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Review

Influence: X,X ′ differing in coord j:

dTV
(
dist(Xi | X−i), dist(X ′

i | X
′
−i)

)

Call maximum value I[j → i].

Dobrushin’s condition

If columns of I sum to 6 1− δ, then

W(νP, ν ′P) 6 (1− δ/n)W(ν, ν ′)

tmix(ε) = O
(
1
δn log(n/ε)

)
Example: coloring

Ω = [q]n

I 6 1
q−∆ · adj

Example: hardcore

Ω = {0, 1}n

I 6 λ
1+λ · adj

Example: Ising

Ω = {±1}n

I[j → i] 6 |βij| + −

−+

Dobrushin++: if c I < (1− δ)c

tmix(ε) = O
(
n
δ log

(
n·cmax
ε·cmin

))
Existence: λmax(I) < 1
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Functional Analysis
Divergences

Poincaré and modified log-Sobolev

Data processing

Spectral analysis

Fourier Analysis
Abelian walks

Characters
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Divergences

φ-entropy

For function φ and f : Ω → R define

Entφµ [f] = Eµ[φ ◦ f] − φ(Eµ[f]).

When φ is convex, φ-entropy is

> 0 (Jensen’s inequality).

Equal to 0 when f is constant.

φ

usually f in the literature

-divergence

For measure ν and dist µ define

Dφ(ν ‖ µ) = Entφµ
[
ν

µ

]

tmix

φ

How far from ν
µ ≡ const?

Example: total variation

If φ(x) = 1
2 |x− 1|, then

Dφ(ν ‖ µ) = dTV(ν, µ)

Note: in general Dφ is asymmetric

and doesn’t satisfy triangle ineq.
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Proxy for dTV

Contraction: Dφ(νP ‖ µ) 6 (1− ρ)Dφ(ν ‖ µ) for stationary µ.

Variance

φ(x) := x2

Entφµ [f] = Varµ[f]
Dφ(ν ‖ µ) = χ2(ν ‖ µ)

It is a proxy by Cauchy-Schwarz:

dTV(ν, µ) 6 O

(√
χ2(ν ‖ µ)

)
Contraction

called Poincaré inequality

related to eigs of P.

Entropy

φ(x) := x log x

Entφµ [f] = Entµ[f]
Dφ(ν ‖ µ) = DKL(ν ‖ µ)

It is a proxy by Pinsker:

dTV(ν, µ) 6 O
(√

DKL(ν ‖ µ)
)

Contraction:

called modified log-Sobolev inequality

very hard!
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Why care about entropy?

Suppose ν = 1x. Then

χ2(ν ‖ µ) = 1
µ(x)−1 ignore

DKL(ν ‖ µ) = log
(

1
µ(x)

)
Contraction by 1− ρ implies

tmix 6 log(1/µ(x))
ρ

tmix 6 log log(1/µ(x))
ρ

Example: hypercube

ρ = Θ(1/n)

1/µ(x) = 2n

tmix = O(n2) vs.
tmix = O(n logn)

However, entropy contraction is

much harder to prove. We will

focus mostly on variance for now.

Divergences have one major

benefit: weak contraction.

Lemma: data processing

Suppose N is Markov kernel. Then

Dφ(νN ‖ µN) 6 Dφ(ν ‖ µ)

Markov chain P with stationary µ:

Dφ(νP ‖ µ) 6 Dφ(ν ‖ µ)

Useful for P = NN◦. Only need to

show strong contraction for N (or

possibly N◦).
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Proof:

N◦: time-reversal of N w.r.t. µ.

Let f = ν/µ and g = (νN)/(µN).

We have

g(y) =

∑
x f(x)µ(x)N(x, y)∑

x µ(x)N(x, y)

This means g

column vector

= N◦f

column vector

.

So we have Eµ[φ ◦ f] −EµN[φ ◦g] =

Ey∼µN

[
Entφ

N◦(y,·)[f]
]
> 0.

On the other hand, Eµ[f] = EµN[g],
so

φ(Eµ[f]) = φ(EµN[g]).

Therefore

Entφµ [f] > EntφµN[g].

Lemma: data processing

Suppose N is Markov kernel and φ

convex. Then

Dφ(νN ‖ µN) 6 Dφ(ν ‖ µ)
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Spectral analysis

Contraction of χ2 is determined by

eigenvalues:

Lemma

SupposeN is Markov kernel andN◦ is
time-reversal w.r.t. µ. Then

max
{

χ2(νN‖µN)
χ2(ν‖µ)

}
= λ2(NN◦)

When P is time-reversible w.r.t. µ:

diag(µ)P =Q

symmetric matrix

So we have

diag(µ)1/2 · P · diag(µ)−1/2 =
diag(µ)−1/2 ·Q · diag(µ)−1/2︸ ︷︷ ︸

still symmetric

This means eigs are real

so λ2 has meaning

!

