CS 263: Counting and Sampling

Nima Anari

Stanford University

slides for

Dobrushin's Influence Matrix

Markov kernel

$$N \in \mathbb{R}_{\geq 0}^{\Omega \times \Omega'}$$

$$\sum_{y} N(x, y) = 1$$

$$\Omega \quad \Omega'$$

$$O$$

$$O$$

$$O$$

$$O$$

Time-reversal:

 $\substack{\mu(x) \underset{\uparrow}{\overset{\uparrow}{N}} (x,y) = \mu^{\circ}(y) \underset{\uparrow}{\overset{\uparrow}{N}} (y,x) \\ Q(x,y) \qquad Q^{\circ}(y,x) }$

Time-reversal:

 $\begin{array}{c} \mu(x)N(x,y) = \mu^{\circ}(y)N^{\circ}(y,x) \\ \uparrow \\ Q(x,y) \\ Q^{\circ}(y,x) \\ \hline \end{array}$ Design technique: $N \mapsto NN^{\circ}$

Time-reversal:

 $\begin{array}{c} \mu(x)N(x,y) = \mu^{\circ}(y)N^{\circ}(y,x) \\ \uparrow \\ Q(x,y) \qquad Q^{\circ}(y,x) \end{array}$

- \triangleright Design technique: N \mapsto NN°
- ▷ Examples: Glauber, etc.

 \triangleright Wasserstein w.r.t. d is $W(\mu, \nu) =$

 $\min \left\{ \mathbb{E}_{(X,Y)\sim \pi}[d(X,Y)] \mid \pi \text{ coupling} \right\}$

Time-reversal:

 $\mu(x) \underset{\substack{\uparrow \\ Q(x,y) \\ Q^{\circ}(y,x)}}{\overset{\mu}{}} \mu^{\circ}(y) \underset{\substack{\uparrow \\ Q^{\circ}(y,x)}}{\overset{\Lambda}{}} N^{\circ}(y,x)$

- \triangleright Design technique: N \mapsto NN°
- ▷ Examples: Glauber, etc.

Time-reversal:

 $\mu(x)N(x,y) = \mu^{\circ}(y)N^{\circ}(y,x)$ $Q(x,y) \qquad Q^{\circ}(y,x)$

- \triangleright Design technique: N \mapsto NN°
- ▷ Examples: Glauber, etc.

 \triangleright Wasserstein w.r.t. d is $\mathcal{W}(\mu, \nu) =$

 $\min \left\{ \mathbb{E}_{(X,Y)\sim \pi}[d(X,Y)] \mid \pi \text{ coupling} \right\}$

 $\begin{array}{l} \triangleright \quad \text{For Metropolis chain on colorings:} \\ \mathcal{W}(\nu P,\nu' P) \leqslant \left(1-\frac{q-4\Delta}{q \pi}\right) \mathcal{W}(\nu,\nu') \end{array}$

Time-reversal:

- \triangleright Design technique: N \mapsto NN°
- ▷ Examples: Glauber, etc.

 \triangleright Wasserstein w.r.t. d is $\mathcal{W}(\mu, \nu) =$

 $\min \big\{ \mathbb{E}_{(X,Y) \sim \pi}[d(X,Y)] \ \big| \ \pi \text{ coupling} \big\}$

▷ For Metropolis chain on colorings: $\mathcal{W}(\nu P, \nu' P) \leq \left(1 - \frac{q - 4\Delta}{q\pi}\right) \mathcal{W}(\nu, \nu')$ ▷ Mixing when $q \geq 4\Delta + 1$ ©

Markov kernel $N \in \mathbb{R}_{\geq 0}^{\Omega \times \Omega'}$ $\sum_{y} N(x,y) = 1$

Time-reversal:

 \supset

 $\mu(x)N(x,y) = \mu^{\circ}(y)N^{\circ}(y,x)$ $Q(x,y) \qquad Q^{\circ}(y,x)$ Design technique: N \mapsto NN°

Examples: Glauber, etc.

 $\,\triangleright\,$ Wasserstein w.r.t. d is $\mathcal{W}(\mu,\nu)=$

 $\min \big\{ \mathbb{E}_{(X,Y)\sim \pi}[d(X,Y)] \ \big| \ \pi \text{ coupling} \big\}$

▷ For Metropolis chain on colorings: $\mathcal{W}(\nu P, \nu' P) \leq \left(1 - \frac{q - 4\Delta}{q\pi}\right) \mathcal{W}(\nu, \nu')$ ▷ Mixing when $q \geq 4\Delta + 1$ ⓒ

Path coupling lemma

Suppose for all adjacent $X_0 \sim X_0'$ we can couple X_1, X_1' s.t.

 $\mathbb{E}[d(X_1,X_1')] \leqslant (1-c)d(X_0,X_0').$

Then $\mathcal{W}(\nu P, \nu' P) \leqslant (1-c) \mathcal{W}(\nu, \nu').$

Mixing via Transport

- \triangleright Path coupling
- ▷ Dobrushin's condition
- ▷ Hardcore model
- ▷ Ising model
- Dobrushin++

Intro to Functional Analysis

▷ Divergences

Mixing via Transport

- \triangleright Path coupling
- ▷ Dobrushin's condition
- ▷ Hardcore model
- ▷ Ising model
- ▷ Dobrushin++

Intro to Functional Analysis

▷ Divergences

Take the Metropolis chain for colorings:

- \triangleright Pick u.r. vertex v
- Pick u.r. color c
- \triangleright Color v with c if valid

Take the Metropolis chain for colorings:

- \triangleright Pick u.r. vertex v
- ▷ Pick u.r. color c
- \triangleright Color v with c if valid

Coupling:

Take the Metropolis chain for colorings:

- \triangleright Pick u.r. vertex v
- Pick u.r. color c
- $\,\triangleright\,$ Color ν with c if valid

Coupling:

Take X_0, X'_0 differing on vertex w.

there is exactly one

Take the Metropolis chain for colorings:

- \triangleright Pick u.r. vertex v
- \triangleright Pick u.r. color c
- $\,\triangleright\,$ Color ν with c if valid

Coupling:

- \triangleright Take X_0, X'_0 differing on vertex w.
- \triangleright Pick same ν . there is exactly one

Take the Metropolis chain for colorings:

- \triangleright Pick u.r. vertex v
- \triangleright Pick u.r. color c
- $\,\triangleright\,$ Color ν with c if valid

Coupling:

- \triangleright Take X_0, X'_0 differing on vertex w.
- \triangleright Pick same v. there is exactly one
- \triangleright If v = w or $v \neq w$, pick same c.

Take the Metropolis chain for colorings:

- \triangleright Pick u.r. vertex v
- \triangleright Pick u.r. color c
- $\,\triangleright\,$ Color ν with c if valid

Coupling:

 \triangleright Take X_0, X'_0 differing on vertex w.

 \triangleright Pick same v. there is exactly one

- \triangleright If v = w or $v \neq w$, pick same c.

