CS 263: Counting and Sampling

Nima Anari
stanard
slides for
Mixing via Transport

Review

Fundamental theorem

Every ergodic chain has a unique stationary dist μ, and for any dist v

$$
\lim _{t \rightarrow \infty} v P^{t}=\mu
$$

Review

Fundamental theorem

Every ergodic chain has a unique stationary dist μ, and for any dist ν

$$
\lim _{t \rightarrow \infty} v P^{t}=\mu
$$

D Mixing time $t_{\text {mix }}(P, \epsilon, v)$:

$$
\min \left\{t \mid d_{T V}\left(\mu, v P^{t}\right) \leqslant \epsilon\right\}
$$

Review

Fundamental theorem

Every ergodic chain has a unique stationary dist μ, and for any dist v

$$
\lim _{t \rightarrow \infty} v P^{t}=\mu
$$

D Mixing time $t_{\text {mix }}(P, \epsilon, v)$:

$$
\min \left\{t \mid d_{T V}\left(\mu, \nu P^{t}\right) \leqslant \epsilon\right\}
$$

$\bigcirc t_{\text {mix }}(P, \epsilon)=O\left(t_{\text {mix }}\left(P, \frac{1}{4}\right) \cdot \log \left(\frac{1}{\epsilon}\right)\right)$

Review

Fundamental theorem

Every ergodic chain has a unique stationary dist μ, and for any dist ν

$$
\lim _{t \rightarrow \infty} v P^{t}=\mu
$$

D Mixing time $t_{\text {mix }}(P, \epsilon, v)$:

$$
\min \left\{t \mid d_{T V}\left(\mu, \nu P^{t}\right) \leqslant \epsilon\right\}
$$

$\bigcirc t_{\text {mix }}(P, \epsilon)=O\left(t_{\text {mix }}\left(P, \frac{1}{4}\right) \cdot \log \left(\frac{1}{\epsilon}\right)\right)$
D Strong stationary time:
$\operatorname{dist}\left(X_{t} \mid \tau=k\right)=$ stationary
$\bigcirc \tau$: all coords replaced
$\bigcirc \mathrm{t}_{\text {mix }}(\epsilon) \leqslant \mathrm{n} \log (\mathrm{n} / \epsilon)$

Review

Fundamental theorem

Every ergodic chain has a unique stationary dist μ, and for any dist v

$$
\lim _{t \rightarrow \infty} v P^{t}=\mu
$$

D Mixing time $t_{\text {mix }}(P, \epsilon, v)$:

$$
\min \left\{\mathrm{t} \mid \mathrm{d}_{\mathrm{TV}}\left(\mu, v \mathrm{P}^{\mathrm{t}}\right) \leqslant \epsilon\right\}
$$

$\bigcirc t_{\text {mix }}(P, \epsilon)=O\left(t_{\text {mix }}\left(P, \frac{1}{4}\right) \cdot \log \left(\frac{1}{\epsilon}\right)\right)$
D Strong stationary time: $\operatorname{dist}\left(X_{t} \mid \tau=k\right)=$ stationary

- τ : all coords replaced
$\bigcirc \mathrm{t}_{\text {mix }}(\epsilon) \leqslant \mathfrak{n} \log (n / \epsilon)$
D Ergodic flow: $\mathrm{Q}(\mathrm{x}, \mathrm{y})=\mu(\mathrm{x}) \mathrm{P}(\mathrm{x}, \mathrm{y})$

Review

Fundamental theorem

Every ergodic chain has a unique stationary dist μ, and for any dist ν

$$
\lim _{t \rightarrow \infty} v P^{t}=\mu
$$

D Mixing time $t_{\text {mix }}(P, \epsilon, v)$:

$$
\min \left\{\mathrm{t} \mid \mathrm{d}_{\mathrm{TV}}\left(\mu, v \mathrm{P}^{\mathrm{t}}\right) \leqslant \epsilon\right\}
$$

$\bigcirc t_{\text {mix }}(P, \epsilon)=O\left(t_{\text {mix }}\left(P, \frac{1}{4}\right) \cdot \log \left(\frac{1}{\epsilon}\right)\right)$
D Strong stationary time: $\operatorname{dist}\left(X_{t} \mid \tau=k\right)=$ stationary
© τ : all coords replaced
$D \mathrm{t}_{\text {mix }}(\epsilon) \leqslant \mathfrak{n} \log (n / \epsilon)$
D Ergodic flow: $\mathrm{Q}(\mathrm{x}, \mathrm{y})=\mu(\mathrm{x}) \mathrm{P}(\mathrm{x}, \mathrm{y})$
\triangle Lemma: stationary \leftrightarrow proper flow

Review

Fundamental theorem

Every ergodic chain has a unique stationary dist μ, and for any dist ν

$$
\lim _{t \rightarrow \infty} v P^{t}=\mu
$$

D Mixing time $t_{\text {mix }}(P, \epsilon, v)$: $\min \left\{t \mid d_{T V}\left(\mu, v P^{t}\right) \leqslant \epsilon\right\}$

$D t_{\text {mix }}(P, \epsilon)=O\left(t_{\text {mix }}\left(P, \frac{1}{4}\right) \cdot \log \left(\frac{1}{\epsilon}\right)\right)$
D Strong stationary time:

$$
\operatorname{dist}\left(X_{t} \mid \tau=k\right)=\text { stationary }
$$

- τ : all coords replaced
$D \mathrm{t}_{\text {mix }}(\epsilon) \leqslant \mathfrak{n} \log (n / \epsilon)$
D Ergodic flow: $\mathrm{Q}(\mathrm{x}, \mathrm{y})=\mu(\mathrm{x}) \mathrm{P}(\mathrm{x}, \mathrm{y})$
\bigcirc Lemma: stationary \leftrightarrow proper flow
\checkmark Detailed balance/time-reversible:

$$
Q(x, y)=Q(y, x)
$$

Review

Fundamental theorem

Every ergodic chain has a unique stationary dist μ, and for any dist ν

$$
\lim _{t \rightarrow \infty} v P^{t}=\mu
$$

D Mixing time $t_{\text {mix }}(P, \epsilon, v)$:

$$
\min \left\{\mathrm{t} \mid \mathrm{d}_{\mathrm{TV}}\left(\mu, v \mathrm{P}^{\mathrm{t}}\right) \leqslant \epsilon\right\}
$$

$\bigcirc t_{\text {mix }}(P, \epsilon)=O\left(t_{\text {mix }}\left(P, \frac{1}{4}\right) \cdot \log \left(\frac{1}{\epsilon}\right)\right)$
D Strong stationary time: $\operatorname{dist}\left(X_{t} \mid \tau=k\right)=$ stationary

- τ : all coords replaced
$D \mathrm{t}_{\text {mix }}(\epsilon) \leqslant \mathfrak{n} \log (n / \epsilon)$
D Ergodic flow: $\mathrm{Q}(\mathrm{x}, \mathrm{y})=\mu(\mathrm{x}) \mathrm{P}(\mathrm{x}, \mathrm{y})$
\bigcirc Lemma: stationary \leftrightarrow proper flow
\checkmark Detailed balance/time-reversible:

$$
Q(x, y)=Q(y, x)
$$

\bigcirc Metropolis filter: $\mathrm{P}(\mathrm{x}, \mathrm{y}) \mapsto$

$$
P(x, y) \min \left\{1, \frac{\mu(y) P(y, x)}{\mu(x) P(x, y)}\right\}
$$

Designing Markov Chains

- Markov kernels

D Combination with time-reversal
Mixing via Transport

- Wasserstein distance
- Path coupling

Designing Markov Chains

- Markov kernels

D Combination with time-reversal
Mixing via Transport

- Wasserstein distance

D Path coupling

Markov kernel

We can generalize time-reversal to
Markov kernel

$$
\underset{\sum_{y}}{P \in \mathbb{R}_{\geqslant 0}^{\Omega \times \Omega^{\prime}}}
$$

Markov kernel

We can generalize time-reversal to

Markov kernel

$$
\underset{y}{P \in \mathbb{R} \geqslant 0} \sum_{y} \mathrm{P}(x, y)=1
$$

- Markov kernels are conditional dists. Combined with dist μ on Ω, they give joint dist/ergodic flow:

$$
Q(x, y)=\mu(x) P(x, y)
$$

Markov kernel

We can generalize time-reversal to
Markov kernel

$$
\Omega \quad \Omega^{\prime}
$$

$$
\begin{gathered}
P \in \mathbb{R}_{\geqslant 0}^{\Omega \times \Omega^{\prime}} \\
\sum_{y} P(x, y)=1
\end{gathered}
$$

- Markov kernels are conditional dists. Combined with dist μ on Ω, they give joint dist/ergodic flow:

$$
\mathrm{Q}(x, y)=\mu(x) P(x, y)
$$

Markov kernel

We can generalize time-reversal to

Markov kernel

$$
\begin{gathered}
P \in \mathbb{R}_{\geqslant 0}^{\Omega \times \Omega^{\prime}} \\
\sum_{y} P(x, y)=1
\end{gathered}
$$

- Time-reversal:

$$
Q^{\circ}(y, x)=Q(x, y)
$$

D Dist on $\Omega^{\prime}: \mu^{\circ}=\mu \mathrm{P}$ is marginal of y in Q° or Q.

