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Review

Markov kernel

N ∈ RΩ×Ω ′

>0∑
yN(x, y) = 1

Ω Ω ′

Time-reversal:

µ(x)N(x, y)

Q(x, y)

=µ◦(y)N◦(y, x)

Q◦(y, x)

Design technique: N 7→ NN◦

Examples: Glauber, etc.

Wasserstein w.r.t. d is W(µ, ν) =

min
{
E(X,Y)∼π[d(X, Y)]

∣∣ π coupling
}

For Metropolis chain on colorings:

W(νP, ν ′P) 6
(
1− q−4∆

qn

)
W(ν, ν ′)

Mixing when q > 4∆+ 1

Path coupling lemma

Suppose for all adjacent X0 ∼ X ′
0 we

can couple X1, X
′
1 s.t.

E[d(X1, X
′
1)] 6 (1− c)d(X0, X

′
0).

Then W(νP, ν ′P) 6 (1− c)W(ν, ν ′).
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Path coupling for colorings [Jerrum]

Take the Metropolis chain for colorings:

Pick u.r. vertex v

Pick u.r. color c

Color v with c if valid

Coupling:

Take X0, X
′
0 differing on vertex w

there is exactly one

.

Pick same v.

If v = w or v 6∼ w, pick same c.

Let a = X0(w), b = X ′
0(w). If v ∼ w,

use this coupling for color:

1 2 . . . a . . . b . . . q

1 2 . . . a . . . b . . . q

c :

c ′ :

We have

E[d(X1, X
′
1)] 6 1−

1

n
· q− ∆

q
+

∆

n
· 1
q

which simplifies to

1−
q− 2∆

qn
.

As long as q > 2∆+ 1, we get

contraction!

tmix(ε) = O

(
q

q− 2∆
· n log(n/ε)

)
What about Glauber?
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Dobrushin influence matrix

Glauber for µ on Ω1 × · · · ×Ωn:

Pick u.r. coord i ∈ [n]

Replace coord i’s value w.p.

∝ µ(result)

We pick ω ∈ Ωi from dist(Xi | X−i).

Influence: take worst case X,X ′

that differ in coord j:

dTV
(
dist(Xi | X−i), dist(X ′

i | X
′
−i)

)
Call maximum value I[j → i].

Dobrushin influence matrix: matrix

with entries I[j → i].

Example: hypercube

Ω = {0, 1}n

µ(x) = uniform

I[j → i] = 0

Example: coloring

Ω = [q]n

µ = proper coloring

I[j → i] = 0 when j 6∼ i

I[j → i] 6 1/(q− ∆)
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Dobrushin’s condition

If columns of I sum to 6 1− δ, then

W(νP, ν ′P) 6 (1− δ/n)W(ν, ν ′)

This implies fast mixing:

tmix(ε) = O
(
1
δn log(n/ε)

)
For coloring, I 6 adj/(q− ∆), so
column sums are ∆/(q− ∆):
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Useful for spin systems.

Spin systems

+ −

− + −

graph G = (V, E)

Ω = Ω1 × · · · ×Ωn

µ(x) =
∏

vφv(xv) ·
∏

u∼vφuv

local interaction

(xu, xv)

I[j → i] = 0 when i 6∼ j

I is weighted adjacency matrix

Example: coloring

Ωi = [q]

φuv = 1[xu 6= xv]

I 6 adj/(q− ∆)

Example: hardcore

µ ∝ 1 µ ∝ λ µ ∝ λ2

Ωi = {0, 1} φv =λxv

fugacity

φuv = 1−xuxv

Example: Ising

Ωi = {±1}

φv = exp(hv

external field

xv)

φuv = exp(βuv

ferro/anti-ferromagnetic interaction

xuxv)

+ +

+−
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Hardcore model

µ(ind set S) ∝ λ|S|

Large λ is hard

max ind set is NP-hard

.

For what λ is it easy to sample?

Dobrushin: I 6 c · adj where c =

dTV(Ber(0),Ber(λ/(1+ λ)))

When λ 6 (1− δ)/∆, col sums are

6 λ∆
1+λ 6 λ∆ 6 1− δ

Mixing in O(n logn) steps.
This is NOT the tightest result.

Dobrushin is suboptimal.

We will see later

λ 6 (1− δ)λc(∆) =⇒ fast mixing

for a specific critical threshold

λc(∆) ' e
∆

On the opposite side, [Sly’10]

showed it is NP-hard to sample

when

λ > (1+ δ)λc(∆)
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Ising model

+ +

+−

µ(x) ∝ exp(12
∑

u,vβuv

symmetric matrix

xuxv +
∑

v hvxv)

Ferromagnetic: all β > 0

Anti-ferromagnetic: all β 6 0

Sherrington-Kirkpatrick: random β

Note: every 2-spin system is a

(limit of an) Ising model

We have

E[xv | x−v] =
ec−e−c

ec+e−c = tanh(c)
where c = hv +

∑
u βuvxu.

tmixtanh

So we get I[j → i] 6
|tanh(βij)−tanh(−βij)|

2 6 |βij|

When β has `1 row/col norms

6 1− δ, have fast mixing.

Can be asymptotically tight for

certain β (Curie-Weiss).
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Dobrushin++

Why not d other than Hamming?

For c ∈ Rn
>0, define c-weighted

Hamming as

d(x, y) =
∑

{ci | xi 6= yi}

Take X0, X
′
0 differing in j. Will

produce coupling of X1, X
′
1.

