CS 263: Counting and Sampling

Nima Anari

1 Stanford
slides for

Spectral Analysis

Review

- Influence: $\mathrm{X}, \mathrm{X}^{\prime}$ differing in coord j : $\mathrm{d}_{\mathrm{TV}}\left(\operatorname{dist}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{X}_{-\mathrm{i}}\right), \operatorname{dist}\left(\mathrm{X}_{\mathrm{i}}^{\prime} \mid \mathrm{X}_{-\mathrm{i}}^{\prime}\right)\right)$

Review

- Influence: X, X^{\prime} differing in coord j : $\mathrm{d}_{\mathrm{TV}}\left(\operatorname{dist}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{X}_{-\mathrm{i}}\right), \operatorname{dist}\left(\mathrm{X}_{\mathrm{i}}^{\prime} \mid \mathrm{X}_{-\mathrm{i}}^{\prime}\right)\right)$
\bigcirc Call maximum value $J[j \rightarrow i]$.

Review

- Influence: X, X^{\prime} differing in coord j :

$$
\mathrm{d}_{\mathrm{TV}}\left(\operatorname{dist}\left(X_{i} \mid X_{-i}\right), \operatorname{dist}\left(X_{i}^{\prime} \mid X_{-i}^{\prime}\right)\right)
$$

\bigcirc Call maximum value $J[j \rightarrow i]$.

Dobrushin's condition

If columns of \mathcal{J} sum to $\leqslant 1-\delta$, then

$$
\mathcal{W}\left(v P, v^{\prime} P\right) \leqslant(1-\delta / n) \mathcal{W}\left(v, v^{\prime}\right)
$$

Review

- Influence: X, X^{\prime} differing in coord j :

$$
\mathrm{d}_{\mathrm{TV}}\left(\operatorname{dist}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{X}_{-\mathrm{i}}\right), \operatorname{dist}\left(\mathrm{X}_{\mathrm{i}}^{\prime} \mid \mathrm{X}_{-i}^{\prime}\right)\right)
$$

\bigcirc Call maximum value $J[j \rightarrow i]$.

Dobrushin's condition

If columns of \mathcal{J} sum to $\leqslant 1-\delta$, then

$$
\begin{aligned}
\mathcal{W}\left(v P, v^{\prime} P\right) & \leqslant(1-\delta / n) \mathcal{W}\left(v, v^{\prime}\right) \\
t_{\text {mix }}(\epsilon) & =O\left(\frac{1}{\delta} n \log (n / \epsilon)\right)
\end{aligned}
$$

Review

- Influence: $\mathrm{X}, \mathrm{X}^{\prime}$ differing in coord j :

$$
\mathrm{d}_{\mathrm{TV}}\left(\operatorname{dist}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{X}_{-\mathrm{i}}\right), \operatorname{dist}\left(\mathrm{X}_{\mathrm{i}}^{\prime} \mid \mathrm{X}_{-i}^{\prime}\right)\right)
$$

\bigcirc Call maximum value $J[j \rightarrow i]$.

Dobrushin's condition

If columns of \mathcal{J} sum to $\leqslant 1-\delta$, then

$$
\begin{aligned}
\mathcal{W}\left(v P, v^{\prime} P\right) & \leqslant(1-\delta / n) \mathcal{W}\left(v, v^{\prime}\right) \\
t_{\text {mix }}(\epsilon) & =O\left(\frac{1}{\delta} n \log (n / \epsilon)\right)
\end{aligned}
$$

Example: coloring

$D \Omega=[q]^{n}$
$D \mathcal{J} \leqslant \frac{1}{q-\Delta} \cdot \operatorname{adj}$

Review

D Influence: X, X^{\prime} differing in coord j : $\mathrm{d}_{\mathrm{TV}}\left(\operatorname{dist}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{X}_{-\mathrm{i}}\right), \operatorname{dist}\left(\mathrm{X}_{\mathrm{i}}^{\prime} \mid \mathrm{X}_{-\mathrm{i}}^{\prime}\right)\right)$
\bigcirc Call maximum value $\mathcal{J}[j \rightarrow i]$.

Example: hardcore

$$
\begin{aligned}
& \bigcirc \Omega=\{0,1\}^{n} \\
& \bigcirc \mathcal{J} \leqslant \frac{\lambda}{1+\lambda} \cdot \operatorname{adj}
\end{aligned}
$$

Dobrushin's condition

If columns of \mathcal{J} sum to $\leqslant 1-\delta$, then

$$
\begin{aligned}
\mathcal{W}\left(v P, v^{\prime} P\right) & \leqslant(1-\delta / n) \mathcal{W}\left(v, v^{\prime}\right) \\
t_{\text {mix }}(\epsilon) & =O\left(\frac{1}{\delta} n \log (n / \epsilon)\right)
\end{aligned}
$$

Example: coloring

$D \Omega=[q]^{n}$
$D \mathcal{J} \leqslant \frac{1}{q-\Delta} \cdot \operatorname{adj}$

Review

D Influence: $\mathrm{X}, \mathrm{X}^{\prime}$ differing in coord j :

$$
\mathrm{d}_{\mathrm{TV}}\left(\operatorname{dist}\left(X_{i} \mid X_{-i}\right), \operatorname{dist}\left(X_{\mathfrak{i}}^{\prime} \mid X_{-i}^{\prime}\right)\right)
$$

\bigcirc Call maximum value $\mathfrak{J}[j \rightarrow i]$.

Example: hardcore

$$
\begin{aligned}
& D \Omega=\{0,1\}^{\mathrm{n}} \\
& \bigcirc \mathcal{J} \leqslant \frac{\lambda}{1+\lambda} \cdot \operatorname{adj}
\end{aligned}
$$

Dobrushin's condition

If columns of \mathcal{J} sum to $\leqslant 1-\delta$, then

$$
\begin{aligned}
\mathcal{W}\left(v P, v^{\prime} P\right) & \leqslant(1-\delta / n) \mathcal{W}\left(v, v^{\prime}\right) \\
t_{\text {mix }}(\epsilon) & =O\left(\frac{1}{\delta} n \log (n / \epsilon)\right)
\end{aligned}
$$

Example: Ising

$D \Omega=\{ \pm 1\}^{n}$
$D \mathcal{I}[j \rightarrow i] \leqslant\left|\beta_{\mathfrak{i j}}\right|$

Example: coloring

$D \Omega=[q]^{n}$
$D \mathcal{J} \leqslant \frac{1}{q-\Delta} \cdot \operatorname{adj}$

Review

D Influence: $\mathrm{X}, \mathrm{X}^{\prime}$ differing in coord j :

$$
\mathrm{d}_{\mathrm{TV}}\left(\operatorname{dist}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{X}_{-\mathrm{i}}\right), \operatorname{dist}\left(\mathrm{X}_{\mathfrak{i}}^{\prime} \mid \mathrm{X}_{-\mathrm{i}}^{\prime}\right)\right)
$$

\bigcirc Call maximum value $\mathfrak{J}[j \rightarrow i]$.

Example: hardcore

$$
\begin{aligned}
& \bigcirc \Omega=\{0,1\}^{n} \\
& \bigcirc \mathcal{J} \leqslant \frac{\lambda}{1+\lambda} \cdot \operatorname{adj}
\end{aligned}
$$

Dobrushin's condition

If columns of \mathcal{J} sum to $\leqslant 1-\delta$, then

$$
\begin{aligned}
\mathcal{W}\left(v P, v^{\prime} P\right) & \leqslant(1-\delta / n) \mathcal{W}\left(v, v^{\prime}\right) \\
t_{\text {mix }}(\epsilon) & =O\left(\frac{1}{\delta} n \log (n / \epsilon)\right)
\end{aligned}
$$

Example: Ising

$D \Omega=\{ \pm 1\}^{n}$
$D \mathcal{I}[j \rightarrow i] \leqslant\left|\beta_{\mathfrak{i j}}\right|$

Example: coloring

$D \Omega=[q]^{n}$
$D \mathcal{J} \leqslant \frac{1}{q-\Delta} \cdot \operatorname{adj}$

D Dobrushin++: if $\mathrm{c} \mathcal{J}<(1-\delta)$ c

$$
t_{\text {mix }}(\epsilon)=O\left(\frac{n}{\delta} \log \left(\frac{n \cdot c_{\text {max }}}{\epsilon \cdot c_{\text {min }}}\right)\right)
$$

Review

D Influence: X, X^{\prime} differing in coord j :

$$
\mathrm{d}_{\mathrm{TV}}\left(\operatorname{dist}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{X}_{-\mathrm{i}}\right), \operatorname{dist}\left(\mathrm{X}_{\mathfrak{i}}^{\prime} \mid \mathrm{X}_{-\mathrm{i}}^{\prime}\right)\right)
$$

\bigcirc Call maximum value $\mathfrak{J}[j \rightarrow i]$.

Example: hardcore

$D \Omega=\{0,1\}^{n}$
$D \mathcal{J} \leqslant \frac{\lambda}{1+\lambda} \cdot a d j$

Dobrushin's condition

If columns of \mathcal{J} sum to $\leqslant 1-\delta$, then

$$
\begin{aligned}
\mathcal{W}\left(v P, v^{\prime} P\right) & \leqslant(1-\delta / n) \mathcal{W}\left(v, v^{\prime}\right) \\
t_{\text {mix }}(\epsilon) & =O\left(\frac{1}{\delta} n \log (n / \epsilon)\right)
\end{aligned}
$$

Example: Ising

$D \Omega=\{ \pm 1\}^{n}$
$D \mathcal{I}[j \rightarrow i] \leqslant\left|\beta_{\mathfrak{i j}}\right|$

Example: coloring

$D \Omega=[q]^{n}$
$D \mathcal{J} \leqslant \frac{1}{q-\Delta} \cdot \operatorname{adj}$

\bigcirc Dobrushin++: if $\mathrm{cJ}<(1-\delta) \mathrm{c}$

$$
t_{\text {mix }}(\epsilon)=O\left(\frac{n}{\delta} \log \left(\frac{n \cdot c_{\text {max }}}{\epsilon \cdot c_{\text {min }}}\right)\right)
$$

D Existence: $\lambda_{\max }(\mathcal{J})<1$

Functional Analysis

\checkmark Divergences

- Poincaré and modified log-Sobolev
\bigcirc Data processing
- Spectral analysis

Fourier Analysis

- Abelian walks
- Characters

Functional Analysis

\checkmark Divergences

- Poincaré and modified log-Sobolev
\bigcirc Data processing
- Spectral analysis

Fourier Analysis

- Abelian walks
- Characters

Divergences

ϕ-entropy
For function ϕ and $\mathrm{f}: \Omega \rightarrow \mathbb{R}$ define

$$
\operatorname{Ent}_{\mu}^{\phi}[f]=\mathbb{E}_{\mu}[\phi \circ f]-\phi\left(\mathbb{E}_{\mu}[f]\right)
$$

Divergences

ϕ-entropy
For function ϕ and $\mathrm{f}: \Omega \rightarrow \mathbb{R}$ define

$$
\operatorname{Ent}_{\mu}^{\phi}[f]=\mathbb{E}_{\mu}[\phi \circ \mathrm{f}]-\phi\left(\mathbb{E}_{\mu}[\mathrm{f}]\right) .
$$

\bigcirc When ϕ is convex, ϕ-entropy is $\geqslant 0$ (Jensen's inequality).