- Markov kernels are conditional dists. Combined with dist μ on Ω, they give joint dist/ergodic flow:

$$
Q(x, y)=\mu(x) P(x, y)
$$

Markov kernel

We can generalize time-reversal to

Markov kernel

$$
\begin{gathered}
P \in \mathbb{R} \geqslant 0 \times \Omega^{\prime} \\
\sum_{y} P(x, y)=1
\end{gathered}
$$

- Markov kernels are conditional dists. Combined with dist μ on Ω, they give joint dist/ergodic flow:

$$
Q(x, y)=\mu(x) P(x, y)
$$

© Time-reversal:

$$
Q^{\circ}(y, x)=Q(x, y)
$$

D Dist on $\Omega^{\prime}: \mu^{\circ}=\mu \mathrm{P}$ is marginal of y in Q° or Q.
D The time-reversal Markov kernel is the conditional dist of x given y :

$$
\mathrm{P}^{\circ}(y, x)=\frac{\mu(x) P(x, y)}{\mu^{\circ}(y)}
$$

Markov kernel

We can generalize time-reversal to

Markov kernel
O

- Markov kernels are conditional dists. Combined with dist μ on Ω, they give joint dist/ergodic flow:

$$
Q(x, y)=\mu(x) P(x, y)
$$

D Time-reversal:

$$
Q^{\circ}(y, x)=Q(x, y)
$$

D Dist on $\Omega^{\prime}: \mu^{\circ}=\mu \mathrm{P}$ is marginal of y in Q° or Q.
D The time-reversal Markov kernel is the conditional dist of x given y :

$$
P^{\circ}(y, x)=\frac{\mu(x) P(x, y)}{\mu^{\circ}(y)}
$$

- Note the detailed balance equation:

$$
\begin{gathered}
\mu(x) \underset{\uparrow}{P(x, y)}=\mu^{\circ}(y) \underset{\uparrow}{\mu^{\circ}(y, y)} \underset{Q^{\circ}(y, x)}{P^{\circ}(y, x)}
\end{gathered}
$$

Combination with time-reversal

Design recipe:
(1) Target dist μ on Ω

Combination with time-reversal

Design recipe:
(1) Target dist μ on Ω
(2) Markov kernel N from Ω to Ω^{\prime}

Combination with time-reversal

Design recipe:
(1) Target dist μ on Ω
(2) Markov kernel N from Ω to Ω^{\prime}
(3) Let $\mathrm{P}=\mathrm{NN}^{\circ}$

Combination with time-reversal

Design recipe:
(1) Target dist μ on Ω
(2) Markov kernel N from Ω to Ω^{\prime}
(3) Let $\mathrm{P}=\mathrm{NN}^{\circ}$

Lemma

$\mu \mathrm{P}=\mu$ and P is time-reversible

Combination with time-reversal

Design recipe:
(1) Target dist μ on Ω
(2) Markov kernel N from Ω to Ω^{\prime}
(3) Let $\mathrm{P}=\mathrm{NN}^{\circ}$

Lemma

$\mu \mathrm{P}=\mu$ and P is time-reversible
Proof: we have $\mu(x) P(x, z)=$

$$
\begin{gathered}
\sum_{y} \mu(x) N(x, y) N^{\circ}(y, z)= \\
\sum_{y} \frac{\mu(x) N(x, y) \mu(z) N(z, y)}{\mu^{\circ}(y)} \\
\text { symmetric in } x, z
\end{gathered}
$$

Combination with time-reversal

Design recipe:
(1) Target dist μ on Ω
(2) Markov kernel N from Ω to Ω^{\prime}
(3) Let $\mathrm{P}=\mathrm{NN}^{\circ}$

Lemma

$\mu \mathrm{P}=\mu$ and P is time-reversible
Proof: we have $\mu(x) P(x, z)=$

$$
\begin{gathered}
\sum_{y} \mu(x) N(x, y) N^{\circ}(y, z)= \\
\sum_{y} \frac{\mu(x) N(x, y) \mu(z) N(z, y)}{\mu_{\uparrow}^{\circ}(y)} \\
\text { symmetric in } x, z
\end{gathered}
$$

Example: Glauber dynamics

Combination with time-reversal

Design recipe:
(1) Target dist μ on Ω
(2) Markov kernel N from Ω to Ω^{\prime}
(3) Let $\mathrm{P}=\mathrm{NN}^{\circ}$

Lemma

$\mu \mathrm{P}=\mu$ and P is time-reversible
Proof: we have $\mu(x) P(x, z)=$

$$
\begin{gathered}
\sum_{y} \mu(x) N(x, y) N^{\circ}(y, z)= \\
\sum_{y} \frac{\mu(x) N(x, y) \mu(z) N(z, y)}{\mu^{\circ}(y)} \\
\text { symmetric in } x, z
\end{gathered}
$$

Example: Glauber dynamics

D N : erase u.r. vertex

Combination with time-reversal

Design recipe:
(1) Target dist μ on Ω
(2) Markov kernel N from Ω to Ω^{\prime}
(3) Let $\mathrm{P}=\mathrm{NN}^{\circ}$

Lemma

$\mu \mathrm{P}=\mu$ and P is time-reversible
Proof: we have $\mu(x) P(x, z)=$

$$
\begin{gathered}
\sum_{y} \mu(x) N(x, y) N^{\circ}(y, z)= \\
\sum_{y} \frac{\mu(x) N(x, y) \mu(z) N(z, y)}{\mu^{\circ}(y)} \\
\text { symmetric in } x, z
\end{gathered}
$$

Example: Glauber dynamics

D N : erase u.r. vertex
$\bigcirc \mathrm{N}^{\circ}$: recolor with prob \propto
 cancels out

Combination with time-reversal

Design recipe:
(1) Target dist μ on Ω
(2) Markov kernel N from Ω to Ω^{\prime}
(3) Let $\mathrm{P}=\mathrm{NN}^{\circ}$

Lemma

$\mu P=\mu$ and P is time-reversible
Proof: we have $\mu(x) P(x, z)=$

$$
\begin{gathered}
\sum_{y} \mu(x) N(x, y) N^{\circ}(y, z)= \\
\sum_{y} \frac{\mu(x) N(x, y) \mu(z) N(z, y)}{\mu^{\circ}(y)} \\
\text { symmetric in } x, z
\end{gathered}
$$

Example: Glauber dynamics

D N : erase u.r. vertex
$\checkmark \mathrm{N}^{\circ}$: recolor with prob \propto $\mu($ result $) \underset{\uparrow}{ }$ (result, partial) cancels out
\bigcirc P: pick u.r. valid color for u.r. vert

Combination with time-reversal

Design recipe:
(1) Target dist μ on Ω
(2) Markov kernel N from Ω to Ω^{\prime}
(3) Let $\mathrm{P}=\mathrm{NN}^{\circ}$

Lemma

$\mu \mathrm{P}=\mu$ and P is time-reversible
Proof: we have $\mu(x) P(x, z)=$

$$
\begin{gathered}
\sum_{y} \mu(x) N(x, y) N^{\circ}(y, z)= \\
\sum_{y} \frac{\mu(x) N(x, y) \mu(z) N(z, y)}{\mu^{\circ}(y)} \\
\text { symmetric in } x, z
\end{gathered}
$$

Example: Glauber dynamics

D N : erase u.r. vertex
$\checkmark \mathrm{N}^{\circ}$: recolor with prob \propto μ (result) $\underset{\uparrow}{\mathrm{N}}$ (result, partial) cancels out
\bigcirc P: pick u.r. valid color for u.r. vert
D Note: different from Metropolis.

