CS 263: Counting and Sampling

Nima Anari

Stanford

University
slides for

Dobrushin's Influence Matrix

Review

Markov kernel

Review

Markov kernel

$\Omega \quad \Omega^{\prime}$
$N \in \mathbb{R}_{\geqslant 0}^{\Omega \times \Omega^{\prime}}$

$$
\sum_{y} N(x, y)=1
$$

Time-reversal:

$$
\underset{\uparrow}{\mu(x)} \underset{\substack{\mathrm{Q}(x, y)}}{\mathrm{N}(x, y)}=\underset{\mu^{\circ}(y)}{\mu^{\circ}(y, x)} \underset{Q^{\circ}(y, x)}{N^{\circ}(y, x)}
$$

Review

Markov kernel

Time-reversal:

$$
\begin{gathered}
\mu(x) \underset{\uparrow}{\mathrm{N}}(\mathrm{x}, \mathrm{y}) \\
\mathrm{Q}(x, y)
\end{gathered} \mu^{\mu^{\circ}(y)} \underset{\mathrm{Q}^{\circ}(y, x)}{\mathrm{N}^{\circ}(y, x)}
$$

\bigcirc Design technique: $\mathrm{N} \mapsto \mathrm{NN}^{\circ}$

Review

Markov kernel

Time-reversal:
D Design technique: $\mathrm{N} \mapsto \mathrm{NN}^{\circ}$
\checkmark Examples: Glauber, etc.

Review

Markov kernel

$$
\Omega \quad \Omega^{\prime}
$$

$$
\begin{gathered}
N \in \mathbb{R}_{\geqslant 0}^{\Omega \times \Omega^{\prime}} \\
\sum_{y} N(x, y)=1
\end{gathered}
$$

Time-reversal:

$$
\begin{gathered}
\mu(x) \underset{\uparrow}{\mathrm{N}}(\mathrm{x}, \mathrm{y}) \\
\mathrm{Q}(x, y)
\end{gathered} \mu^{\mu^{\circ}(y)} \underset{\mathrm{Q}^{\circ}(y, x)}{\mathrm{N}^{\circ}(y, x)}
$$

D Design technique: $\mathrm{N} \mapsto \mathrm{NN}^{\circ}$
\checkmark Examples: Glauber, etc.
\bigcirc Wasserstein w.r.t. d is $\mathcal{W}(\mu, v)=$ $\min \left\{\mathbb{E}_{(X, Y) \sim \pi}[d(X, Y)] \mid \pi\right.$ coupling $\}$

Review

Markov kernel

$$
\Omega \quad \Omega^{\prime}
$$

$$
\begin{gathered}
N \in \mathbb{R}_{\geqslant 0}^{\Omega \times \Omega^{\prime}} \\
\sum_{y} N(x, y)=1
\end{gathered}
$$

D Wasserstein w.r.t. d is $\mathcal{W}(\mu, v)=$

$$
\min \left\{\mathbb{E}_{(X, Y) \sim \pi}[d(X, Y)] \mid \pi \text { coupling }\right\}
$$

D For Metropolis chain on colorings:

$$
\mathcal{W}\left(v P, v^{\prime} \mathrm{P}\right) \leqslant\left(1-\frac{\mathrm{q}-4 \Delta}{\mathrm{qn}}\right) \mathcal{W}\left(v, v^{\prime}\right)
$$

Time-reversal:

$$
\underset{\substack{\mu(x, y)} \underset{\uparrow}{\mu(x, y)})=\mu^{\circ}(y) \underset{Q^{\circ}(y, x)}{N^{\circ}}(y, x)}{ }
$$

D Design technique: $\mathrm{N} \mapsto \mathrm{NN}^{\circ}$

- Examples: Glauber, etc.

Review

Markov kernel
$\Omega \quad \Omega^{\prime}$

$$
\begin{gathered}
N \in \mathbb{R}_{\geqslant 0}^{\Omega \times \Omega^{\prime}} \\
\sum_{y} N(x, y)=1
\end{gathered}
$$

Time-reversal:

D Design technique: $\mathrm{N} \mapsto \mathrm{NN}^{\circ}$

- Examples: Glauber, etc.
\bigcirc Wasserstein w.r.t. d is $\mathcal{W}(\mu, v)=$
$\min \left\{\mathbb{E}_{(X, Y) \sim \pi}[d(X, Y)] \mid \pi\right.$ coupling $\}$
D For Metropolis chain on colorings:

$$
\mathcal{W}\left(v \mathrm{P}, v^{\prime} \mathrm{P}\right) \leqslant\left(1-\frac{\mathrm{q}-4 \Delta}{\mathrm{qn}}\right) \mathcal{W}\left(v, v^{\prime}\right)
$$

\bigcirc Mixing when $\mathrm{q} \geqslant 4 \Delta+1 ;$

Review

Markov kernel
$\Omega \quad \Omega^{\prime}$

$$
\begin{gathered}
N \in \mathbb{R}_{\geqslant 0}^{\Omega \times \Omega^{\prime}} \\
\sum_{y} N(x, y)=1
\end{gathered}
$$

Time-reversal:

$$
\begin{aligned}
& \mu(x) \underset{\uparrow}{N}(x, y)=\mu^{\circ}(y) \underset{\uparrow}{N^{\circ}}(y, x) \\
& Q(x, y) \\
& Q^{\circ}(y, x)
\end{aligned}
$$

D Design technique: $\mathrm{N} \mapsto \mathrm{NN}^{\circ}$
D Examples: Glauber, etc.
\checkmark Wasserstein w.r.t. d is $\mathcal{W}(\mu, v)=$

$$
\min \left\{\mathbb{E}_{(X, Y) \sim \pi}[d(X, Y)] \mid \pi \text { coupling }\right\}
$$

D For Metropolis chain on colorings:

$$
\mathcal{W}\left(v P, v^{\prime} P\right) \leqslant\left(1-\frac{q-4 \Delta}{q n}\right) \mathcal{W}\left(v, v^{\prime}\right)
$$

© Mixing when $\mathrm{q} \geqslant 4 \Delta+1$;

Path coupling lemma

Suppose for all adjacent $X_{0} \sim X_{0}^{\prime}$ we can couple X_{1}, X_{1}^{\prime} s.t.

$$
\mathbb{E}\left[d\left(X_{1}, X_{1}^{\prime}\right)\right] \leqslant(1-c) d\left(X_{0}, X_{0}^{\prime}\right)
$$

Then $\mathcal{W}\left(v P, v^{\prime} P\right) \leqslant(1-c) \mathcal{W}\left(v, v^{\prime}\right)$.

Mixing via Transport

\bigcirc Path coupling

- Dobrushin's condition

D Hardcore model
\bigcirc Ising model
D Dobrushin++
Intro to Functional Analysis
\bigcirc Divergences

Mixing via Transport

D Path coupling

- Dobrushin's condition

D Hardcore model

- Ising model
- Dobrushin++

Intro to Functional Analysis

- Divergences

Path coupling for colorings [Jerrum]

Take the Metropolis chain for colorings:
\checkmark Pick u.r. vertex v
\checkmark Pick u.r. color c

- Color v with c if valid

Path coupling for colorings [Jerrum]

Take the Metropolis chain for colorings:

- Pick u.r. vertex v

D Pick u.r. color c

- Color v with c if valid

Coupling:

Path coupling for colorings [Jerrum]

Take the Metropolis chain for colorings:

- Pick u.r. vertex v
\bigcirc Pick u.r. color c
- Color v with c if valid

Coupling:
D Take X_{0}, X_{0}^{\prime} differing on vertex w.
there is exactly one

Path coupling for colorings [Jerrum]

Take the Metropolis chain for colorings:

- Pick u.r. vertex v
\bigcirc Pick u.r. color c
- Color v with c if valid

Coupling:
\checkmark Take X_{0}, X_{0}^{\prime} differing on vertex w.
\bigcirc Pick same v. there is exactly one

Path coupling for colorings [Jerrum]

Take the Metropolis chain for colorings:
\checkmark Pick u.r. vertex v
D Pick u.r. color c

- Color v with c if valid

Coupling:
\checkmark Take X_{0}, X_{0}^{\prime} differing on vertex w.
\triangle Pick same v. there is exactly one
D If $v=w$ or $v \nsucc w$, pick same c .