Divergences

ϕ-entropy
For function ϕ and $\mathrm{f}: \Omega \rightarrow \mathbb{R}$ define

$$
\operatorname{Ent}_{\mu}^{\phi}[f]=\mathbb{E}_{\mu}[\phi \circ f]-\phi\left(\mathbb{E}_{\mu}[f]\right)
$$

D When ϕ is convex, ϕ-entropy is
$\geqslant 0$ (Jensen's inequality).
D Equal to 0 when f is constant.

Divergences

ϕ-entropy
For function ϕ and $\mathrm{f}: \Omega \rightarrow \mathbb{R}$ define

$$
\operatorname{Ent}_{\mu}^{\phi}[f]=\mathbb{E}_{\mu}[\phi \circ \mathrm{f}]-\phi\left(\mathbb{E}_{\mu}[\mathrm{f}]\right) .
$$

D When ϕ is convex, ϕ-entropy is
$\geqslant 0$ (Jensen's inequality).
D Equal to 0 when f is constant.

usually f in the literature

ϕ-divergence
For measure ν and dist μ define

$$
\mathcal{D}_{\phi}(v \| \mu)=\operatorname{Ent}_{\mu}^{\phi}\left[\frac{v}{\mu}\right]
$$

Divergences

ϕ-entropy
For function ϕ and $\mathrm{f}: \Omega \rightarrow \mathbb{R}$ define

$$
\operatorname{Ent}_{\mu}^{\phi}[f]=\mathbb{E}_{\mu}[\phi \circ f]-\phi\left(\mathbb{E}_{\mu}[f]\right)
$$

D When ϕ is convex, ϕ-entropy is
$\geqslant 0$ (Jensen's inequality).
D Equal to 0 when f is constant.

usually f in the literature

ϕ-divergence
For measure ν and dist μ define

$$
\mathcal{D}_{\phi}(v \| \mu)=\operatorname{Ent}_{\mu}^{\phi}\left[\frac{v}{\mu}\right]
$$

Divergences

ϕ-entropy
For function ϕ and $\mathrm{f}: \Omega \rightarrow \mathbb{R}$ define

$$
\operatorname{Ent}_{\mu}^{\phi}[f]=\mathbb{E}_{\mu}[\phi \circ \mathrm{f}]-\phi\left(\mathbb{E}_{\mu}[\mathrm{f}]\right) .
$$

D When ϕ is convex, ϕ-entropy is $\geqslant 0$ (Jensen's inequality).
D Equal to 0 when f is constant.

usually f in the literature

ϕ-divergence
For measure v and dist μ define

$$
\mathcal{D}_{\phi}(v \| \mu)=\operatorname{Ent}_{\mu}^{\phi}\left[\frac{v}{\mu}\right]
$$

\bigcirc How far from $\frac{v}{\mu} \equiv$ const?

Divergences

ϕ-entropy
For function ϕ and $\mathrm{f}: \Omega \rightarrow \mathbb{R}$ define

$$
\operatorname{Ent}_{\mu}^{\phi}[f]=\mathbb{E}_{\mu}[\phi \circ \mathrm{f}]-\phi\left(\mathbb{E}_{\mu}[\mathrm{f}]\right) .
$$

D When ϕ is convex, ϕ-entropy is $\geqslant 0$ (Jensen's inequality).
D Equal to 0 when f is constant. usually f in the literature
ϕ-divergence
For measure ν and dist μ define

D How far from $\frac{v}{\mu} \equiv$ const?

Example: total variation

If $\phi(x)=\frac{1}{2}|x-1|$, then

$$
\mathcal{D}_{\phi}(v \| \mu)=\mathrm{d}_{\mathrm{TV}}(\nu, \mu)
$$

$$
\mathcal{D}_{\phi}(v \| \mu)=\operatorname{Ent}_{\mu}^{\phi}\left[\frac{v}{\mu}\right]
$$

Divergences

ϕ-entropy
For function ϕ and $\mathrm{f}: \Omega \rightarrow \mathbb{R}$ define

$$
\operatorname{Ent}_{\mu}^{\phi}[f]=\mathbb{E}_{\mu}[\phi \circ \mathrm{f}]-\phi\left(\mathbb{E}_{\mu}[\mathrm{f}]\right) .
$$

D When ϕ is convex, ϕ-entropy is $\geqslant 0$ (Jensen's inequality).
D Equal to 0 when f is constant. usually f in the literature

ϕ-divergence

For measure ν and dist μ define

$$
\mathcal{D}_{\phi}(v \| \mu)=\operatorname{Ent}_{\mu}^{\phi}\left[\frac{v}{\mu}\right]
$$

D How far from $\frac{v}{\mu} \equiv$ const?

Example: total variation

If $\phi(x)=\frac{1}{2}|x-1|$, then

$$
\mathcal{D}_{\phi}(v \| \mu)=\mathrm{d}_{\mathrm{TV}}(\nu, \mu)
$$

\checkmark Note: in general \mathcal{D}_{ϕ} is asymmetric and doesn't satisfy triangle ineq.

Proxy for $d_{T V}$

Contraction: $\mathcal{D}_{\phi}(v P \| \mu) \leqslant(1-\rho) \mathcal{D}_{\phi}(\nu \| \mu)$ for stationary μ.

Proxy for $d_{T V}$

$$
\text { Contraction: } \mathcal{D}_{\phi}(v P \| \mu) \leqslant(1-\rho) \mathcal{D}_{\phi}(v \| \mu) \text { for stationary } \mu
$$

Variance

$$
\phi(x):=x^{2}
$$

$\bigcirc \operatorname{Ent}_{\mu}^{\phi}[\mathrm{f}]=\operatorname{Var}_{\mu}[\mathrm{f}]$
$D \mathcal{D}_{\phi}(\nu \| \mu)=\chi^{2}(\nu \| \mu)$
D It is a proxy by Cauchy-Schwarz:

$$
\mathrm{d}_{\mathrm{TV}}(v, \mu) \leqslant \mathrm{O}\left(\sqrt{\chi^{2}(v \| \mu)}\right)
$$

D Contraction related to eigs of P.

Entropy

$$
\phi(x):=x \log x
$$

$\bigcirc \operatorname{Ent}_{\mu}^{\phi}[\mathrm{f}]=\operatorname{Ent}_{\mu}[\mathrm{f}]$
$\bigcirc \mathcal{D}_{\phi}(\nu \| \mu)=\mathcal{D}_{\mathrm{KL}}(\nu \| \mu)$
\bigcirc It is a proxy by Pinsker:

$$
\mathrm{d}_{\mathrm{TV}}(v, \mu) \leqslant \mathrm{O}\left(\sqrt{\mathcal{D}_{\mathrm{KL}}(v \| \mu)}\right)
$$

D Contraction: very hard!

D Why care about entropy?

D Why care about entropy?
D Suppose $v=\mathbb{1}_{x}$. Then

$$
\begin{aligned}
\chi^{2}(v \| \mu) & =\frac{1}{\mu(x)}-1 \leftarrow \text { ignore } \\
\mathcal{D}_{\mathrm{KL}}(v \| \mu) & =\log \left(\frac{1}{\mu(x)}\right)
\end{aligned}
$$

D Why care about entropy?
D Suppose $v=\mathbb{1}_{x}$. Then

$$
\begin{aligned}
\chi^{2}(v \| \mu) & =\frac{1}{\mu(x)}-1 \leftarrow \text { ignore } \\
\mathcal{D}_{\mathrm{KL}}(v \| \mu) & =\log \left(\frac{1}{\mu(x)}\right)
\end{aligned}
$$

\bigcirc Contraction by $1-\rho$ implies

$$
\begin{gathered}
t_{\text {mix }} \leqslant \frac{\log (1 / \mu(x))}{\rho} \\
t_{\text {mix }} \leqslant \frac{\log \log (1 / \mu(x))}{\rho}
\end{gathered}
$$

D Why care about entropy?
D Suppose $v=\mathbb{1}_{x}$. Then

$$
\begin{aligned}
\chi^{2}(v \| \mu) & =\frac{1}{\mu(x)}-1 \leftarrow \text { ignore } \\
\mathcal{D}_{\mathrm{KL}}(v \| \mu) & =\log \left(\frac{1}{\mu(x)}\right)
\end{aligned}
$$

\bigcirc Contraction by $1-\rho$ implies

$$
\begin{gathered}
\mathrm{t}_{\text {mix }} \leqslant \frac{\log (1 / \mu(x))}{\rho} \\
\mathrm{t}_{\text {mix }} \leqslant \frac{\log \log (1 / \mu(x))}{\rho}
\end{gathered}
$$

Example: hypercube
$D \rho=\Theta(1 / n)$
D $1 / \mu(x)=2^{n}$
$D t_{\text {mix }}=O\left(n^{2}\right) v s$.