Example: block dynamics

D N : erase k u.r. verts
D P: recolor k u.r. verts
u.a.r. from valid colorings

Example: block dynamics

D N : erase k u.r. verts
\bigcirc P: recolor k u.r. verts
u.a.r. from valid colorings

Example: spanning trees (I)

$\bigcirc \mathrm{N}$: drop one edge u.a.r.
\checkmark P: then add edge u.a.r. from cut

Example: block dynamics

D N : erase k u.r. verts
D P: recolor k u.r. verts
u.a.r. from valid colorings

Example: spanning trees (I)

- N : drop one edge u.a.r.
\bigcirc P: then add edge u.a.r. from cut

Example: spanning trees (II)

$\bigcirc \mathrm{N}$: add one edge u.a.r.
D P: drop edge u.a.r. from cycle

Example: block dynamics

D N : erase k u.r. verts
D P: recolor k u.r. verts
u.a.r. from valid colorings

Example: spanning trees (I)

$\bigcirc \mathrm{N}$: drop one edge u.a.r.
\bigcirc P: then add edge u.a.r. from cut

Example: spanning trees (II)

$\bigcirc \mathrm{N}$: add one edge u.a.r.
D P: drop edge u.a.r. from cycle
D Trivial example: let $\Omega^{\prime}=\{\emptyset\}$ and N map everything to \emptyset.

Example: block dynamics

D N : erase k u.r. verts
\bigcirc P: recolor k u.r. verts
u.a.r. from valid colorings

Example: spanning trees (I)

$\bigcirc \mathrm{N}$: drop one edge u.a.r.
\bigcirc P: then add edge u.a.r. from cut

Example: spanning trees (II)

$\bigcirc \mathrm{N}$: add one edge u.a.r.
D P: drop edge u.a.r. from cycle
D Trivial example: let $\Omega^{\prime}=\{\emptyset\}$ and N map everything to \emptyset.
© We get ideal Markov chain: mixes in one step

$$
P(x, y)=\mu(y)
$$

Example: block dynamics

D N : erase k u.r. verts
\bigcirc P: recolor k u.r. verts
u.a.r. from valid colorings

Example: spanning trees (I)

$\checkmark \mathrm{N}$: drop one edge u.a.r.
\bigcirc P: then add edge u.a.r. from cut

Example: spanning trees (II)

$\bigcirc \mathrm{N}$: add one edge u.a.r.
D P: drop edge u.a.r. from cycle
D Trivial example: let $\Omega^{\prime}=\{\emptyset\}$ and N map everything to \emptyset.
© We get ideal Markov chain:
mixes in one step

$$
P(x, y)=\mu(y)
$$

\bigcirc Algorithmically useless!

Algorithmic implementation: for $t=0,1, \ldots$ do
sample $y_{t} \sim N\left(x_{t}, \cdot\right)$
for z with $\mathrm{N}\left(z, y_{t}\right)>0$ do
$p_{z} \leftarrow \mu(z) N\left(z, y_{t}\right)$
sample z with prob $\propto p_{z}$ $\chi_{\mathrm{t}+1} \leftarrow$ sample

Algorithmic implementation:
for $t=0,1, \ldots$ do
sample $y_{t} \sim N\left(x_{t}, \cdot\right)$
for z with $\mathrm{N}\left(z, y_{t}\right)>0$ do
$p_{z} \leftarrow \mu(z) N\left(z, y_{t}\right)$
sample z with prob $\propto p_{z}$ $x_{\mathrm{t}+1} \leftarrow$ sample

- Want sparse columns for N .

Algorithmic implementation:

$$
\text { for } t=0,1, \ldots \text { do }
$$

sample $y_{t} \sim N\left(x_{t}, \cdot\right)$
for z with $\mathrm{N}\left(z, y_{t}\right)>0$ do $p_{z} \leftarrow \mu(z) N\left(z, y_{t}\right)$
sample z with prob $\propto p_{z}$ $\mathrm{x}_{\mathrm{t}+1} \leftarrow$ sample
\bigcirc Want sparse columns for N .
D Ideally we can simulate N , and its columns are not just sparse but efficiently enumerable.

Example: hit-and-run \leftarrow infinite space

Algorithmic implementation:
for $t=0,1, \ldots$ do
sample $y_{t} \sim N\left(x_{t}, \cdot\right)$
for z with $\mathrm{N}\left(z, y_{t}\right)>0$ do $p_{z} \leftarrow \mu(z) N\left(z, y_{t}\right)$
sample z with prob $\propto p_{z}$ $\chi_{\mathrm{t}+1} \leftarrow$ sample
\checkmark Want sparse columns for N .
D Ideally we can simulate N , and its columns are not just sparse but efficiently enumerable.

Example: hit-and-run \leftarrow infinite space

Algorithmic implementation:
for $t=0,1, \ldots$ do
sample $y_{t} \sim N\left(x_{t}, \cdot\right)$
for z with $\mathrm{N}\left(z, y_{t}\right)>0$ do

$$
p_{z} \leftarrow \mu(z) \mathrm{N}\left(z, y_{t}\right)
$$

sample z with prob $\propto p_{z}$ $\chi_{\mathrm{t}+1} \leftarrow$ sample
\checkmark Want sparse columns for N .
D Ideally we can simulate N , and its columns are not just sparse but efficiently enumerable.

Example: hit-and-run \leftarrow infinite space

Algorithmic implementation:
for $t=0,1, \ldots$ do
sample $y_{t} \sim N\left(x_{t}, \cdot\right)$
for z with $\mathrm{N}\left(z, y_{t}\right)>0$ do $p_{z} \leftarrow \mu(z) N\left(z, y_{t}\right)$
sample z with prob $\propto p_{z}$ $\chi_{\mathrm{t}+1} \leftarrow$ sample
\checkmark Want sparse columns for N .
D Ideally we can simulate N , and its columns are not just sparse but efficiently enumerable.

Example: hit-and-run \leftarrow infinite space

Algorithmic implementation: for $t=0,1, \ldots$ do
sample $y_{t} \sim N\left(x_{t}, \cdot\right)$ for z with $\mathrm{N}\left(z, y_{t}\right)>0$ do $p_{z} \leftarrow \mu(z) N\left(z, y_{t}\right)$
sample z with prob $\propto p_{z}$ $\chi_{\mathrm{t}+1} \leftarrow$ sample
\bigcirc Want sparse columns for N .
D Ideally we can simulate N , and its columns are not just sparse but efficiently enumerable.

Example: hit-and-run \leftarrow infinite space

Algorithmic implementation: for $t=0,1, \ldots$ do sample $y_{t} \sim N\left(x_{t}, \cdot\right)$ for z with $\mathrm{N}\left(z, y_{t}\right)>0$ do $p_{z} \leftarrow \mu(z) N\left(z, y_{t}\right)$
sample z with prob $\propto p_{z}$ $\chi_{\mathrm{t}+1} \leftarrow$ sample
D Want sparse columns for N .
D Ideally we can simulate N , and its columns are not just sparse but efficiently enumerable.

