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drv
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dist(X¢ | T = k) = stationary

[ €—>
> T all coords

replaced
O tmix(e) <nlog(n/e)
O Ergodic flow: Q(x,y) = u(x)P(x,y)
> Lemma: stationary <+ proper flow
(> Detailed balance/time-reversible:

Q(X)y) = Q(U>X)
> Metropolis filter: P(x,y) —
: (y)P(y,x)
Pl y) min{ 1, ERIEES |

2/16



Designing Markov Chains
> Markov kernels
> Combination with time-reversal

Mixing via Transport
> Wasserstein distance
> Path coupling




> Markov kernels
> Combination with time-reversal

Mixing via Transport
> Wasserstein distance
> Path coupling




\Morkov kernel

We can generalize time-reversal to

Markov kernel

o  Qf
axQ’
Pe IRZOX

Zy P(X>y) =1

5/16



\Morkov kernel

We can generalize time-reversal to

Markov kernel

o  Qf
axQ’
Pe IRZOX

Zy P(X>y) =1

> Markov kernels are conditional
dists. Combined with dist uon Q,
they give joint dist/ergodic flow:

Q(X>U) = H(X)P(X,U)

5/16



\Morkov kernel /

We can generalize time-reversal to

Markov kernel > Time-reversal:

Q Q (U\’ ] Q(Y3LJ)

axQ’
P e R;o

Zy P(X>y) =1

> Markov kernels are conditional
dists. Combined with dist uon Q,
they give joint dist/ergodic flow:

Q(X>U) = H(X)P(X,U)

5/16



\Morkov kernel /

We can generalize time-reversal to

Markov kernel > Time-reversal:

Q Q (U\’] Q(X3U)
Oxa > Dist on Q’: u° = uP is marginal of
PER, yin Q°or Q.

Zy P(X>y) =1

> Markov kernels are conditional
dists. Combined with dist uon Q,
they give joint dist/ergodic flow:

Q(X>U) = H(X)P(X,U)

5/16



\Morkov kernel

J

We can generalize time-reversal to

Markov kernel > Time-reversal:

Q'

axQ’
P e R;o

Zy P(X>U) =1

> Markov kernels are conditional

dists. Combined with dist uon Q,

they give joint dist/ergodic flow:
Q(X)U) = H(X)P(X,U)

Q°(y,x) = Q(x,y)
> Dist on Q’: u° = uP is marginal of
yin Q°or Q.
> The time-reversal Markov kernel is
the conditional dist of x given y:

PO(y,x) = u(xu)ol’(;ﬁ,y)

5/16



\Morkov kernel /

We can generalize time-reversal to

Markov kernel > Time-reversal:

o’ Q°(y,x) = Q(x,y)
, > Dist on Q’: u° = uP is marginal of
P c RQXQ . o
>0 yinQ°orQ.
S Plxy) =1 > The time-reversal Markov kernel is
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Algorithmic implementation:

fort=0,1,... do —

sample y¢ ~ N(x, )

for z with N(z,y¢) > 0 do
| Pz« u2)N(z,y0)

sample z with prob « p,

| Xt+1 sample

> wis uniform on subset S of R4
> N:x > urline £ through x
> P: then choose u.ar. from{nS

> Want sparse columns for N.

‘ . Example: restricted Gaussian
O Ideally we can simulate N, and its

columns are not just sparse but > diston RY
efficiently enumerable. O N x—y=x+gforg~N(0,cl)
> P: then sample z w.p. o
restricted Gaussian —>p(z)e*|\2*yllz/20
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Summary

Design P time-reversible w.rt. w:
r(x)P(x,y) = nly)P(y,x)

Metropolis filter
> Have some initial P
> Modify it to

Pl y) min{] u(y)P(y,X)}

r(x)P(x,y)

Combination with time-reversal

> Have some Markov kernel N
> Form NN°

Question: do these guarantee irreducible/aperiodic?
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& Input: graph Gand q € N
> Goal: sample profper colorings

adjacent verts colored differently

1]

> NP-hard to even find onel!
> Easy when g >%+1
maximum degree

for each vertexv do
pick a color from
[q] — {neighbors’ colors}

\VAV,

Open: approx sample/count when
q=>A+1

Open: Metropolis/Glauber when:
q=A+2

Best-known [Chen-Delcourt-Moitra-
Perarnau-Postle™8]:
q>(%—§A
some tiny constant
We will show q > 4A + 1 works.

Then we will improve to q > 2A +1.
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> Strategy: show W contracts.

Lemma

When q > 4A + 1, for Metropolis P:

! )W(v,v’)

W(vP,v'P) < (1 -
poly(n)

> This is enough because
t
t 1
W(V]: ,M)< (1 - poly) W(X) IJ')

upper bounds drv at most n

> Note: unlike dtv, weak contraction
is NOT guaranteed.

/
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coupling of v,v’.

> Evolve to get Xy, X} while
minimizing E[d(X7, X})]

13/16



> Strategy: show W contracts. > Use coupling:
> Sample Xo, X{ from optimal
Somple Xe. X I
When q > 4A + 1, for Metropolis P: > Evolve to get X7, X} while
] minimizing E[d(X7, X})]

/ /
WP, vP) < (] - pon(n)) WSRO\ rmup example: hypercube
C a={0,1"
. > Pickur.ie n]
WP )< (1 - ﬁ) W(v,u) > Replace coord i
A ) : 1
with Ber(5)

> This is enough because

upper bounds drv at most n

> Note: unlike dtv, weak contraction
is NOT guaranteed.