Take the Metropolis chain for colorings: > We have

- \triangleright Pick u.r. vertex v
- D Pick u.r. color c
- \triangleright Color u with c if valid

Coupling:

- \triangleright Take X_0, X'_0 differing on vertex w.
- \triangleright Pick same v. there is exactly one
- \triangleright If v = w or $v \neq w$, pick same c.

$$\mathbb{E}[d(X_1, X_1')] \leqslant 1 - \frac{1}{n} \cdot \frac{q - \Delta}{q} + \frac{\Delta}{n} \cdot \frac{1}{q}$$

which simplifies to

$$1-\frac{q-2\Delta}{qn}.$$

Take the Metropolis chain for colorings: > We have

- \triangleright Pick u.r. vertex v
- Pick u.r. color c
- \triangleright Color v with c if valid

Coupling:

- \triangleright Take X_0, X'_0 differing on vertex w.
- \triangleright Pick same v. there is exactly one
- \triangleright If v = w or $v \not\sim w$, pick same c.

$$\mathbb{E}[d(X_1, X_1')] \leqslant 1 - \frac{1}{n} \cdot \frac{q - \Delta}{q} + \frac{\Delta}{n} \cdot \frac{1}{q}$$

which simplifies to

$$1-\frac{q-2\Delta}{qn}.$$

As long as
$$q \ge 2\Delta + 1$$
, we get contraction!

$$t_{\text{mix}}(\varepsilon) = O\!\left(\frac{q}{q-2\Delta} \cdot n \log(n/\varepsilon)\right)$$

Take the Metropolis chain for colorings: > We have

- \triangleright Pick u.r. vertex v
- Pick u.r. color c
- \triangleright Color u with c if valid

Coupling:

- \triangleright Take X_0, X'_0 differing on vertex w.
- \triangleright Pick same v. there is exactly one
- \triangleright If v = w or $v \not\sim w$, pick same c.

$$\mathbb{E}[d(X_1, X_1')] \leqslant 1 - \frac{1}{n} \cdot \frac{q - \Delta}{q} + \frac{\Delta}{n} \cdot \frac{1}{q}$$

which simplifies to

$$1-\frac{q-2\Delta}{qn}.$$

As long as
$$q \ge 2\Delta + 1$$
, we get contraction!

$$t_{\text{mix}}(\varepsilon) = O\!\left(\frac{q}{q-2\Delta} \cdot n \log(n/\varepsilon)\right)$$

> What about Glauber?

Glauber for μ on $\Omega_1 \times \cdots \times \Omega_n$:

- $\,\triangleright\,\,$ Pick u.r. coord $i\in[n]$

Glauber for μ on $\Omega_1 \times \cdots \times \Omega_n$:

- $\,\triangleright\,\,$ Pick u.r. coord $i\in[n]$
- \bigcirc Replace coord i's value w.p. $\propto \mu(\text{result})$

 $\label{eq:constraint} \textstyle \bigcirc \ \mbox{We pick } \omega \in \Omega_i \ \mbox{from } \mbox{dist}(X_i \mid X_{-i}).$

- Glauber for μ on $\Omega_1 \times \cdots \times \Omega_n$:
- $\,\triangleright\,$ Pick u.r. coord $i\in[n]$

- $\label{eq:constant} \bigvee \ \text{We pick} \ \omega \in \Omega_i \ \text{from} \ \text{dist}(X_i \mid X_{-i}).$
- Influence: take worst case X, X' that differ in coord j:

 $d_{\mathsf{TV}}\big(\mathsf{dist}(X_{\mathfrak{i}} \mid X_{-\mathfrak{i}}), \mathsf{dist}(X'_{\mathfrak{i}} \mid X'_{-\mathfrak{i}})\big)$

- Glauber for μ on $\Omega_1 \times \cdots \times \Omega_n$:
- $\,\triangleright\,$ Pick u.r. coord $i\in[n]$

- $\label{eq:constant} \bigvee \ \text{We pick} \ \omega \in \Omega_i \ \text{from } \text{dist}(X_i \mid X_{-i}).$
- Influence: take worst case X, X' that differ in coord j:

 $d_{\mathsf{TV}}\big(\mathsf{dist}(X_{\mathfrak{i}} \mid X_{-\mathfrak{i}}), \mathsf{dist}(X'_{\mathfrak{i}} \mid X'_{-\mathfrak{i}})\big)$

 $\label{eq:call_constraint} \begin{tabular}{ll} $$ Call maximum value $\end{tabular} [j \rightarrow i]$. \end{tabular}$

- Glauber for μ on $\Omega_1 \times \cdots \times \Omega_n$:
- $\,\triangleright\,$ Pick u.r. coord $\mathfrak{i}\in[n]$
- \bigcirc Replace coord i's value w.p. $\propto \mu(\text{result})$

- $\label{eq:constant} \bigvee \ \text{We pick} \ \omega \in \Omega_i \ \text{from} \ \text{dist}(X_i \mid X_{-i}).$
- Influence: take worst case X, X' that differ in coord j:
 - $d_{\mathsf{TV}}\big(\mathsf{dist}(X_{\mathfrak{i}} \mid X_{-\mathfrak{i}}), \mathsf{dist}(X'_{\mathfrak{i}} \mid X'_{-\mathfrak{i}})\big)$
- $\label{eq:call_constraint} \begin{tabular}{ll} $$ Call maximum value $\end{tabular} J[j \rightarrow i]$. \end{tabular}$

Dobrushin influence matrix: matrix with entries $\mathcal{I}[j \rightarrow i]$.

- Glauber for μ on $\Omega_1 \times \cdots \times \Omega_n$:
- \triangleright Pick u.r. coord $i \in [n]$
- Replace coord i's value w.p. $\propto \mu$ (result)

Dobrushin influence matrix: matrix with entries $\mathfrak{I}[\mathfrak{j} \to \mathfrak{i}]$.

Example: hypercube

$$\begin{array}{l} \bigcirc \ \Omega = \{0,1\}^n \\ \bigcirc \ \mu(x) = \text{unifo} \end{array}$$

>
$$\mu(x) = uniform$$

- \triangleright We pick $\omega \in \Omega_i$ from dist $(X_i | X_{-i})$.
- \triangleright Influence: take worst case X, X' that differ in coord j:
 - $d_{\mathsf{TV}}(\mathsf{dist}(X_i \mid X_{-i}), \mathsf{dist}(X'_i \mid X'_{-i}))$
- \triangleright Call maximum value $\mathfrak{I}[\mathfrak{j} \to \mathfrak{i}]$.

- Glauber for μ on $\Omega_1 \times \cdots \times \Omega_n$:
- $\,\triangleright\,$ Pick u.r. coord $i\in[n]$
- \bigcirc Replace coord i's value w.p. $\propto \mu(\text{result})$

- $\label{eq:constant} \textcircled{\begin{subarray}{c} \mathbb{D} \end{subarray}} \end{subarray} \$
- Influence: take worst case X, X' that differ in coord j:

 $d_{\mathsf{TV}}\big(\mathsf{dist}(X_{\mathfrak{i}} \mid X_{-\mathfrak{i}}), \mathsf{dist}(X'_{\mathfrak{i}} \mid X'_{-\mathfrak{i}})\big)$

 $\label{eq:call_constraint} \begin{tabular}{ll} $$ Call maximum value $\end{tabular} J[j \rightarrow i]$. \end{tabular}$

Dobrushin influence matrix: matrix with entries $\mathfrak{I}[j \rightarrow i]$.

