(x)

)
− φ ′

(
νt(y)
µ(y)

))(
νt(x)
µ(x) −

νt(y)
µ(y)

)
Dirichlet form

Define E(f, g) for functions f, g : Ω → R as

1

2
E(x,y)∼Q[(f(x) − f(y)) (g(x) − g(y))] .

Poincaré: 2E(f, f) > ρVar[f] MLSI: E(f, log f) > ρEnt[f]

13/14

Dirichlet form

Assume P is time-reversible.

Let’s expand d
dt Dφ(νt ‖ µ). We have d

dt Eµ[φ(νt/µ)] =

Eµ

[
φ ′

(
νt

µ

)
d
dt

νt

µ

]
But d

dtνt = νt(P − I), and we can write above as

−1
2

∑
x,yQ(x, y)

(
φ ′

(
νt(x)
µ(x)

)
− φ ′

(
νt(y)
µ(y)

))(
νt(x)
µ(x) −

νt(y)
µ(y)

)
Dirichlet form

Define E(f, g) for functions f, g : Ω → R as

1

2
E(x,y)∼Q[(f(x) − f(y)) (g(x) − g(y))] .

Poincaré: 2E(f, f) > ρVar[f] MLSI: E(f, log f) > ρEnt[f]

14/14

Just need to lower bound E