We will show later that eigs are

∈ [−1, 1] for time-reversible P.

For P = NN◦, they are > 0!

When N is time-reversible chain:

λ2(NN◦) = max{λ2(N), |λmin(N)|}2
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Eigenvalues

[Perron-Frobenius] for Markov chains:

1 is special eig:

µP = µ, P1 = 1

Other eigs

have |·|6

strict if ergodic

1.

C

Proof: (Pv)i is an average of vjs, so

|(Pv)i| 6 max{|vj|}.

So if Pv = λv, we must have |λ| 6 1.

If P is time-reversible the picture is

C

Use convention

1 = λ1 > λ2 > · · · > λn > −1

Spectral gap: usually 1− λ2, in

some places 1− max{λ2, |λn|}.
If P = NN◦, we will show all λ > 0.
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Lemma

SupposeN is Markov kernel andN◦ is
time-reversal w.r.t. µ. Then

max
{

χ2(νN‖µN)
χ2(ν‖µ)

}
= λ2(NN◦)

Proof:

Let f = ν/µ and g = (νN)/(µN),
and µ◦ = µN.

We can equivalently consider

Varµ[f] vs. Varµ◦ [g].

Additive shift doesn’t change Var:
Varµ[f] = Varµ[f+ c],

because

Varµ[f] = Eµ[f
2] − Eµ[f]

2 =
Eµ[(f− Eµ[f])

2]

Can assume Eµ[f] = 0, which

means Eµ◦ [g] = 0.

Then Varµ[f] = fᵀdiag(µ)f, and
Varµ◦ [g] = gᵀdiag(µ◦)g.

So if u = diag(µ)1/2f, then we are

after uᵀMu/‖u‖2 for M =

diag(µ)−1/2(N◦)ᵀdiag(µ◦)N◦diag(µ)−1/2

Note that M = AAᵀ, so > 0 eigs.

By detailed balance

diag(µ)N = (diag(µ◦)N◦)ᵀ, so

M = diag(µ)1/2NN◦diag(µ)−1/2

Similar to NN◦, so same eigs.

Top eigenvec of M: diag(µ)1/21.
We want u orthogonal. So we get

λ2(M) = λ2(NN◦).
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As a corollary, for chain P with stationary µ:

χ2(νP ‖ µ) 6 λ2(PP
◦)χ2(ν ‖ µ).

To get mixing we need one more ingredient:

Lemma: χ2 proxy for dTV

dTV(ν, µ) 6 O
(√

χ2(ν ‖ µ)
)

Proof: we have dTV(ν, µ) =

1
2 Eµ

[∣∣∣νµ − 1
∣∣∣] 6 1

2

√
Eµ

[(
ν
µ − 1

)2
]
= O

(√
χ2(ν ‖ µ)

)
Corollary: mixing

tmix(ε) = O
(

1
1−λ2(PP◦) log

(
χ2(ν0‖µ)

ε

))
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Abelian walks

Finite Abelian group (with +):

G = Zn1
× · · · × Znk

Take dist π

sparse support

over G.

We get Markov chain P:

Xt 7→ Xt+1 = Xt + Zt

where Zt are i.i.d. samples from π.

Example: hypercube

Distribution π:

0 w.p. 1/2

1i w.p. 1/2n

Example: cycle

Distribution π:

+1 w.p. 1/2

−1 w.p. 1/2

Fact: µ = uniform is always

stationary

Fact: P time-reversible iff π is

symmetric, i.e.,

π(x) = π(−x)

Fact: P irreducible iff supp(π)
generates G.
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Characters

Abelian walks are extremely easy

for spectral analysis.

Eigvecs are always the characters.

Character

A function χ : G → C − {0} where

χ(x+ y) = χ(x)χ(y)

Proof: we have (Pχ)(x) =∑
y

π(y−x)χ(y) = χ(x)
∑
y

χ(y−x)π(y−x),

so Pχ = λχ, where

λ = Ez∼π[χ(z)].

We know characters of Zn:

χ(x) = exp(2πi · kx/n)
for k = 0, . . . , n− 1.

C

There are exactly n of them!

Characters of G1 ×G2:

χ(x, y) = χ1(x)χ2(y).

For G, we get |G| characters.



15/16

Characters

Abelian walks are extremely easy

for spectral analysis.

Eigvecs are always the characters.

Character

A function χ : G → C − {0} where

χ(x+ y) = χ(x)χ(y)

Proof: we have (Pχ)(x) =∑
y

π(y−x)χ(y) = χ(x)
∑
y

χ(y−x)π(y−x),

so Pχ = λχ, where

λ = Ez∼π[χ(z)].

We know characters of Zn:

χ(x) = exp(2πi · kx/n)
for k = 0, . . . , n− 1.