Example: hypercube

$$\triangleright \Omega = \{0,1\}^n$$

$$\triangleright \mu(x) = uniform$$

$$\triangleright \ \mathfrak{I}[\mathfrak{j} \to \mathfrak{i}] = 0$$

Example: coloring

$$\triangleright \ \Omega = [q]^r$$

$$> \mu =$$
 proper coloring

- Glauber for μ on $\Omega_1 \times \cdots \times \Omega_n$:
- $\,\triangleright\,$ Pick u.r. coord $i\in[n]$
- \bigcirc Replace coord i's value w.p. $\propto \mu(\text{result})$

- $\label{eq:constraint} \textstyle \textcircled{} \begin{subarray}{c} \mbox{We pick } \omega \in \Omega_i \mbox{ from } \mbox{dist}(X_i \mid X_{-i}). \end{subarray}$
- Influence: take worst case X, X' that differ in coord j:

 $d_{\mathsf{TV}}\big(\mathsf{dist}(X_{\mathfrak{i}} \mid X_{-\mathfrak{i}}), \mathsf{dist}(X'_{\mathfrak{i}} \mid X'_{-\mathfrak{i}})\big)$

 $\label{eq:call} \ensuremath{\mathbb{D}} \ensuremath{\mathsf{Call}} \ensuremath{\mathsf{maximum}} \ensuremath{\mathsf{value}} \ensuremath{\mathfrak{I}}[j \to i].$

Dobrushin influence matrix: matrix with entries $\mathfrak{I}[j \rightarrow i]$.

Example: hypercube

$$\triangleright \Omega = \{0,1\}^n$$

$$\triangleright \mu(x) = uniform$$

Example: coloring

$$\bigcap \Omega = [q]^{r}$$

$$> \mu =$$
 proper coloring

$$\triangleright \ \mathbb{J}[j
ightarrow \mathfrak{i}] = \mathfrak{0}$$
 when $\mathfrak{j} \not\sim \mathfrak{i}$

- Glauber for μ on $\Omega_1 \times \cdots \times \Omega_n$:
- $\,\triangleright\,$ Pick u.r. coord $i\in[n]$
- \bigcirc Replace coord i's value w.p. $\propto \mu(\text{result})$

- $\label{eq:constant} \bigvee \ \text{We pick} \ \omega \in \Omega_i \ \text{from} \ \text{dist}(X_i \mid X_{-i}).$
- Influence: take worst case X, X' that differ in coord j:

 $d_{\mathsf{TV}}\big(\mathsf{dist}(X_{\mathfrak{i}} \mid X_{-\mathfrak{i}}), \mathsf{dist}(X'_{\mathfrak{i}} \mid X'_{-\mathfrak{i}})\big)$

 $\label{eq:call_constraint} \begin{tabular}{ll} $$ Call maximum value $\end{tabular} J[j \rightarrow i]$. \end{tabular}$

Dobrushin influence matrix: matrix with entries $\mathfrak{I}[j \rightarrow i]$.

Example: hypercube

$$\triangleright \Omega = \{0,1\}^n$$

$$\triangleright \mu(x) = uniform$$

Example: coloring

 $\triangleright \ \Omega = [q]^n$

$$> \mu =$$
 proper coloring

$$ightarrow \, {\mathfrak I}[{\mathfrak j}
ightarrow {\mathfrak i}] = {\mathfrak 0}$$
 when ${\mathfrak j}
eq {\mathfrak i}$

$$\triangleright \ \mathfrak{I}[\mathfrak{j} \to \mathfrak{i}] \leqslant 1/(\mathfrak{q} - \Delta)$$

If columns of ${\mathfrak I}$ sum to $\leqslant 1-\delta,$ then

 $\mathcal{W}(\mathbf{\nu}\mathbf{P},\mathbf{\nu}'\mathbf{P}) \leqslant (1-\delta/n) \, \mathcal{W}(\mathbf{\nu},\mathbf{\nu}')$

If columns of ${\mathbb J}$ sum to $\leqslant 1-\delta,$ then

 $\mathcal{W}(\nu P, \nu' P) \leqslant (1 - \delta/n) \, \mathcal{W}(\nu, \nu')$

 $\triangleright~$ This implies fast mixing: $t_{\text{mix}}(\varepsilon) = O\bigl(\frac{1}{\delta} n \log(n/\varepsilon) \bigr)$

If columns of \mathcal{I} sum to $\leq 1 - \delta$, then $\mathcal{W}(\mathbf{v}\mathbf{P},\mathbf{v'}\mathbf{P}) \leq (1 - \delta/n) \mathcal{W}(\mathbf{v},\mathbf{v'})$

- $\triangleright~$ This implies fast mixing: $t_{\text{mix}}(\varepsilon) = O\bigl(\tfrac{1}{\delta} n \log(n/\varepsilon) \bigr)$
- $\begin{tabular}{ll} \hline \begin{tabular}{ll} For coloring, $\mathfrak{I}\leqslant adj/(q-\Delta)$, so column sums are $\Delta/(q-\Delta)$: \end{tabular} \end{tabular} \end{tabular}$

$$rac{\Delta}{q-\Delta} < 1 \; \leftrightarrow \; q \! \geqslant \! 2\Delta + 1$$

same cond as Metropolis

If columns of \mathcal{I} sum to $\leq 1 - \delta$, then $\mathcal{W}(\mathbf{v}\mathbf{P},\mathbf{v'}\mathbf{P}) \leq (1 - \delta/n) \mathcal{W}(\mathbf{v},\mathbf{v'})$

- $\triangleright~$ This implies fast mixing: $t_{\text{mix}}(\varepsilon) = O\bigl(\tfrac{1}{\delta} n \log(n/\varepsilon) \bigr)$
- $\label{eq:force} \begin{tabular}{ll} \hline \begin{tabular}{ll} For coloring, $\mathbb{J} \leqslant adj/(q-\Delta)$, so column sums are $\Delta/(q-\Delta)$: } \end{tabular}$

$$\frac{\Delta}{q-\Delta} < 1 \iff q \ge 2\Delta + 1$$

same cond as Metropolis

 $\triangleright \$ Note: $\mathfrak{I}[\mathfrak{i} \to \mathfrak{i}] = \mathfrak{0}$ always.

Proof:

If columns of ${\mathbb J}$ sum to $\leqslant 1-\delta,$ then

 $\mathcal{W}(\mathbf{\nu}\mathbf{P},\mathbf{\nu'}\mathbf{P}) \leqslant (1-\delta/n) \, \mathcal{W}(\mathbf{\nu},\mathbf{\nu'})$

- $\triangleright~$ This implies fast mixing: $t_{\text{mix}}(\varepsilon) = O\bigl(\tfrac{1}{\delta} n \log(n/\varepsilon) \bigr)$
- $\begin{tabular}{ll} \hline \begin{tabular}{ll} For coloring, $J\leqslant adj/(q-\Delta)$, so column sums are $\Delta/(q-\Delta)$: \end{tabular} \end{tabular} \end{tabular}$

$$\frac{\Delta}{q-\Delta} < 1 \; \leftrightarrow \; q \! \geqslant \! 2\Delta + 1$$

same cond as Metropolis

 $\,\triangleright\,$ Note: ${\mathfrak I}[\mathfrak i\to\mathfrak i]=0$ always.

