CS 263: Counting and Sampling

Nima Anari
ssamad
,
slides for

Markov Chain Mixing

Review

D [Pólya]'s scheme:

Review

D [Pólya]'s scheme:

\bigcirc Good signing exists for planar graphs [Fisher-Kasteleyn-Temperley].

Review

D [Pólya]'s scheme:

\bigcirc Good signing exists for planar graphs [Fisher-Kasteleyn-Temperley].

transition matrix: $P \in \mathbb{R}_{\geqslant 0}^{\Omega \times \Omega}$

Review

D [Pólya]'s scheme:

\bigcirc Good signing exists for planar graphs [Fisher-Kasteleyn-Temperley].

transition matrix: $P \in \mathbb{R}_{\geqslant 0}^{\Omega \times \Omega}$
D Stationary dist: $\mu=\mu \mathrm{P}$

Review

D [Pólya]'s scheme:

$$
\operatorname{det}\left(\left[\begin{array}{ll}
+1 & -1 \\
+1 & +1
\end{array}\right]\right)=\operatorname{per}\left(\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\right)
$$

\bigcirc Good signing exists for planar graphs [Fisher-Kasteleyn-Temperley].

transition matrix: $P \in \mathbb{R}_{\geqslant 0}^{\Omega \times \Omega}$
D Stationary dist: $\mu=\mu \mathrm{P}$

Fundamental theorem

Every ergodic chain has a unique stationary dist μ, and for any dist ν

$$
\lim _{t \rightarrow \infty} v P^{t}=\mu
$$

Markov Chain Mixing

- Fundamental theorem
- Mixing time growth
- Strong stationary time

Designing Markov Chains
\bigcirc Reversible chains
\bigcirc Metropolis filter

Markov Chain Mixing

- Fundamental theorem
- Mixing time growth
- Strong stationary time

Designing Markov Chains
D Reversible chains
© Metropolis filter

- Irreducible: possible to reach from every x to every y.
- Irreducible: possible to reach from every x to every y.
\triangleright Aperiodic: length of cycles from x to x have $\mathrm{gcd}=1$.
- Irreducible: possible to reach from every x to every y.
\triangleright Aperiodic: length of cycles from x to x have $\operatorname{gcd}=1$.
- Ergodic: irreducible + aperiodic
- Irreducible: possible to reach from every x to every y.
\triangleright Aperiodic: length of cycles from x to x have $\operatorname{gcd}=1$.
- Ergodic: irreducible + aperiodic

Fundamental theorem

Every ergodic chain has a unique stationary dist μ, and for any dist ν

$$
\lim _{t \rightarrow \infty} v P^{t}=\mu
$$

- Irreducible: possible to reach from every x to every y.
D Aperiodic: length of cycles from x to x have $\operatorname{gcd}=1$.
- Ergodic: irreducible + aperiodic

Fundamental theorem

Every ergodic chain has a unique stationary dist μ, and for any dist v

$$
\lim _{t \rightarrow \infty} v P^{t}=\mu
$$

D Stationary dist: $\mu=\mu \mathrm{P}$

D Irreducible: possible to reach from every x to every y.
D Aperiodic: length of cycles from x to x have gcd $=1$.

- Ergodic: irreducible + aperiodic

Fundamental theorem

Every ergodic chain has a unique stationary dist μ, and for any dist v

$$
\lim _{t \rightarrow \infty} v P^{t}=\mu
$$

D Stationary dist: $\mu=\mu \mathrm{P}$

D Irreducible: possible to reach from every x to every y.
D Aperiodic: length of cycles from x to x have $\operatorname{gcd}=1$.
© Ergodic: irreducible + aperiodic

Fundamental theorem

Every ergodic chain has a unique stationary dist μ, and for any dist v

$$
\lim _{t \rightarrow \infty} v P^{t}=\mu
$$

D Stationary dist: $\mu=\mu \mathrm{P}$

D Irreducible: possible to reach from every x to every y.
D Aperiodic: length of cycles from x to x have $\operatorname{gcd}=1$.
© Ergodic: irreducible + aperiodic