$t_{\text {mix }}=O(n \log n)$
\bigcirc Why care about entropy?
\triangleright Suppose $v=\mathbb{1}_{x}$. Then

$$
\begin{aligned}
\chi^{2}(v \| \mu) & =\frac{1}{\mu(x)}-1 \leftarrow \text { ignore } \\
\mathcal{D}_{\mathrm{KL}}(v \| \mu) & =\log \left(\frac{1}{\mu(x)}\right)
\end{aligned}
$$

\bigcirc Contraction by $1-\rho$ implies

$$
\begin{gathered}
t_{\text {mix }} \leqslant \frac{\log (1 / \mu(x))}{\rho} \\
t_{\text {mix }} \leqslant \frac{\log \log (1 / \mu(x))}{\rho}
\end{gathered}
$$

Example: hypercube

$D \rho=\Theta(1 / n)$
D $1 / \mu(x)=2^{n}$
$D t_{\text {mix }}=O\left(n^{2}\right) v s$.
$t_{\text {mix }}=O(n \log n)$

D However, entropy contraction is much harder to prove. : We will focus mostly on variance for now.
\bigcirc Why care about entropy?
\triangleright Suppose $v=\mathbb{1}_{x}$. Then

$$
\begin{aligned}
\chi^{2}(v \| \mu) & =\frac{1}{\mu(x)}-1 \leftarrow \text { ignore } \\
\mathcal{D}_{\mathrm{KL}}(v \| \mu) & =\log \left(\frac{1}{\mu(x)}\right)
\end{aligned}
$$

\bigcirc Contraction by $1-\rho$ implies

$$
\begin{gathered}
\mathrm{t}_{\text {mix }} \leqslant \frac{\log (1 / \mu(x))}{\rho} \\
\mathrm{t}_{\text {mix }} \leqslant \frac{\log \log (1 / \mu(x))}{\rho}
\end{gathered}
$$

Example: hypercube

D $\rho=\Theta(1 / n)$
D $1 / \mu(x)=2^{n}$
$D \mathrm{t}_{\text {mix }}=\mathrm{O}\left(\mathrm{n}^{2}\right) \mathrm{vs}$.
$\mathrm{t}_{\text {mix }}=\mathrm{O}(\mathrm{n} \log n)$

- However, entropy contraction is much harder to prove. :) We will focus mostly on variance for now.
\bigcirc Divergences have one major benefit: weak contraction. :)

D Why care about entropy?
D Suppose $v=\mathbb{1}_{x}$. Then

$$
\begin{aligned}
\chi^{2}(v \| \mu) & =\frac{1}{\mu(x)}-1 \leftarrow \text { ignore } \\
\mathcal{D}_{\mathrm{KL}}(v \| \mu) & =\log \left(\frac{1}{\mu(x)}\right)
\end{aligned}
$$

\bigcirc Contraction by $1-\rho$ implies

$$
\begin{gathered}
\mathrm{t}_{\text {mix }} \leqslant \frac{\log (1 / \mu(x))}{\rho} \\
\mathrm{t}_{\text {mix }} \leqslant \frac{\log \log (1 / \mu(x))}{\rho}
\end{gathered}
$$

Example: hypercube

$D \rho=\Theta(1 / n)$

- $1 / \mu(x)=2^{n}$
$D t_{\text {mix }}=O\left(n^{2}\right) v s$.

$$
t_{\text {mix }}=O(n \log n)
$$

D However, entropy contraction is much harder to prove. : We will focus mostly on variance for now.
\checkmark Divergences have one major benefit: weak contraction. :)

Lemma: data processing

Suppose N is Markov kernel. Then

$$
\mathcal{D}_{\phi}(\nu \mathrm{N} \| \mu \mathrm{N}) \leqslant \mathcal{D}_{\phi}(\nu \| \mu)
$$

D Why care about entropy?
D Suppose $v=\mathbb{1}_{x}$. Then

$$
\begin{aligned}
\chi^{2}(v \| \mu) & =\frac{1}{\mu(x)}-1 \leftarrow \text { ignore } \\
\mathcal{D}_{\mathrm{KL}}(v \| \mu) & =\log \left(\frac{1}{\mu(x)}\right)
\end{aligned}
$$

\bigcirc Contraction by $1-\rho$ implies

$$
\begin{gathered}
\mathrm{t}_{\text {mix }} \leqslant \frac{\log (1 / \mu(x))}{\rho} \\
\mathrm{t}_{\text {mix }} \leqslant \frac{\log \log (1 / \mu(x))}{\rho}
\end{gathered}
$$

Example: hypercube

$D \rho=\Theta(1 / n)$

- $1 / \mu(x)=2^{n}$
$D t_{\text {mix }}=O\left(n^{2}\right) v s$.

$$
t_{\text {mix }}=O(n \log n)
$$

D However, entropy contraction is much harder to prove. : We will focus mostly on variance for now.
\checkmark Divergences have one major benefit: weak contraction. :)

Lemma: data processing

Suppose N is Markov kernel. Then

$$
\mathcal{D}_{\phi}(\nu N \| \mu N) \leqslant \mathcal{D}_{\phi}(\nu \| \mu)
$$

D Markov chain P with stationary μ :

$$
\mathcal{D}_{\phi}(\nu \mathrm{P} \| \mu) \leqslant \mathcal{D}_{\phi}(\nu \| \mu)
$$

D Why care about entropy?
\bigcirc Suppose $v=\mathbb{1}_{x}$. Then

$$
\begin{aligned}
\chi^{2}(v \| \mu) & =\frac{1}{\mu(x)}-1 \leftarrow \text { ignore } \\
\mathcal{D}_{\mathrm{KL}}(v \| \mu) & =\log \left(\frac{1}{\mu(x)}\right)
\end{aligned}
$$

D However, entropy contraction is much harder to prove. : We will focus mostly on variance for now.
\checkmark Divergences have one major benefit: weak contraction. :)
\bigcirc Contraction by $1-\rho$ implies

$$
\begin{gathered}
\mathrm{t}_{\text {mix }} \leqslant \frac{\log (1 / \mu(x))}{\rho} \\
\mathrm{t}_{\text {mix }} \leqslant \frac{\log \log (1 / \mu(x))}{\rho}
\end{gathered}
$$

Example: hypercube

$D \rho=\Theta(1 / n)$

- $1 / \mu(x)=2^{n}$
$D t_{\text {mix }}=O\left(n^{2}\right) v s$.

$$
t_{\text {mix }}=O(n \log n)
$$

Lemma: data processing

Suppose N is Markov kernel. Then

$$
\mathcal{D}_{\phi}(\nu N \| \mu N) \leqslant \mathcal{D}_{\phi}(\nu \| \mu)
$$

D Markov chain P with stationary μ :

$$
\mathcal{D}_{\phi}(\nu \mathrm{P} \| \mu) \leqslant \mathcal{D}_{\phi}(\nu \| \mu)
$$

\bigcirc Useful for $\mathrm{P}=\mathrm{NN}^{\circ}$. Only need to show strong contraction for N (or possibly N°). :

Proof:
$D \mathrm{~N}^{\circ}$: time-reversal of N w.r.t. μ.

Proof:

$\checkmark \mathrm{N}^{\circ}$: time-reversal of N w.r.t. μ.
D Let $f=\nu / \mu$ and $g=(\nu N) /(\mu N)$.

Proof:
$\bigcirc \mathrm{N}^{\circ}$: time-reversal of N w.r.t. μ.
D Let $f=\nu / \mu$ and $g=(\nu N) /(\mu N)$.

- We have

$$
g(y)=\frac{\sum_{x} f(x) \mu(x) N(x, y)}{\sum_{x} \mu(x) N(x, y)}
$$

Proof:

$\checkmark \mathrm{N}^{\circ}$: time-reversal of N w.r.t. μ.
D Let $\mathrm{f}=\nu / \mu$ and $\mathrm{g}=(\nu \mathrm{N}) /(\mu \mathrm{N})$.
D We have

$$
g(y)=\frac{\sum_{x} f(x) \mu(x) N(x, y)}{\sum_{x} \mu(x) N(x, y)}
$$

\checkmark This means $g=N^{\circ} f_{\pi}$
column vector column vector

Proof:

$\checkmark \mathrm{N}^{\circ}$: time-reversal of N w.r.t. μ.
D Let $\mathrm{f}=\nu / \mu$ and $\mathrm{g}=(\nu \mathrm{N}) /(\mu \mathrm{N})$.

- We have

$$
g(y)=\frac{\sum_{x} f(x) \mu(x) N(x, y)}{\sum_{x} \mu(x) N(x, y)}
$$

- This means $g=N^{\circ} f_{\pi}$

column vector column vector

D So we have $\mathbb{E}_{\mu}[\phi \circ f]-\mathbb{E}_{\mu \mathrm{N}}[\phi \circ \mathrm{g}]=$

$$
\mathbb{E}_{y \sim \mu N}\left[\operatorname{Ent}_{N^{\circ}(y, \cdot)}^{\phi}[f]\right] \geqslant 0 .
$$

Proof:

$\checkmark \mathrm{N}^{\circ}$: time-reversal of N w.r.t. μ.
D Let $\mathrm{f}=\nu / \mu$ and $\mathrm{g}=(\nu \mathrm{N}) /(\mu \mathrm{N})$.

- We have

$$
g(y)=\frac{\sum_{x} f(x) \mu(x) N(x, y)}{\sum_{x} \mu(x) N(x, y)}
$$

D This means $g=N^{\circ} f_{\pi}$

column vector column vector

D So we have $\mathbb{E}_{\mu}[\phi \circ f]-\mathbb{E}_{\mu \mathrm{N}}[\phi \circ \mathrm{g}]=$

$$
\mathbb{E}_{y \sim \mu N}\left[\operatorname{Ent}_{N^{\circ}(y, \cdot)}^{\phi}[f]\right] \geqslant 0
$$

D On the other hand, $\mathbb{E}_{\mu}[f]=\mathbb{E}_{\mu N}[g]$, so

$$
\phi\left(\mathbb{E}_{\mu}[f]\right)=\phi\left(\mathbb{E}_{\mu \mathrm{N}}[g]\right) .
$$

Proof:
$\checkmark \mathrm{N}^{\circ}$: time-reversal of N w.r.t. μ.
D Let $f=v / \mu$ and $g=(\nu N) /(\mu N)$.