If columns of ${\mathfrak I}$ sum to $\leqslant 1-\delta,$ then

 $\mathcal{W}(\mathbf{\nu}\mathbf{P},\mathbf{\nu'}\mathbf{P})\leqslant (1-\delta/n)\,\mathcal{W}(\mathbf{\nu},\mathbf{\nu'})$

 $\triangleright~$ This implies fast mixing: $t_{\text{mix}}(\varepsilon) = O\bigl(\tfrac{1}{\delta} n \log(n/\varepsilon) \bigr)$

For coloring, $J \leq \frac{dj}{(q - \Delta)}$, so column sums are $\frac{\Delta}{(q - \Delta)}$:

$$\frac{\Delta}{q-\Delta} < 1 \; \leftrightarrow \; q \ge 2\Delta + 1$$

same cond as Metropolis

 $\,\triangleright\,$ Note: ${\mathbb J}[i\to i]=0$ always.

Proof:

▷ Idea: use path coupling!

If columns of J sum to $\leq 1 - \delta$, then $\mathcal{W}(\mathbf{v}\mathbf{P},\mathbf{v'}\mathbf{P}) \leq (1 - \delta/n) \mathcal{W}(\mathbf{v},\mathbf{v'})$

- $\triangleright~$ This implies fast mixing: $t_{\text{mix}}(\varepsilon) = O\bigl(\tfrac{1}{\delta} n \log(n/\varepsilon) \bigr)$
- $\label{eq:force} \begin{tabular}{ll} \hline \begin{tabular}{ll} For coloring, $\mathfrak{I}\leqslant adj/(q-\Delta)$, so column sums are $\Delta/(q-\Delta)$: } \end{tabular}$

$$\frac{\Delta}{q-\Delta} < 1 \; \leftrightarrow \; q \ge 2\Delta + 1$$

same cond as Metropolis

 $\,\triangleright\,$ Note: ${\mathbb J}[i\to i]=0$ always.

Proof:

Idea: use path coupling!
 Take X₀, X'₀ differing in j.
If columns of \mathcal{I} sum to $\leq 1 - \delta$, then $\mathcal{W}(\mathbf{v}\mathbf{P},\mathbf{v'}\mathbf{P}) \leq (1 - \delta/n) \mathcal{W}(\mathbf{v},\mathbf{v'})$

 $\triangleright~$ This implies fast mixing: $t_{\text{mix}}(\varepsilon) = O\bigl(\tfrac{1}{\delta} n \log(n/\varepsilon) \bigr)$

 $\label{eq:force} \begin{tabular}{ll} \hline \begin{tabular}{ll} For coloring, $\mathfrak{I}\leqslant adj/(q-\Delta)$, so column sums are $\Delta/(q-\Delta)$: } \end{tabular}$

$$\frac{\Delta}{q-\Delta} < 1 \; \leftrightarrow \; q \ge 2\Delta + 1$$

same cond as Metropolis

 $\,\triangleright\,$ Note: ${\mathbb J}[i\to i]=0$ always.

- \triangleright Idea: use path coupling!
- \triangleright Take X_0, X'_0 differing in j.
- \triangleright Will produce coupling of X_1, X'_1 .

If columns of J sum to $\leq 1 - \delta$, then $\mathcal{W}(\mathbf{v}\mathbf{P},\mathbf{v'}\mathbf{P}) \leq (1 - \delta/n) \mathcal{W}(\mathbf{v},\mathbf{v'})$

- $\triangleright~$ This implies fast mixing: $t_{\text{mix}}(\varepsilon) = O\bigl(\tfrac{1}{\delta} n \log(n/\varepsilon) \bigr)$
- $\label{eq:force} \begin{tabular}{ll} \hline \begin{tabular}{ll} For coloring, \end{tabular} \end{tabular} \end{tabular} & \end{tabular} \end{tabular} \end{tabular} For coloring, \end{tabular} \end{tabu$

$$\frac{\Delta}{q-\Delta} < 1 \; \leftrightarrow \; q \ge 2\Delta + 1$$

same cond as Metropolis

 $\,\triangleright\,$ Note: ${\mathbb J}[i\to i]=0$ always.

- \triangleright Idea: use path coupling!
- \triangleright Take X_0, X'_0 differing in j.
- \triangleright Will produce coupling of X_1, X'_1 .
- ▷ Pick same coord i.

If columns of J sum to $\leq 1 - \delta$, then $\mathcal{W}(\mathbf{v}\mathbf{P},\mathbf{v'}\mathbf{P}) \leq (1 - \delta/n) \mathcal{W}(\mathbf{v},\mathbf{v'})$

- $\triangleright~$ This implies fast mixing: $t_{\text{mix}}(\varepsilon) = O\bigl(\tfrac{1}{\delta} n \log(n/\varepsilon) \bigr)$

$$\frac{\Delta}{q-\Delta} < 1 \iff q \ge 2\Delta + 1$$

same cond as Metropolis

 $\,\triangleright\,$ Note: ${\mathbb J}[i\to i]=0$ always.

- \triangleright Idea: use path coupling!
- \triangleright Take X_0, X'_0 differing in j.
- \triangleright Will produce coupling of X_1, X'_1 .
- ▷ Pick same coord i.

If columns of \mathcal{I} sum to $\leq 1 - \delta$, then $\mathcal{W}(\nu P, \nu' P) \leq (1 - \delta/n) \mathcal{W}(\nu, \nu')$

- $\triangleright~$ This implies fast mixing: $t_{\text{mix}}(\varepsilon) = O\bigl(\tfrac{1}{\delta} n \log(n/\varepsilon) \bigr)$
- $\begin{tabular}{ll} \hline \begin{tabular}{ll} For coloring, $\mathbb{J}\leqslant adj/(q-\Delta)$, so column sums are $\Delta/(q-\Delta)$: \end{tabular} \end{tabular}$

$$rac{\Delta}{q-\Delta} < 1 \; \leftrightarrow \; q \! \geqslant \! 2\Delta + 1$$

same cond as Metropolis

 $\,\triangleright\,$ Note: ${\mathbb J}[i\to i]=0$ always.

- \triangleright Idea: use path coupling!
- \triangleright Take X_0, X'_0 differing in j.
- \triangleright Will produce coupling of X_1, X'_1 .
- ▷ Pick same coord i.
- Maximally couple replacements. \uparrow the one defining d_{TV}
- \triangleright Possibilities for $d(X_1, X'_1)$:
 - \triangleright 0 (picked i = j)
 - ▷ 1 (equal replacements)
 - 2 (different replacements)

If columns of J sum to $\leq 1 - \delta$, then $\mathcal{W}(\mathbf{v}\mathbf{P},\mathbf{v'}\mathbf{P}) \leq (1 - \delta/n) \mathcal{W}(\mathbf{v},\mathbf{v'})$

- $\triangleright~$ This implies fast mixing: $t_{\text{mix}}(\varepsilon) = O\bigl(\tfrac{1}{\delta} n \log(n/\varepsilon) \bigr)$
- $\begin{tabular}{ll} \hline \begin{tabular}{ll} For coloring, $\mathbb{J}\leqslant adj/(q-\Delta)$, so column sums are $\Delta/(q-\Delta)$: \end{tabular} \end{tabular}$

$$\frac{\Delta}{q-\Delta} < 1 \iff q \ge 2\Delta + 1$$

same cond as Metropolis

 $\,\triangleright\,$ Note: ${\mathbb J}[i\to i]=0$ always.