Fundamental theorem

Every ergodic chain has a unique stationary dist μ, and for any dist v

$$
\lim _{t \rightarrow \infty} v P^{t}=\mu
$$

				$v \mathrm{P}^{0}$
x	y	z	\cdots	

D Stationary dist: $\mu=\mu \mathrm{P}$

D Irreducible: possible to reach from every x to every y.
D Aperiodic: length of cycles from x to x have $\operatorname{gcd}=1$.
© Ergodic: irreducible + aperiodic

Fundamental theorem

Every ergodic chain has a unique stationary dist μ, and for any dist v

$$
\lim _{t \rightarrow \infty} v P^{t}=\mu
$$

x	y	z	\cdots	

D Stationary dist: $\mu=\mu \mathrm{P}$

How to prove convergence?

How to prove convergence?

contraction

Weak contraction
$\mathrm{d}_{\mathrm{TV}}\left(v \mathrm{P}, \nu^{\prime} \mathrm{P}\right) \leqslant_{\uparrow} \mathrm{d}_{\mathrm{TV}}\left(v, v^{\prime}\right)$
if we could sneak in a 0.99 we'd be done

Weak contraction

$\mathrm{d}_{\mathrm{TV}}\left(v \mathrm{P}, \nu^{\prime} \mathrm{P}\right) \leqslant_{\uparrow} \mathrm{d}_{\mathrm{TV}}\left(\nu, v^{\prime}\right)$
if we could sneak in a 0.99 we'd be done
D Strong contraction \Longrightarrow
$v, v \mathrm{P}, v \mathrm{P}^{2}, \ldots$ is Cauchy:

$$
\mathrm{d}_{\mathrm{TV}}\left(v \mathrm{P}^{n}, v \mathrm{P}^{\mathrm{m}}\right) \leqslant 0.99 \min \{n, m\}
$$

so it converges.

Weak contraction

$$
\mathrm{d}_{\mathrm{TV}}\left(v \mathrm{P}, v^{\prime} \mathrm{P}\right) \leqslant_{\uparrow} \mathrm{d}_{\mathrm{TV}}\left(v, v^{\prime}\right)
$$

if we could sneak in a 0.99 we'd be done
\bigcirc Strong contraction \Longrightarrow
$v, \nu \mathrm{P}, \nu \mathrm{P}^{2}, \ldots$ is Cauchy:

$$
\mathrm{d}_{\mathrm{TV}}\left(v \mathrm{P}^{n}, v \mathrm{P}^{\mathrm{m}}\right) \leqslant 0.99 \min \{n, m\}
$$

so it converges.

- Stationary is unique, because $\mathrm{d}_{\mathrm{TV}}=0$ for any two limits.

Weak contraction

$$
\mathrm{d}_{\mathrm{TV}}\left(v \mathrm{P}, v^{\prime} \mathrm{P}\right) \leqslant_{\uparrow} \mathrm{d}_{\mathrm{TV}}\left(v, v^{\prime}\right)
$$

if we could sneak in a 0.99 we'd be done
\bigcirc Strong contraction \Longrightarrow
$v, \nu \mathrm{P}, \nu \mathrm{P}^{2}, \ldots$ is Cauchy:

$$
\mathrm{d}_{\mathrm{TV}}\left(v \mathrm{P}^{\mathrm{n}}, v \mathrm{P}^{\mathrm{m}}\right) \leqslant 0.99^{\min \{n, m\}}
$$

so it converges.

- Stationary is unique, because $\mathrm{d}_{\mathrm{TV}}=0$ for any two limits.

Example: no strong contraction

Weak contraction

Proof of weak contraction:

$$
\mathrm{d}_{\mathrm{TV}}\left(v \mathrm{P}, \mathrm{v}^{\prime} \mathrm{P}\right) \leqslant_{\uparrow} \mathrm{d}_{\mathrm{TV}}\left(v, v^{\prime}\right)
$$

if we could sneak in a 0.99 we'd be done
D Strong contraction \Longrightarrow
$v, v \mathrm{P}, v \mathrm{P}^{2}, \ldots$ is Cauchy:

$$
\mathrm{d}_{\operatorname{TV}}\left(v \mathrm{P}^{\mathrm{n}}, v \mathrm{P}^{\mathrm{m}}\right) \leqslant 0.99^{\min \{n, m\}}
$$

so it converges.