$D \mu$ is uniform on subset S of \mathbb{R}^{d}
$\checkmark \mathrm{N}: x \mapsto$ u.r. line ℓ through x
\bigcirc P: then choose u.a.r. from $\ell \cap S$

Example: restricted Gaussian

$D \mu$: dist on \mathbb{R}^{d}
$\bigcirc \mathrm{N}: \mathrm{x} \mapsto \mathrm{y}=\mathrm{x}+\mathrm{g}$ for $\mathrm{g} \sim \mathcal{N}(0, \mathrm{cI})$
\bigcirc P: then sample z w.p. \propto
restricted Gaussian $\longrightarrow \mu(z) e^{-\|z-y\|^{2} / 2 c}$

Summary
Design P time-reversible w.r.t. μ :

$$
\mu(x) P(x, y)=\mu(y) P(y, x)
$$

Summary

Design P time-reversible w.r.t. μ :

$$
\mu(x) P(x, y)=\mu(y) P(y, x)
$$

(1) Metropolis filter
© Have some initial P

- Modify it to

$$
P(x, y) \min \left\{1, \frac{\mu(y) P(y, x)}{\mu(x) P(x, y)}\right\}
$$

Summary

Design P time-reversible w.r.t. μ :

$$
\mu(x) P(x, y)=\mu(y) P(y, x)
$$

(1) Metropolis filter
© Have some initial P

- Modify it to

$$
P(x, y) \min \left\{1, \frac{\mu(y) P(y, x)}{\mu(x) P(x, y)}\right\}
$$

(2) Combination with time-reversal

D Have some Markov kernel N
D Form NN°

Summary

Design P time-reversible w.r.t. μ :

$$
\mu(x) P(x, y)=\mu(y) P(y, x)
$$

(1) Metropolis filter
© Have some initial P

- Modify it to

$$
P(x, y) \min \left\{1, \frac{\mu(y) P(y, x)}{\mu(x) P(x, y)}\right\}
$$

(2) Combination with time-reversal

D Have some Markov kernel N
D Form NN°
Question: do these guarantee irreducible/aperiodic?

Designing Markov Chains

- Markov kernels

D Combination with time-reversal
Mixing via Transport

- Wasserstein distance

D Path coupling

Designing Markov Chains

- Markov kernels

D Combination with time-reversal

Mixing via Transport

- Wasserstein distance
- Path coupling

Transport distance

\bigcirc Prevalent strategy for analyzing mixing time: contraction

Transport distance

\bigcirc Prevalent strategy for analyzing mixing time: contraction
$D d_{\text {TV }}$ is too crude; doesn't contract every step

Transport distance

\bigcirc Prevalent strategy for analyzing mixing time: contraction
$D d_{\text {TV }}$ is too crude; doesn't contract every step

$$
\mathrm{d}_{\mathrm{TV}}\left(v P, v^{\prime} \mathrm{P}\right)=\mathrm{d}_{\mathrm{TV}}\left(v, v^{\prime}\right)
$$

\bigcirc Fix: use a proxy for $d_{T V}$
D Transport/Wasserstein/earthmover distance \longleftarrow today
D f-divergences, variance, entropy
\uparrow
functional analysis, later

Transport distance

\checkmark Prevalent strategy for analyzing mixing time: contraction
$D d_{T V}$ is too crude; doesn't contract every step

$$
\mathrm{d}_{\mathrm{TV}}\left(v P, v^{\prime} \mathrm{P}\right)=\mathrm{d}_{\mathrm{TV}}\left(v, v^{\prime}\right)
$$

D Fix: use a proxy for d_{TV}

- Transport/Wasserstein/earthmover distance \longleftarrow today
D f-divergences, variance, entropy
\uparrow
functional analysis, later
\checkmark Suppose Ω is equipped with metric $\mathrm{d}: \Omega \times \Omega \rightarrow \mathbb{R}_{\geqslant 0}$.

Transport distance

\checkmark Prevalent strategy for analyzing mixing time: contraction
$D d_{\text {TV }}$ is too crude; doesn't contract every step

$$
\mathrm{d}_{\operatorname{TV}}\left(v P, v^{\prime} \mathrm{P}\right)=\mathrm{d}_{\mathrm{TV}}\left(v, v^{\prime}\right)
$$

D Fix: use a proxy for d_{TV}

- Transport/Wasserstein/earthmover distance \longleftarrow today
© f-divergences, variance, entropy
\uparrow
\bigcirc Suppose Ω is equipped with metric $\mathrm{d}: \Omega \times \Omega \rightarrow \mathbb{R}_{\geqslant 0}$.
functional analysis, later

$$
a: \Omega \perp \times \Omega \rightarrow \mathbb{R} \geqslant 0 .
$$

Wasserstein distance

We define the Wasserstein distance w.r.t. d as $\mathcal{W}(\mu, v)=$

$$
\min \left\{\mathbb{E}_{(X, Y) \sim \pi}[d(X, Y)] \mid \pi \text { coupling }\right\}
$$

Transport distance

\checkmark Prevalent strategy for analyzing mixing time: contraction
$D d_{\text {TV }}$ is too crude; doesn't contract every step

$$
\mathrm{d}_{\mathrm{TV}}\left(v \mathrm{P}, \mathrm{v}^{\prime} \mathrm{P}\right)=\mathrm{d}_{\mathrm{TV}}\left(v, v^{\prime}\right)
$$

\bigcirc Fix: use a proxy for $d_{T V}$

- Transport/Wasserstein/earthmover distance \longleftarrow today
D f-divergences, variance, entropy
\uparrow
functional analysis, later
\bigcirc Suppose Ω is equipped with metric $\mathrm{d}: \Omega \times \Omega \rightarrow \mathbb{R}_{\geqslant 0}$.

Wasserstein distance

We define the Wasserstein distance w.r.t. d as $\mathcal{W}(\mu, v)=$

$$
\min \left\{\mathbb{E}_{(X, Y) \sim \pi}[d(X, Y)] \mid \pi \text { coupling }\right\}
$$

Example: total variation

If we use $d(x, y)=\mathbb{1}[x \neq y]: \mathcal{W}=d_{T V}$

Transport distance

© Prevalent strategy for analyzing mixing time: contraction
$D d_{\text {TV }}$ is too crude; doesn't contract every step

$$
\mathrm{d}_{\mathrm{TV}}\left(v \mathrm{P}, v^{\prime} \mathrm{P}\right)=\mathrm{d}_{\mathrm{TV}}\left(v, v^{\prime}\right)
$$

\bigcirc Fix: use a proxy for $d_{T V}$

- Transport/Wasserstein/earthmover distance « today
D f-divergences, variance, entropy
\uparrow
functional analysis, later
\checkmark Suppose Ω is equipped with metric $\mathrm{d}: \Omega \times \Omega \rightarrow \mathbb{R}_{\geqslant 0}$.

Wasserstein distance

We define the Wasserstein distance w.r.t. d as $\mathcal{W}(\mu, v)=$

$$
\min \left\{\mathbb{E}_{(X, Y) \sim \pi}[d(X, Y)] \mid \pi \text { coupling }\right\}
$$

Example: total variation

If we use $d(x, y)=\mathbb{1}[x \neq y]: \mathcal{W}=d_{T V}$

Example: Hamming

$$
\Omega=[q]^{n} \quad d(x, y)=\left|\left\{i \mid x_{i} \neq y_{i}\right\}\right|
$$

Transport distance

© Prevalent strategy for analyzing mixing time: contraction
$D d_{\text {TV }}$ is too crude; doesn't contract every step

$$
d_{T V}\left(v P, v^{\prime} P\right)=d_{T V}\left(v, v^{\prime}\right)
$$

\bigcirc Fix: use a proxy for $d_{T V}$

- Transport/Wasserstein/earthmover distance \longleftarrow today
D f-divergences, variance, entropy
\uparrow
functional analysis, later
\bigcirc Suppose Ω is equipped with metric $\mathrm{d}: \Omega \times \Omega \rightarrow \mathbb{R}_{\geqslant 0}$.

Wasserstein distance

We define the Wasserstein distance w.r.t. d as $\mathcal{W}(\mu, v)=$

$$
\min \left\{\mathbb{E}_{(X, Y) \sim \pi}[d(X, Y)] \mid \pi \text { coupling }\right\}
$$

Example: total variation

If we use $d(x, y)=\mathbb{1}[x \neq y]: \mathcal{W}=d_{T V}$

Example: Hamming

$$
\Omega=[q]^{n} \quad d(x, y)=\left|\left\{i \mid x_{i} \neq y_{i}\right\}\right|
$$

$$
\begin{aligned}
\mu & =\text { unif on }\{(\bullet, \bullet, \bullet),(\bullet, \bullet, \bullet)\} \\
\nu & =\text { unif on }\{(\bullet, \bullet, \bullet),(\bullet, \bullet, \bullet),(\bullet, \bullet, \bullet)\}
\end{aligned}
$$

Transport distance

© Prevalent strategy for analyzing mixing time: contraction
$D d_{\text {TV }}$ is too crude; doesn't contract every step

$$
d_{T V}\left(v P, v^{\prime} P\right)=d_{T V}\left(v, v^{\prime}\right)
$$

- Fix: use a proxy for d_{TV}
- Transport/Wasserstein/earthmover distance \longleftarrow today
D f-divergences, variance, entropy
functional analysis, later
D Suppose Ω is equipped with metric $\mathrm{d}: \Omega \times \Omega \rightarrow \mathbb{R}_{\geqslant 0}$.