- Idea: use path coupling!
- \triangleright Take X_0, X'_0 differing in j.
- \triangleright Will produce coupling of X_1, X'_1 .
- ▷ Pick same coord i.
- Maximally couple replacements. \uparrow the one defining d_{TV}
- \triangleright Possibilities for $d(X_1, X'_1)$:
 - $\triangleright \ 0$ (picked i = j)
 - \triangleright 1 (equal replacements)
 - 2 (different replacements)
- $$\begin{split} & \blacktriangleright \mbox{ We get } \mathbb{E}[d(X_1,X_1')] \leqslant \\ & \frac{1}{n} \cdot 0 \! + \! \frac{1}{n} \sum_{i \neq j} (1 \! + \! \mathbb{I}[j \rightarrow i]) \leqslant 1 \! \! \delta/n \end{split}$$

Spin systems

$$\begin{array}{c} & \text{graph } G = (V, E) \\ & \Omega = \Omega_1 \times \cdots \times \Omega_n \\ & \text{local interaction} \\ & \mu(x) = \prod_{\nu} \varphi_{\nu}(x_{\nu}) \cdot \prod_{u \sim \nu} \varphi_{u\nu}(x_u, x_{\nu}) \end{array}$$

Spin systems

$$\mu(x) = \prod_{\nu} \varphi_{\nu}(x_{\nu}) \cdot \prod_{u \sim \nu} \varphi_{u\nu}^{\downarrow}(x_{u}, x_{\nu})$$

$$\,\triangleright\,\, {\mathfrak I}[{\mathfrak j} \to {\mathfrak i}] = {\mathfrak 0}$$
 when ${\mathfrak i} \not \sim {\mathfrak j}$

Spin systems

 $\mu(x) = \prod_{\nu} \varphi_{\nu}(x_{\nu}) \cdot \prod_{u \sim \nu} \varphi_{u\nu}^{\downarrow}(x_{u}, x_{\nu})$

Spin systems

$$\begin{array}{c} \textcircled{\mbox{\rm graph } G = (V, E)} \\ & \textcircled{\mbox{\rm graph } G = \Omega_1 \times \cdots \times \Omega_n } \end{array}$$

 $\mu(x) = \prod_{\nu} \varphi_{\nu}(x_{\nu}) \cdot \prod_{u \sim \nu} \varphi_{u\nu}^{\downarrow}(x_u, x_{\nu})$

 $\square \ \ \, \mathbb{J}[j \to i] = 0 \text{ when } i \neq j$ $\square \ \, \mathbb{J} \text{ is weighted adjacency matrix}$

Example: coloring

$$\triangleright \ \Omega_{i} = [q]$$

Spin systems

I a set to be seen at the s

$$\mu(\mathbf{x}) = \prod_{\nu} \phi_{\nu}(\mathbf{x}_{\nu}) \cdot \prod_{u \sim \nu} \phi_{u\nu}^{\downarrow}(\mathbf{x}_{u}, \mathbf{x}_{\nu})$$

Example: hardcore

$$\Omega_{i} = \{0, 1\} \quad \varphi_{\nu} = \lambda_{\uparrow}^{x_{\nu}} \quad \varphi_{u\nu} = 1 - x_{u}x_{\nu}$$
fugacity

 $\triangleright \ \mathfrak{I}[j \rightarrow \mathfrak{i}] = \mathfrak{0}$ when $\mathfrak{i} \not\sim \mathfrak{j}$

 \triangleright J is weighted adjacency matrix

Example: coloring

$$\triangleright \Omega_{i} = [q]$$

Spin systems

local interaction

$$\mu(x) = \prod_{\nu} \phi_{\nu}(x_{\nu}) \cdot \prod_{u \sim \nu} \phi_{u\nu}^{\downarrow}(x_{u}, x_{\nu})$$

Example: coloring

$$D_{i} = [q]$$

$$\Phi_{uv} = \mathbb{1}[x_{u} \neq x_{v}]$$

$$> \Im \leq \operatorname{adj}/(q - \Delta)$$

Example: hardcore

$$\Omega_{i} = \{0, 1\} \quad \varphi_{\nu} = \lambda_{\uparrow}^{x_{\nu}} \quad \varphi_{u\nu} = 1 - x_{u}x_{\nu}$$
fugacity

Example: Ising

$$\triangleright \Omega_i = \{\pm 1\}$$

$$> \phi_{v} = \exp(h_{v}x_{v})$$

external field

$$> \phi_{uv} = \exp(\beta_{uv} x_u x_v)$$

ferro/anti-ferromagnetic interaction

 $\mu(\text{ind set }S) \propto \lambda^{|S|}$

 $\mu(\text{ind set }S)\propto\lambda^{|S|}$

 $\mu(\text{ind set }S) \propto \lambda^{|S|}$

Large λ is hard. max ind set is NP-hard

 \triangleright For what λ is it easy to sample?

 $\mu(\text{ind set }S) \propto \lambda^{|S|}$

Large λ is hard. max ind set is NP-hard

- \triangleright For what λ is it easy to sample?

 $\mu(\text{ind set }S) \propto \lambda^{|S|}$

Large λ is hard. nax ind set is NP-hard

- \triangleright For what λ is it easy to sample?

 $\begin{tabular}{ll} & \blacktriangleright & \forall hen \ \lambda \leqslant (1-\delta)/\Delta, \ col \ sums \ are \\ & \leqslant \frac{\lambda\Delta}{1+\lambda} \leqslant \lambda\Delta \leqslant 1-\delta \end{tabular} \end{tabular}$

 $\mu(\text{ind set }S) \propto \lambda^{|S|}$

Large λ is hard. ↑
max ind set is NP-hard

- \triangleright For what λ is it easy to sample?

 $\begin{array}{l} \textcircled{} & \forall \text{ When } \lambda \leqslant (1 - \delta) / \Delta \text{, col sums are} \\ & \leqslant \frac{\lambda \Delta}{1 + \lambda} \leqslant \lambda \Delta \leqslant 1 - \delta \\ \hline & \forall \text{ Mixing in } O(n \log n) \text{ steps. } \textcircled{} \end{array}$

 $\mu(\text{ind set }S) \propto \lambda^{|S|}$

- Large λ is hard. ↑
 max ind set is NP-hard
- \triangleright For what λ is it easy to sample?
- \triangleright Dobrushin: $\Im \leq c \cdot adj$ where $c = d_{TV}(Ber(0), Ber(\lambda/(1 + \lambda)))$

 $\begin{tabular}{ll} & \blacktriangleright & \forall hen \ \lambda \leqslant (1-\delta)/\Delta, \ col \ sums \ are \\ & \leqslant \frac{\lambda\Delta}{1+\lambda} \leqslant \lambda\Delta \leqslant 1-\delta \end{tabular} \end{tabular}$

- \triangleright Mixing in $O(n \log n)$ steps. \bigcirc
- This is NOT the tightest result. Dobrushin is suboptimal.

 $\mu(\text{ind set }S) \propto \lambda^{|S|}$

- Large λ is hard. max ind set is NP-hard
- \triangleright For what λ is it easy to sample?

- $\begin{tabular}{ll} & \blacktriangleright & \forall hen \ \lambda \leqslant (1-\delta)/\Delta, \ col \ sums \ are \\ & \leqslant \frac{\lambda\Delta}{1+\lambda} \leqslant \lambda\Delta \leqslant 1-\delta \end{tabular} \end{tabular}$
- \triangleright Mixing in $O(n \log n)$ steps.
- This is NOT the tightest result. Dobrushin is suboptimal.
- \triangleright We will see later

 $\lambda \leqslant (1-\delta) \lambda_c(\Delta) \implies \text{fast mixing}$

for a specific critical threshold

 $\lambda_c(\Delta) \simeq \frac{e}{\Delta}$

 $\mu(\text{ind set }S) \propto \lambda^{|S|}$

- ▷ Large λ is hard. ☺ ↑ max ind set is NP-hard
- \triangleright For what λ is it easy to sample?