- Stationary is unique, because $\mathrm{d}_{\mathrm{TV}}=0$ for any two limits.

Example: no strong contraction

Weak contraction

$\mathrm{d}_{\mathrm{TV}}\left(\nu \mathrm{P}, \nu^{\prime} \mathrm{P}\right) \leqslant \mathrm{d}_{\uparrow \mathrm{TV}}\left(\nu, v^{\prime}\right)$
if we could sneak in a 0.99 we'd be done

- Strong contraction \Longrightarrow
$v, v P, v P^{2}, \ldots$ is Cauchy:

$$
\mathrm{d}_{\mathrm{TV}}\left(v \mathrm{P}^{n}, v \mathrm{P}^{\mathrm{m}}\right) \leqslant 0.99^{\min \{n, m\}}
$$

so it converges.

- Stationary is unique, because $d_{T V}=0$ for any two limits.

Example: no strong contraction

Proof of weak contraction:
D There is an optimal coupling π : $\mathrm{d}_{\mathrm{TV}}\left(\mathrm{v}, \mathrm{v}^{\prime}\right)=\mathbb{P}_{\left(\mathrm{X}, \mathrm{X}^{\prime}\right) \sim \pi}\left[\mathrm{X} \neq \mathrm{X}^{\prime}\right]$.

Weak contraction

$\mathrm{d}_{\mathrm{TV}}\left(v \mathrm{P}, \nu^{\prime} \mathrm{P}\right) \leqslant \mathrm{d}_{\uparrow \mathrm{TV}}\left(\nu, v^{\prime}\right)$
if we could sneak in a 0.99 we'd be done
\bigcirc Strong contraction \Longrightarrow
$v, \nu \mathrm{P}, \nu \mathrm{P}^{2}, \ldots$ is Cauchy:

$$
\mathrm{d}_{\mathrm{TV}}\left(v \mathrm{P}^{\mathrm{n}}, v \mathrm{P}^{\mathrm{m}}\right) \leqslant 0.99^{\min \{n, m\}}
$$

so it converges.

- Stationary is unique, because $\mathrm{d}_{\mathrm{TV}}=0$ for any two limits.

Example: no strong contraction

Proof of weak contraction:
D There is an optimal coupling π :

$$
\mathrm{d}_{\mathrm{TV}}\left(v, v^{\prime}\right)=\mathbb{P}_{\left(\mathrm{X}, \mathrm{X}^{\prime}\right) \sim \pi}\left[\mathrm{X} \neq \mathrm{X}^{\prime}\right] .
$$

D Will construct coupling for $v \mathrm{P}, \nu^{\prime} \mathrm{P}$.

Weak contraction

$$
\mathrm{d}_{\mathrm{TV}}\left(v \mathrm{P}, v^{\prime} \mathrm{P}\right) \leqslant_{\uparrow} \mathrm{d}_{\mathrm{TV}}\left(v, v^{\prime}\right)
$$

if we could sneak in a 0.99 we'd be done
\bigcirc Strong contraction \Longrightarrow
$v, \nu \mathrm{P}, \nu \mathrm{P}^{2}, \ldots$ is Cauchy:

$$
d_{T V}\left(v P^{n}, v P^{m}\right) \leqslant 0.99^{\min \{n, m\}}
$$

so it converges.
D Stationary is unique, because $\mathrm{d}_{\mathrm{TV}}=0$ for any two limits.

Example: no strong contraction

Proof of weak contraction:
D There is an optimal coupling π :

$$
\mathrm{d}_{\mathrm{TV}}\left(v, v^{\prime}\right)=\mathbb{P}_{\left(\mathrm{X}, \mathrm{X}^{\prime}\right) \sim \pi}\left[\mathrm{X} \neq \mathrm{X}^{\prime}\right] .
$$

D Will construct coupling for $v P, v^{\prime} P$.
\checkmark Sample $\left(X_{0}, X_{0}^{\prime}\right) \sim \pi$.