Wasserstein distance

We define the Wasserstein distance w.r.t. d as $\mathcal{W}(\mu, v)=$

$$
\min \left\{\mathbb{E}_{(X, Y) \sim \pi}[d(X, Y)] \mid \pi \text { coupling }\right\}
$$

Example: total variation

If we use $d(x, y)=\mathbb{1}[x \neq y]: \mathcal{W}=d_{T V}$

Example: Hamming

$$
\begin{aligned}
& \Omega=[q]^{n} \quad \mathrm{~d}(\mathrm{x}, \mathrm{y})=\left|\left\{\mathrm{i} \mid \mathrm{x}_{\mathrm{i}} \neq \mathrm{y}_{\mathrm{i}}\right\}\right| \\
& \mu=\text { unif on }\{(\bullet, \bullet, \bullet),(\bullet, \bullet, \bullet)\} \\
& v=\text { unif on }\{(\bullet, \bullet, \bullet),(\bullet, \bullet, \bullet),(\bullet, \bullet, \bullet)\}
\end{aligned}
$$

$$
\mathcal{W}(\mu, v)=\frac{1}{3} \cdot 0+\frac{1}{6} \cdot 3+\frac{1}{2} \cdot 2=1.5
$$

Coloring

- Input: graph G and $\mathrm{q} \in \mathbb{N}$

Coloring

\bigcirc Input: graph G and $q \in \mathbb{N}$
\bigcirc Goal: sample proper colorings
adjacent verts colored differently

Coloring

\bigcirc Input: graph G and $q \in \mathbb{N}$
\bigcirc Goal: sample proper colorings
adjacent verts colored differently

D NP-hard to even find one!

Coloring

\bigcirc Input: graph G and $q \in \mathbb{N}$
\bigcirc Goal: sample proper colorings
adjacent verts colored differently

D NP-hard to even find one!
D Easy when $\mathrm{q} \geqslant \underset{\uparrow}{\Delta}+1$
maximum degree
for each vertex v do pick a color from
[q] - \{neighbors' colors $\}$

Coloring

D Input: graph G and $q \in \mathbb{N}$
\bigcirc Goal: sample proper colorings
adjacent verts colored differently

D NP-hard to even find one!
\checkmark Easy when $\mathrm{q} \geqslant \underset{\uparrow}{\Delta}+1$
maximum degree
for each vertex v do
pick a color from
[q] - \{neighbors' colors\}

- Open: approx sample/count when

$$
\mathrm{q} \geqslant \Delta+1
$$

Coloring

D Input: graph G and $q \in \mathbb{N}$
\bigcirc Goal: sample proper colorings
adjacent verts colored differently

D NP-hard to even find one!
D Easy when $\mathrm{q} \geqslant \underset{\uparrow}{\Delta}+1$
maximum degree
for each vertex v do pick a color from
[q] - \{neighbors' colors\}

- Open: approx sample/count when

$$
\mathrm{q} \geqslant \Delta+1
$$

\checkmark Open: Metropolis/Glauber when:

$$
q \geqslant \Delta+2
$$

Coloring

D Input: graph G and $q \in \mathbb{N}$
\bigcirc Goal: sample proper colorings

adjacent verts colored differently

D NP-hard to even find one!
D Easy when $\mathrm{q} \geqslant \underset{\uparrow}{\Delta}+1$
maximum degree
for each vertex v do pick a color from [q] - \{neighbors' colors\}

- Open: approx sample/count when

$$
q \geqslant \Delta+1
$$

\bigcirc Open: Metropolis/Glauber when:

$$
q \geqslant \Delta+2
$$

D Best-known [Chen-Delcourt-Moitra-Perarnau-Postle'18]:

$$
\begin{aligned}
& \mathrm{q} \geqslant\left(\frac{11}{6}-\uparrow\right) \Delta \\
& \text { some tiny constant }
\end{aligned}
$$

Coloring

D Input: graph G and $q \in \mathbb{N}$
\bigcirc Goal: sample proper colorings

adjacent verts colored differently

D NP-hard to even find one!
D Easy when $\mathrm{q} \geqslant \underset{\uparrow}{\Delta}+1$
maximum degree
for each vertex v do pick a color from [q] - \{neighbors' colors $\}$

- Open: approx sample/count when

$$
q \geqslant \Delta+1
$$

\bigcirc Open: Metropolis/Glauber when:

$$
q \geqslant \Delta+2
$$

D Best-known [Chen-Delcourt-Moitra-Perarnau-Postle'18]:

$$
\begin{aligned}
& \mathrm{q} \geqslant\left(\frac{11}{6}-\uparrow\right) \Delta \\
& \text { some tiny constant }
\end{aligned}
$$

D We will show $\mathrm{q} \geqslant 4 \Delta+1$ works.

Coloring

D Input: graph G and $q \in \mathbb{N}$
\bigcirc Goal: sample proper colorings

adjacent verts colored differently

D NP-hard to even find one!
D Easy when $\mathrm{q} \geqslant \underset{\uparrow}{\Delta}+1$
maximum degree
for each vertex v do pick a color from [q] - \{neighbors' colors\}
© Open: approx sample/count when

$$
q \geqslant \Delta+1
$$

\bigcirc Open: Metropolis/Glauber when:

$$
q \geqslant \Delta+2
$$

D Best-known [Chen-Delcourt-Moitra-Perarnau-Postle'18]:

$$
\begin{aligned}
& \mathrm{q} \geqslant\left(\frac{11}{6}-\uparrow\right) \Delta \\
& \text { some tiny constant }
\end{aligned}
$$

- We will show $\mathrm{q} \geqslant 4 \Delta+1$ works.
D Then we will improve to $\mathrm{q} \geqslant 2 \Delta+1$.
\bigcirc Strategy: show \mathcal{W} contracts.
\bigcirc Strategy: show \mathcal{W} contracts.

Lemma

When $\mathrm{q} \geqslant 4 \Delta+1$, for Metropolis P :
$\mathcal{W}\left(v P, v^{\prime} P\right) \leqslant\left(1-\frac{1}{\operatorname{poly}(n)}\right) \mathcal{W}\left(v, v^{\prime}\right)$
\bigcirc Strategy: show \mathcal{W} contracts.

Lemma

When $\mathrm{q} \geqslant 4 \Delta+1$, for Metropolis P :

$$
\mathcal{W}\left(v P, v^{\prime} P\right) \leqslant\left(1-\frac{1}{\operatorname{poly}(n)}\right) \mathcal{W}\left(v, v^{\prime}\right)
$$

D This is enough because

$$
\begin{aligned}
& \mathcal{W}\left(v \underset{\uparrow}{ } \mathrm{P}^{\mathrm{t}}, \mu\right) \leqslant\left(1-\frac{1}{\text { poly }}\right)^{\mathrm{t}} \mathcal{W} \underset{\uparrow}{\underset{\sim}{v}, \mu)} \\
& \text { upper bounds } \mathrm{d}_{\mathrm{TV}} \text { at most } \mathrm{n}
\end{aligned}
$$

\bigcirc Strategy: show \mathcal{W} contracts.

Lemma

When $\mathrm{q} \geqslant 4 \Delta+1$, for Metropolis P :

$$
\mathcal{W}\left(v P, v^{\prime} P\right) \leqslant\left(1-\frac{1}{\operatorname{poly}(n)}\right) \mathcal{W}\left(v, v^{\prime}\right)
$$

D This is enough because

$$
\begin{array}{r}
\mathcal{W}\left(v \mathrm{P}^{\mathrm{t}}, \mu\right) \leqslant\left(1-\frac{1}{\text { poly }}\right)^{\mathrm{t}} \underset{\uparrow}{\mathcal{W}(v, \mu)} \\
\text { upper bounds } \mathrm{d}_{\text {TV }} \\
\text { at most } n
\end{array}
$$

- Note: unlike d_{TV}, weak contraction is NOT guaranteed.