Path coupling for colorings [Jerrum]

Take the Metropolis chain for colorings:
\checkmark Pick u.r. vertex v
\bigcirc Pick u.r. color c

- Color v with c if valid

Coupling:
\checkmark Take X_{0}, X_{0}^{\prime} differing on vertex w.
D Pick same v. there is exactly one
D If $v=w$ or $v \nsucc w$, pick same c .
D Let $\mathrm{a}=\mathrm{X}_{0}(w), \mathrm{b}=\mathrm{X}_{0}^{\prime}(w)$. If $v \sim w$, use this coupling for color:

Path coupling for colorings [Jerrum]

Take the Metropolis chain for colorings: D We have
\checkmark Pick u.r. vertex v
\bigcirc Pick u.r. color c
D Color v with c if valid

$\mathbb{E}\left[d\left(X_{1}, X_{1}^{\prime}\right)\right] \leqslant 1-\frac{1}{n} \cdot \frac{q-\Delta}{q}+\frac{\Delta}{n} \cdot \frac{1}{q}$
which simplifies to

$$
1-\frac{q-2 \Delta}{q n}
$$

D If $v=w$ or $v \nsucc w$, pick same c .
D Let $\mathrm{a}=\mathrm{X}_{0}(w), \mathrm{b}=\mathrm{X}_{0}^{\prime}(w)$. If $v \sim w$, use this coupling for color:

Path coupling for colorings [Jerrum]

Take the Metropolis chain for colorings: D We have
\checkmark Pick u.r. vertex v
\bigcirc Pick u.r. color c

- Color v with c if valid

$\mathbb{E}\left[d\left(X_{1}, X_{1}^{\prime}\right)\right] \leqslant 1-\frac{1}{n} \cdot \frac{q-\Delta}{q}+\frac{\Delta}{n} \cdot \frac{1}{q}$
which simplifies to
Coupling:
\checkmark Take X_{0}, X_{0}^{\prime} differing on vertex w.
D Pick same \boldsymbol{v}. there is exactly one
D If $v=w$ or $v \nsucc w$, pick same c .
D Let $\mathrm{a}=X_{0}(w), b=X_{0}^{\prime}(w)$. If $v \sim w$, use this coupling for color:

$$
1-\frac{q-2 \Delta}{q n}
$$

D As long as $\mathrm{q} \geqslant 2 \Delta+1$, we get contraction! :)

$$
t_{\text {mix }}(\epsilon)=O\left(\frac{q}{q-2 \Delta} \cdot n \log (n / \epsilon)\right)
$$

Path coupling for colorings [Jerrum]

Take the Metropolis chain for colorings: D We have
\checkmark Pick u.r. vertex v
\bigcirc Pick u.r. color c

- Color v with c if valid

$\mathbb{E}\left[d\left(X_{1}, X_{1}^{\prime}\right)\right] \leqslant 1-\frac{1}{n} \cdot \frac{q-\Delta}{q}+\frac{\Delta}{n} \cdot \frac{1}{q}$
which simplifies to
Coupling:
\checkmark Take X_{0}, X_{0}^{\prime} differing on vertex w.
\checkmark Pick same v. there is exactly one
D If $v=w$ or $v \nsucc w$, pick same c .
D Let $a=X_{0}(w), b=X_{0}^{\prime}(w)$. If $v \sim w$, use this coupling for color:

$$
1-\frac{q-2 \Delta}{q n}
$$

D As long as $\mathrm{q} \geqslant 2 \Delta+1$, we get contraction! :

$$
\mathrm{t}_{\text {mix }}(\epsilon)=\mathrm{O}\left(\frac{\mathrm{q}}{\mathrm{q}-2 \Delta} \cdot \mathrm{n} \log (\mathrm{n} / \epsilon)\right)
$$

D What about Glauber?

Dobrushin influence matrix

Glauber for μ on $\Omega_{1} \times \cdots \times \Omega_{n}$:
\checkmark Pick u.r. coord $i \in[n]$
\bigcirc Replace coord i's value w.p. $\propto \mu$ (result)

Dobrushin influence matrix

Glauber for μ on $\Omega_{1} \times \cdots \times \Omega_{n}$:
\checkmark Pick u.r. coord $i \in[n]$
\bigcirc Replace coord i's value w.p. $\propto \mu$ (result)

\bigcirc We pick $\omega \in \Omega_{\mathfrak{i}}$ from $\operatorname{dist}\left(X_{i} \mid X_{-i}\right)$.

Dobrushin influence matrix

Glauber for μ on $\Omega_{1} \times \cdots \times \Omega_{n}$:
\checkmark Pick u.r. coord $i \in[n]$
\bigcirc Replace coord i's value w.p. $\propto \mu$ (result)

\bigcirc We pick $\omega \in \Omega_{\mathfrak{i}}$ from $\operatorname{dist}\left(X_{i} \mid X_{-i}\right)$.
D Influence: take worst case X, X^{\prime} that differ in coord j :

$$
\mathrm{d}_{\mathrm{TV}}\left(\operatorname{dist}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{X}_{-\mathrm{i}}\right), \operatorname{dist}\left(\mathrm{X}_{\mathfrak{i}}^{\prime} \mid \mathrm{X}_{-\mathfrak{i}}^{\prime}\right)\right)
$$

Dobrushin influence matrix

Glauber for μ on $\Omega_{1} \times \cdots \times \Omega_{n}$:
\checkmark Pick u.r. coord $i \in[n]$
\bigcirc Replace coord i's value w.p. $\propto \mu$ (result)

\bigcirc We pick $\omega \in \Omega_{\mathfrak{i}}$ from $\operatorname{dist}\left(X_{i} \mid X_{-i}\right)$.
D Influence: take worst case X, X^{\prime} that differ in coord j :

$$
\mathrm{d}_{\mathrm{TV}}\left(\operatorname{dist}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{X}_{-\mathrm{i}}\right), \operatorname{dist}\left(\mathrm{X}_{\mathfrak{i}}^{\prime} \mid \mathrm{X}_{-\mathfrak{i}}^{\prime}\right)\right)
$$

\bigcirc Call maximum value $\mathfrak{J}[j \rightarrow i]$.

Dobrushin influence matrix

Glauber for μ on $\Omega_{1} \times \cdots \times \Omega_{n}$:
\checkmark Pick u.r. coord $i \in[n]$
\bigcirc Replace coord i's value w.p. $\propto \mu$ (result)

\bigcirc We pick $\omega \in \Omega_{i}$ from $\operatorname{dist}\left(X_{i} \mid X_{-i}\right)$.
D Influence: take worst case X, X^{\prime} that differ in coord j :

$$
\mathrm{d}_{\mathrm{TV}}\left(\operatorname{dist}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{X}_{-\mathrm{i}}\right), \operatorname{dist}\left(\mathrm{X}_{\mathfrak{i}}^{\prime} \mid \mathrm{X}_{-\mathfrak{i}}^{\prime}\right)\right)
$$

\bigcirc Call maximum value $\mathfrak{J}[j \rightarrow i]$.
\checkmark Dobrushin influence matrix: matrix with entries $\mathcal{J}[j \rightarrow i]$.

Dobrushin influence matrix

Glauber for μ on $\Omega_{1} \times \cdots \times \Omega_{n}$:
\checkmark Pick u.r. coord $i \in[n]$
\checkmark Replace coord i's value w.p. $\propto \mu$ (result)

\checkmark Dobrushin influence matrix: matrix with entries $\mathcal{J}[j \rightarrow i]$.

Example: hypercube

$D \Omega=\{0,1\}^{n}$

- $\mu(x)=$ uniform

\bigcirc We pick $\omega \in \Omega_{i}$ from $\operatorname{dist}\left(X_{i} \mid X_{-i}\right)$.
D Influence: take worst case X, X^{\prime} that differ in coord j :

$$
\mathrm{d}_{\mathrm{TV}}\left(\operatorname{dist}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{X}_{-\mathrm{i}}\right), \operatorname{dist}\left(\mathrm{X}_{\mathfrak{i}}^{\prime} \mid \mathrm{X}_{-\mathfrak{i}}^{\prime}\right)\right)
$$

\bigcirc Call maximum value $\mathfrak{J}[j \rightarrow i]$.