- We have

$$
g(y)=\frac{\sum_{x} f(x) \mu(x) N(x, y)}{\sum_{x} \mu(x) N(x, y)}
$$

- This means $g=N^{\circ} f^{K}$
column vector column vector
D So we have $\mathbb{E}_{\mu}[\phi \circ f]-\mathbb{E}_{\mu N}[\phi \circ \mathrm{~g}]=$

$$
\mathbb{E}_{y \sim \mu N}\left[\operatorname{Ent}_{N^{\circ}(y, \cdot)}^{\phi}[f]\right] \geqslant 0 .
$$

\bigcirc On the other hand, $\mathbb{E}_{\mu}[f]=\mathbb{E}_{\mu \mathrm{N}}[\mathrm{g}]$,
so

$$
\phi\left(\mathbb{E}_{\mu}[f]\right)=\phi\left(\mathbb{E}_{\mu N}[g]\right)
$$

- Therefore

$$
\operatorname{Ent}_{\mu}^{\phi}[f] \geqslant \operatorname{Ent}_{\mu N}^{\phi}[g] .
$$

Proof:

$D \mathrm{~N}^{\circ}$: time-reversal of N w.r.t. μ.
D Let $\mathrm{f}=\nu / \mu$ and $\mathrm{g}=(\nu \mathrm{N}) /(\mu \mathrm{N})$.
© We have
\bigcirc On the other hand, $\mathbb{E}_{\mu}[f]=\mathbb{E}_{\mu \mathrm{N}}[g]$, so

$$
\phi\left(\mathbb{E}_{\mu}[f]\right)=\phi\left(\mathbb{E}_{\mu \mathrm{N}}[g]\right) .
$$

- Therefore

$$
g(y)=\frac{\sum_{x} f(x) \mu(x) N(x, y)}{\sum_{x} \mu(x) N(x, y)}
$$

$$
\operatorname{Ent}_{\mu}^{\phi}[f] \geqslant \operatorname{Ent}_{\mu \mathrm{N}}^{\phi}[\mathrm{g}] .
$$

D This means $g=N^{\circ} f_{\pi}$
column vector column vector
D So we have $\mathbb{E}_{\mu}[\phi \circ f]-\mathbb{E}_{\mu \mathrm{N}}[\phi \circ \mathrm{g}]=$

$$
\mathbb{E}_{y \sim \mu N}\left[\operatorname{Ent}_{N^{\circ}(y, \cdot)}^{\phi}[f]\right] \geqslant 0
$$

Lemma: data processing

Suppose N is Markov kernel and ϕ convex. Then

$$
\mathcal{D}_{\phi}(v N \| \mu N) \leqslant \mathcal{D}_{\phi}(v \| \mu)
$$

Spectral analysis

Contraction of χ^{2} is determined by eigenvalues:

Lemma

Suppose N is Markov kernel and N° is time-reversal w.r.t. μ. Then

$$
\max \left\{\frac{\chi^{2}(\nu N \| \mu N)}{\chi^{2}(v \| \mu)}\right\}=\lambda_{2}\left(N N^{\circ}\right)
$$

Spectral analysis

Contraction of χ^{2} is determined by eigenvalues:

Lemma

Suppose N is Markov kernel and N° is time-reversal w.r.t. μ. Then

$$
\max \left\{\frac{\chi^{2}(v N \| \mu N)}{\chi^{2}(v \| \mu)}\right\}=\lambda_{2}\left(N N^{\circ}\right)
$$

D When P is time-reversible w.r.t. μ :

$$
\operatorname{diag}(\mu) P=\underset{\uparrow}{Q}
$$

Spectral analysis

Contraction of χ^{2} is determined by \triangleright So we have eigenvalues:

Lemma

Suppose N is Markov kernel and N° is time-reversal w.r.t. μ. Then

$$
\max \left\{\frac{\chi^{2}(\nu N \| \mu N)}{\chi^{2}(v \| \mu)}\right\}=\lambda_{2}\left(N N^{\circ}\right)
$$

D When P is time-reversible w.r.t. μ :

$$
\begin{aligned}
& \operatorname{diag}(\mu) P=Q \\
& \text { symmetric matrix }
\end{aligned}
$$

Spectral analysis

Contraction of χ^{2} is determined by \triangleright So we have eigenvalues:

Lemma

Suppose N is Markov kernel and N° is time-reversal w.r.t. μ. Then

$$
\max \left\{\frac{\chi^{2}(v N \| \mu N)}{\chi^{2}(v \| \mu)}\right\}=\lambda_{2}\left(N N^{\circ}\right)
$$

$$
\underbrace{\begin{array}{l}
\operatorname{diag}(\mu)^{1 / 2} \cdot P \cdot \operatorname{diag}(\mu)^{-1 / 2}= \\
\operatorname{diag}(\mu)^{-1 / 2} \cdot Q \cdot \operatorname{diag}(\mu)^{-1 / 2}
\end{array}}_{\text {still symmetric }}
$$

\checkmark This means eigs are real!
so λ_{2} has meaning
© When P is time-reversible w.r.t. μ :

$$
\begin{aligned}
& \operatorname{diag}(\mu) P=\underset{\uparrow}{Q} \\
& \quad \text { symmetric matrix }
\end{aligned}
$$

Spectral analysis

Contraction of χ^{2} is determined by \triangleright So we have eigenvalues:

Lemma

Suppose N is Markov kernel and N° is time-reversal w.r.t. μ. Then

$$
\max \left\{\frac{\chi^{2}(v N \| \mu N)}{\chi^{2}(v \| \mu)}\right\}=\lambda_{2}\left(N N^{\circ}\right)
$$

\bigcirc When P is time-reversible w.r.t. μ :

$$
\begin{array}{r}
\operatorname{diag}(\mu) P=\underset{\uparrow}{Q} \\
\text { symmetric matrix }
\end{array}
$$

\checkmark This means eigs are real!
so λ_{2} has meaning

- We will show later that eigs are $\in[-1,1]$ for time-reversible P.

Spectral analysis

Contraction of χ^{2} is determined by \triangleright So we have eigenvalues:

Lemma

Suppose N is Markov kernel and N° is time-reversal w.r.t. μ. Then

$$
\max \left\{\frac{x^{2}(v N \| \mu N)}{x^{2}(v \| \mu)}\right\}=\lambda_{2}\left(N N^{\circ}\right)
$$

D When P is time-reversible w.r.t. μ :

$$
\begin{aligned}
& \operatorname{diag}(\mu) P=\underset{\uparrow}{Q} \\
& \text { symmetric matrix }
\end{aligned}
$$

\triangleright This means eigs are real!
so λ_{2} has meaning

- We will show later that eigs are $\in[-1,1]$ for time-reversible P.
D For $\mathrm{P}=\mathrm{NN}^{\circ}$, they are $\geqslant 0$!

Spectral analysis

Contraction of χ^{2} is determined by D So we have eigenvalues:

Lemma

Suppose N is Markov kernel and N° is time-reversal w.r.t. μ. Then

$$
\max \left\{\frac{\chi^{2}(v N \| \mu N)}{\chi^{2}(v \| \mu)}\right\}=\lambda_{2}\left(N N^{\circ}\right)
$$

D When P is time-reversible w.r.t. μ :

$$
\operatorname{diag}(\mu) P=\underset{\uparrow}{Q}
$$

symmetric matrix

\bigcirc This means eigs are real!
so λ_{2} has meaning
D We will show later that eigs are $\in[-1,1]$ for time-reversible P.
D For $\mathrm{P}=\mathrm{NN}^{\circ}$, they are $\geqslant 0$!

- When N is time-reversible chain:

$$
\lambda_{2}\left(N N^{\circ}\right)=\max \left\{\lambda_{2}(N),\left|\lambda_{\min }(N)\right|\right\}^{2}
$$

Eigenvalues
[Perron-Frobenius] for Markov chains:

Eigenvalues
[Perron-Frobenius] for Markov chains:

- 1 is special eig:
$\mu \mathrm{P}=\mu, \mathrm{P} \mathbb{1}=\mathbb{1}$

Eigenvalues

[Perron-Frobenius] for Markov chains:

- 1 is special eig:
$\mu \mathrm{P}=\mu, \mathrm{P} \mathbb{1}=\mathbb{1}$
D Other eigs have $|\cdot| \leqslant 1$.

strict if ergodic

Eigenvalues

[Perron-Frobenius] for Markov chains:

- 1 is special eig:
D Other eigs have $|\cdot| \leqslant 1$.

strict if ergodic

Proof: $(\mathrm{P} v)_{i}$ is an average of $v_{j} \mathrm{~S}$, so

$$
\left|(\mathrm{P} v)_{i}\right| \leqslant \max \left\{\left|v_{j}\right|\right\} .
$$

So if $\mathrm{P} v=\lambda v$, we must have $|\lambda| \leqslant 1$.

Eigenvalues

[Perron-Frobenius] for Markov chains:

- 1 is special eig:
$\mu \mathrm{P}=\mu, \mathrm{P} \mathbb{1}=\mathbb{1}$
\bigcirc Other eigs have $|\cdot| \leqslant 1$.

strict if ergodic

D If P is time-reversible the picture is

Proof: $(\mathrm{P} v)_{i}$ is an average of $v_{j} \mathrm{~S}$, so

$$
\left|(P v)_{\mathfrak{i}}\right| \leqslant \max \left\{\left|v_{j}\right|\right\} .
$$

So if $\mathrm{P} v=\lambda v$, we must have $|\lambda| \leqslant 1$.