\bigcirc Strategy: show \mathcal{W} contracts.

Lemma

When $\mathrm{q} \geqslant 4 \Delta+1$, for Metropolis P :

$$
\mathcal{W}\left(v P, v^{\prime} P\right) \leqslant\left(1-\frac{1}{\operatorname{poly}(n)}\right) \mathcal{W}\left(v, v^{\prime}\right)
$$

D This is enough because

$$
\begin{array}{r}
\mathcal{W}\left(v \mathrm{P}^{\mathrm{t}}, \mu\right) \leqslant\left(1-\frac{1}{\text { poly }}\right)^{\mathrm{t}} \underset{\uparrow}{\mathcal{W}(v, \mu)} \\
\text { upper bounds } \mathrm{d}_{\text {TV }} \\
\text { at most } n
\end{array}
$$

\bigcirc Note: unlike $d_{T V}$, weak contraction is NOT guaranteed.

D Use coupling:
D Sample X_{0}, X_{0}^{\prime} from optimal coupling of v, v^{\prime}.
\checkmark Evolve to get X_{1}, X_{1}^{\prime} while minimizing $\mathbb{E}\left[d\left(X_{1}, X_{1}^{\prime}\right)\right]$
\bigcirc Strategy: show \mathcal{W} contracts.

Lemma

When $\mathrm{q} \geqslant 4 \Delta+1$, for Metropolis P:

$$
\mathcal{W}\left(v P, v^{\prime} P\right) \leqslant\left(1-\frac{1}{\operatorname{poly}(n)}\right) \mathcal{W}\left(v, v^{\prime}\right)
$$

D This is enough because

$$
\begin{array}{r}
\mathcal{W}\left(v \mathrm{P}^{\mathrm{t}}, \mu\right) \leqslant\left(1-\frac{1}{\text { poly }}\right)^{\mathrm{t}} \underset{\uparrow}{\mathcal{W}(v, \mu)} \\
\text { upper bounds } \mathrm{d}_{\text {TV }} \\
\text { at most } n
\end{array}
$$

D Note: unlike $d_{T V}$, weak contraction is NOT guaranteed.

\bigcirc Use coupling:
D Sample X_{0}, X_{0}^{\prime} from optimal coupling of v, v^{\prime}.
\checkmark Evolve to get X_{1}, X_{1}^{\prime} while minimizing $\mathbb{E}\left[d\left(X_{1}, X_{1}^{\prime}\right)\right]$

Warmup example: hypercube

$D \Omega=\{0,1\}^{n}$
\triangle Pick u.r. $i \in[n]$
\checkmark Replace coord i with $\operatorname{Ber}\left(\frac{1}{2}\right)$

\bigcirc Strategy: show \mathcal{W} contracts.

Lemma

When $\mathrm{q} \geqslant 4 \Delta+1$, for Metropolis P:

$$
\mathcal{W}\left(v P, v^{\prime} P\right) \leqslant\left(1-\frac{1}{\operatorname{poly}(n)}\right) \mathcal{W}\left(v, v^{\prime}\right)
$$

D This is enough because

$$
\begin{aligned}
& \mathcal{W}\left(v \mathrm{P}_{\uparrow}^{\mathrm{t}}, \mu\right) \leqslant\left(1-\frac{1}{\text { poly }}\right)^{\mathrm{t}} \mathcal{W}(\underset{\uparrow}{v}, \mu) \\
& \text { upper bounds } \mathrm{d}_{\mathrm{TV}} \\
& \text { at most } n
\end{aligned}
$$

D Note: unlike d_{TV}, weak contraction is NOT guaranteed.

D Use coupling:
D Sample X_{0}, X_{0}^{\prime} from optimal coupling of v, v^{\prime}.
\checkmark Evolve to get X_{1}, X_{1}^{\prime} while minimizing $\mathbb{E}\left[d\left(X_{1}, X_{1}^{\prime}\right)\right]$

Warmup example: hypercube

$D \Omega=\{0,1\}^{n}$
\triangle Pick u.r. $i \in[n]$
\bigcirc Replace coord i with $\operatorname{Ber}\left(\frac{1}{2}\right)$

D Pick same i and same $\operatorname{Ber}\left(\frac{1}{2}\right)$
\bigcirc Strategy: show \mathcal{W} contracts.

Lemma

When $\mathrm{q} \geqslant 4 \Delta+1$, for Metropolis P:

$$
\mathcal{W}\left(v P, v^{\prime} P\right) \leqslant\left(1-\frac{1}{\operatorname{poly}(n)}\right) \mathcal{W}\left(v, v^{\prime}\right)
$$

D This is enough because

$$
\begin{aligned}
& \mathcal{W}\left(v \mathrm{P}_{\uparrow}^{\mathrm{t}}, \mu\right) \leqslant\left(1-\frac{1}{\text { poly }}\right)^{\mathrm{t}} \mathcal{W} \underset{\uparrow}{\underset{\sim}{v}, \mu)} \\
& \text { upper bounds } \mathrm{d}_{\mathrm{TV}} \\
& \text { at most } n
\end{aligned}
$$

- Note: unlike d_{TV}, weak contraction is NOT guaranteed.

D Use coupling:
\checkmark Sample X_{0}, X_{0}^{\prime} from optimal coupling of v, v^{\prime}.
\checkmark Evolve to get X_{1}, X_{1}^{\prime} while minimizing $\mathbb{E}\left[d\left(X_{1}, X_{1}^{\prime}\right)\right]$

Warmup example: hypercube

$\Omega=\{0,1\}^{n}$
\triangle Pick u.r. $i \in[n]$
\checkmark Replace coord i with $\operatorname{Ber}\left(\frac{1}{2}\right)$

D Pick same i and same $\operatorname{Ber}\left(\frac{1}{2}\right)$
D If $d\left(X_{0}, X_{0}^{\prime}\right)=k$, then

$$
\mathbb{E}\left[d\left(X_{1}, X_{1}^{\prime}\right) \mid X_{0}, X_{0}^{\prime}\right]=k-\frac{k}{n}
$$

\bigcirc Strategy: show \mathcal{W} contracts.

Lemma

When $\mathrm{q} \geqslant 4 \Delta+1$, for Metropolis P:

$$
\mathcal{W}\left(v P, v^{\prime} P\right) \leqslant\left(1-\frac{1}{\operatorname{poly}(n)}\right) \mathcal{W}\left(v, v^{\prime}\right)
$$

D This is enough because

$$
\begin{array}{r}
\mathcal{W}\left(v \mathrm{P}^{\mathrm{t}}, \mu\right) \leqslant\left(1-\frac{1}{\text { poly }}\right)^{\mathrm{t}} \underset{\uparrow}{\mathcal{W}(v, \mu)} \\
\text { upper bounds } \mathrm{d}_{\mathrm{TV}} \\
\text { at most } n
\end{array}
$$

- Note: unlike d_{TV}, weak contraction is NOT guaranteed.

D Use coupling:
\checkmark Sample X_{0}, X_{0}^{\prime} from optimal coupling of v, v^{\prime}.
D Evolve to get X_{1}, X_{1}^{\prime} while minimizing $\mathbb{E}\left[d\left(X_{1}, X_{1}^{\prime}\right)\right]$

Warmup example: hypercube

$\Omega=\{0,1\}^{n}$
\triangle Pick u.r. $i \in[n]$
\bigcirc Replace coord i with $\operatorname{Ber}\left(\frac{1}{2}\right)$

D Pick same i and same $\operatorname{Ber}\left(\frac{1}{2}\right)$
D If $d\left(X_{0}, X_{0}^{\prime}\right)=k$, then

$$
\mathbb{E}\left[d\left(X_{1}, X_{1}^{\prime}\right) \mid X_{0}, X_{0}^{\prime}\right]=k-\frac{k}{n}
$$

$\bigcirc \mathcal{W}\left(v P, v P^{\prime}\right) \leqslant(1-1 / n) \mathcal{W}\left(v, v^{\prime}\right)$
\bigcirc Strategy: show \mathcal{W} contracts.

