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Review

Fundamental theorem

Every ergodic chain has a unique sta-

tionary dist µ, and for any dist ν

lim
t→∞νPt = µ.

Mixing time tmix(P, ε, ν):

min
{
t
∣∣ dTV(µ, νP

t) 6 ε
}

dTV

t

tmix

tmix(P, ε) = O
(
tmix

(
P, 14

)
· log

(
1
ε

))

Strong stationary time:

dist(Xt | τ = k) = stationary

τ: all coords
replaced

tmix(ε) 6 n log(n/ε)

Ergodic flow: Q(x, y) = µ(x)P(x, y)

Lemma: stationary↔ proper flow

Detailed balance/time-reversible:

Q(x, y) = Q(y, x)

Metropolis filter: P(x, y) 7→

P(x, y)min
{
1,

µ(y)P(y,x)
µ(x)P(x,y)

}
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Designing Markov Chains
Markov kernels

Combination with time-reversal

Mixing via Transport
Wasserstein distance

Path coupling
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Markov kernel

We can generalize time-reversal to

Markov kernel

P ∈ RΩ×Ω ′

>0∑
y P(x, y) = 1

Ω Ω ′

Markov kernels are conditional

dists. Combined with dist µ on Ω,

they give joint dist/ergodic flow:

Q(x, y) = µ(x)P(x, y)

Time-reversal:

Q◦(y, x) = Q(x, y)

Dist on Ω ′: µ◦ = µP is marginal of

y in Q◦ or Q.

The time-reversal Markov kernel is

the conditional dist of x given y:

P◦(y, x) =
µ(x)P(x,y)

µ◦(y)

Note the detailed balance

equation:

µ(x)P(x, y)

Q(x, y)

=µ◦(y)P◦(y, x)

Q◦(y, x)
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Combination with time-reversal

Design recipe:

1 Target dist µ on Ω

2 Markov kernel N from Ω to Ω ′

3 Let P = NN◦

Lemma

µP = µ and P is time-reversible

Proof: we have µ(x)P(x, z) =∑
y µ(x)N(x, y)N◦(y, z) =∑
y

µ(x)N(x,y)µ(z)N(z,y)
µ◦(y)

symmetric in x, z

Example: Glauber dynamics

N: erase u.r. vertex

N◦: recolor with prob ∝
µ(result)N

cancels out

(result,partial)

P: pick u.r. valid color for u.r. vert

Note: different from Metropolis.
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Example: block dynamics

N: erase k u.r. verts

P: recolor

u.a.r. from valid colorings

k u.r. verts

Example: spanning trees (I)

N: drop one edge u.a.r.

P: then add edge u.a.r. from cut

Example: spanning trees (II)

N: add one edge u.a.r.

P: drop edge u.a.r. from cycle

Trivial example: let Ω ′ = {∅} and N

map everything to ∅.
We get ideal

mixes in one step

Markov chain:

P(x, y) = µ(y)

Algorithmically useless!
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Algorithmic implementation:

for t = 0, 1, . . . do

sample yt ∼ N(xt, ·)
for z with N(z, yt) > 0 do

pz ← µ(z)N(z, yt)

sample z with prob ∝ pz

xt+1 ← sample

Want sparse columns for N.

Ideally we can simulate N, and its

columns are not just sparse but

efficiently enumerable.

Example: hit-and-run infinite space

µ is uniform on subset S of Rd

N: x 7→ u.r. line ` through x

P: then choose u.a.r. from ` ∩ S

Example: restricted Gaussian

µ: dist on Rd

N: x 7→ y = x+ g for g ∼ N(0, cI)

P: then sample z w.p. ∝
µ(z)e−‖z−y‖2/2crestricted Gaussian
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µ is uniform on subset S of Rd

N: x 7→ u.r. line ` through x

P: then choose u.a.r. from ` ∩ S

Example: restricted Gaussian

µ: dist on Rd

N: x 7→ y = x+ g for g ∼ N(0, cI)

P: then sample z w.p. ∝
µ(z)e−‖z−y‖2/2crestricted Gaussian
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Summary

Design P time-reversible w.r.t. µ:

µ(x)P(x, y) = µ(y)P(y, x)

1 Metropolis filter

Have some initial P
Modify it to

P(x, y)min
{
1,

µ(y)P(y, x)

µ(x)P(x, y)

}
2 Combination with time-reversal

Have some Markov kernel N
Form NN◦

Question: do these guarantee irreducible/aperiodic?
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Designing Markov Chains
Markov kernels

Combination with time-reversal

Mixing via Transport
Wasserstein distance

Path coupling
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Transport distance

Prevalent strategy for analyzing

mixing time: contraction

dTV is too crude; doesn’t contract

every step

ν ν ′

dTV(νP, ν
′P) = dTV(ν, ν

′)

Fix: use a proxy for dTV
Transport/Wasserstein/earth-

mover distance today

f-divergences, variance, entropy

functional analysis, later

Suppose Ω is equipped with metric

d : Ω×Ω→ R>0.