Eigenvalues

[Perron-Frobenius] for Markov chains:

- 1 is special eig:
$\mu \mathrm{P}=\mu, \mathrm{P} \mathbb{1}=\mathbb{1}$
D Other eigs have $|\cdot| \leqslant 1$.

strict if ergodic

Proof: $(\mathrm{P} v)_{i}$ is an average of $v_{j} \mathrm{~s}$, so

$$
\left|(\mathrm{P} v)_{i}\right| \leqslant \max \left\{\left|v_{j}\right|\right\} .
$$

So if $\mathrm{P} v=\lambda v$, we must have $|\lambda| \leqslant 1$.
D If P is time-reversible the picture is

- Use convention

$$
1=\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n} \geqslant-1
$$

Eigenvalues

[Perron-Frobenius] for Markov chains:

- 1 is special eig:
$\mu \mathrm{P}=\mu, \mathrm{P} \mathbb{1}=\mathbb{1}$
D Other eigs have $|\cdot| \leqslant 1$.
strict if ergodic

Proof: $(\mathrm{P} v)_{i}$ is an average of $v_{j} \mathrm{~s}$, so

$$
\left|(\mathrm{P} v)_{\mathfrak{i}}\right| \leqslant \max \left\{\left|v_{j}\right|\right\} .
$$

So if $\mathrm{P} v=\lambda v$, we must have $|\lambda| \leqslant 1$.
D If P is time-reversible the picture is

© Use convention

$$
1=\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n} \geqslant-1
$$

\bigcirc Spectral gap: usually $1-\lambda_{2}$, in some places $1-\max \left\{\lambda_{2},\left|\lambda_{n}\right|\right\}$.

Eigenvalues

[Perron-Frobenius] for Markov chains:
$\bigcirc 1$ is special eig:
$\mu \mathrm{P}=\mu, \mathrm{P} \mathbb{1}=\mathbb{1}$
D Other eigs have $|\cdot| \leqslant 1$.
strict if ergodic

Proof: $(\mathrm{P} v)_{i}$ is an average of $v_{j} \mathrm{~s}$, so

$$
\left|(\mathrm{P} v)_{i}\right| \leqslant \max \left\{\left|v_{j}\right|\right\} .
$$

So if $\mathrm{P} v=\lambda v$, we must have $|\lambda| \leqslant 1$.
D If P is time-reversible the picture is

- Use convention

$$
1=\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n} \geqslant-1
$$

\checkmark Spectral gap: usually $1-\lambda_{2}$, in some places $1-\max \left\{\lambda_{2},\left|\lambda_{n}\right|\right\}$.

- If $\mathrm{P}=\mathrm{NN}^{\circ}$, we will show all $\lambda \geqslant 0$.

Lemma

Suppose N is Markov kernel and N° is time-reversal w.r.t. μ. Then

$$
\max \left\{\frac{\chi^{2}(v N \| \mu \mathrm{N})}{x^{2}(v \| \mu)}\right\}=\lambda_{2}\left(N N^{\circ}\right)
$$

Lemma

Suppose N is Markov kernel and N° is time-reversal w.r.t. μ. Then

$$
\max \left\{\frac{\chi^{2}(\nu N \| \mu \mathrm{N})}{\chi^{2}(v \| \mu)}\right\}=\lambda_{2}\left(\mathrm{NN}^{\circ}\right)
$$

Proof:
D Let $\mathrm{f}=\nu / \mu$ and $\mathrm{g}=(\nu \mathrm{N}) /(\mu \mathrm{N})$, and $\mu^{\circ}=\mu \mathrm{N}$.

Lemma

Suppose N is Markov kernel and N° is time-reversal w.r.t. μ. Then

$$
\max \left\{\frac{\chi^{2}(v N \| \mu \mathrm{N})}{x^{2}(v \| \mu)}\right\}=\lambda_{2}\left(N N^{\circ}\right)
$$

Proof:
D Let $\mathrm{f}=\nu / \mu$ and $g=(\nu \mathrm{N}) /(\mu \mathrm{N})$, and $\mu^{\circ}=\mu \mathrm{N}$.
D We can equivalently consider $\operatorname{Var}_{\mu}[f] \vee \mathrm{Vs} . \operatorname{Var}_{\mu^{\circ}}[g]$.

Lemma

Suppose N is Markov kernel and N° is time-reversal w.r.t. μ. Then

$$
\max \left\{\frac{\chi^{2}(\nu N \| \mu \mathrm{N})}{\chi^{2}(v \| \mu)}\right\}=\lambda_{2}\left(\mathrm{NN}^{\circ}\right)
$$

Proof:
D Let $\mathrm{f}=\nu / \mu$ and $\mathrm{g}=(\nu \mathrm{N}) /(\mu \mathrm{N})$, and $\mu^{\circ}=\mu \mathrm{N}$.
© We can equivalently consider $\operatorname{Var}_{\mu}[f] \vee s . \operatorname{Var}_{\mu} \circ[g]$.

- Additive shift doesn't change Var:

$$
\operatorname{Var}_{\mu}[\mathrm{f}]=\operatorname{Var}_{\mu}[\mathrm{f}+\mathrm{c}],
$$

because

$$
\begin{gathered}
\operatorname{Var}_{\mu}[f]=\mathbb{E}_{\mu}\left[f^{2}\right]-\mathbb{E}_{\mu}[f]^{2}= \\
\mathbb{E}_{\mu}\left[\left(f-\mathbb{E}_{\mu}[f]\right)^{2}\right]
\end{gathered}
$$

Lemma

Suppose N is Markov kernel and N° is time-reversal w.r.t. μ. Then

$$
\max \left\{\frac{\chi^{2}(\nu \mathrm{~N} \| \mu \mathrm{N})}{\chi^{2}(v \| \mu)}\right\}=\lambda_{2}\left(\mathrm{NN}^{\circ}\right)
$$

Proof:
D Let $\mathrm{f}=\nu / \mu$ and $g=(\nu \mathrm{N}) /(\mu \mathrm{N})$, and $\mu^{\circ}=\mu \mathrm{N}$.
D We can equivalently consider
$\operatorname{Var}_{\mu}[f] \vee s . \operatorname{Var}_{\mu^{\circ}}[g]$.

- Additive shift doesn't change Var:

$$
\operatorname{Var}_{\mu}[f]=\operatorname{Var}_{\mu}[f+c],
$$

because

$$
\begin{gathered}
\operatorname{Var}_{\mu}[f]=\mathbb{E}_{\mu}\left[f^{2}\right]-\mathbb{E}_{\mu}[f]^{2}= \\
\mathbb{E}_{\mu}\left[\left(f-\mathbb{E}_{\mu}[f]\right)^{2}\right]
\end{gathered}
$$

D Can assume $\mathbb{E}_{\mu}[f]=0$, which means $\mathbb{E}_{\mu^{\circ}}[\mathrm{g}]=0$.

Lemma

Suppose N is Markov kernel and N° is time-reversal w.r.t. μ. Then

$$
\max \left\{\frac{\chi^{2}(\nu N \| \mu \mathrm{N})}{\chi^{2}(v \| \mu)}\right\}=\lambda_{2}\left(\mathrm{NN}^{\circ}\right)
$$

Proof:
D Let $f=\nu / \mu$ and $g=(\nu N) /(\mu N)$, and $\mu^{\circ}=\mu \mathrm{N}$.
D We can equivalently consider
$\operatorname{Var}_{\mu}[f]$ vs. $\operatorname{Var}_{\mu}{ }^{\circ}[g]$.

- Additive shift doesn't change Var:

$$
\operatorname{Var}_{\mu}[\mathrm{f}]=\operatorname{Var}_{\mu}[\mathrm{f}+\mathrm{c}],
$$

because

$$
\begin{gathered}
\operatorname{Var}_{\mu}[f]=\mathbb{E}_{\mu}\left[f^{2}\right]-\mathbb{E}_{\mu}[f]^{2}= \\
\mathbb{E}_{\mu}\left[\left(f-\mathbb{E}_{\mu}[f]\right)^{2}\right]
\end{gathered}
$$

D Can assume $\mathbb{E}_{\mu}[f]=0$, which means $\mathbb{E}_{\mu^{\circ}}[\mathrm{g}]=0$.
\bigcirc Then $\operatorname{Var}_{\mu}[\mathrm{f}]=\mathrm{f}^{\mathrm{T}} \operatorname{diag}(\mu) \mathrm{f}$, and $\operatorname{Var}_{\mu} \circ[\mathrm{g}]=\mathrm{g}^{\top} \operatorname{diag}\left(\mu^{\circ}\right) \mathrm{g}$.

Lemma

Suppose N is Markov kernel and N° is time-reversal w.r.t. μ. Then

$$
\max \left\{\frac{\chi^{2}(\nu N \| \mu \mathrm{N})}{\chi^{2}(v \| \mu)}\right\}=\lambda_{2}\left(\mathrm{NN}^{\circ}\right)
$$

Proof:
D Let $f=\nu / \mu$ and $g=(\nu N) /(\mu N)$, and $\mu^{\circ}=\mu \mathrm{N}$.
D We can equivalently consider
$\operatorname{Var}_{\mu}[f]$ vs. $\operatorname{Var}_{\mu}{ }^{\circ}[g]$.

- Additive shift doesn't change Var:

$$
\operatorname{Var}_{\mu}[\mathrm{f}]=\operatorname{Var}_{\mu}[\mathrm{f}+\mathrm{c}],
$$

because

$$
\begin{gathered}
\operatorname{Var}_{\mu}[f]=\mathbb{E}_{\mu}\left[f^{2}\right]-\mathbb{E}_{\mu}[f]^{2}= \\
\mathbb{E}_{\mu}\left[\left(f-\mathbb{E}_{\mu}[f]\right)^{2}\right]
\end{gathered}
$$

D Can assume $\mathbb{E}_{\mu}[f]=0$, which means $\mathbb{E}_{\mu^{\circ}}[\mathrm{g}]=0$.
\bigcirc Then $\operatorname{Var}_{\mu}[\mathrm{f}]=\mathrm{f}^{\mathrm{T}} \operatorname{diag}(\mu) \mathrm{f}$, and $\operatorname{Var}_{\mu} \circ[\mathrm{g}]=\mathrm{g}^{\top} \operatorname{diag}\left(\mu^{\circ}\right) \mathrm{g}$.

Lemma

Suppose N is Markov kernel and N° is time-reversal w.r.t. μ. Then

$$
\max \left\{\frac{\chi^{2}(\nu \mathrm{~N} \| \mu \mathrm{N})}{\chi^{2}(v \| \mu)}\right\}=\lambda_{2}\left(\mathrm{NN}^{\circ}\right)
$$

Proof:
D Let $f=\nu / \mu$ and $g=(\nu N) /(\mu N)$, and $\mu^{\circ}=\mu \mathrm{N}$.
© We can equivalently consider
$\operatorname{Var}_{\mu}[f] \vee s . \operatorname{Var}_{\mu^{\circ}}[g]$.