Lemma

When $\mathrm{q} \geqslant 4 \Delta+1$, for Metropolis P:

$$
\mathcal{W}\left(v P, v^{\prime} P\right) \leqslant\left(1-\frac{1}{\operatorname{poly}(n)}\right) \mathcal{W}\left(v, v^{\prime}\right)
$$

D This is enough because

$$
\begin{array}{r}
\mathcal{W}\left(v \mathrm{P}^{\mathrm{t}}, \mu\right) \leqslant\left(1-\frac{1}{\text { poly }}\right)^{\mathrm{t}} \underset{\uparrow}{\mathcal{W}(v, \mu)} \\
\text { upper bounds } \mathrm{d}_{\text {TV }} \\
\text { at most } n
\end{array}
$$

- Note: unlike d_{TV}, weak contraction is NOT guaranteed.

D Use coupling:
\checkmark Sample X_{0}, X_{0}^{\prime} from optimal coupling of v, v^{\prime}.
D Evolve to get X_{1}, X_{1}^{\prime} while minimizing $\mathbb{E}\left[d\left(X_{1}, X_{1}^{\prime}\right)\right]$

Warmup example: hypercube

$$
\Omega=\{0,1\}^{n}
$$

\bigcirc Pick u.r. $i \in[n]$
\bigcirc Replace coord i with $\operatorname{Ber}\left(\frac{1}{2}\right)$

Pick same \mathfrak{i} and same $\operatorname{Ber}\left(\frac{1}{2}\right)$
D If $d\left(X_{0}, X_{0}^{\prime}\right)=k$, then

$$
\mathbb{E}\left[d\left(X_{1}, X_{1}^{\prime}\right) \mid X_{0}, X_{0}^{\prime}\right]=k-\frac{k}{n}
$$

$\bigcirc \mathcal{W}\left(v P, v P^{\prime}\right) \leqslant(1-1 / n) \mathcal{W}\left(v, v^{\prime}\right)$
$D \mathrm{t}_{\text {mix }}(\epsilon) \leqslant \mathrm{n} \log n+\mathrm{n} \log (1 / \epsilon)$

Take the Metropolis chain for colorings:
\checkmark Pick u.r. vertex v
\bigcirc Pick u.r. color c

- Color v with c if valid

Take the Metropolis chain for colorings:

- Pick u.r. vertex v
\bigcirc Pick u.r. color c
- Color v with c if valid

Coupling:

Take the Metropolis chain for colorings:

- Pick u.r. vertex v
\checkmark Pick u.r. color c
- Color v with c if valid

Coupling:
\checkmark Pick same v and same c

Take the Metropolis chain for colorings:

- Pick u.r. vertex v
\checkmark Pick u.r. color c
- Color v with c if valid

Coupling:
D Pick same \boldsymbol{v} and same \mathbf{c}
D If $d\left(X_{0}, X_{0}^{\prime}\right)=k$, then $d\left(X_{1}, X_{1}^{\prime}\right)$ is:

- k-1 (lucky)
© $\mathrm{k}+1$ (unlucky)
- k (neutral)

Take the Metropolis chain for colorings:
\checkmark Pick u.r. vertex v
\bigcirc Pick u.r. color c

- Color v with c if valid

Coupling:
D Pick same \boldsymbol{v} and same c
D If $d\left(X_{0}, X_{0}^{\prime}\right)=k$, then $d\left(X_{1}, X_{1}^{\prime}\right)$ is:

- k-1 (lucky)
© $\mathrm{k}+1$ (unlucky)
© k (neutral)
$D \mathbb{P}[$ lucky $] \geqslant(k / n) \cdot(q-2 \Delta) / q$
pick differing v
c available to both

Take the Metropolis chain for colorings: $\bigcirc \mathbb{P}[$ unlucky $\leqslant 2 k \Delta / q n$

- Pick u.r. vertex v
\checkmark Pick u.r. color c
- Color v with c if valid

Coupling:
D Pick same v and same \mathbf{c}
D If $d\left(X_{0}, X_{0}^{\prime}\right)=k$, then $d\left(X_{1}, X_{1}^{\prime}\right)$ is:

- k-1 (lucky)
© k+1 (unlucky)
© k (neutral)
$\bigcirc \mathbb{P}[$ lucky $] \geqslant(k / n) \cdot(q-2 \Delta) / q$
pick differing v
c available to both

Take the Metropolis chain for colorings: $\bigcirc \mathbb{P}[$ unlucky $\leqslant 2 k \Delta / q n$
\checkmark Pick u.r. vertex v
\checkmark Pick u.r. color c

- Color v with c if valid

c color of differing neighbor in X_{0} or X_{0}^{\prime}

\bigcirc We get $\mathbb{E}\left[d\left(X_{1}, X_{1}^{\prime}\right) \mid X_{0}, X_{0}^{\prime}\right] \leqslant$

$$
k-\frac{k(q-2 \Delta)}{q n}+\frac{2 k \Delta}{q n}=k \cdot\left(1-\frac{q-4 \Delta}{q n}\right)
$$

Coupling:

D Pick same \boldsymbol{v} and same c
D If $d\left(X_{0}, X_{0}^{\prime}\right)=k$, then $d\left(X_{1}, X_{1}^{\prime}\right)$ is:
$\bigcirc k-1$ (lucky)
© $\mathrm{k}+1$ (unlucky)
© k (neutral)
$D \mathbb{P}[$ lucky $] \geqslant(k / n) \cdot(q-2 \Delta) / q$
pick differing v

Take the Metropolis chain for colorings: $\bigcirc \mathbb{P}[$ unlucky $] \leqslant 2 k \Delta / q n$
\checkmark Pick u.r. vertex v
\bigcirc Pick u.r. color c

- Color v with c if valid

c color of differing neighbor in X_{0} or X_{0}^{\prime}

\bigcirc We get $\mathbb{E}\left[d\left(X_{1}, X_{1}^{\prime}\right) \mid X_{0}, X_{0}^{\prime}\right] \leqslant$

$$
k-\frac{k(q-2 \Delta)}{q n}+\frac{2 k \Delta}{q n}=k \cdot\left(1-\frac{q-4 \Delta}{q n}\right)
$$

Coupling:
D Pick same v and same \mathbf{c}
D If $d\left(X_{0}, X_{0}^{\prime}\right)=k$, then $d\left(X_{1}, X_{1}^{\prime}\right)$ is:
\bigcirc k-1 (lucky)
$\bigcirc \mathrm{k}+1$ (unlucky)
© k (neutral)
$\bigcirc \mathbb{P}[$ lucky $] \geqslant(k / n) \cdot(q-2 \Delta) / q$
pick differing v
c available to both

Take the Metropolis chain for colorings: $D \mathbb{P}[$ unlucky $\leqslant 2 k \Delta / q n$
\checkmark Pick u.r. vertex v
\bigcirc Pick u.r. color c

- Color v with c if valid

c color of differing neighbor in X_{0} or X_{0}^{\prime}

\bigcirc We get $\mathbb{E}\left[d\left(X_{1}, X_{1}^{\prime}\right) \mid X_{0}, X_{0}^{\prime}\right] \leqslant$

$$
k-\frac{k(q-2 \Delta)}{q n}+\frac{2 k \Delta}{q n}=k \cdot\left(1-\frac{q-4 \Delta}{q n}\right)
$$

Coupling:
D Pick same \boldsymbol{v} and same c
D If $d\left(X_{0}, X_{0}^{\prime}\right)=k$, then $d\left(X_{1}, X_{1}^{\prime}\right)$ is:
\bigcirc k-1 (lucky)
$\bigcirc \mathrm{k}+1$ (unlucky)
© k (neutral)
$\bigcirc \mathbb{P}[$ lucky $] \geqslant(k / n) \cdot(q-2 \Delta) / q$

Take the Metropolis chain for colorings: $D \mathbb{P}[$ unlucky $\leqslant 2 k \Delta / q n$
\checkmark Pick u.r. vertex v
\bigcirc Pick u.r. color c

- Color v with c if valid

c color of differing neighbor in X_{0} or X_{0}^{\prime}

\bigcirc We get $\mathbb{E}\left[d\left(X_{1}, X_{1}^{\prime}\right) \mid X_{0}, X_{0}^{\prime}\right] \leqslant$

$$
k-\frac{k(q-2 \Delta)}{q n}+\frac{2 k \Delta}{q n}=k \cdot\left(1-\frac{q-4 \Delta}{q n}\right)
$$

Coupling:
D Pick same \boldsymbol{v} and same c
D If $d\left(X_{0}, X_{0}^{\prime}\right)=k$, then $d\left(X_{1}, X_{1}^{\prime}\right)$ is:
\bigcirc k-1 (lucky)
$\bigcirc \mathrm{k}+1$ (unlucky)
© k (neutral)
$D \mathbb{P}[$ lucky $] \geqslant(k / n) \cdot(q-2 \Delta) / q$
D As long as $q \geqslant 4 \Delta+1$, we have contraction. :)

- We get

$$
\mathrm{t}_{\text {mix }}(\epsilon)=\mathrm{O}\left(\frac{\mathrm{q}}{\mathrm{q}-4 \Delta} \cdot n \log (n / \epsilon)\right)
$$

D Exercise: analyze Glauber this way.
\bigcirc Hamming distance is special.
D Hamming distance is special.
D There is a sparse graph s.t. $\mathrm{d}(\mathrm{x}, \mathrm{y})$ is shortest path from x to y.