 $\begin{tabular}{ll} & \blacktriangleright & \forall hen \ \lambda \leqslant (1-\delta)/\Delta, \ col \ sums \ are \\ & \leqslant \ \frac{\lambda\Delta}{1+\lambda} \leqslant \lambda\Delta \leqslant 1-\delta \end{tabular} \end{tabular}$

- \triangleright Mixing in $O(n \log n)$ steps.
- This is NOT the tightest result. Dobrushin is suboptimal.
- \triangleright We will see later

 $\lambda \leqslant (1-\delta) \lambda_c(\Delta) \implies \text{fast mixing}$

for a specific critical threshold

$$\lambda_{c}(\Delta) \simeq \frac{e}{\Delta}$$

On the opposite side, [Sly10] showed it is NP-hard to sample when

 $\lambda \geqslant (1+\delta)\lambda_c(\Delta)$

(+

 $\mu(x) \propto \text{exp}(\tfrac{1}{2} \sum_{u,\nu} \beta_{\underbrace{\mu\nu}} x_u x_\nu + \sum_{\nu} h_\nu x_\nu)$ symmetric matrix

$$\mu(x) \propto \exp(\frac{1}{2} \sum_{u,\nu} \beta_{u\nu} x_u x_\nu + \sum_{\nu} h_{\nu} x_{\nu})$$

symmetric matrix

 \triangleright Ferromagnetic: all $\beta \ge 0$

$$\mu(\mathbf{x}) \propto \exp(\frac{1}{2} \sum_{\mathbf{u},\nu} \beta_{\mathbf{u}\nu} \mathbf{x}_{\mathbf{u}} \mathbf{x}_{\nu} + \sum_{\nu} \mathbf{h}_{\nu} \mathbf{x}_{\nu})$$
symmetric matrix

- \triangleright Ferromagnetic: all $\beta \ge 0$
- \triangleright Anti-ferromagnetic: all $\beta \leq 0$

$$\mu(x) \propto \exp(\frac{1}{2} \sum_{u,v} \beta_{uv} x_u x_v + \sum_{v} h_v x_v)$$
symmetric matrix

- \triangleright Ferromagnetic: all $\beta \ge 0$
- \triangleright Anti-ferromagnetic: all $\beta \leq 0$
- \triangleright Sherrington-Kirkpatrick: random β

$$\mu(x) \propto \exp(\frac{1}{2} \sum_{u,v} \beta_{uv} x_u x_v + \sum_{v} h_v x_v)$$
symmetric matrix

- \triangleright Ferromagnetic: all $\beta \ge 0$
- \triangleright Anti-ferromagnetic: all $\beta \leq 0$
- \triangleright Sherrington-Kirkpatrick: random β
- Note: every 2-spin system is a (limit of an) Ising model

$$\mu(\mathbf{x}) \propto \exp(\frac{1}{2} \sum_{u,\nu} \beta_{\mu\nu} x_u x_\nu + \sum_{\nu} h_{\nu} x_{\nu})$$
summetric matrix

- \triangleright Ferromagnetic: all $\beta \ge 0$
- \triangleright Anti-ferromagnetic: all $\beta \leq 0$
- \triangleright Sherrington-Kirkpatrick: random β
- Note: every 2-spin system is a (limit of an) Ising model

$$\mu(\mathbf{x}) \propto \exp(\frac{1}{2} \sum_{u,\nu} \beta_{\mu\nu} x_u x_\nu + \sum_{\nu} h_{\nu} x_{\nu})$$
symmetric matrix

- \triangleright Ferromagnetic: all $\beta \ge 0$
- \triangleright Anti-ferromagnetic: all $\beta \leq 0$
- \triangleright Sherrington-Kirkpatrick: random β
- Note: every 2-spin system is a (limit of an) Ising model

$$\mu(\mathbf{x}) \propto \exp(\frac{1}{2} \sum_{\mathbf{u},\nu} \beta_{\mu\nu} x_{\mathbf{u}} x_{\nu} + \sum_{\nu} h_{\nu} x_{\nu})$$
symmetric matrix

- \triangleright Ferromagnetic: all $\beta \ge 0$
- \triangleright Anti-ferromagnetic: all $\beta \leq 0$
- \triangleright Sherrington-Kirkpatrick: random β
- Note: every 2-spin system is a (limit of an) Ising model

$$\mu(\mathbf{x}) \propto \exp(\frac{1}{2} \sum_{u,\nu} \beta_{\mu\nu} x_u x_\nu + \sum_{\nu} h_{\nu} x_{\nu})$$
symmetric matrix

- \triangleright Ferromagnetic: all $\beta \ge 0$
- \triangleright Anti-ferromagnetic: all $\beta \leqslant 0$
- \triangleright Sherrington-Kirkpatrick: random β
- Note: every 2-spin system is a (limit of an) Ising model

Why not d other than Hamming?

Why not d other than Hamming?

 \triangleright For $c \in \mathbb{R}^n_{\geqslant 0}$, define c-weighted Hamming as

$$d(x,y) = \sum \{c_i \mid x_i \neq y_i\}$$

Why not d other than Hamming?

 \triangleright For $c \in \mathbb{R}^n_{\geqslant 0}$, define c-weighted Hamming as

 $d(x,y) = \sum \{c_i \mid x_i \neq y_i\}$

Take X_0, X'_0 differing in j. Will produce coupling of X_1, X'_1 .

Why not d other than Hamming?

 \triangleright For $c \in \mathbb{R}^n_{\geqslant 0}$, define c-weighted Hamming as

 $d(x,y) = \sum \{c_i \mid x_i \neq y_i\}$

Take X_0, X'_0 differing in j. Will produce coupling of X_1, X'_1 .

Why not d other than Hamming?

 \triangleright For $c \in \mathbb{R}^n_{\geqslant 0}$, define c-weighted Hamming as

 $d(x,y) = \sum \{c_i \mid x_i \neq y_i\}$

- Take X_0, X'_0 differing in j. Will produce coupling of X_1, X'_1 .
- Pick same coord i. Maximally couple replacements.

Why not d other than Hamming?

 \triangleright For $c \in \mathbb{R}^n_{\geqslant 0}$, define c-weighted Hamming as

 $d(x,y) = \sum \{c_i \mid x_i \neq y_i\}$

- Take X_0, X'_0 differing in j. Will produce coupling of X_1, X'_1 .
- Pick same coord i. Maximally couple replacements.
Why not d other than Hamming?

 \triangleright For $c \in \mathbb{R}^n_{\geqslant 0}$, define c-weighted Hamming as

 $d(x,y) = \sum \{c_i \mid x_i \neq y_i\}$

- Pick same coord i. Maximally couple replacements.
- $$\begin{split} & \triangleright \; \text{We get } \mathbb{E}[d(X_1,X_1')] \leqslant \\ & \frac{1}{n} \cdot 0 + \frac{1}{n} \sum_{i \neq j} (c_j + \mathbb{I}[j \rightarrow i]c_i) \end{split}$$

Why not d other than Hamming?