Dobrushin influence matrix

Glauber for μ on $\Omega_{1} \times \cdots \times \Omega_{n}$:
\checkmark Pick u.r. coord $i \in[n]$
\bigcirc Replace coord i's value w.p. $\propto \mu$ (result)

D We pick $\omega \in \Omega_{i}$ from $\operatorname{dist}\left(X_{i} \mid X_{-i}\right)$.
D Influence: take worst case X, X^{\prime} that differ in coord j : $\mathrm{d}_{\mathrm{TV}}\left(\operatorname{dist}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{X}_{-\mathrm{i}}\right), \operatorname{dist}\left(\mathrm{X}_{\mathfrak{i}}^{\prime} \mid \mathrm{X}_{-\mathrm{i}}^{\prime}\right)\right)$
\bigcirc Call maximum value $\mathfrak{J}[j \rightarrow i]$.
\checkmark Dobrushin influence matrix: matrix with entries $\mathcal{J}[\mathfrak{j} \rightarrow \mathrm{i}]$.

Example: hypercube

$D \Omega=\{0,1\}^{n}$
D $\mu(x)=$ uniform
$\bigcirc \mathcal{J}[j \rightarrow i]=0$

Example: coloring

$D \Omega=[q]^{n}$
D $\mu=$ proper coloring

Dobrushin influence matrix

Glauber for μ on $\Omega_{1} \times \cdots \times \Omega_{n}$:
\checkmark Pick u.r. coord $i \in[n]$
\bigcirc Replace coord i's value w.p. $\propto \mu$ (result)

D We pick $\omega \in \Omega_{i}$ from $\operatorname{dist}\left(X_{i} \mid X_{-i}\right)$.
D Influence: take worst case X, X^{\prime} that differ in coord j :

$$
\mathrm{d}_{\mathrm{TV}}\left(\operatorname{dist}\left(X_{i} \mid X_{-i}\right), \operatorname{dist}\left(X_{\mathfrak{i}}^{\prime} \mid X_{-i}^{\prime}\right)\right)
$$

\bigcirc Call maximum value $\mathfrak{J}[j \rightarrow i]$.
\checkmark Dobrushin influence matrix: matrix with entries $\mathcal{J}[\mathfrak{j} \rightarrow \mathrm{i}]$.

Example: hypercube

$D \Omega=\{0,1\}^{n}$
D $\mu(x)=$ uniform
$\bigcirc \mathcal{J}[j \rightarrow i]=0$

Example: coloring

$D \Omega=[q]^{n}$
$\bigcirc \mu=$ proper coloring
$\bigcirc \mathcal{J}[j \rightarrow i]=0$ when $j \nsucc i$

Dobrushin influence matrix

Glauber for μ on $\Omega_{1} \times \cdots \times \Omega_{n}$:
\checkmark Pick u.r. coord $i \in[n]$
\bigcirc Replace coord i's value w.p. $\propto \mu$ (result)

D We pick $\omega \in \Omega_{i}$ from $\operatorname{dist}\left(X_{i} \mid X_{-i}\right)$.
D Influence: take worst case X, X^{\prime} that differ in coord j : $\mathrm{d}_{\mathrm{TV}}\left(\operatorname{dist}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{X}_{-\mathrm{i}}\right), \operatorname{dist}\left(\mathrm{X}_{\mathfrak{i}}^{\prime} \mid \mathrm{X}_{-\mathrm{i}}^{\prime}\right)\right)$
\bigcirc Call maximum value $\mathfrak{J}[j \rightarrow i]$.
\checkmark Dobrushin influence matrix: matrix with entries $\mathcal{J}[\mathfrak{j} \rightarrow \mathrm{i}]$.

Example: hypercube

$D \Omega=\{0,1\}^{n}$
D $\mu(x)=$ uniform
$\bigcirc \mathcal{J}[j \rightarrow i]=0$

Example: coloring

$D \Omega=[q]^{n}$
D $\mu=$ proper coloring
$\bigcirc \mathcal{J}[j \rightarrow i]=0$ when $\mathfrak{j} \nsucc \mathrm{i}$
$D \mathcal{J}[j \rightarrow i] \leqslant 1 /(q-\Delta)$

Dobrushin's condition

If columns of \mathcal{J} sum to $\leqslant 1-\delta$, then

$$
\mathcal{W}\left(v P, v^{\prime} P\right) \leqslant(1-\delta / n) \mathcal{W}\left(v, v^{\prime}\right)
$$

Dobrushin's condition

If columns of \mathcal{J} sum to $\leqslant 1-\delta$, then

$$
\mathcal{W}\left(v P, v^{\prime} P\right) \leqslant(1-\delta / n) \mathcal{W}\left(v, v^{\prime}\right)
$$

\bigcirc This implies fast mixing:

$$
\mathrm{t}_{\text {mix }}(\epsilon)=\mathrm{O}\left(\frac{1}{\delta} n \log (n / \epsilon)\right)
$$

Dobrushin's condition

If columns of \mathcal{J} sum to $\leqslant 1-\delta$, then

$$
\mathcal{W}\left(v P, v^{\prime} P\right) \leqslant(1-\delta / n) \mathcal{W}\left(v, v^{\prime}\right)
$$

\bigcirc This implies fast mixing:

$$
\mathrm{t}_{\text {mix }}(\epsilon)=\mathrm{O}\left(\frac{1}{\delta} n \log (\mathrm{n} / \epsilon)\right)
$$

\bigcirc For coloring, $\mathcal{J} \leqslant \operatorname{adj} /(q-\Delta)$, so column sums are $\Delta /(q-\Delta)$:

$$
\begin{aligned}
& \frac{\Delta}{\mathrm{q}-\Delta}<1 \leftrightarrow \underset{\uparrow}{\mathrm{q}} \geqslant 2 \Delta+1 \\
& \quad \text { same cond as Metropolis }
\end{aligned}
$$

Dobrushin's condition

If columns of \mathcal{J} sum to $\leqslant 1-\delta$, then

$$
\mathcal{W}\left(v P, v^{\prime} P\right) \leqslant(1-\delta / n) \mathcal{W}\left(v, v^{\prime}\right)
$$

\bigcirc This implies fast mixing:

$$
\mathrm{t}_{\text {mix }}(\epsilon)=\mathrm{O}\left(\frac{1}{\delta} n \log (\mathrm{n} / \epsilon)\right)
$$

D For coloring, $\mathcal{J} \leqslant \operatorname{adj} /(q-\Delta)$, so column sums are $\Delta /(q-\Delta)$:

$$
\begin{aligned}
& \frac{\Delta}{\mathrm{q}-\Delta}<1 \leftrightarrow \underset{\uparrow}{\mathrm{q}} \geqslant 2 \Delta+1 \\
& \quad \text { same cond as Metropolis }
\end{aligned}
$$

D Note: $\mathcal{J}[i \rightarrow i]=0$ always.

Dobrushin's condition

If columns of \mathcal{J} sum to $\leqslant 1-\delta$, then

$$
\mathcal{W}\left(v P, v^{\prime} P\right) \leqslant(1-\delta / n) \mathcal{W}\left(v, v^{\prime}\right)
$$

\bigcirc This implies fast mixing:

$$
\mathrm{t}_{\text {mix }}(\epsilon)=\mathrm{O}\left(\frac{1}{\delta} n \log (n / \epsilon)\right)
$$

D For coloring, $\mathcal{J} \leqslant \operatorname{adj} /(q-\Delta)$, so column sums are $\Delta /(\mathrm{q}-\Delta)$:

$$
\begin{aligned}
& \frac{\Delta}{\mathrm{q}-\Delta}<1 \leftrightarrow \mathrm{q} \geqslant 2 \Delta+1 \\
& \quad \text { same cond as Metropolis }
\end{aligned}
$$

\checkmark Note: $\mathcal{J}[i \rightarrow i]=0$ always.

Dobrushin's condition

If columns of \mathcal{J} sum to $\leqslant 1-\delta$, then

$$
\mathcal{W}\left(v P, v^{\prime} P\right) \leqslant(1-\delta / n) \mathcal{W}\left(v, v^{\prime}\right)
$$

\bigcirc This implies fast mixing:

$$
\mathrm{t}_{\text {mix }}(\epsilon)=\mathrm{O}\left(\frac{1}{\delta} \mathfrak{n} \log (n / \epsilon)\right)
$$

\bigcirc For coloring, $\mathcal{J} \leqslant \operatorname{adj} /(q-\Delta)$, so column sums are $\Delta /(q-\Delta)$:

$$
\begin{aligned}
& \frac{\Delta}{\mathrm{q}-\Delta}<1 \leftrightarrow \underset{\uparrow}{\mathrm{q}} \geqslant 2 \Delta+1 \\
& \quad \text { same cond as Metropolis }
\end{aligned}
$$

D Note: $\mathcal{J}[i \rightarrow i]=0$ always.