Wasserstein distance

We define the Wasserstein distance

w.r.t. d as W(µ, ν) =

min
{
E(X,Y)∼π[d(X, Y)]

∣∣ π coupling
}

Example: total variation

If we use d(x, y) = 1[x 6= y]: W = dTV

Example: Hamming

Ω = [q]n d(x, y) = |{i | xi 6= yi}|

µ = unif on {(•, •, •), (•, •, •)}
ν = unif on {(•, •, •), (•, •, •), (•, •, •)}

W(µ, ν) = 1
3 · 0+

1
6 · 3+

1
2 · 2 = 1.5
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Coloring

Input: graph G and q ∈ N

Goal: sample proper

adjacent verts colored differently

colorings

NP-hard to even find one!

Easy when q >∆

maximum degree

+1

for each vertex v do
pick a color from

[q] − {neighbors’ colors}

Open: approx sample/count when

q > ∆+ 1

Open: Metropolis/Glauber when:

q > ∆+ 2

Best-known [Chen-Delcourt-Moitra-

Perarnau-Postle’18]:

q > (116 −ε

some tiny constant

)∆

We will show q > 4∆+ 1 works.

Then we will improve to q > 2∆+ 1.
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Strategy: show W contracts.

Lemma

When q > 4∆+ 1, for Metropolis P:

W(νP, ν ′P) 6

(
1−

1

poly(n)

)
W(ν, ν ′)

This is enough because

W(νPt, µ)

upper bounds dTV

6
(
1− 1

poly

)t
W(ν, µ)

at most n

Note: unlike dTV, weak contraction

is NOT guaranteed.

ν ν ′

Use coupling:

Sample X0, X
′
0 from optimal

coupling of ν, ν ′.

Evolve to get X1, X
′
1 while

minimizing E[d(X1, X
′
1)]

Warmup example: hypercube

Ω = {0, 1}n

Pick u.r. i ∈ [n]

Replace coord i

with Ber(12)

Pick same i and same Ber(12)
If d(X0, X

′
0) = k, then

E[d(X1, X
′
1) | X0, X

′
0] = k− k

n

W(νP, νP ′) 6 (1− 1/n)W(ν, ν ′)

tmix(ε) 6 n logn+ n log(1/ε)
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Take the Metropolis chain for colorings:

Pick u.r. vertex v

Pick u.r. color c

Color v with c if valid

Coupling:

Pick same v and same c

If d(X0, X
′
0) = k, then d(X1, X

′
1) is:

k− 1 (lucky)
k+ 1 (unlucky)
k (neutral)

P[lucky] >(k/n)

pick differing v

· (q− 2∆)/q

c available to both

P[unlucky] 6 2k∆/qn

c color of differing neighbor in X0 or X
′
0

We get E[d(X1, X
′
1) | X0, X

′
0] 6

k−
k(q−2∆)

qn + 2k∆
qn = k ·

(
1− q−4∆

qn

)
As long as q > 4∆+ 1, we have

contraction.

We get

tmix(ε) = O
(

q
q−4∆ · n log(n/ε)

)
Exercise: analyze Glauber this way.
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Hamming distance is special.

There is a sparse graph s.t. d(x, y)
is shortest path from x to y.

x ∼ y when xi 6= yi for one i

In general, if d is shortest path

metric derived from a (possibly

weighted) graph, we can use path

coupling [Bubley-Dyer].

Idea: only couple starting states

X0, X
′
0 that are adjacent.

Path coupling lemma

Suppose for all adjacent X0 ∼ X ′
0 we

can couple X1, X
′
1 s.t.

E[d(X1, X
′
1)] 6 (1− c)d(X0, X

′
0).

Then W(νP, ν ′P) 6 (1− c)W(ν, ν ′).

Proof:

Take arbitrary X0, X
′
0.

Let shortest path be

X0 = v0 → v1 → · · · → vk = X ′
0

By triangle ineq W(1X0
P, 1X ′

0
P) 6∑

iW(1vi
P, 1vi+1

P) 6
(1− c)

∑
i d(vi, vi+1) = (1− c)d(X0, X

′
0)
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Hamming distance is special.
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Triangle inequality holds because couplings can

be stitched together!

ν0 ν1 . . . νk
π0,1 π1,2 πk−1,k

Exercise: there is joint dist with marginals πi,i+1!