Weak contraction

$\mathrm{d}_{\mathrm{TV}}\left(v \mathrm{P}, \nu^{\prime} \mathrm{P}\right) \leqslant_{\uparrow} \mathrm{d}_{\mathrm{TV}}\left(v, v^{\prime}\right)$
if we could sneak in a 0.99 we'd be done
\bigcirc Strong contraction \Longrightarrow
$v, \nu \mathrm{P}, \nu \mathrm{P}^{2}, \ldots$ is Cauchy:

$$
\mathrm{d}_{\mathrm{TV}}\left(v \mathrm{P}^{\mathrm{n}}, v \mathrm{P}^{\mathrm{m}}\right) \leqslant 0.99^{\min \{n, m\}}
$$

so it converges.
D Stationary is unique, because $\mathrm{d}_{\mathrm{TV}}=0$ for any two limits.

Example: no strong contraction

Proof of weak contraction:
D There is an optimal coupling π :

$$
\mathrm{d}_{\mathrm{TV}}\left(v, v^{\prime}\right)=\mathbb{P}_{\left(\mathrm{X}, \mathrm{X}^{\prime}\right) \sim \pi}\left[\mathrm{X} \neq \mathrm{X}^{\prime}\right] .
$$

\bigcirc Will construct coupling for $v P, v^{\prime} P$.
D Sample $\left(\mathrm{X}_{0}, \mathrm{X}_{0}^{\prime}\right) \sim \pi$.
D Evolve by P to get X_{1}, X_{1}^{\prime} :
D if $X_{0}=X_{0}^{\prime}$, use same transition
D else, evolve arbitrarily
for example, independently

Weak contraction

$d_{T V}\left(v P, v^{\prime} P\right) \leqslant d_{T V}\left(v, v^{\prime}\right)$
if we could sneak in a 0.99 we'd be done
\bigcirc Strong contraction \Longrightarrow
$v, \nu \mathrm{P}, \nu \mathrm{P}^{2}, \ldots$ is Cauchy:

$$
\mathrm{d}_{\mathrm{TV}}\left(v \mathrm{P}^{\mathrm{n}}, v \mathrm{P}^{\mathrm{m}}\right) \leqslant 0.99^{\min \{n, m\}}
$$

so it converges.
D Stationary is unique, because $\mathrm{d}_{\mathrm{TV}}=0$ for any two limits.

Example: no strong contraction

Proof of weak contraction:
D There is an optimal coupling π :

$$
\mathrm{d}_{\mathrm{TV}}\left(v, v^{\prime}\right)=\mathbb{P}_{\left(\mathrm{X}, \mathrm{X}^{\prime}\right) \sim \pi}\left[\mathrm{X} \neq \mathrm{X}^{\prime}\right] .
$$

D Will construct coupling for $v P, v^{\prime} P$.
D Sample $\left(\mathrm{X}_{0}, \mathrm{X}_{0}^{\prime}\right) \sim \pi$.
D Evolve by P to get X_{1}, X_{1}^{\prime} :
D if $X_{0}=X_{0}^{\prime}$, use same transition
D else, evolve arbitrarily
for example, independently
D We get

$$
\mathbb{P}\left[X_{1} \neq X_{1}^{\prime}\right] \leqslant \mathbb{P}\left[X_{0} \neq X_{0}^{\prime}\right]
$$

Weak contraction

$\mathrm{d}_{\mathrm{TV}}\left(v \mathrm{P}, \nu^{\prime} \mathrm{P}\right) \leqslant_{\uparrow} \mathrm{d}_{\mathrm{TV}}\left(v, v^{\prime}\right)$
if we could sneak in a 0.99 we'd be done
D Strong contraction \Longrightarrow
$v, \nu \mathrm{P}, \nu \mathrm{P}^{2}, \ldots$ is Cauchy:

$$
\mathrm{d}_{\mathrm{TV}}\left(v \mathrm{P}^{\mathrm{n}}, v \mathrm{P}^{\mathrm{m}}\right) \leqslant 0.99^{\min \{n, m\}}
$$

so it converges.
D Stationary is unique, because $\mathrm{d}_{\mathrm{TV}}=0$ for any two limits.