- Idea: use path coupling!

Dobrushin's condition

If columns of \mathcal{J} sum to $\leqslant 1-\delta$, then

$$
\mathcal{W}\left(v P, v^{\prime} P\right) \leqslant(1-\delta / n) \mathcal{W}\left(v, v^{\prime}\right)
$$

\bigcirc This implies fast mixing:

$$
\mathrm{t}_{\text {mix }}(\epsilon)=\mathrm{O}\left(\frac{1}{\delta} n \log (n / \epsilon)\right)
$$

\bigcirc For coloring, $\mathcal{J} \leqslant \operatorname{adj} /(q-\Delta)$, so column sums are $\Delta /(q-\Delta)$:

$$
\begin{aligned}
& \frac{\Delta}{\mathrm{q}-\Delta}<1 \leftrightarrow \mathrm{q} \geqslant 2 \Delta+1 \\
& \quad \text { same cond as Metropolis }
\end{aligned}
$$

\checkmark Note: $\mathcal{J}[i \rightarrow i]=0$ always.

Proof:

D Idea: use path coupling!
D Take X_{0}, X_{0}^{\prime} differing in j.

Dobrushin's condition

If columns of \mathcal{J} sum to $\leqslant 1-\delta$, then

$$
\mathcal{W}\left(v P, v^{\prime} P\right) \leqslant(1-\delta / n) \mathcal{W}\left(v, v^{\prime}\right)
$$

\bigcirc This implies fast mixing:

$$
\mathrm{t}_{\text {mix }}(\epsilon)=\mathrm{O}\left(\frac{1}{\delta} n \log (\mathrm{n} / \epsilon)\right)
$$

\bigcirc For coloring, $\mathcal{J} \leqslant \operatorname{adj} /(q-\Delta)$, so column sums are $\Delta /(\mathrm{q}-\Delta)$:

$$
\begin{aligned}
& \frac{\Delta}{\mathrm{q}-\Delta}<1 \leftrightarrow \underset{\uparrow}{\mathrm{q}} \geqslant 2 \Delta+1 \\
& \quad \text { same cond as Metropolis }
\end{aligned}
$$

\bigcirc Note: $\mathcal{J}[i \rightarrow i]=0$ always.

Proof:

D Idea: use path coupling!
\triangle Take X_{0}, X_{0}^{\prime} differing in j.
D Will produce coupling of X_{1}, X_{1}^{\prime}.

Dobrushin's condition

If columns of \mathcal{J} sum to $\leqslant 1-\delta$, then

$$
\mathcal{W}\left(v P, v^{\prime} P\right) \leqslant(1-\delta / n) \mathcal{W}\left(v, v^{\prime}\right)
$$

\bigcirc This implies fast mixing:

$$
\mathrm{t}_{\text {mix }}(\epsilon)=\mathrm{O}\left(\frac{1}{\delta} n \log (n / \epsilon)\right)
$$

\bigcirc For coloring, $\mathcal{J} \leqslant \operatorname{adj} /(q-\Delta)$, so column sums are $\Delta /(q-\Delta)$:

$$
\begin{aligned}
& \frac{\Delta}{\mathrm{q}-\Delta}<1 \leftrightarrow \mathrm{q} \geqslant 2 \Delta+1 \\
& \quad \text { same cond as Metropolis }
\end{aligned}
$$

\checkmark Note: $\mathcal{J}[i \rightarrow i]=0$ always.

Proof:

D Idea: use path coupling!
D Take X_{0}, X_{0}^{\prime} differing in j.
D Will produce coupling of X_{1}, X_{1}^{\prime}.
\bigcirc Pick same coord i.

Dobrushin's condition

If columns of \mathcal{J} sum to $\leqslant 1-\delta$, then

$$
\mathcal{W}\left(v P, v^{\prime} P\right) \leqslant(1-\delta / n) \mathcal{W}\left(v, v^{\prime}\right)
$$

\bigcirc This implies fast mixing:

$$
\mathrm{t}_{\text {mix }}(\epsilon)=\mathrm{O}\left(\frac{1}{\delta} n \log (\mathrm{n} / \epsilon)\right)
$$

\bigcirc For coloring, $\mathcal{J} \leqslant \operatorname{adj} /(q-\Delta)$, so column sums are $\Delta /(\mathrm{q}-\Delta)$:

$$
\begin{aligned}
& \frac{\Delta}{\mathrm{q}-\Delta}<1 \leftrightarrow \mathrm{q} \geqslant 2 \Delta+1 \\
& \quad \text { same cond as Metropolis }
\end{aligned}
$$

\checkmark Note: $\mathcal{J}[i \rightarrow i]=0$ always.

Proof:

\bigcirc Idea: use path coupling!
\triangle Take X_{0}, X_{0}^{\prime} differing in j.
D Will produce coupling of X_{1}, X_{1}^{\prime}.
\checkmark Pick same coord i.
\bigcirc Maximally couple replacements.
the one defining $d_{T V}$

Dobrushin's condition

If columns of \mathcal{J} sum to $\leqslant 1-\delta$, then

$$
\mathcal{W}\left(v P, v^{\prime} P\right) \leqslant(1-\delta / n) \mathcal{W}\left(v, v^{\prime}\right)
$$

\bigcirc This implies fast mixing:

$$
\mathrm{t}_{\text {mix }}(\epsilon)=\mathrm{O}\left(\frac{1}{\delta} \mathfrak{n} \log (n / \epsilon)\right)
$$

\bigcirc For coloring, $\mathcal{J} \leqslant \operatorname{adj} /(q-\Delta)$, so column sums are $\Delta /(q-\Delta)$:

$$
\begin{aligned}
& \frac{\Delta}{\mathrm{q}-\Delta}<1 \leftrightarrow \mathrm{q} \geqslant 2 \Delta+1 \\
& \quad \text { same cond as Metropolis }
\end{aligned}
$$

\checkmark Note: $\mathcal{J}[i \rightarrow i]=0$ always.

Proof:
\bigcirc Idea: use path coupling!
D Take X_{0}, X_{0}^{\prime} differing in j.
D Will produce coupling of X_{1}, X_{1}^{\prime}.
\bigcirc Pick same coord i.
\bigcirc Maximally couple replacements.

the one defining $d_{T V}$

D Possibilities for $d\left(X_{1}, X_{1}^{\prime}\right)$:
$\bigcirc 0$ (picked $i=j$)
D 1 (equal replacements)

- 2 (different replacements)

Dobrushin's condition

If columns of \mathcal{J} sum to $\leqslant 1-\delta$, then

$$
\mathcal{W}\left(v P, v^{\prime} P\right) \leqslant(1-\delta / n) \mathcal{W}\left(v, v^{\prime}\right)
$$

\bigcirc This implies fast mixing:

$$
\mathrm{t}_{\text {mix }}(\epsilon)=\mathrm{O}\left(\frac{1}{\delta} n \log (n / \epsilon)\right)
$$

\bigcirc For coloring, $\mathcal{J} \leqslant \operatorname{adj} /(q-\Delta)$, so column sums are $\Delta /(q-\Delta)$:

$$
\frac{\Delta}{\mathrm{q}-\Delta}<1 \leftrightarrow \underset{\uparrow}{\mathrm{q}} \underset{\uparrow}{ } 2 \Delta+1
$$

same cond as Metropolis
\checkmark Note: $\mathcal{J}[i \rightarrow i]=0$ always.

Proof:
\bigcirc Idea: use path coupling!
\triangle Take X_{0}, X_{0}^{\prime} differing in j.
D Will produce coupling of X_{1}, X_{1}^{\prime}.
\bigcirc Pick same coord i.
\bigcirc Maximally couple replacements.

the one defining $d_{T V}$

D Possibilities for $d\left(X_{1}, X_{1}^{\prime}\right)$:
$\bigcirc 0$ (picked $i=j$)
D 1 (equal replacements)
$\bigcirc 2$ (different replacements)
\bigcirc We get $\mathbb{E}\left[d\left(X_{1}, X_{1}^{\prime}\right)\right] \leqslant$ $\frac{1}{n} \cdot 0+\frac{1}{n} \sum_{i \neq j}(1+\mathcal{J}[j \rightarrow i]) \leqslant 1-\delta / n$
© Useful for spin systems.