- Additive shift doesn't change Var:

$$
\operatorname{Var}_{\mu}[\mathrm{f}]=\operatorname{Var}_{\mu}[\mathrm{f}+\mathrm{c}],
$$

because

$$
\begin{gathered}
\operatorname{Var}_{\mu}[f]=\mathbb{E}_{\mu}\left[f^{2}\right]-\mathbb{E}_{\mu}[f]^{2}= \\
\mathbb{E}_{\mu}\left[\left(f-\mathbb{E}_{\mu}[f]\right)^{2}\right]
\end{gathered}
$$

D Can assume $\mathbb{E}_{\mu}[f]=0$, which means $\mathbb{E}_{\mu^{\circ}}[\mathrm{g}]=0$.
\bigcirc Then $\operatorname{Var}_{\mu}[\mathrm{f}]=\mathrm{f}^{\mathrm{T}} \operatorname{diag}(\mu) \mathrm{f}$, and $\operatorname{Var}_{\mu \circ}[g]=g^{\top} \operatorname{diag}\left(\mu^{\circ}\right) g$.
D So if $u=\operatorname{diag}(\mu)^{1 / 2} f$, then we are after $u^{\top} M u /\|u\|^{2}$ for $M=$
$\operatorname{diag}(\mu)^{-1 / 2}\left(N^{\circ}\right)^{\top} \operatorname{diag}\left(\mu^{\circ}\right) N^{\circ} \operatorname{diag}(\mu)^{-1 / 2}$

Lemma

Suppose N is Markov kernel and N° is time-reversal w.r.t. μ. Then

$$
\max \left\{\frac{\chi^{2}(\nu \mathrm{~N} \| \mu \mathrm{N})}{\chi^{2}(v \| \mu)}\right\}=\lambda_{2}\left(\mathrm{NN}^{\circ}\right)
$$

Proof:
D Let $f=\nu / \mu$ and $g=(\nu N) /(\mu N)$, and $\mu^{\circ}=\mu \mathrm{N}$.
© We can equivalently consider $\operatorname{Var}_{\mu}[f] \vee s . \operatorname{Var}_{\mu^{\circ}}[g]$.

- Additive shift doesn't change Var:

$$
\operatorname{Var}_{\mu}[\mathrm{f}]=\operatorname{Var}_{\mu}[\mathrm{f}+\mathrm{c}],
$$

because

$$
\begin{gathered}
\operatorname{Var}_{\mu}[f]=\mathbb{E}_{\mu}\left[f^{2}\right]-\mathbb{E}_{\mu}[f]^{2}= \\
\mathbb{E}_{\mu}\left[\left(f-\mathbb{E}_{\mu}[f]\right)^{2}\right]
\end{gathered}
$$

D Can assume $\mathbb{E}_{\mu}[f]=0$, which means $\mathbb{E}_{\mu^{\circ}}[\mathrm{g}]=0$.
\bigcirc Then $\operatorname{Var}_{\mu}[\mathrm{f}]=\mathrm{f}^{\mathrm{T}} \operatorname{diag}(\mu) \mathrm{f}$, and $\operatorname{Var}_{\mu \circ}[g]=g^{\top} \operatorname{diag}\left(\mu^{\circ}\right) g$.
D So if $u=\operatorname{diag}(\mu)^{1 / 2} f$, then we are after $u^{\top} M u /\|u\|^{2}$ for $M=$
$\operatorname{diag}(\mu)^{-1 / 2}\left(N^{\circ}\right)^{\top} \operatorname{diag}\left(\mu^{\circ}\right) N^{\circ} \operatorname{diag}(\mu)^{-1 / 2}$
D Note that $M=A A^{\top}$, so $\geqslant 0$ eigs.

Lemma

Suppose N is Markov kernel and N° is time-reversal w.r.t. μ. Then

$$
\max \left\{\frac{\chi^{2}(\nu \mathrm{~N} \| \mu \mathrm{N})}{\chi^{2}(v \| \mu)}\right\}=\lambda_{2}\left(\mathrm{NN}^{\circ}\right)
$$

Proof:

D Let $\mathrm{f}=\nu / \mu$ and $g=(\nu \mathrm{N}) /(\mu \mathrm{N})$, and $\mu^{\circ}=\mu \mathrm{N}$.
© We can equivalently consider
$\operatorname{Var}_{\mu}[f] \vee s . \operatorname{Var}_{\mu^{\circ}}[g]$.

- Additive shift doesn't change Var:

$$
\operatorname{Var}_{\mu}[\mathrm{f}]=\operatorname{Var}_{\mu}[\mathrm{f}+\mathrm{c}],
$$

because

$$
\begin{gathered}
\operatorname{Var}_{\mu}[f]=\mathbb{E}_{\mu}\left[f^{2}\right]-\mathbb{E}_{\mu}[f]^{2}= \\
\mathbb{E}_{\mu}\left[\left(f-\mathbb{E}_{\mu}[f]\right)^{2}\right]
\end{gathered}
$$

D Can assume $\mathbb{E}_{\mu}[f]=0$, which means $\mathbb{E}_{\mu^{\circ}}[\mathrm{g}]=0$.
\bigcirc Then $\operatorname{Var}_{\mu}[\mathrm{f}]=\mathrm{f}^{\mathrm{T}} \operatorname{diag}(\mu) \mathrm{f}$, and $\operatorname{Var}_{\mu \circ}[g]=g^{\top} \operatorname{diag}\left(\mu^{\circ}\right) g$.
D So if $u=\operatorname{diag}(\mu)^{1 / 2} f$, then we are after $u^{\top} M u /\|u\|^{2}$ for $M=$
$\operatorname{diag}(\mu)^{-1 / 2}\left(N^{\circ}\right)^{\top} \operatorname{diag}\left(\mu^{\circ}\right) N^{\circ} \operatorname{diag}(\mu)^{-1 / 2}$
\checkmark Note that $M=A A^{\top}$, so $\geqslant 0$ eigs.
D By detailed balance $\operatorname{diag}(\mu) N=\left(\operatorname{diag}\left(\mu^{\circ}\right) N^{\circ}\right)^{\top}$, so $M=\operatorname{diag}(\mu)^{1 / 2} \mathrm{NN}^{\circ} \operatorname{diag}(\mu)^{-1 / 2}$

Lemma

Suppose N is Markov kernel and N° is time-reversal w.r.t. μ. Then

$$
\max \left\{\frac{\chi^{2}(\nu \mathrm{~N} \| \mu \mathrm{N})}{\chi^{2}(v \| \mu)}\right\}=\lambda_{2}\left(\mathrm{NN}^{\circ}\right)
$$

Proof:
D Let $f=\nu / \mu$ and $g=(\nu N) /(\mu N)$, and $\mu^{\circ}=\mu \mathrm{N}$.
© We can equivalently consider
$\operatorname{Var}_{\mu}[f] \vee s . \operatorname{Var}_{\mu^{\circ}}[g]$.

- Additive shift doesn't change Var:

$$
\operatorname{Var}_{\mu}[\mathrm{f}]=\operatorname{Var}_{\mu}[\mathrm{f}+\mathrm{c}],
$$

because

$$
\begin{gathered}
\operatorname{Var}_{\mu}[f]=\mathbb{E}_{\mu}\left[f^{2}\right]-\mathbb{E}_{\mu}[f]^{2}= \\
\mathbb{E}_{\mu}\left[\left(f-\mathbb{E}_{\mu}[f]\right)^{2}\right]
\end{gathered}
$$

D Can assume $\mathbb{E}_{\mu}[f]=0$, which means $\mathbb{E}_{\mu^{\circ}}[\mathrm{g}]=0$.

- Then $\operatorname{Var}_{\mu}[\mathrm{f}]=\mathrm{f}^{\mathrm{T}} \operatorname{diag}(\mu) \mathrm{f}$, and $\operatorname{Var}_{\mu \circ}[g]=g^{\top} \operatorname{diag}\left(\mu^{\circ}\right) g$.
D So if $u=\operatorname{diag}(\mu)^{1 / 2} f$, then we are after $u^{\top} M u /\|u\|^{2}$ for $M=$
$\operatorname{diag}(\mu)^{-1 / 2}\left(N^{\circ}\right)^{\top} \operatorname{diag}\left(\mu^{\circ}\right) N^{\circ} \operatorname{diag}(\mu)^{-1 / 2}$
\bigcirc Note that $M=A A^{\top}$, so $\geqslant 0$ eigs.
D By detailed balance $\operatorname{diag}(\mu) \mathrm{N}=\left(\operatorname{diag}\left(\mu^{\circ}\right) \mathrm{N}^{\circ}\right)^{\top}$, so $M=\operatorname{diag}(\mu)^{1 / 2} \mathrm{NN}^{\circ} \operatorname{diag}(\mu)^{-1 / 2}$

D Similar to NN°, so same eigs.

Lemma

Suppose N is Markov kernel and N° is time-reversal w.r.t. μ. Then

$$
\max \left\{\frac{\chi^{2}(\nu \mathrm{~N} \| \mu \mathrm{N})}{\chi^{2}(v \| \mu)}\right\}=\lambda_{2}\left(\mathrm{NN}^{\circ}\right)
$$

Proof:
D Let $f=\nu / \mu$ and $g=(\nu N) /(\mu N)$, and $\mu^{\circ}=\mu \mathrm{N}$.
© We can equivalently consider $\operatorname{Var}_{\mu}[f] \vee s . \operatorname{Var}_{\mu^{\circ}}[g]$.

- Additive shift doesn't change Var:

$$
\operatorname{Var}_{\mu}[\mathrm{f}]=\operatorname{Var}_{\mu}[\mathrm{f}+\mathrm{c}],
$$

because

$$
\begin{gathered}
\operatorname{Var}_{\mu}[f]=\mathbb{E}_{\mu}\left[f^{2}\right]-\mathbb{E}_{\mu}[f]^{2}= \\
\mathbb{E}_{\mu}\left[\left(f-\mathbb{E}_{\mu}[f]\right)^{2}\right]
\end{gathered}
$$

D Can assume $\mathbb{E}_{\mu}[\mathrm{f}]=0$, which means $\mathbb{E}_{\mu^{\circ}}[g]=0$.