Example: no strong contraction

Proof of weak contraction:
D There is an optimal coupling π :

$$
\mathrm{d}_{\mathrm{TV}}\left(v, v^{\prime}\right)=\mathbb{P}_{\left(\mathrm{X}, \mathrm{X}^{\prime}\right) \sim \pi}\left[\mathrm{X} \neq \mathrm{X}^{\prime}\right] .
$$

D Will construct coupling for $v P, v^{\prime} P$.
D Sample $\left(\mathrm{X}_{0}, \mathrm{X}_{0}^{\prime}\right) \sim \pi$.
D Evolve by P to get X_{1}, X_{1}^{\prime} :
D if $X_{0}=X_{0}^{\prime}$, use same transition
D else, evolve arbitrarily
for example, independently
D We get

$$
\mathbb{P}\left[X_{1} \neq X_{1}^{\prime}\right] \leqslant \mathbb{P}\left[X_{0} \neq X_{0}^{\prime}\right]
$$

\checkmark Rhs is $d_{T V}\left(v, v^{\prime}\right)$ and Ihs is an upper bound on $d_{T v}\left(v P, v^{\prime} P\right)$.
no ergodicity needed

- Weak contraction always holds, but not enough :
- Weak contraction always holds, but not enough $:-$
D Idea: what if different starts X_{0}, X_{0}^{\prime} have chance of collision?
- Weak contraction always holds, but not enough $:-$
- Idea: what if different starts X_{0}, X_{0}^{\prime} have chance of collision?
D Suppose $\mathrm{P}(\mathrm{x}, \mathrm{y})>0$ for all x, y :

- Weak contraction always holds, but not enough $:-$
- Idea: what if different starts X_{0}, X_{0}^{\prime} have chance of collision?
D Suppose $\mathrm{P}(\mathrm{x}, \mathrm{y})>0$ for all x, y :

D Then in our coupling

$$
\mathbb{P}\left[X_{1} \neq X_{1}^{\prime}\right] \leqslant(1-\epsilon) \mathbb{P}\left[X_{0} \neq X_{0}^{\prime}\right]
$$

- Weak contraction always holds, but not enough $:-$
- Idea: what if different starts X_{0}, X_{0}^{\prime} have chance of collision?
D Suppose $\mathrm{P}(\mathrm{x}, \mathrm{y})>0$ for all x, y :

D Then in our coupling

$$
\mathbb{P}\left[X_{1} \neq X_{1}^{\prime}\right] \leqslant(1-\epsilon) \mathbb{P}\left[X_{0} \neq X_{0}^{\prime}\right]
$$

- Strong contraction holds ;)
- Weak contraction always holds, but not enough $: \cdot$
- Idea: what if different starts X_{0}, X_{0}^{\prime} have chance of collision?
\bigcirc Suppose $\mathrm{P}(\mathrm{x}, \mathrm{y})>0$ for all x, y :

D Then in our coupling

$$
\mathbb{P}\left[X_{1} \neq X_{1}^{\prime}\right] \leqslant(1-\epsilon) \mathbb{P}\left[X_{0} \neq X_{0}^{\prime}\right]
$$

- Strong contraction holds ;)
D For general P , no strong contraction $:$, but ergodic $\Longrightarrow \mathrm{P}^{\mathrm{t}}>\mathrm{i}$ evor some t
every entry

D Weak contraction always holds, but not enough :
D Idea: what if different starts X_{0}, X_{0}^{\prime} have chance of collision?
\bigcirc Suppose $\mathrm{P}(\mathrm{x}, \mathrm{y})>0$ for all x, y :

© Then in our coupling

$$
\mathbb{P}\left[X_{1} \neq X_{1}^{\prime}\right] \leqslant(1-\epsilon) \mathbb{P}\left[X_{0} \neq X_{0}^{\prime}\right]
$$

- Strong contraction holds ;)
D For general P , no strong contraction $:$, but ergodic $\Longrightarrow \mathrm{P}^{\mathrm{t}} \underset{\substack{\uparrow \\ \text { every entry }}}{>0 \text { for some } t}$
D Enough for fundamental theorem.