D Useful for spin systems.
Spin systems

D Useful for spin systems.
Spin systems

$\triangleright \mathfrak{J}[\mathfrak{j} \rightarrow \mathrm{i}]=0$ when $\mathrm{i} \nsucc \mathrm{j}$

D Useful for spin systems.
Spin systems

$\bigcirc \mathcal{J}[j \rightarrow i]=0$ when $\mathfrak{i} \not \subset \mathfrak{j}$
$\bigcirc \mathcal{J}$ is weighted adjacency matrix

D Useful for spin systems.

Spin systems

$\bigcirc \mathcal{J}[j \rightarrow i]=0$ when $i \not f j$
$\bigcirc \mathcal{J}$ is weighted adjacency matrix

Example: coloring

$D \Omega_{\mathrm{i}}=[\mathrm{q}]$
$D \phi_{u v}=\mathbb{1}\left[x_{u} \neq x_{v}\right]$
$D \mathcal{J} \leqslant \operatorname{adj} /(q-\Delta)$

D Useful for spin systems.

Spin systems

$$
\text { graph } G=(V, E)
$$

$$
\Omega=\Omega_{1} \times \cdots \times \Omega_{n}
$$

local interaction
$\mu(\mathrm{x})=\prod_{v} \phi_{v}\left(\mathrm{x}_{v}\right) \cdot \prod_{\mathfrak{u} \sim v} \phi_{\mathfrak{u} v}^{\downarrow}\left(\mathrm{x}_{\mathfrak{u}}, \mathrm{x}_{v}\right)$
$\bigcirc \mathcal{J}[j \rightarrow i]=0$ when $i \not f j$
$\bigcirc \mathcal{J}$ is weighted adjacency matrix

Example: coloring

$D \Omega_{\mathrm{i}}=[\mathrm{q}]$
$D \phi_{u v}=\mathbb{1}\left[x_{u} \neq x_{v}\right]$
$D \mathcal{J} \leqslant \operatorname{adj} /(q-\Delta)$

Example: hardcore

$$
\Omega_{\mathfrak{i}}=\{0,1\} \quad \phi_{v}=\lambda_{\uparrow}^{x_{v}} \quad \phi_{u v}=1-x_{\mathfrak{u}} x_{v}
$$

© Useful for spin systems.

Spin systems

$$
\text { graph } G=(V, E)
$$

$$
\Omega=\Omega_{1} \times \cdots \times \Omega_{n}
$$

local interaction

$$
\mu(x)=\prod_{v} \phi_{v}\left(x_{v}\right) \cdot \prod_{\mathfrak{u} \sim v} \phi_{\mathfrak{u v}}^{\downarrow}\left(x_{\mathfrak{u}}, x_{v}\right)
$$

$\bigcirc \mathcal{J}[\mathfrak{j} \rightarrow \mathfrak{i}]=0$ when $\mathfrak{i} \not \subset \mathfrak{j}$
$\triangle \mathcal{J}$ is weighted adjacency matrix

Example: coloring

$D \Omega_{\mathrm{i}}=[\mathrm{q}]$
$D \phi_{u v}=\mathbb{1}\left[x_{u} \neq x_{v}\right]$
$D \mathcal{J} \leqslant \operatorname{adj} /(q-\Delta)$

Example: hardcore

$$
\Omega_{\mathfrak{i}}=\{0,1\} \quad \phi_{v}=\lambda_{\uparrow}^{x_{v}} \quad \phi_{u v}=1-x_{\mathfrak{u}} x_{v}
$$

Example: Ising

$D \Omega_{\mathfrak{i}}=\{ \pm \mathbf{1}\}$
$D \phi_{v}=\exp \left(h_{\uparrow} \chi_{v}\right)$
external field

$D \phi_{u v}=\exp \left(\beta_{\uparrow v} x_{u} x_{v}\right)$
ferro/anti-ferromagnetic interaction

Hardcore model

$\mu($ ind $\operatorname{set} S) \propto \lambda^{|S|}$

Hardcore model

$\mu($ ind set $S) \propto \lambda^{|S|}$
\bigcirc Large λ is hard. :
max ind set is NP-hard

Hardcore model

$\mu($ ind set $S) \propto \lambda^{|S|}$
\bigcirc Large λ is hard. :
max ind set is NP-hard
D For what λ is it easy to sample?

Hardcore model

$\mu($ ind set $S) \propto \lambda^{|S|}$
\bigcirc Large λ is hard. :
max ind set is NP-hard
D For what λ is it easy to sample?
D Dobrushin: $\mathcal{J} \leqslant c \cdot a d j$ where $c=$

$$
\mathrm{d}_{\mathrm{TV}}(\operatorname{Ber}(0), \operatorname{Ber}(\lambda /(1+\lambda)))
$$

Hardcore model

D When $\lambda \leqslant(1-\delta) / \Delta$, col sums are

$$
\leqslant \frac{\lambda \Delta}{1+\lambda} \leqslant \lambda \Delta \leqslant 1-\delta
$$

© Large λ is hard. : 2
max ind set is NP-hard
D For what λ is it easy to sample?
D Dobrushin: $\mathcal{J} \leqslant c \cdot a d j$ where $c=$

$$
\mathrm{d}_{\mathrm{TV}}(\operatorname{Ber}(0), \operatorname{Ber}(\lambda /(1+\lambda)))
$$

Hardcore model

D When $\lambda \leqslant(1-\delta) / \Delta$, col sums are

$$
\leqslant \frac{\lambda \Delta}{1+\lambda} \leqslant \lambda \Delta \leqslant 1-\delta
$$

\bigcirc Mixing in $O(n \log n)$ steps. $;$

$$
\mu(\text { ind set } S) \propto \lambda^{|S|}
$$

\bigcirc Large λ is hard. :
max ind set is NP-hard
D For what λ is it easy to sample?
D Dobrushin: $\mathcal{J} \leqslant c \cdot a d j$ where $c=$

$$
d_{\mathrm{TV}}(\operatorname{Ber}(0), \operatorname{Ber}(\lambda /(1+\lambda)))
$$

Hardcore model

$\mu($ ind set $S) \propto \lambda^{|S|}$
\checkmark When $\lambda \leqslant(1-\delta) / \Delta$, col sums are

$$
\leqslant \frac{\lambda \Delta}{1+\lambda} \leqslant \lambda \Delta \leqslant 1-\delta
$$

\bigcirc Mixing in $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ steps. $;$
\checkmark This is NOT the tightest result. Dobrushin is suboptimal.
\bigcirc Large λ is hard. :
max ind set is NP-hard
D For what λ is it easy to sample?
D Dobrushin: $\mathcal{J} \leqslant c \cdot a d j$ where $c=$ $d_{\mathrm{TV}}(\operatorname{Ber}(0), \operatorname{Ber}(\lambda /(1+\lambda)))$

Hardcore model

$\mu($ ind set $S) \propto \lambda^{|S|}$
\checkmark Large λ is hard. ${ }_{\uparrow}$: max ind set is NP-hard
D For what λ is it easy to sample?
D Dobrushin: $\mathcal{J} \leqslant c \cdot a d j$ where $c=$ $d_{\mathrm{TV}}(\operatorname{Ber}(0), \operatorname{Ber}(\lambda /(1+\lambda)))$
D When $\lambda \leqslant(1-\delta) / \Delta$, col sums are

$$
\leqslant \frac{\lambda \Delta}{1+\lambda} \leqslant \lambda \Delta \leqslant 1-\delta
$$

D Mixing in $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ steps. $\cdot ;$
\checkmark This is NOT the tightest result. Dobrushin is suboptimal.
\bigcirc We will see later

$$
\lambda \leqslant(1-\delta) \lambda_{c}(\Delta) \Longrightarrow \text { fast mixing }
$$ for a specific critical threshold

$$
\lambda_{c}(\Delta) \simeq \frac{e}{\Delta}
$$

Hardcore model

$$
\mu(\text { ind } \operatorname{set} S) \propto \lambda^{|S|}
$$

D Large λ is hard. ${ }_{\uparrow}$.
max ind set is NP-hard
D For what λ is it easy to sample?
D Dobrushin: $\mathcal{J} \leqslant c \cdot a d j$ where $c=$ $\mathrm{d}_{\mathrm{TV}}(\operatorname{Ber}(0), \operatorname{Ber}(\lambda /(1+\lambda)))$
D When $\lambda \leqslant(1-\delta) / \Delta$, col sums are

$$
\leqslant \frac{\lambda \Delta}{1+\lambda} \leqslant \lambda \Delta \leqslant 1-\delta
$$