- Then $\operatorname{Var}_{\mu}[\mathrm{f}]=\mathrm{f}^{\mathrm{T}} \operatorname{diag}(\mu) \mathrm{f}$, and $\operatorname{Var}_{\mu \circ}[g]=g^{\top} \operatorname{diag}\left(\mu^{\circ}\right) g$.
D So if $u=\operatorname{diag}(\mu)^{1 / 2} f$, then we are $\operatorname{after} u^{\top} M u /\|u\|^{2}$ for $M=$
$\operatorname{diag}(\mu)^{-1 / 2}\left(N^{\circ}\right)^{\top} \operatorname{diag}\left(\mu^{\circ}\right) N^{\circ} \operatorname{diag}(\mu)^{-1 / 2}$
\checkmark Note that $M=A A^{\top}$, so $\geqslant 0$ eigs.
D By detailed balance $\operatorname{diag}(\mu) \mathrm{N}=\left(\operatorname{diag}\left(\mu^{\circ}\right) \mathrm{N}^{\circ}\right)^{\top}$, so

$$
M=\operatorname{diag}(\mu)^{1 / 2} \mathrm{NN}^{\circ} \operatorname{diag}(\mu)^{-1 / 2}
$$

D Similar to NN°, so same eigs.
D Top eigenvec of M : $\operatorname{diag}(\mu)^{1 / 2} \mathbb{\mathbb { }}$. We want u orthogonal. So we get

$$
\lambda_{2}(M)=\lambda_{2}\left(\mathrm{NN}^{\circ}\right)
$$

D As a corollary, for chain P with stationary μ :

$$
\chi^{2}(v P \| \mu) \leqslant \lambda_{2}\left(P^{\circ}\right) \chi^{2}(v \| \mu) .
$$

D As a corollary, for chain P with stationary μ :

$$
\chi^{2}(v P \| \mu) \leqslant \lambda_{2}\left(P^{\circ}\right) \chi^{2}(v \| \mu) .
$$

\bigcirc To get mixing we need one more ingredient:
D As a corollary, for chain P with stationary μ :

$$
\chi^{2}(v \mathrm{P} \| \mu) \leqslant \lambda_{2}\left(\mathrm{PP}^{\circ}\right) \chi^{2}(v \| \mu) .
$$

\triangleright To get mixing we need one more ingredient:
Lemma: χ^{2} proxy for d_{TV}

$$
\mathrm{d}_{\mathrm{TV}}(v, \mu) \leqslant \mathrm{O}\left(\sqrt{\chi^{2}(v \| \mu)}\right)
$$

D As a corollary, for chain P with stationary μ :

$$
\chi^{2}(v P \| \mu) \leqslant \lambda_{2}\left(P^{\circ}\right) \chi^{2}(v \| \mu) .
$$

\triangleright To get mixing we need one more ingredient:
Lemma: χ^{2} proxy for $d_{T V}$

$$
\mathrm{d}_{\mathrm{TV}}(\nu, \mu) \leqslant \mathrm{O}\left(\sqrt{\chi^{2}(v \| \mu)}\right)
$$

Proof: we have $\mathrm{d}_{\mathrm{TV}}(\nu, \mu)=$

$$
\frac{1}{2} \mathbb{E}_{\mu}\left[\left|\frac{v}{\mu}-1\right|\right] \leqslant \frac{1}{2} \sqrt{\mathbb{E}_{\mu}\left[\left(\frac{v}{\mu}-1\right)^{2}\right]}=\mathrm{O}\left(\sqrt{\chi^{2}(v \| \mu)}\right)
$$

D As a corollary, for chain P with stationary μ :

$$
\chi^{2}(v \mathrm{P} \| \mu) \leqslant \lambda_{2}\left(\mathrm{PP}^{\circ}\right) \chi^{2}(v \| \mu) .
$$

\triangleright To get mixing we need one more ingredient:
Lemma: χ^{2} proxy for $d_{T V}$

$$
d_{\operatorname{TV}}(v, \mu) \leqslant O\left(\sqrt{\chi^{2}(v \| \mu)}\right)
$$

Proof: we have $\mathrm{d}_{\mathrm{TV}}(\nu, \mu)=$

$$
\frac{1}{2} \mathbb{E}_{\mu}\left[\left|\frac{v}{\mu}-1\right|\right] \leqslant \frac{1}{2} \sqrt{\mathbb{E}_{\mu}\left[\left(\frac{v}{\mu}-1\right)^{2}\right]}=\mathrm{O}\left(\sqrt{\chi^{2}(v \| \mu)}\right)
$$

Corollary: mixing

$$
\mathrm{t}_{\text {mix }}(\epsilon)=\mathrm{O}\left(\frac{1}{1-\lambda_{2}\left(\mathrm{PP}^{\circ}\right)} \log \left(\frac{\chi^{2}\left(v_{0} \| \mu\right)}{\epsilon}\right)\right)
$$

Functional Analysis

\checkmark Divergences
P Poincaré and modified log-Sobolev
\bigcirc Data processing

- Spectral analysis

Fourier Analysis

- Abelian walks

D Characters

Functional Analysis

\checkmark Divergences

- Poincaré and modified log-Sobolev

D Data processing

- Spectral analysis

Fourier Analysis

D Abelian walks

- Characters

Abelian walks

\checkmark Finite Abelian group (with +):

$$
\mathrm{G}=\mathbb{Z}_{\mathfrak{n}_{1}} \times \cdots \times \mathbb{Z}_{\mathfrak{n}_{\mathrm{k}}}
$$

Abelian walks

\triangle Finite Abelian group (with +):

$$
\mathrm{G}=\mathbb{Z}_{\mathfrak{n}_{1}} \times \cdots \times \mathbb{Z}_{\mathfrak{n}_{\mathrm{k}}}
$$

\checkmark Take dist π over G .
sparse support

Abelian walks

\triangle Finite Abelian group (with +):

$$
\mathrm{G}=\mathbb{Z}_{\mathfrak{n}_{1}} \times \cdots \times \mathbb{Z}_{\mathfrak{n}_{\mathrm{k}}}
$$

\bigcirc Take dist π over G.
sparse support
\bigcirc We get Markov chain P :

$$
X_{t} \mapsto X_{t+1}=X_{t}+Z_{t}
$$

where Z_{t} are i.i.d. samples from π.

Abelian walks

- Finite Abelian group (with +):

$$
\mathrm{G}=\mathbb{Z}_{\mathrm{n}_{1}} \times \cdots \times \mathbb{Z}_{\mathrm{n}_{\mathrm{k}}}
$$

\bigcirc Take dist π over G .
sparse support
D We get Markov chain P:

$$
X_{t} \mapsto X_{t+1}=X_{t}+Z_{t}
$$

where Z_{t} are i.i.d. samples from π.

Example: hypercube

Distribution π :
D 0 w.p. 1/2
$D \mathbb{1}_{\mathfrak{i}}$ w.p. $1 / 2 n$

Abelian walks

\checkmark Finite Abelian group (with +):

$$
\mathrm{G}=\mathbb{Z}_{\mathfrak{n}_{1}} \times \cdots \times \mathbb{Z}_{\mathfrak{n}_{k}}
$$

\bigcirc Take dist π over G .
sparse support

Example: cycle

Distribution π :

$D+1$ w.p. $1 / 2$
D -1 w.p. 1/2
D We get Markov chain P:

$$
X_{t} \mapsto X_{t+1}=X_{t}+Z_{t}
$$

where Z_{t} are i.i.d. samples from π.

Example: hypercube

Distribution π :
D 0 w.p. 1/2
$D \mathbb{1}_{i}$ w.p. $1 / 2 n$

Abelian walks

\checkmark Finite Abelian group (with +):

$$
\mathrm{G}=\mathbb{Z}_{\mathrm{n}_{1}} \times \cdots \times \mathbb{Z}_{\mathrm{n}_{\mathrm{k}}}
$$

\bigcirc Take dist π over G .

sparse support

\triangleright We get Markov chain P :

$$
X_{t} \mapsto X_{t+1}=X_{t}+Z_{t}
$$

where Z_{t} are i.i.d. samples from π.

Example: cycle

Distribution π :

D +1 w.p. 1/2
D -1 w.p. 1/2
\checkmark Fact: $\mu=$ uniform is always stationary

Example: hypercube

Distribution π :
D 0 w.p. 1/2
$D \mathbb{1}_{i}$ w.p. $1 / 2 n$

Abelian walks

\checkmark Finite Abelian group (with +):

$$
\mathrm{G}=\mathbb{Z}_{\mathrm{n}_{1}} \times \cdots \times \mathbb{Z}_{\mathrm{n}_{\mathrm{k}}}
$$

\bigcirc Take dist π over G .

sparse support

Example: cycle

Distribution π :

$D+1$ w.p. $1 / 2$
D -1 w.p. $1 / 2$
D We get Markov chain P:

$$
X_{t} \mapsto X_{t+1}=X_{t}+Z_{t}
$$

where Z_{t} are i.i.d. samples from π.

Example: hypercube

Distribution π :
D 0 w.p. 1/2
$D \mathbb{1}_{\mathfrak{i}}$ w.p. $1 / 2 \mathrm{n}$

D Fact: $\mu=$ uniform is always stationary
D Fact: P time-reversible iff π is symmetric, i.e.,

$$
\pi(x)=\pi(-x)
$$

Abelian walks

\triangle Finite Abelian group (with +):

$$
\mathrm{G}=\mathbb{Z}_{\mathfrak{n}_{1}} \times \cdots \times \mathbb{Z}_{\mathfrak{n}_{k}}
$$

\bigcirc Take dist π over G .

sparse support

D We get Markov chain P:

$$
X_{t} \mapsto X_{t+1}=X_{t}+Z_{t}
$$

where Z_{t} are i.i.d. samples from π.

Example: hypercube

Distribution π :
$\bigcirc 0$ w.p. 1/2
$D \mathbb{1}_{\mathfrak{i}}$ w.p. $1 / 2 n$

Example: cycle

Distribution π :

$D+1$ w.p. $1 / 2$
D -1 w.p. $1 / 2$
D Fact: $\mu=$ uniform is always stationary
D Fact: P time-reversible iff π is symmetric, i.e.,

$$
\pi(x)=\pi(-x)
$$

D Fact: P irreducible iff $\operatorname{supp}(\pi)$ generates G.