D Weak contraction always holds, but not enough $: \cdot$
\bigcirc Idea: what if different starts X_{0}, X_{0}^{\prime} have chance of collision?
\bigcirc Suppose $\mathrm{P}(\mathrm{x}, \mathrm{y})>0$ for all x, y :

D Then in our coupling

$$
\mathbb{P}\left[X_{1} \neq X_{1}^{\prime}\right] \leqslant(1-\epsilon) \mathbb{P}\left[X_{0} \neq X_{0}^{\prime}\right]
$$

- Strong contraction holds ;)
© For general P, no strong contraction $:$, but ergodic $\Longrightarrow \mathrm{P}^{\mathrm{t}} \underset{\substack{\uparrow \\ \text { every entry }}}{>0 \text { for some } t}$
D Enough for fundamental theorem.

D Weak contraction always holds, but not enough $: \cdot$
\bigcirc Idea: what if different starts X_{0}, X_{0}^{\prime} have chance of collision?
\bigcirc Suppose $\mathrm{P}(\mathrm{x}, \mathrm{y})>0$ for all x, y :

D Then in our coupling

$$
\mathbb{P}\left[X_{1} \neq X_{1}^{\prime}\right] \leqslant(1-\epsilon) \mathbb{P}\left[X_{0} \neq X_{0}^{\prime}\right]
$$

- Strong contraction holds ;)
© For general P, no strong contraction $:$, but ergodic $\Longrightarrow \mathrm{P}^{\mathrm{t}} \underset{\substack{\uparrow \\ \text { every entry }}}{>0 \text { for some } t}$
D Enough for fundamental theorem.

D Aperiodic: there are $x \rightarrow x$ loops of every len $\ell \in\left[\ell_{0}, \infty\right)$

D Weak contraction always holds, but not enough $: \cdot$
\bigcirc Idea: what if different starts X_{0}, X_{0}^{\prime} have chance of collision?
\bigcirc Suppose $\mathrm{P}(\mathrm{x}, \mathrm{y})>0$ for all x, y :

\checkmark Then in our coupling

$$
\mathbb{P}\left[X_{1} \neq X_{1}^{\prime}\right] \leqslant(1-\epsilon) \mathbb{P}\left[X_{0} \neq X_{0}^{\prime}\right]
$$

© Strong contraction holds ;)
© For general P, no strong contraction $:$, but ergodic $\Longrightarrow \mathrm{P}^{\mathrm{t}} \underset{\substack{\uparrow \\ \text { every entry }}}{>0 \text { for some } \mathrm{t}}$
D Enough for fundamental theorem.

D Aperiodic: there are $x \rightarrow x$ loops of every len $\ell \in\left[\ell_{0}, \infty\right)$
\bigcirc Irreducible: there is one $x \rightarrow y$ path (of len $\leqslant|\Omega|$)
no ergodicity needed
D Weak contraction always holds, but not enough :

- Idea: what if different starts X_{0}, X_{0}^{\prime} have chance of collision?
D Suppose $\mathrm{P}(\mathrm{x}, \mathrm{y})>0$ for all x, y :

\bigcirc Then in our coupling

$$
\mathbb{P}\left[X_{1} \neq X_{1}^{\prime}\right] \leqslant(1-\epsilon) \mathbb{P}\left[X_{0} \neq X_{0}^{\prime}\right]
$$

\bigcirc Strong contraction holds ;)

D For general P, no strong contraction $\dot{\theta}^{:}$, but ergodic $\Longrightarrow P^{t}>0$ for some t every entry
D Enough for fundamental theorem.