Pick same coord i. Maximally

couple replacements.

We get E[d(X1, X
′
1)] 6

1
n · 0+ 1

n

∑
i 6=j(cj + I[j → i]ci)

Contraction: c I 6 (1− δ)c

When this happens,

W(νP, ν ′P) 6 (1− δ/n)W(ν, ν ′)

Implication for mixing

Given c I 6 (1− δ)c, we have

tmix(ε) = O

(
n

δ
log

(
n · cmax
ε · cmin

))
Slightly careful about cmax/cmin.

Influence matrix I is > 0. “Optimal”

choice of c by [Perron-Frobenius]

theory is the Perron eigenvector:

c I = λmax(I)c

We can apply Dobrushin++ as

long as λmax(I) < 1
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Divergences

Prevalent strategy for analyzing

mixing time: contraction

dTV is too crude; doesn’t contract

every step

ν ν ′

dTV(νP, ν
′P) = dTV(ν, ν

′)

Fix: use a proxy for dTV
Wasserstein distance

divergences, variance, entropy

functional analysis

φ-entropy

For fn φ : R → R and f : Ω → R define

Entφµ [f] = Eµ[φ ◦ f] − φ(Eµ[f]).

When φ is convex, φ-entropy is

> 0 (Jensen’s inequality).

Equal to 0 when f is constant.

φ

usually f in the literature

-divergence

For measure ν and dist µ define

Dφ(ν ‖ µ) = Entφµ
[
ν

µ

]



13/14

Divergences

Prevalent strategy for analyzing

mixing time: contraction

dTV is too crude; doesn’t contract

every step

ν ν ′

dTV(νP, ν
′P) = dTV(ν, ν

′)

Fix: use a proxy for dTV
Wasserstein distance

divergences, variance, entropy

functional analysis

φ-entropy

For fn φ : R → R and f : Ω → R define

Entφµ [f] = Eµ[φ ◦ f] − φ(Eµ[f]).

When φ is convex, φ-entropy is

> 0 (Jensen’s inequality).

Equal to 0 when f is constant.

φ

usually f in the literature

-divergence

For measure ν and dist µ define

Dφ(ν ‖ µ) = Entφµ
[
ν

µ

]



13/14

Divergences

Prevalent strategy for analyzing

mixing time: contraction

dTV is too crude; doesn’t contract

every step

ν ν ′

dTV(νP, ν
′P) = dTV(ν, ν

′)

Fix: use a proxy for dTV
Wasserstein distance

divergences, variance, entropy

functional analysis

φ-entropy

For fn φ : R → R and f : Ω → R define

Entφµ [f] = Eµ[φ ◦ f] − φ(Eµ[f]).

When φ is convex, φ-entropy is

> 0 (Jensen’s inequality).

Equal to 0 when f is constant.

φ

usually f in the literature

-divergence

For measure ν and dist µ define

Dφ(ν ‖ µ) = Entφµ
[
ν

µ

]



13/14

Divergences

Prevalent strategy for analyzing

mixing time: contraction

dTV is too crude; doesn’t contract

every step

ν ν ′

dTV(νP, ν
′P) = dTV(ν, ν

′)

Fix: use a proxy for dTV
Wasserstein distance

divergences, variance, entropy

functional analysis

φ-entropy

For fn φ : R → R and f : Ω → R define

Entφµ [f] = Eµ[φ ◦ f] − φ(Eµ[f]).

When φ is convex, φ-entropy is

> 0 (Jensen’s inequality).

Equal to 0 when f is constant.

φ

usually f in the literature

-divergence

For measure ν and dist µ define

Dφ(ν ‖ µ) = Entφµ
[
ν

µ

]



13/14

Divergences

Prevalent strategy for analyzing

mixing time: contraction

dTV is too crude; doesn’t contract

every step

ν ν ′

dTV(νP, ν
′P) = dTV(ν, ν

′)

Fix: use a proxy for dTV
Wasserstein distance

divergences, variance, entropy

functional analysis

φ-entropy

For fn φ : R → R and f : Ω → R define

Entφµ [f] = Eµ[φ ◦ f] − φ(Eµ[f]).

When φ is convex, φ-entropy is

> 0 (Jensen’s inequality).

Equal to 0 when f is constant.

φ

usually f in the literature

-divergence

For measure ν and dist µ define

Dφ(ν ‖ µ) = Entφµ
[
ν

µ

]
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Divergences

Prevalent strategy for analyzing

mixing time: contraction

dTV is too crude; doesn’t contract

every step

ν ν ′

dTV(νP, ν
′P) = dTV(ν, ν

′)

Fix: use a proxy for dTV
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Proxy for dTV

Contraction: Dφ(νP ‖ µ) 6 (1− δ)Dφ(ν ‖ µ) for stationary µ.

Variance

φ(x) := x2

Entφµ [f] = Varµ[f]
Dφ(ν ‖ µ) = χ2(ν ‖ µ)

It is a proxy by Cauchy-Schwarz:

dTV(ν, µ) 6 O

(√
χ2(ν ‖ µ)

)
Contraction

called Poincaré inequality

related to eigs of P.

Entropy

φ(x) := x log x

Entφµ [f] = Entµ[f]
Dφ(ν ‖ µ) = DKL(ν ‖ µ)

It is a proxy by Pinsker:

dTV(ν, µ) 6 O
(√

DKL(ν ‖ µ)
)

Contraction:

called modified log-Sobolev inequality

very hard!
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