\bigcirc Mixing in $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ steps. $;$
\checkmark This is NOT the tightest result. Dobrushin is suboptimal.
\bigcirc We will see later

$$
\lambda \leqslant(1-\delta) \lambda_{c}(\Delta) \Longrightarrow \text { fast mixing }
$$ for a specific critical threshold

$$
\lambda_{c}(\Delta) \simeq \frac{e}{\Delta}
$$

\bigcirc On the opposite side, [Sly'10] showed it is NP-hard to sample when

$$
\lambda \geqslant(1+\delta) \lambda_{c}(\Delta)
$$

Ising model

$$
\mu(x) \propto \exp \left(\frac{1}{2} \sum_{u, v} \beta_{\uparrow v} x_{u} x_{v}+\sum_{v} h_{v} x_{v}\right)
$$

symmetric matrix

Ising model

$$
\mu(x) \propto \exp \left(\frac{1}{2} \sum_{u, v} \beta_{\mathfrak{u} v} x_{u} x_{v}+\sum_{v} h_{v} x_{v}\right)
$$

symmetric matrix
D Ferromagnetic: all $\beta \geqslant 0$

Ising model

$$
\mu(x) \propto \exp \left(\frac{1}{2} \sum_{u, v} \beta_{\hat{\mu}} x_{u} x_{v}+\sum_{v} h_{v} x_{v}\right)
$$

symmetric matrix
D Ferromagnetic: all $\beta \geqslant 0$
D Anti-ferromagnetic: all $\beta \leqslant 0$

Ising model

$$
\mu(x) \propto \exp \left(\frac{1}{2} \sum_{u, v} \beta_{\uparrow_{\imath}} x_{\mathfrak{u}} x_{v}+\sum_{v} h_{v} x_{v}\right)
$$

symmetric matrix
D Ferromagnetic: all $\beta \geqslant 0$
D Anti-ferromagnetic: all $\beta \leqslant 0$
\bigcirc Sherrington-Kirkpatrick: random β

Ising model

$\mu(x) \propto \exp \left(\frac{1}{2} \sum_{u, v} \beta_{u}{ }_{\uparrow} x_{u} x_{v}+\sum_{v} h_{v} x_{v}\right)$
symmetric matrix
\bigcirc Ferromagnetic: all $\beta \geqslant 0$
D Anti-ferromagnetic: all $\beta \leqslant 0$
D Sherrington-Kirkpatrick: random β
D Note: every 2-spin system is a (limit of an) Ising model

Ising model

$\mu(x) \propto \exp \left(\frac{1}{2} \sum_{u, v} \beta_{u v} x_{u} x_{v}+\sum_{v} h_{v} x_{v}\right)$ symmetric matrix
D Ferromagnetic: all $\beta \geqslant 0$
D Anti-ferromagnetic: all $\beta \leqslant 0$
D Sherrington-Kirkpatrick: random β
D Note: every 2-spin system is a (limit of an) Ising model

D We have

$$
\mathbb{E}\left[x_{v} \mid x_{-v}\right]=\frac{e^{c}-e^{-c}}{e^{c}+e^{-c}}=\tanh (c)
$$

$$
\text { where } c=h_{v}+\sum_{u} \beta_{u v} x_{u}
$$

Ising model

$\mu(x) \propto \exp \left(\frac{1}{2} \sum_{u, v} \beta_{\uparrow v} x_{u} x_{v}+\sum_{v} h_{v} x_{v}\right)$

symmetric matrix

D Ferromagnetic: all $\beta \geqslant 0$
D Anti-ferromagnetic: all $\beta \leqslant 0$
D Sherrington-Kirkpatrick: random β
\checkmark Note: every 2-spin system is a (limit of an) Ising model

D We have

$$
\mathbb{E}\left[x_{v} \mid x_{-v}\right]=\frac{e^{c}-e^{-c}}{e^{c}+e^{-c}}=\tanh (c)
$$

where $c=h_{v}+\sum_{u} \beta_{u v} x_{u}$.

\bigcirc So we get $\mathcal{J}[j \rightarrow i] \leqslant$

$$
\frac{\left|\tanh \left(\beta_{\mathrm{ij}}\right)-\tanh \left(-\beta_{\mathrm{ij}}\right)\right|}{2} \leqslant\left|\beta_{\mathrm{ij}}\right|
$$

Ising model

$\mu(x) \propto \exp \left(\frac{1}{2} \sum_{u, v} \beta_{\uparrow_{v}} x_{u} x_{v}+\sum_{v} h_{v} x_{v}\right)$

symmetric matrix

\bigcirc Ferromagnetic: all $\beta \geqslant 0$
D Anti-ferromagnetic: all $\beta \leqslant 0$
D Sherrington-Kirkpatrick: random β
D Note: every 2-spin system is a (limit of an) Ising model
© We have

$$
\mathbb{E}\left[x_{v} \mid x_{-v}\right]=\frac{e^{c}-e^{-c}}{e^{c}+e^{-c}}=\tanh (c)
$$

where $c=h_{v}+\sum_{u} \beta_{u v} x_{u}$.

\bigcirc So we get $\mathcal{J}[j \rightarrow i] \leqslant$

$$
\frac{\left|\tanh \left(\beta_{i j}\right)-\tanh \left(-\beta_{i j}\right)\right|}{2} \leqslant\left|\beta_{i j}\right|
$$

\bigcirc When β has ℓ_{1} row/col norms $\leqslant 1-\delta$, have fast mixing. ;)

Ising model

$\mu(x) \propto \exp \left(\frac{1}{2} \sum_{u, v} \beta_{\underset{\sim}{u}} x_{u} x_{v}+\sum_{v} h_{v} x_{v}\right)$

symmetric matrix

\bigcirc Ferromagnetic: all $\beta \geqslant 0$
D Anti-ferromagnetic: all $\beta \leqslant 0$
D Sherrington-Kirkpatrick: random β
\checkmark Note: every 2-spin system is a (limit of an) Ising model
© We have

$$
\mathbb{E}\left[x_{v} \mid x_{-v}\right]=\frac{e^{c}-e^{-c}}{e^{c}+e^{-c}}=\tanh (c)
$$

where $c=h_{v}+\sum_{u} \beta_{u v} x_{u}$.

\bigcirc So we get $\mathcal{J}[j \rightarrow i] \leqslant$

$$
\frac{\left|\tanh \left(\beta_{i j}\right)-\tanh \left(-\beta_{i j}\right)\right|}{2} \leqslant\left|\beta_{i j}\right|
$$

\checkmark When β has ℓ_{1} row/col norms $\leqslant 1-\delta$, have fast mixing. :)
\bigcirc Can be asymptotically tight for certain β (Curie-Weiss).

Dobrushin++

Why not d other than Hamming?

Dobrushin++

Why not d other than Hamming?
D For $c \in \mathbb{R}_{\geqslant 0}^{n}$, define c-weighted Hamming as

$$
d(x, y)=\sum\left\{c_{i} \mid x_{i} \neq y_{i}\right\}
$$

Dobrushin++

Why not d other than Hamming?
D For $c \in \mathbb{R}_{\geqslant 0}^{n}$, define c-weighted Hamming as

$$
d(x, y)=\sum\left\{c_{i} \mid x_{i} \neq y_{i}\right\}
$$

D Take X_{0}, X_{0}^{\prime} differing in \mathfrak{j}. Will produce coupling of X_{1}, X_{1}^{\prime}.

Dobrushin++

Why not d other than Hamming?
D For $c \in \mathbb{R}_{\geqslant 0}^{n}$, define c-weighted Hamming as

$$
d(x, y)=\sum\left\{c_{i} \mid x_{i} \neq y_{i}\right\}
$$

D Take X_{0}, X_{0}^{\prime} differing in \mathfrak{j}. Will produce coupling of X_{1}, X_{1}^{\prime}.