Characters

- Abelian walks are extremely easy for spectral analysis. :)

Characters

\bigcirc Abelian walks are extremely easy for spectral analysis. :)
\bigcirc Eigvecs are always the characters.

Characters

- Abelian walks are extremely easy for spectral analysis.
\bigcirc Eigvecs are always the characters.

Character

A function $\chi: G \rightarrow \mathbb{C}-\{0\}$ where

$$
x(x+y)=x(x) x(y)
$$

Characters

\bigcirc Abelian walks are extremely easy for spectral analysis.

- Eigvecs are always the characters.

Character

A function $\chi: G \rightarrow \mathbb{C}-\{0\}$ where

$$
x(x+y)=x(x) x(y)
$$

Proof: we have $(\mathrm{P} \chi)(x)=$
$\sum_{y} \pi(y-x) \chi(y)=\chi(x) \sum_{y} \chi(y-x) \pi(y-x)$,
so $\mathrm{P} \chi=\lambda \chi$, where

$$
\lambda=\mathbb{E}_{z \sim \pi}[\chi(z)] .
$$

Characters

\bigcirc Abelian walks are extremely easy \quad We know characters of \mathbb{Z}_{n} : for spectral analysis.
\bigcirc Eigvecs are always the characters.

$$
\text { for } k=0, \ldots, n-1
$$

Character

A function $\chi: G \rightarrow \mathbb{C}-\{0\}$ where

$$
x(x+y)=x(x) x(y)
$$

Proof: we have $(\mathrm{P} \chi)(\mathrm{x})=$

$$
\chi(x)=\exp (2 \pi i \cdot k x / n)
$$

$\sum_{y} \pi(y-x) \chi(y)=\chi(x) \sum_{y} \chi(y-x) \pi(y-x)$,
so $\mathrm{P} \chi=\lambda \chi$, where

$$
\lambda=\mathbb{E}_{z \sim \pi}[\chi(z)] .
$$

Characters

\bigcirc Abelian walks are extremely easy \quad We know characters of \mathbb{Z}_{n} : for spectral analysis.
\bigcirc Eigvecs are always the characters.

$$
\text { for } k=0, \ldots, n-1
$$

Character

A function $\chi: G \rightarrow \mathbb{C}-\{0\}$ where

$$
x(x+y)=x(x) x(y)
$$

Proof: we have $(\mathrm{P} \chi)(\mathrm{x})=$

$$
\chi(x)=\exp (2 \pi i \cdot k x / n)
$$

$\sum_{y} \pi(y-x) x(y)=x(x) \sum_{y} x(y-x) \pi(y-x), D$ There are exactly n of them! $;$
so $\mathrm{P} \chi=\lambda \chi$, where

$$
\lambda=\mathbb{E}_{z \sim \pi}[\chi(z)] .
$$

Characters

\checkmark Abelian walks are extremely easy for spectral analysis.
\bigcirc Eigvecs are always the characters.
© We know characters of \mathbb{Z}_{n} :

$$
\chi(x)=\exp (2 \pi i \cdot k x / n)
$$

for $k=0, \ldots, n-1$.

Character

A function $\chi: G \rightarrow \mathbb{C}-\{0\}$ where

$$
x(x+y)=x(x) x(y)
$$

Proof: we have $(\mathrm{P} \chi)(\mathrm{x})=$

$\begin{aligned} \sum_{y} \pi(y-x) x(y)=x(x) \sum_{y} x(y-x) \pi(y-x), & \triangleright \text { There are exactly } n \text { of them! }: \cdot \\ & \frown \text { Characters of } G_{1} \times G_{2}:\end{aligned}$
so $P \chi=\lambda \chi$, where

$$
x(x, y)=x_{1}(x) x_{2}(y)
$$

$$
\lambda=\mathbb{E}_{z \sim \pi}[\chi(z)] .
$$

Characters

\bigcirc Abelian walks are extremely easy \quad We know characters of \mathbb{Z}_{n} : for spectral analysis. \qquad
\bigcirc Eigvecs are always the characters.

Character

A function $\chi: G \rightarrow \mathbb{C}-\{0\}$ where

$$
x(x+y)=x(x) x(y)
$$

Proof: we have $(\mathrm{P} \chi)(\mathrm{x})=$

$$
\chi(x)=\exp (2 \pi i \cdot k x / n)
$$

for $k=0, \ldots, n-1$.

$\begin{aligned} \sum_{y} \pi(y-x) x(y)=x(x) \sum_{y} x(y-x) \pi(y-x), & \triangleright \text { There are exactly } n \text { of them! }:) \\ & \triangleright \text { Characters of } G_{1} \times G_{2}:\end{aligned}$
so $P \chi=\lambda \chi$, where

$$
x(x, y)=x_{1}(x) x_{2}(y)
$$

$$
\lambda=\mathbb{E}_{z \sim \pi}[\chi(z)] .
$$

\bigcirc For G, we get $|\mathrm{G}|$ characters. : ; $^{\circ}$

Example: hypercube
Distribution π :
D 0 w.p. 1/2

- $\mathbb{1}_{i}$ w.p. $1 / 2 n$

Example: hypercube

Distribution π :
D 0 w.p. 1/2
$D \mathbb{1}_{\mathfrak{i}}$ w.p. $1 / 2 n$

D There are 2^{n} characters.

Example: hypercube

Distribution π :
D 0 w.p. 1/2
© $\mathbb{1}_{\mathfrak{i}}$ w.p. $1 / 2 n$

D There are 2^{n} characters.
D $\binom{n}{k}$ of them have eigenval

$$
k / n
$$

Example: hypercube

Distribution π :
D 0 w.p. 1/2
$D \mathbb{1}_{\mathfrak{i}}$ w.p. $1 / 2 n$

D There are 2^{n} characters.

- $\binom{n}{k}$ of them have eigenval

$$
\mathrm{k} / \mathrm{n}
$$

- Spectral gap:

$$
1-(n-1) / n=1 / n
$$

Example: hypercube

Distribution π :
D 0 w.p. 1/2
$D \mathbb{1}_{\mathfrak{i}}$ w.p. $1 / 2 n$

D There are 2^{n} characters.

- $\binom{n}{k}$ of them have eigenval

$$
\mathrm{k} / \mathrm{n}
$$

- Spectral gap:

$$
1-(n-1) / n=1 / n
$$

$D \mathrm{t}_{\text {mix }} \leqslant \mathrm{O}\left(\mathrm{n}^{2}\right)$

Example: hypercube

Distribution π :
D 0 w.p. 1/2
© $\mathbb{1}_{\mathfrak{i}}$ w.p. $1 / 2 n$

Example: cycle

Distribution π :
$D+1$ w.p. $1 / 2$
D -1 w.p. 1/2

D There are 2^{n} characters.

- $\binom{n}{k}$ of them have eigenval

$$
\mathrm{k} / \mathrm{n}
$$

- Spectral gap:

$$
1-(n-1) / n=1 / n
$$

$D t_{\text {mix }} \leqslant O\left(n^{2}\right)$

Example: hypercube

Distribution π :
D 0 w.p. 1/2
© $\mathbb{1}_{\mathfrak{i}}$ w.p. $1 / 2 n$

D There are 2^{n} characters.

- $\binom{n}{k}$ of them have eigenval

$$
\mathrm{k} / \mathrm{n}
$$

- Spectral gap:

$$
1-(n-1) / n=1 / n
$$

$D \mathrm{t}_{\text {mix }} \leqslant \mathrm{O}\left(\mathrm{n}^{2}\right)$

Example: cycle

Distribution π :
$D+1$ w.p. $1 / 2$
D -1 w.p. $1 / 2$

D There are n characters.

Example: hypercube

Distribution π :
D 0 w.p. 1/2
© $\mathbb{1}_{\mathfrak{i}}$ w.p. $1 / 2 n$

D There are 2^{n} characters.

- $\binom{n}{k}$ of them have eigenval

$$
\mathrm{k} / \mathrm{n}
$$

- Spectral gap:

$$
\begin{aligned}
& 1-(n-1) / n=1 / n \\
t_{\text {mix }} \leqslant & O\left(n^{2}\right)
\end{aligned}
$$

Example: cycle

Distribution π :
$D+1$ w.p. $1 / 2$
D -1 w.p. 1/2

D There are n characters.
D Each has eigenval

$$
\cos (2 \pi k / n)
$$

Example: hypercube

Distribution π :
D 0 w.p. 1/2
D $\mathbb{1}_{\mathfrak{i}}$ w.p. $1 / 2 \mathrm{n}$

Example: cycle

Distribution π :
$D+1$ w.p. $1 / 2$
D -1 w.p. $1 / 2$

D There are 2^{n} characters.
O $\binom{n}{k}$ of them have eigenval

$$
\mathrm{k} / \mathrm{n}
$$

\checkmark Spectral gap:

$$
1-(n-1) / n=1 / n
$$

$D t_{\text {mix }} \leqslant O\left(n^{2}\right)$

D There are n characters.
D Each has eigenval

$$
\cos (2 \pi k / n)
$$

- Spectral gap:

$$
1-\cos (2 \pi / n) \simeq \Theta\left(1 / n^{2}\right)
$$

Example: hypercube

Distribution π :
D 0 w.p. 1/2
D $\mathbb{1}_{\mathfrak{i}}$ w.p. $1 / 2 \mathrm{n}$

Example: cycle

Distribution π :
$D+1$ w.p. $1 / 2$
D -1 w.p. $1 / 2$

D There are 2^{n} characters.
O $\binom{n}{k}$ of them have eigenval

$$
\mathrm{k} / \mathrm{n}
$$

- Spectral gap:

$$
1-(n-1) / n=1 / n
$$

$D t_{\text {mix }} \leqslant O\left(n^{2}\right)$

D There are n characters.
D Each has eigenval

$$
\cos (2 \pi k / n)
$$

- Spectral gap:

$$
1-\cos (2 \pi / n) \simeq \Theta\left(1 / n^{2}\right)
$$

$D t_{\text {mix }} \leqslant O\left(n^{2} \log n\right)$?