\bigcirc Aperiodic: there are $x \rightarrow x$ loops of every len $\ell \in\left[\ell_{0}, \infty\right)$
\bigcirc Irreducible: there is one $x \rightarrow y$ path (of len $\leqslant|\Omega|$)

- So $\mathrm{P}^{\ell_{0}+|\Omega|}>0$

Fundamental theorem

Every ergodic chain has a unique stationary dist μ, and for any dist v

$$
\lim _{t \rightarrow \infty} v P^{t}=\mu
$$

D When irreducible, all $x \in \Omega$ have same period.

Fundamental theorem

Every ergodic chain has a unique stationary dist μ, and for any dist v

$$
\lim _{t \rightarrow \infty} v P^{t}=\mu
$$

D When irreducible, all $x \in \Omega$ have same period.
\checkmark Aperiodicity is easy to get via lazification:

Fundamental theorem

Every ergodic chain has a unique stationary dist μ, and for any dist v

$$
\lim _{t \rightarrow \infty} v P^{t}=\mu
$$

D When irreducible, all $x \in \Omega$ have same period.
\checkmark Aperiodicity is easy to get via lazification:

Fundamental theorem

Every ergodic chain has a unique stationary dist μ, and for any dist v

$$
\lim _{t \rightarrow \infty} v P^{t}=\mu
$$

D When irreducible, all $x \in \Omega$ have same period.
\checkmark Aperiodicity is easy to get via lazification:

D Lazy chain has the same stationary dist.

Fundamental theorem

Every ergodic chain has a unique stationary dist μ, and for any dist v

$$
\lim _{t \rightarrow \infty} v P^{t}=\mu .
$$

D When irreducible, all $x \in \Omega$ have same period.
\checkmark Aperiodicity is easy to get via lazification:

D Lazy chain has the same stationary dist.
D Corollary: irreducible chains have unique stationary.

Mixing time

Mixing time

For chain P with stationary μ :

$$
\begin{aligned}
\mathrm{t}_{\text {mix }}(\mathrm{P}, \epsilon, v) & =\min \left\{\mathrm{t} \mid \mathrm{d}_{\mathrm{TV}}\left(\mu, v \mathrm{P}^{\mathrm{t}}\right) \leqslant \epsilon\right\} \\
\mathrm{t}_{\text {mix }}(\mathrm{P}, \epsilon) & =\max \left\{\mathrm{t}_{\text {mix }}(\mathrm{P}, \epsilon, v) \mid v\right\}
\end{aligned}
$$

Mixing time

Mixing time

For chain P with stationary μ :

$$
\begin{aligned}
\mathrm{t}_{\text {mix }}(\mathrm{P}, \epsilon, v) & =\min \left\{\mathrm{t} \mid \mathrm{d}_{\mathrm{TV}}\left(\mu, v \mathrm{P}^{\mathrm{t}}\right) \leqslant \epsilon\right\} \\
\mathrm{t}_{\text {mix }}(\mathrm{P}, \epsilon) & =\max \left\{\mathrm{t}_{\text {mix }}(\mathrm{P}, \epsilon, v) \mid v\right\}
\end{aligned}
$$

\bigcirc Worst case v : $\mathbb{1}_{x}$ for some x

Mixing time

Mixing time

For chain P with stationary μ :

$$
\begin{aligned}
\mathrm{t}_{\text {mix }}(\mathrm{P}, \epsilon, v) & =\min \left\{\mathrm{t} \mid \mathrm{d}_{\mathrm{TV}}\left(\mu, v \mathrm{P}^{\mathrm{t}}\right) \leqslant \epsilon\right\} \\
\mathrm{t}_{\text {mix }}(\mathrm{P}, \epsilon) & =\max \left\{\mathrm{t}_{\text {mix }}(\mathrm{P}, \epsilon, v) \mid v\right\}
\end{aligned}
$$

D Worst case v : $\mathbb{1}_{x}$ for some x
D We often talk about $t_{\text {mix }}$ without specifying ϵ. This is justified by