Dobrushin++

Why not d other than Hamming?
D For $c \in \mathbb{R}_{\geqslant 0}^{n}$, define c-weighted Hamming as

$$
d(x, y)=\sum\left\{c_{i} \mid x_{i} \neq y_{i}\right\}
$$

\triangle Take X_{0}, X_{0}^{\prime} differing in j. Will produce coupling of X_{1}, X_{1}^{\prime}.
\bigcirc Pick same coord i. Maximally couple replacements.

Dobrushin++

Why not d other than Hamming?
D For $c \in \mathbb{R}_{\geqslant 0}^{n}$, define c-weighted Hamming as

$$
d(x, y)=\sum\left\{c_{i} \mid x_{i} \neq y_{i}\right\}
$$

\triangle Take X_{0}, X_{0}^{\prime} differing in j. Will produce coupling of X_{1}, X_{1}^{\prime}.
\bigcirc Pick same coord i. Maximally couple replacements.

Dobrushin++

Why not d other than Hamming?
D For $c \in \mathbb{R}_{\geqslant 0}^{n}$, define c-weighted Hamming as

$$
d(x, y)=\sum\left\{c_{i} \mid x_{i} \neq y_{i}\right\}
$$

\triangle Take X_{0}, X_{0}^{\prime} differing in j. Will produce coupling of X_{1}, X_{1}^{\prime}.
\bigcirc Pick same coord i. Maximally couple replacements.
\bigcirc We get $\mathbb{E}\left[d\left(X_{1}, X_{1}^{\prime}\right)\right] \leqslant$

$$
\frac{1}{n} \cdot 0+\frac{1}{n} \sum_{i \neq j}\left(c_{j}+\mathcal{J}[j \rightarrow i] c_{i}\right)
$$

Dobrushin++

Why not d other than Hamming?
D For $c \in \mathbb{R}_{\geqslant 0}^{n}$, define c-weighted Hamming as

$$
d(x, y)=\sum\left\{c_{i} \mid x_{i} \neq y_{i}\right\}
$$

D Take X_{0}, X_{0}^{\prime} differing in \mathfrak{j}. Will produce coupling of X_{1}, X_{1}^{\prime}.
\bigcirc Pick same coord i. Maximally couple replacements.
D We get $\mathbb{E}\left[d\left(X_{1}, X_{1}^{\prime}\right)\right] \leqslant$

$$
\frac{1}{n} \cdot 0+\frac{1}{n} \sum_{i \neq j}\left(c_{j}+\mathcal{J}[j \rightarrow i] c_{i}\right)
$$

\bigcirc Contraction: $\mathfrak{c J} \leqslant(1-\delta) c$

Dobrushin++

Why not d other than Hamming?
D For $c \in \mathbb{R}_{\geqslant 0}^{n}$, define c-weighted Hamming as

$$
d(x, y)=\sum\left\{c_{i} \mid x_{i} \neq y_{i}\right\}
$$

\triangle Take X_{0}, X_{0}^{\prime} differing in j. Will produce coupling of X_{1}, X_{1}^{\prime}.
\bigcirc Pick same coord i. Maximally couple replacements.
\bigcirc We get $\mathbb{E}\left[d\left(X_{1}, X_{1}^{\prime}\right)\right] \leqslant$

$$
\frac{1}{n} \cdot 0+\frac{1}{n} \sum_{i \neq j}\left(c_{j}+\mathcal{J}[j \rightarrow i] c_{i}\right)
$$

\bigcirc Contraction: $\mathfrak{c} \mathcal{J} \leqslant(1-\delta) c$
© When this happens,

$$
\mathcal{W}\left(v P, v^{\prime} P\right) \leqslant(1-\delta / n) \mathcal{W}\left(v, v^{\prime}\right)
$$

Dobrushin++

Why not d other than Hamming?
D For $c \in \mathbb{R}_{\geqslant 0}^{n}$, define c-weighted Hamming as

$$
d(x, y)=\sum\left\{c_{i} \mid x_{i} \neq y_{i}\right\}
$$

\triangle Take X_{0}, X_{0}^{\prime} differing in j. Will

Implication for mixing

Given $c \mathcal{J} \leqslant(1-\delta) c$, we have

$$
\mathrm{t}_{\text {mix }}(\epsilon)=\mathrm{O}\left(\frac{n}{\delta} \log \left(\frac{n \cdot c_{\max }}{\epsilon \cdot c_{\min }}\right)\right)
$$ produce coupling of X_{1}, X_{1}^{\prime}.

\bigcirc Pick same coord i. Maximally couple replacements.
D We get $\mathbb{E}\left[d\left(X_{1}, X_{1}^{\prime}\right)\right] \leqslant$

$$
\frac{1}{n} \cdot 0+\frac{1}{n} \sum_{i \neq j}\left(c_{j}+\mathcal{J}[j \rightarrow i] c_{i}\right)
$$

\bigcirc Contraction: $\mathrm{c} \mathcal{J} \leqslant(1-\delta) \mathrm{c}$
\bigcirc When this happens,

$$
\mathcal{W}\left(v P, v^{\prime} \mathrm{P}\right) \leqslant(1-\delta / n) \mathcal{W}\left(v, v^{\prime}\right)
$$

Dobrushin++

Why not d other than Hamming?
D For $c \in \mathbb{R}_{\geqslant 0}^{n}$, define c-weighted Hamming as

$$
d(x, y)=\sum\left\{c_{i} \mid x_{i} \neq y_{i}\right\}
$$

\triangle Take X_{0}, X_{0}^{\prime} differing in j. Will produce coupling of X_{1}, X_{1}^{\prime}.
\bigcirc Pick same coord i. Maximally couple replacements.
D We get $\mathbb{E}\left[d\left(X_{1}, X_{1}^{\prime}\right)\right] \leqslant$

$$
\frac{1}{n} \cdot 0+\frac{1}{n} \sum_{i \neq j}\left(c_{j}+\mathcal{J}[j \rightarrow i] c_{i}\right)
$$

\bigcirc Contraction: $\mathfrak{J J} \leqslant(1-\delta)$ c
© When this happens,

$$
\mathcal{W}\left(v P, v^{\prime} \mathrm{P}\right) \leqslant(1-\delta / n) \mathcal{W}\left(v, v^{\prime}\right)
$$

Implication for mixing

Given $c \mathcal{J} \leqslant(1-\delta) c$, we have

$$
\mathrm{t}_{\text {mix }}(\epsilon)=\mathrm{O}\left(\frac{\mathrm{n}}{\delta} \log \left(\frac{\mathrm{n} \cdot \mathrm{c}_{\max }}{\epsilon \cdot \mathrm{c}_{\min }}\right)\right)
$$

D Slightly careful about $\mathrm{c}_{\text {max }} / \mathrm{c}_{\text {min }}$.

Dobrushin++

Why not d other than Hamming?
D For $c \in \mathbb{R}_{\geqslant 0}^{n}$, define c-weighted Hamming as

$$
d(x, y)=\sum\left\{c_{i} \mid x_{i} \neq y_{i}\right\}
$$

\triangle Take X_{0}, X_{0}^{\prime} differing in j. Will produce coupling of X_{1}, X_{1}^{\prime}.
\bigcirc Pick same coord i. Maximally couple replacements.
\bigcirc We get $\mathbb{E}\left[d\left(X_{1}, X_{1}^{\prime}\right)\right] \leqslant$

$$
\frac{1}{n} \cdot 0+\frac{1}{n} \sum_{i \neq j}\left(c_{j}+\mathcal{J}[j \rightarrow i] c_{i}\right)
$$

\bigcirc Contraction: $\mathrm{cJ} \leqslant(1-\delta) \mathrm{c}$
D When this happens,

$$
\mathcal{W}\left(v P, v^{\prime} \mathrm{P}\right) \leqslant(1-\delta / n) \mathcal{W}\left(v, v^{\prime}\right)
$$

Implication for mixing

Given $c \mathcal{J} \leqslant(1-\delta) c$, we have

$$
\mathrm{t}_{\text {mix }}(\epsilon)=\mathrm{O}\left(\frac{\mathrm{n}}{\delta} \log \left(\frac{n \cdot c_{\max }}{\epsilon \cdot c_{\min }}\right)\right)
$$