 $\,\triangleright\,$ For $c\in\mathbb{R}^n_{\geqq0},$ define c-weighted Hamming as

 $d(x,y) = \sum \{c_i \mid x_i \neq y_i\}$

- Take X_0, X'_0 differing in j. Will produce coupling of X_1, X'_1 .
- Pick same coord i. Maximally couple replacements.
- $\mathbb{D} \text{ We get } \mathbb{E}[d(X_1, X'_1)] \leqslant \\ \frac{1}{n} \cdot 0 + \frac{1}{n} \sum_{i \neq j} (c_j + \mathcal{I}[j \to i]c_i) \\ \mathbb{D} \text{ Contraction: } c \mathcal{I} \leqslant (1 \delta)c$

Why not d other than Hamming?

 $\bigcirc \ \mbox{For } c \in \mathbb{R}^n_{\geqq 0},$ define $c\mbox{-weighted}$ Hamming as

 $d(x,y) = \sum \{c_i \mid x_i \neq y_i\}$

- Take X_0, X'_0 differing in j. Will produce coupling of X_1, X'_1 .
- Pick same coord i. Maximally couple replacements.
- $$\begin{split} & \blacktriangleright \mbox{ We get } \mathbb{E}[d(X_1,X_1')] \leqslant \\ & \frac{1}{n} \cdot \mathbb{O} + \frac{1}{n} \sum_{i \neq j} (c_j + \mathbb{J}[j \rightarrow i]c_i) \end{split}$$
- \triangleright Contraction: $c \mathfrak{I} \leq (1 \delta)c$
- \triangleright When this happens,

 $\mathcal{W}(\nu P,\nu'P) \leqslant (1-\delta/n) \, \mathcal{W}(\nu,\nu')$

Why not d other than Hamming?

 $\triangleright \ \ \mbox{For} \ c \in \mathbb{R}^n_{\geqq 0},$ define $c\mbox{-weighted}$ Hamming as

 $d(x,y) = \sum \{c_i \mid x_i \neq y_i\}$

- Take X_0, X'_0 differing in j. Will produce coupling of X_1, X'_1 .
- Pick same coord i. Maximally couple replacements.
- $$\begin{split} & \blacktriangleright \mbox{ We get } \mathbb{E}[d(X_1,X_1')] \leqslant \\ & \frac{1}{n} \cdot \mathbb{O} + \frac{1}{n} \sum_{i \neq j} (c_j + \mathbb{J}[j \rightarrow i]c_i) \end{split}$$
- \triangleright Contraction: $c \mathfrak{I} \leq (1 \delta)c$
- \triangleright When this happens,

 $\mathcal{W}(\nu P, \nu' P) \leqslant (1 - \delta/n) \, \mathcal{W}(\nu, \nu')$

Implication for mixing

Given $c\, {\mathfrak I} \leqslant (1-\delta)c$, we have

$$t_{\mathsf{mix}}(\varepsilon) = O\!\left(\frac{n}{\delta} \log\!\left(\frac{n \cdot c_{\mathsf{max}}}{\varepsilon \cdot c_{\mathsf{min}}}\right)\right)$$

Why not d other than Hamming?

 $\triangleright \ \ \mbox{For} \ c \in \mathbb{R}^n_{\geqq 0},$ define $c\mbox{-weighted}$ Hamming as

 $d(x,y) = \sum \{c_i \mid x_i \neq y_i\}$

- Take X_0, X'_0 differing in j. Will produce coupling of X_1, X'_1 .
- Pick same coord i. Maximally couple replacements.
- $$\begin{split} & \blacktriangleright \mbox{ We get } \mathbb{E}[d(X_1,X_1')] \leqslant \\ & \frac{1}{n} \cdot 0 + \frac{1}{n} \sum_{i \neq j} (c_j + \mathbb{J}[j \rightarrow i]c_i) \end{split}$$
- \triangleright Contraction: $c \mathfrak{I} \leq (1 \delta)c$
- \triangleright When this happens,

 $\mathcal{W}(\nu P, \nu' P) \leqslant (1 - \delta/n) \, \mathcal{W}(\nu, \nu')$

Implication for mixing

Given $c\, {\mathfrak I} \leqslant (1-\delta)c$, we have

$$t_{\mathsf{mix}}(\varepsilon) = O\!\left(\frac{n}{\delta} \mathsf{log}\!\left(\frac{n \cdot c_{\mathsf{max}}}{\varepsilon \cdot c_{\mathsf{min}}}\right)\right)$$

 $\,\triangleright\,$ Slightly careful about $c_{\text{max}}/c_{\text{min}}.$

Why not d other than Hamming?

 $\,\triangleright\,$ For $c\in\mathbb{R}^n_{\geqq0},$ define c-weighted Hamming as

 $d(x,y) = \sum \{c_i \mid x_i \neq y_i\}$

- Take X_0, X'_0 differing in j. Will produce coupling of X_1, X'_1 .
- Pick same coord i. Maximally couple replacements.
- $$\begin{split} & \blacktriangleright \mbox{ We get } \mathbb{E}[d(X_1,X_1')] \leqslant \\ & \frac{1}{n} \cdot 0 + \frac{1}{n} \sum_{i \neq j} (c_j + \mathbb{J}[j \rightarrow i]c_i) \end{split}$$
- \triangleright Contraction: $c\, \mathfrak{I} \leqslant (1-\delta)c$
- \triangleright When this happens,

 $\mathcal{W}(\nu P, \nu' P) \leqslant (1 - \delta/n) \, \mathcal{W}(\nu, \nu')$

Implication for mixing

Given $c\, {\mathfrak I} \leqslant (1-\delta)c$, we have

$$t_{\mathsf{mix}}(\varepsilon) = O\!\left(\frac{n}{\delta} \mathsf{log}\!\left(\frac{n \cdot c_{\mathsf{max}}}{\varepsilon \cdot c_{\mathsf{min}}}\right)\right)$$

- $\,\triangleright\,$ Slightly careful about $c_{\text{max}}/c_{\text{min}}.$
- ▷ Influence matrix J is ≥ 0. "Optimal" choice of c by [Perron-Frobenius] theory is the Perron eigenvector:

 $c\, {\tt I} = \lambda_{\text{max}}({\tt I})c$

Why not d other than Hamming?

 $\,\triangleright\,$ For $c\in\mathbb{R}^n_{\geqq0},$ define c-weighted Hamming as

 $d(x,y) = \sum \{c_i \mid x_i \neq y_i\}$

- Take X_0, X'_0 differing in j. Will produce coupling of X_1, X'_1 .
- Pick same coord i. Maximally couple replacements.
- $$\begin{split} & \blacktriangleright \mbox{ We get } \mathbb{E}[d(X_1,X_1')] \leqslant \\ & \frac{1}{n} \cdot 0 + \frac{1}{n} \sum_{i \neq j} (c_j + \mathbb{J}[j \rightarrow i]c_i) \end{split}$$
- \triangleright Contraction: $c \mathfrak{I} \leqslant (1 \delta)c$
- \triangleright When this happens,

 $\mathcal{W}(\nu P, \nu' P) \leqslant (1 - \delta/n) \mathcal{W}(\nu, \nu')$

Implication for mixing

Given $c\, {\mathfrak I} \leqslant (1-\delta)c$, we have

$$t_{\mathsf{mix}}(\varepsilon) = O\!\left(\frac{n}{\delta} \mathsf{log}\!\left(\frac{n \cdot c_{\mathsf{max}}}{\varepsilon \cdot c_{\mathsf{min}}}\right)\right)$$