13/16



> Strategy: show W contracts. > Use coupling:
> Sample Xo, X{ from optimal
Somple Xe. X I
When q > 4A + 1, for Metropolis P: > Evolve to get X7, X} while
] minimizing E[d(X7, X})]

/ /
WP, vP) < (] - pon(n)) WSRO\ rmup example: hypercube
C a={0,1"
. > Pickur.ie n]
WP )< (1 - ﬁ) W(v,u) > Replace coord i
A ) : 1
with Ber(5)

> This is enough because

upper bounds drv at most n

> Note: unlike dry, weak contraction &> Pick same i and same Ber(3)
is NOT guaranteed.

13/16



> Strategy: show W contracts. > Use coupling:
> Sample Xo, X{ from optimal
Somple Xe. X I
When q > 4A + 1, for Metropolis P: > Evolve to get X7, X} while
] minimizing E[d(X7, X})]

/ /
WP, vP) < (] - pon(n)) WSRO\ rmup example: hypercube
G a={o,1"
. > Pickur.ie n]
WP )< (1 - ﬁ) W(v,u) > Replace coord i
A ) : 1
with Ber(5)

> This is enough because

upper bounds drv at most n

> Note: unlike dry, weak contraction &> Pick same i and same Ber(3)
is NOT guaranteed. O If d(Xo, X)) =k, then

13/16



> Strategy: show W contracts. > Use coupling:
> Sample Xo, X{ from optimal
Somple Xe. X I
When q > 4A + 1, for Metropolis P: > Evolve to get X7, X} while
] minimizing E[d(X7, X})]

/ /
WP, vP) < (] - pon(n)) WSRO\ rmup example: hypercube
G a={o,1"
. > Pickur.ie n]
WP )< (1 - ﬁ) W(v,u) > Replace coord i
A ) : 1
with Ber(5)

> This is enough because

upper bounds drv at most n
> Note: unlike dry, weak contraction &> Pick same i and same Ber(3)
is NOT guaranteed. O If d(Xo, X)) =k, then

' E[d(X71,X}) | Xo, X4l =k — &

o000 B WP YP) < (1= 1/m) Wi, v)

13/16



> Strategy: show W contracts. > Use coupling:

> Sample Xo, X{ from optimal
o X X I
When q > 4A + 1, for Metropolis P: > Evolve to get X;, X/ while
] minimizing E[d(X7, X})]

/ /
WP, v'P) < (] - m) LSOO \\ormup example: hypercube

o C a={0,1"
> This is enough because . B Pick urie [
W(Vft, H)< (1 - ﬁ) W(v,u) > Replace coord i
upper bounds d ! with Ber(%)
TV at mostn
> Note: unlike dry, weak contraction &> Pick same i and same Ber(3)
is NOT guaranteed. O If d(Xo, X)) =k, then

' E[d(X71,X}) | Xo, X4l =k — &
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Take the Metropolis chain for colorings:

> Pick ur. vertex v
> Pick u.r. color ¢

> Color v with ¢ if valid
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Take the Metropolis chain for colorings: > P[unlucky] < 2kA/qn
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Take the Metropolis chain for colorings: > Plunlucky] < 2kA/qn
~

O Pick ur vertexv c color of differing neighbor in X, or X}
> Pick ur. cc.)lorc. | D> We get E[d(X1,X]) | Xo, X§] <
> Color v with ¢ if valid o k(Q*ZA)JeriA:k,O B 74A)
qn qn qn

Coupling: > Aslongas q > 4A+ 1, we have
> Pick some v and some ¢ contraction. @
O If d(Xo, X(/)) =k, then d(Xj, X;) is: O We get

> k—1 (lucky) ) _ q .

> k41 (unlucky) tmix(e) = O<q*4A nlog(n/€)>
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Take the Metropolis chain for colorings:

> Pick same vand same ¢

O If d(Xo, X§) =k, then d(X;,X]) is:
> k—1 (lucky)
> k+1 (unlucky)
> k (neutral)

& Plluckyl =(k/n)- (g —24)/q

7 ~
pick differing v ¢ available to both

(D

> Pick ur. vertex v
> Pick u.r. color ¢
> Color v with ¢ if valid

Coupling:

Plunlucky] < 2kA/qn
\
c color of differing neighbor in X, or X}
We get E[d(X1,X]) | Xo, X{] <

(1-252)

k(g—24) | 2kA _
k————4 £ =%k an

qn qn

> Aslongas q>4A+ 1, we have

contraction. @

O We get

tmix(€) = O g - log(n/e))

Exercise: analyze Glauber this wauy.
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> Hamming distance is special. Path coupling lemma

O Thereis a sparse graph st d(x,y)  Suppose for all adjacent Xo ~ X} we
is shortest path from x to y. can couple X1, X} st.

Then W(vP,v/P) < (1 —¢c) W(v,v').

x ~y when x; # y; for one i Proof:
O In general, if d is shortest path O Take arbitrary Xo, Xg.
metric derived from a (possibly > Let shortest path be

weighted) graph, we can use path
coupling [Bubley-Dyer].
> Idea: only couple starting states
Xo, X} that are adjocent, 2 i W1, P 1y, P) <
(1—c) i dlvi,vit1) = (1 —c)d(Xo, Xp)

XOZVO — V] —>~~—>Vk:X6
O By triangle ineq W(Tx,P, Tx;P) <
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Triangle inequality holds because couplings can
be together!

70,1 71,2 Te—1,k

Vo — V] Vi

Exercise: there is joint dist with marginals 7ty 41!