C

There are exactly n of them!

Characters of G1 ×G2:

χ(x, y) = χ1(x)χ2(y).

For G, we get |G| characters.



15/16

Characters

Abelian walks are extremely easy

for spectral analysis.

Eigvecs are always the characters.

Character

A function χ : G → C − {0} where

χ(x+ y) = χ(x)χ(y)

Proof: we have (Pχ)(x) =∑
y

π(y−x)χ(y) = χ(x)
∑
y

χ(y−x)π(y−x),

so Pχ = λχ, where

λ = Ez∼π[χ(z)].

We know characters of Zn:

χ(x) = exp(2πi · kx/n)
for k = 0, . . . , n− 1.

C

There are exactly n of them!

Characters of G1 ×G2:

χ(x, y) = χ1(x)χ2(y).

For G, we get |G| characters.



15/16

Characters

Abelian walks are extremely easy

for spectral analysis.

Eigvecs are always the characters.

Character

A function χ : G → C − {0} where

χ(x+ y) = χ(x)χ(y)

Proof: we have (Pχ)(x) =∑
y

π(y−x)χ(y) = χ(x)
∑
y

χ(y−x)π(y−x),

so Pχ = λχ, where

λ = Ez∼π[χ(z)].

We know characters of Zn:

χ(x) = exp(2πi · kx/n)
for k = 0, . . . , n− 1.

C

There are exactly n of them!

Characters of G1 ×G2:

χ(x, y) = χ1(x)χ2(y).

For G, we get |G| characters.



15/16

Characters

Abelian walks are extremely easy

for spectral analysis.

Eigvecs are always the characters.

Character

A function χ : G → C − {0} where

χ(x+ y) = χ(x)χ(y)

Proof: we have (Pχ)(x) =∑
y

π(y−x)χ(y) = χ(x)
∑
y

χ(y−x)π(y−x),

so Pχ = λχ, where

λ = Ez∼π[χ(z)].

We know characters of Zn:

χ(x) = exp(2πi · kx/n)
for k = 0, . . . , n− 1.

C

There are exactly n of them!

Characters of G1 ×G2:

χ(x, y) = χ1(x)χ2(y).

For G, we get |G| characters.



15/16

Characters

Abelian walks are extremely easy

for spectral analysis.

Eigvecs are always the characters.

Character

A function χ : G → C − {0} where

χ(x+ y) = χ(x)χ(y)

Proof: we have (Pχ)(x) =∑
y

π(y−x)χ(y) = χ(x)
∑
y

χ(y−x)π(y−x),

so Pχ = λχ, where

λ = Ez∼π[χ(z)].

We know characters of Zn:

χ(x) = exp(2πi · kx/n)
for k = 0, . . . , n− 1.

C

There are exactly n of them!

Characters of G1 ×G2:

χ(x, y) = χ1(x)χ2(y).

For G, we get |G| characters.



15/16

Characters

Abelian walks are extremely easy

for spectral analysis.

Eigvecs are always the characters.

Character

A function χ : G → C − {0} where

χ(x+ y) = χ(x)χ(y)

Proof: we have (Pχ)(x) =∑
y

π(y−x)χ(y) = χ(x)
∑
y

χ(y−x)π(y−x),

so Pχ = λχ, where

λ = Ez∼π[χ(z)].

We know characters of Zn:

χ(x) = exp(2πi · kx/n)
for k = 0, . . . , n− 1.

C

There are exactly n of them!

Characters of G1 ×G2:

χ(x, y) = χ1(x)χ2(y).

For G, we get |G| characters.



15/16

Characters

Abelian walks are extremely easy

for spectral analysis.

Eigvecs are always the characters.

Character

A function χ : G → C − {0} where

χ(x+ y) = χ(x)χ(y)

Proof: we have (Pχ)(x) =∑
y

π(y−x)χ(y) = χ(x)
∑
y

χ(y−x)π(y−x),

so Pχ = λχ, where

λ = Ez∼π[χ(z)].

We know characters of Zn:

χ(x) = exp(2πi · kx/n)
for k = 0, . . . , n− 1.

C

There are exactly n of them!

Characters of G1 ×G2:

χ(x, y) = χ1(x)χ2(y).

For G, we get |G| characters.



16/16

Example: hypercube

Distribution π:

0 w.p. 1/2

1i w.p. 1/2n

There are 2n characters.(
n
k

)
of them have eigenval

k/n

Spectral gap:

1− (n− 1)/n = 1/n

tmix 6 O(n2)

Example: cycle

Distribution π:

+1 w.p. 1/2

−1 w.p. 1/2

There are n characters.

Each has eigenval

cos(2πk/n)
Spectral gap:

1− cos(2π/n) ' Θ(1/n2)

tmix 6 O(n2 logn)?
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