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v,vP,vPZ, ... is Cauchu:
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SO it converges.
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(> Stationary is unique, because
dtv = 0 for any two limits. >

Example: no strong contraction

S S a e

There is an optimal coupling
dTV(V>V,) = P(X,X/)~W[X # X'].

Will construct coupling for vP, v'P.

Sample (Xo,Xg) ~ .
Evolve by P to get X1, X}:
& if Xo = X{, use same transition
> else, evolve arbitrarily
A

for example, independently

We get

P[X1 # Xi] < P[Xo # X{]
Rhs is dtv(v,v’) and lhsis an
upper bound on dty(vP,v'P).
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> When irreducible, all x € O have same period.
> Aperiodicity is easy to get via lazification:
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\Strong stationary time /
> Suchavis called a srorc

> 0=, 1}n stationary time [Aldous-Diaconis]
> Pickuriel i Lemma ]
> Replace coord i Plt>tl<e = tmix(e) <t

with Ber

Proof: we can write dist(X¢) @
stationary: uniform

Pt = 0]dist(Xo | T =0)P*+

Xo =+ X1 =Xz — ... Plt = 1dist(X; [ T=T1)P*" "+

> Define T first time we have et
replaced every coordinate € [n] Plt = t]dist(X¢ | T=t)+
> We have for every k: Plt > tldist(X¢ | T > t)

dist(X | T=k) = uniform and every dist(X; | T =1) is .
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Plt>t <n(1—1/n)t <ne /™
> So we can bound the mixing time ©
tmix(€) < nlogn+nlog(1/e)

> Poll: is this tight?
> Exercise: show tmix = Q(nlogn)

> Note: we have proved cutoff, even though
cutoff does hold for this chain.
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\How to design chains?

Criteria: correct stationary dist

Definition: ergodic flow
For dist u and chain P we define er-

godic flow Q € RZ;* as
Qs gl =l s )

> Lemma: prob flow from x to y

u stationary « Q Bgoper flow

incoming=outgoing

> Proof:
2 x u(ﬁ)P(x,y):Zz u(yQP(w z)

(1P (y) 1(y)
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\How to design chains? /

Criteria: correct stationary dist
Definition: ergodic flow The two-state chain

For dist u and chain P we define er- P
f axQ
godic flow Q € RS as ]_pCpOC@]_q
Q(X)U) :H(X)P(X7U) q
A
. prob flow from x to y
> Lemma: has stationary = [q/(p + q),p/(p +
u stationary « Q Bgoper flow q)] and ergodic flow
incoming=outgoing g
> Proof: ptq
T vIP 06 Y)=Y 2 1(y)P(y,2) ra e

(1P)(y) 1(y) pta

15/19



Q(X>y) = Q(U,X)
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Example: hypercube
Q(X)y) ZQ(U>X) (> Q={0,1"

> Pickurie n]

Replace coord i
with Ber(%)

> Thisis also called detailed balance.

> Meaning of time-reversibility: if we
watch a movie of the chain at
stationarity we cannot tell the

o _ Non-example: cycle
direction of time.

> Very useful design tool: make sure b o=z, f<—o
P is chosen so that > Gofromxtox+1

w(x)P(x,y) = ny)P(y,x) \( O/
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Properties:

> Conditioned on Xj, left and right
are independent.

H(X)P(X)y) = H(y)Po(l.:bX)

> Time-reversible: P = P°
> Time-homogeneous: every

(Xi, Xiy1) is distributed ~ Q
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\Time-reversol /

A Markov chain P and stationary dist n

defines process Given P,p, time-reversal P° is the
chain whose ergodic flow is the rever-
sal of P’s.

e X2 X=Xy >,

Properties:

> Conditioned on Xj, left and right
are independent.

H(X)P(X)y) = H(y)Po(l.:bX)

' > Time-reversible: P = P°

> T;(mt;hompgdgntepbui Zverg > Time-reversal is more generally
(Xi, Xi41) is distributed ~ Q defined for Markov kernels

If we reverse the arrows, we still get a Pec RQOXQ/:

similar process w(x)P(x,y) = 1°(y)P°(y,x)

e Xy 2 X o X >, where p° = puP.

17/19
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\Metropolis filter /

> Suppose P doesn’t have p as
stationary.

> Define P/(x,y) for x # y:

u(y)P(y,x)}
1(x)P(x,y)

P(x,y)min{],

> Put remaining prob as x — x
transition.

> Only need to know p up to
proportionality.
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\Metropolis filter /

> Suppose P doesn’t have u as Example: coloring

stationary.

. / > Q = colorings o—0
> Define P’(x,y) for x # y: > Pick ur vertv l
_ n(y)P(y,x) } & Pick u.r. color ¢
P L5
(%, y) mln{ ' (P, Y) > Replace v's color with ¢

> Put remaining prob as x — x stationary: not proper colorings

transition. o ' o
> Metropolis filter: reject transitions

& Only need to know p up to to invalid colorings.

proportionality.

19/19