D Slightly careful about $\mathrm{c}_{\text {max }} / \mathrm{c}_{\text {min }}$.
D Influence matrix \mathcal{J} is $\geqslant 0$. "Optimal" choice of c by [Perron-Frobenius] theory is the Perron eigenvector:

$$
\mathrm{cJ}=\lambda_{\max }(\mathcal{J}) \mathrm{c}
$$

Dobrushin++

Why not d other than Hamming?
D For $c \in \mathbb{R}_{\geqslant 0}^{n}$, define c-weighted Hamming as

$$
d(x, y)=\sum\left\{c_{i} \mid x_{i} \neq y_{i}\right\}
$$

\triangle Take X_{0}, X_{0}^{\prime} differing in j. Will produce coupling of X_{1}, X_{1}^{\prime}.
\bigcirc Pick same coord i. Maximally couple replacements.
D We get $\mathbb{E}\left[d\left(X_{1}, X_{1}^{\prime}\right)\right] \leqslant$

$$
\frac{1}{n} \cdot 0+\frac{1}{n} \sum_{i \neq j}\left(c_{j}+\mathcal{J}[j \rightarrow i] c_{i}\right)
$$

\bigcirc Contraction: $\mathfrak{J J} \leqslant(1-\delta) c$
© When this happens,

$$
\mathcal{W}\left(v P, v^{\prime} P\right) \leqslant(1-\delta / n) \mathcal{W}\left(v, v^{\prime}\right)
$$

Implication for mixing

Given $c \mathcal{J} \leqslant(1-\delta) c$, we have

$$
\mathrm{t}_{\operatorname{mix}}(\epsilon)=\mathrm{O}\left(\frac{n}{\delta} \log \left(\frac{n \cdot c_{\max }}{\epsilon \cdot c_{\min }}\right)\right)
$$

D Slightly careful about $\mathrm{c}_{\text {max }} / \mathrm{c}_{\text {min }}$.
\bigcirc Influence matrix \mathcal{J} is $\geqslant 0$. "Optimal" choice of c by [Perron-Frobenius] theory is the Perron eigenvector:

$$
\mathrm{cJ}=\lambda_{\max }(\mathcal{J}) \mathrm{c}
$$

\bigcirc We can apply Dobrushin++ as long as $\lambda_{\max }(\mathcal{J})<1$

Mixing via Transport

D Path coupling

- Dobrushin's condition

D Hardcore model

- Ising model
- Dobrushin++

Intro to Functional Analysis

- Divergences

Mixing via Transport

D Path coupling

- Dobrushin's condition
\bigcirc Hardcore model
- Ising model
- Dobrushin++

Intro to Functional Analysis

- Divergences
- Prevalent strategy for analyzing mixing time: contraction

Divergences

\bigcirc Prevalent strategy for analyzing mixing time: contraction
$D d_{\mathrm{TV}}$ is too crude; doesn't contract every step

Divergences

- Prevalent strategy for analyzing mixing time: contraction
$D d_{\mathrm{TV}}$ is too crude; doesn't contract every step

$$
d_{T V}\left(v P, v^{\prime} P\right)=d_{T V}\left(v, v^{\prime}\right)
$$

\bigcirc Fix: use a proxy for $d_{T V}$

- Wasserstein distance

D divergences, variance, entropy
functional analysis

Divergences

- Prevalent strategy for analyzing mixing time: contraction
$D d_{\mathrm{TV}}$ is too crude; doesn't contract every step

$$
d_{T V}\left(v P, v^{\prime} P\right)=d_{T V}\left(v, v^{\prime}\right)
$$

\bigcirc Fix: use a proxy for $d_{T V}$

- Wasserstein distance
D divergences, variance, entropy
functional analysis

ϕ-entropy

For $\mathrm{fn} \phi: \mathbb{R} \rightarrow \mathbb{R}$ and $\mathrm{f}: \Omega \rightarrow \mathbb{R}$ define

$$
\operatorname{Ent}_{\mu}^{\phi}[f]=\mathbb{E}_{\mu}[\phi \circ f]-\phi\left(\mathbb{E}_{\mu}[f]\right) .
$$

Divergences

- Prevalent strategy for analyzing mixing time: contraction
$D d_{\mathrm{TV}}$ is too crude; doesn't contract every step

$$
d_{T V}\left(v P, v^{\prime} P\right)=d_{T V}\left(v, v^{\prime}\right)
$$

D Fix: use a proxy for $d_{T V}$

- Wasserstein distance
D divergences, variance, entropy
functional analysis

ϕ-entropy

For $\mathrm{fn} \phi: \mathbb{R} \rightarrow \mathbb{R}$ and $\mathrm{f}: \Omega \rightarrow \mathbb{R}$ define

$$
\operatorname{Ent}_{\mu}^{\phi}[f]=\mathbb{E}_{\mu}[\phi \circ f]-\phi\left(\mathbb{E}_{\mu}[f]\right) .
$$

\bigcirc When ϕ is convex, ϕ-entropy is $\geqslant 0$ (Jensen's inequality).

Divergences

- Prevalent strategy for analyzing mixing time: contraction
$D d_{\mathrm{TV}}$ is too crude; doesn't contract every step

$$
d_{T V}\left(v P, v^{\prime} P\right)=d_{T V}\left(v, v^{\prime}\right)
$$

D Fix: use a proxy for $d_{T V}$

- Wasserstein distance

D divergences, variance, entropy
functional analysis

ϕ-entropy

For $\mathrm{fn} \phi: \mathbb{R} \rightarrow \mathbb{R}$ and $\mathrm{f}: \Omega \rightarrow \mathbb{R}$ define

$$
\operatorname{Ent}_{\mu}^{\phi}[f]=\mathbb{E}_{\mu}[\phi \circ f]-\phi\left(\mathbb{E}_{\mu}[f]\right) .
$$

\bigcirc When ϕ is convex, ϕ-entropy is $\geqslant 0$ (Jensen's inequality).
\checkmark Equal to 0 when f is constant.

Divergences

ϕ-entropy

D Prevalent strategy for analyzing mixing time: contraction
$D d_{\mathrm{TV}}$ is too crude; doesn't contract every step

$$
d_{T V}\left(v P, v^{\prime} P\right)=d_{T V}\left(v, v^{\prime}\right)
$$

D Fix: use a proxy for $d_{T V}$
D Wasserstein distance
D divergences, variance, entropy functional analysis

For $\mathrm{fn} \phi: \mathbb{R} \rightarrow \mathbb{R}$ and $\mathrm{f}: \Omega \rightarrow \mathbb{R}$ define

$$
\operatorname{Ent}_{\mu}^{\phi}[f]=\mathbb{E}_{\mu}[\phi \circ f]-\phi\left(\mathbb{E}_{\mu}[f]\right) .
$$

D When ϕ is convex, ϕ-entropy is $\geqslant 0$ (Jensen's inequality).
\checkmark Equal to 0 when f is constant. usually f in the literature

ϕ-divergence

For measure ν and dist μ define

$$
\mathcal{D}_{\phi}(v \| \mu)=\operatorname{Ent}_{\mu}^{\phi}\left[\frac{v}{\mu}\right]
$$

Proxy for $d_{T V}$

Contraction: $\mathcal{D}_{\phi}(\nu P \| \mu) \leqslant(1-\delta) \mathcal{D}_{\phi}(\nu \| \mu)$ for stationary μ.

Proxy for $d_{T V}$

Contraction: $\mathcal{D}_{\phi}(\nu \mathrm{P} \| \mu) \leqslant(1-\delta) \mathcal{D}_{\phi}(\nu \| \mu)$ for stationary μ.

Variance

$$
\phi(x):=x^{2}
$$

$\bigcirc \operatorname{Ent}_{\mu}^{\phi}[\mathrm{f}]=\operatorname{Var}_{\mu}[\mathrm{f}]$
$\bigcirc \operatorname{Ent}_{\mu}^{\phi}[\mathrm{f}]=\mathrm{Ent}_{\mu}[\mathrm{f}]$
$\bigcirc \mathcal{D}_{\phi}(v \| \mu)=\chi^{2}(v \| \mu)$
\bigcirc It is a proxy by Cauchy-Schwarz:

$$
\mathrm{d}_{\operatorname{TV}}(v, \mu) \leqslant \mathrm{O}\left(\sqrt{\chi^{2}(v \| \mu)}\right)
$$

D Contraction related to eigs of P.
called modified log-Sobolev inequality