$x \sim y$ when $x_{i} \neq y_{i}$ for one i
D Hamming distance is special.
D There is a sparse graph s.t. $\mathrm{d}(\mathrm{x}, \mathrm{y})$ is shortest path from x to y.

$x \sim y$ when $x_{i} \neq y_{i}$ for one i
\bigcirc In general, if d is shortest path metric derived from a (possibly weighted) graph, we can use path coupling [Bubley-Dyer].
D Hamming distance is special.
D There is a sparse graph s.t. $\mathrm{d}(\mathrm{x}, \mathrm{y})$ is shortest path from x to y.

$x \sim y$ when $x_{i} \neq y_{i}$ for one i
\bigcirc In general, if d is shortest path metric derived from a (possibly weighted) graph, we can use path coupling [Bubley-Dyer].

- Idea: only couple starting states X_{0}, X_{0}^{\prime} that are adjacent.

D Hamming distance is special.
D There is a sparse graph s.t. $\mathrm{d}(\mathrm{x}, \mathrm{y})$ is shortest path from x to y.

$x \sim y$ when $x_{i} \neq y_{i}$ for one i
\bigcirc In general, if d is shortest path metric derived from a (possibly weighted) graph, we can use path coupling [Bubley-Dyer].

- Idea: only couple starting states X_{0}, X_{0}^{\prime} that are adjacent.

Path coupling lemma

Suppose for all adjacent $X_{0} \sim X_{0}^{\prime}$ we can couple $\mathrm{X}_{1}, \mathrm{X}_{1}^{\prime}$ s.t.

$$
\mathbb{E}\left[d\left(X_{1}, X_{1}^{\prime}\right)\right] \leqslant(1-c) d\left(X_{0}, X_{0}^{\prime}\right)
$$

Then $\mathcal{W}\left(v P, v^{\prime} P\right) \leqslant(1-c) \mathcal{W}\left(v, v^{\prime}\right)$.

D Hamming distance is special.
D There is a sparse graph s.t. $\mathrm{d}(\mathrm{x}, \mathrm{y})$ is shortest path from x to y.

$x \sim y$ when $x_{i} \neq y_{i}$ for one i
\bigcirc In general, if d is shortest path metric derived from a (possibly weighted) graph, we can use path coupling [Bubley-Dyer].

- Idea: only couple starting states X_{0}, X_{0}^{\prime} that are adjacent.

Path coupling lemma

Suppose for all adjacent $X_{0} \sim X_{0}^{\prime}$ we can couple $\mathrm{X}_{1}, \mathrm{X}_{1}^{\prime}$ s.t.

$$
\mathbb{E}\left[d\left(X_{1}, X_{1}^{\prime}\right)\right] \leqslant(1-c) d\left(X_{0}, X_{0}^{\prime}\right)
$$

Then $\mathcal{W}\left(v P, v^{\prime} P\right) \leqslant(1-c) \mathcal{W}\left(v, v^{\prime}\right)$.
Proof:

D Hamming distance is special.
D There is a sparse graph s.t. $\mathrm{d}(\mathrm{x}, \mathrm{y})$ is shortest path from x to y.

$x \sim y$ when $x_{i} \neq y_{i}$ for one i
\bigcirc In general, if d is shortest path metric derived from a (possibly weighted) graph, we can use path coupling [Bubley-Dyer].

- Idea: only couple starting states X_{0}, X_{0}^{\prime} that are adjacent.

Path coupling lemma

Suppose for all adjacent $X_{0} \sim X_{0}^{\prime}$ we can couple $\mathrm{X}_{1}, \mathrm{X}_{1}^{\prime}$ s.t.

$$
\mathbb{E}\left[d\left(X_{1}, X_{1}^{\prime}\right)\right] \leqslant(1-c) d\left(X_{0}, X_{0}^{\prime}\right)
$$

Then $\mathcal{W}\left(v P, v^{\prime} P\right) \leqslant(1-c) \mathcal{W}\left(v, v^{\prime}\right)$.

Proof:

D Take arbitrary X_{0}, X_{0}^{\prime}.

D Hamming distance is special.
D There is a sparse graph s.t. $\mathrm{d}(\mathrm{x}, \mathrm{y})$ is shortest path from x to y.

$x \sim y$ when $x_{i} \neq y_{i}$ for one i
\bigcirc In general, if d is shortest path metric derived from a (possibly weighted) graph, we can use path coupling [Bubley-Dyer].

- Idea: only couple starting states X_{0}, X_{0}^{\prime} that are adjacent.

Path coupling lemma

Suppose for all adjacent $X_{0} \sim X_{0}^{\prime}$ we can couple $\mathrm{X}_{1}, \mathrm{X}_{1}^{\prime}$ s.t.

$$
\mathbb{E}\left[d\left(X_{1}, X_{1}^{\prime}\right)\right] \leqslant(1-c) d\left(X_{0}, X_{0}^{\prime}\right)
$$

Then $\mathcal{W}\left(v P, v^{\prime} P\right) \leqslant(1-c) \mathcal{W}\left(v, v^{\prime}\right)$.

Proof:

D Take arbitrary X_{0}, X_{0}^{\prime}.
D Let shortest path be

$$
X_{0}=v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{\mathrm{k}}=X_{0}^{\prime}
$$

D Hamming distance is special.
D There is a sparse graph s.t. $\mathrm{d}(\mathrm{x}, \mathrm{y})$ is shortest path from x to y.

$x \sim y$ when $x_{i} \neq y_{i}$ for one i
\bigcirc In general, if d is shortest path metric derived from a (possibly weighted) graph, we can use path coupling [Bubley-Dyer].

- Idea: only couple starting states X_{0}, X_{0}^{\prime} that are adjacent.

Path coupling lemma

Suppose for all adjacent $X_{0} \sim X_{0}^{\prime}$ we can couple $\mathrm{X}_{1}, \mathrm{X}_{1}^{\prime}$ s.t.

$$
\mathbb{E}\left[d\left(X_{1}, X_{1}^{\prime}\right)\right] \leqslant(1-c) d\left(X_{0}, X_{0}^{\prime}\right)
$$

Then $\mathcal{W}\left(v P, v^{\prime} P\right) \leqslant(1-c) \mathcal{W}\left(v, v^{\prime}\right)$.

Proof:

D Take arbitrary X_{0}, X_{0}^{\prime}.
D Let shortest path be

$$
X_{0}=v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{\mathrm{k}}=X_{0}^{\prime}
$$

\bigcirc By triangle ineq $\mathcal{W}\left(\mathbb{1}_{X_{0}} \mathrm{P}, \mathbb{1}_{X_{0}^{\prime}} \mathrm{P}\right) \leqslant$

$$
\begin{gathered}
\sum_{i} \mathcal{W}\left(\mathbb{1}_{v_{i}} P, \mathbb{1}_{v_{i+1}} P\right) \leqslant \\
(1-c) \sum_{i} d\left(v_{i}, v_{i+1}\right)=(1-c) d\left(X_{0}, X_{0}^{\prime}\right)
\end{gathered}
$$

Triangle inequality holds because couplings can be stitched together!

Exercise: there is joint dist with marginals $\pi_{i, i+1}$!