- $\,\triangleright\,$ Slightly careful about $c_{\text{max}}/c_{\text{min}}.$
- ▷ Influence matrix J is ≥ 0. "Optimal" choice of c by [Perron-Frobenius] theory is the Perron eigenvector:

 $c\, {\tt I}=\lambda_{{\sf max}}({\tt I})c$

 $\,\triangleright\,$ We can apply Dobrushin++ as long as $\lambda_{\text{max}}(\mathfrak{I}) < 1$

Mixing via Transport

- \triangleright Path coupling
- ▷ Dobrushin's condition
- ▷ Hardcore model
- ▷ Ising model
- ▷ Dobrushin++

Intro to Functional Analysis

▷ Divergences

Mixing via Transport

- \triangleright Path coupling
- ▷ Dobrushin's condition
- ▷ Hardcore model
- ▷ Ising model
- ▷ Dobrushin++

Intro to Functional Analysis

▷ Divergences

Prevalent strategy for analyzing mixing time: contraction

- Prevalent strategy for analyzing mixing time: contraction
- d_{TV} is too crude; doesn't contract every step

$$\nu \longrightarrow 0, 0, 0, 0, \nu'$$

 $d_{\mathsf{TV}}(\nu P,\nu'P)=d_{\mathsf{TV}}(\nu,\nu')$

- Prevalent strategy for analyzing mixing time: contraction
- d_{TV} is too crude; doesn't contract every step

$$\nu \longrightarrow 0, 0, 0, 0, \nu'$$

 $d_{\mathsf{TV}}(\nu P,\nu'P)=d_{\mathsf{TV}}(\nu,\nu')$

- \triangleright Fix: use a proxy for d_{TV}
 - Wasserstein distance
 - divergences, variance, entropy

functional analysis

- Prevalent strategy for analyzing mixing time: contraction
- d_{TV} is too crude; doesn't contract every step

$$\nu \longrightarrow 0$$
 0 0 ν'

 $d_{\mathsf{TV}}(\nu P,\nu'P)=d_{\mathsf{TV}}(\nu,\nu')$

- \triangleright Fix: use a proxy for d_{TV}
 - Wasserstein distance
 - divergences, variance, entropy

functional analysis

ϕ -entropy

For fn
$$\varphi:\mathbb{R}\to\mathbb{R}$$
 and $f:\Omega\to\mathbb{R}$ define

$$\operatorname{Ent}_{\mu}^{\Phi}[f] = \mathbb{E}_{\mu}[\phi \circ f] - \phi(\mathbb{E}_{\mu}[f]).$$

- Prevalent strategy for analyzing mixing time: contraction
- ▷ d_{TV} is too crude; doesn't contract every step

$$\nu \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longleftarrow \nu'$$

 $d_{\mathsf{TV}}(\nu P,\nu'P)=d_{\mathsf{TV}}(\nu,\nu')$

- \triangleright Fix: use a proxy for d_{TV}
 - > Wasserstein distance
 - ▷ divergences, variance, entropy

functional analysis

ϕ -entropy

For fn
$$\varphi:\mathbb{R}\to\mathbb{R}$$
 and $f:\Omega\to\mathbb{R}$ define

$$\mathsf{Ent}^{\Phi}_{\mu}[f] = \mathbb{E}_{\mu}[\phi \circ f] - \phi(\mathbb{E}_{\mu}[f]).$$

- Prevalent strategy for analyzing mixing time: contraction
- ▷ d_{TV} is too crude; doesn't contract every step

$$\nu \longrightarrow 0$$
 0 0 ν'

 $d_{\mathsf{TV}}(\nu P,\nu'P)=d_{\mathsf{TV}}(\nu,\nu')$

- \triangleright Fix: use a proxy for d_{TV}
 - > Wasserstein distance
 - ▷ divergences, variance, entropy

functional analysis

φ-entropy

For fn
$$\varphi:\mathbb{R}\to\mathbb{R}$$
 and $f:\Omega\to\mathbb{R}$ define

$$\mathsf{Ent}^{\Phi}_{\mu}[f] = \mathbb{E}_{\mu}[\phi \circ f] - \phi(\mathbb{E}_{\mu}[f]).$$

- ▷ When ϕ is convex, ϕ -entropy is ≥ 0 (Jensen's inequality).
- \triangleright Equal to 0 when f is constant.

- Prevalent strategy for analyzing mixing time: contraction
- ▷ d_{TV} is too crude; doesn't contract every step

$$\nu \longrightarrow 0, 0, 0, 0, \nu'$$

 $d_{\mathsf{TV}}(\nu P,\nu'P)=d_{\mathsf{TV}}(\nu,\nu')$

- \triangleright Fix: use a proxy for d_{TV}
 - > Wasserstein distance
 - divergences, variance, entropy

functional analysis

φ-entropy

For fn
$$\varphi:\mathbb{R}\to\mathbb{R}$$
 and $f:\Omega\to\mathbb{R}$ define

$$\mathsf{Ent}^{\Phi}_{\mu}[f] = \mathbb{E}_{\mu}[\phi \circ f] - \phi(\mathbb{E}_{\mu}[f]).$$

- \triangleright Equal to 0 when f is constant.

usually f in the literature

ϕ -divergence

For measure ν and dist μ define

$$\mathcal{D}_{\Phi}(\mathbf{v} \parallel \boldsymbol{\mu}) = \mathsf{Ent}_{\boldsymbol{\mu}}^{\Phi} \left[\frac{\mathbf{v}}{\boldsymbol{\mu}} \right]$$

Proxy for d_{TV}

Contraction: $\mathcal{D}_{\varphi}(\nu P \parallel \mu) \leqslant (1 - \delta) \mathcal{D}_{\varphi}(\nu \parallel \mu)$ for stationary μ .

Proxy for d_{TV}

Contraction: $\mathcal{D}_{\phi}(\mathbf{v}\mathbf{P} \parallel \boldsymbol{\mu}) \leq (1-\delta) \mathcal{D}_{\phi}(\mathbf{v} \parallel \boldsymbol{\mu})$ for stationary $\boldsymbol{\mu}$. Variance Entropy $\phi(\mathbf{x}) := \mathbf{x}^2$ $\phi(x) := x \log x$ \triangleright Ent^{ϕ}_u[f] = Var_u[f] \triangleright Ent^{ϕ}_u[f] = Ent_u[f] $\square \mathcal{D}_{\Phi}(\mathbf{v} \parallel \boldsymbol{\mu}) = \chi^2(\mathbf{v} \parallel \boldsymbol{\mu})$ $\triangleright \mathcal{D}_{\Phi}(\mathbf{v} \parallel \mathbf{\mu}) = \mathcal{D}_{\mathsf{KI}}(\mathbf{v} \parallel \mathbf{\mu})$ ▶ It is a proxy by Cauchy-Schwarz: \triangleright It is a proxy by Pinsker: $d_{\mathsf{TV}}(\nu,\mu) \leqslant O \Big(\sqrt{\mathcal{D}_{\mathsf{KL}}(\nu \parallel \mu)} \Big)$ $d_{\mathsf{TV}}(\nu,\mu) \leqslant O\left(\sqrt{\chi^2(\nu \parallel \mu)}\right)$

Contraction related to eigs of P.
Called Poincaré inequality

called modified log-Sobolev inequality

Contraction: very hard!