Mixing time

Mixing time

For chain P with stationary μ :

$$
\begin{aligned}
\mathrm{t}_{\text {mix }}(\mathrm{P}, \epsilon, v) & =\min \left\{\mathrm{t} \mid \mathrm{d}_{\mathrm{TV}}\left(\mu, v \mathrm{P}^{\mathrm{t}}\right) \leqslant \epsilon\right\} \\
\mathrm{t}_{\text {mix }}(\mathrm{P}, \epsilon) & =\max \left\{\mathrm{t}_{\text {mix }}(\mathrm{P}, \epsilon, v) \mid v\right\}
\end{aligned}
$$

D Worst case v : $\mathbb{1}_{x}$ for some x
\checkmark We often talk about $t_{\text {mix }}$ without specifying ϵ. This is justified by

Lemma: mixing time growth

$$
t_{\text {mix }}(P, \epsilon) \leqslant t_{\text {mix }}(P, 1 / 4) \cdot O(\log (1 / \epsilon))
$$

Mixing time

Mixing time

For chain P with stationary μ :

$$
\begin{aligned}
\mathrm{t}_{\text {mix }}(\mathrm{P}, \epsilon, v) & =\min \left\{\mathrm{t} \mid \mathrm{d}_{\mathrm{TV}}\left(\mu, v \mathrm{P}^{\mathrm{t}}\right) \leqslant \epsilon\right\} \\
\mathrm{t}_{\text {mix }}(\mathrm{P}, \epsilon) & =\max \left\{\mathrm{t}_{\text {mix }}(P, \epsilon, v) \mid v\right\} \\
\mathrm{t}_{\text {mix }}(P) & =\mathrm{t}_{\text {mix }}(\mathrm{P}, 1 / 4)
\end{aligned}
$$

D Worst case v : $\mathbb{1}_{x}$ for some x
\checkmark We often talk about $t_{\text {mix }}$ without specifying ϵ. This is justified by

Lemma: mixing time growth

$$
t_{\text {mix }}(P, \epsilon) \leqslant t_{\text {mix }}(P, 1 / 4) \cdot O(\log (1 / \epsilon))
$$

Mixing time

Mixing time

For chain P with stationary μ :

$$
\begin{aligned}
\mathrm{t}_{\text {mix }}(\mathrm{P}, \epsilon, v) & =\min \left\{\mathrm{t} \mid \mathrm{d}_{\mathrm{TV}}\left(\mu, v \mathrm{P}^{\mathrm{t}}\right) \leqslant \epsilon\right\} \\
\mathrm{t}_{\text {mix }}(P, \epsilon) & =\max \left\{\mathrm{t}_{\text {mix }}(P, \epsilon, v) \mid v\right\} \\
\mathrm{t}_{\text {mix }}(P) & =\mathrm{t}_{\text {mix }}(P, 1 / 4)
\end{aligned}
$$

D Worst case v : $\mathbb{1}_{x}$ for some x
\checkmark We often talk about $t_{\text {mix }}$ without specifying ϵ. This is justified by

Lemma: mixing time growth

$$
t_{\text {mix }}(P, \epsilon) \leqslant t_{\text {mix }}(P, 1 / 4) \cdot O(\log (1 / \epsilon))
$$

Mixing time

Mixing time

For chain P with stationary μ :

$$
\begin{aligned}
t_{\text {mix }}(P, \epsilon, v) & =\min \left\{t \mid d_{T V}\left(\mu, v P^{t}\right) \leqslant \epsilon\right\} \\
t_{\text {mix }}(P, \epsilon) & =\max \left\{t_{\text {mix }}(P, \epsilon, v) \mid v\right\} \\
t_{\text {mix }}(P) & =t_{\text {mix }}(P, 1 / 4)
\end{aligned}
$$

D Worst case v : $\mathbb{1}_{x}$ for some x
\checkmark We often talk about $t_{\text {mix }}$ without specifying ϵ. This is justified by

Lemma: mixing time growth

$$
t_{\text {mix }}(P, \epsilon) \leqslant t_{\text {mix }}(P, 1 / 4) \cdot O(\log (1 / \epsilon))
$$

Mixing time

Mixing time

For chain P with stationary μ :

$$
\begin{aligned}
\mathrm{t}_{\text {mix }}(\mathrm{P}, \epsilon, v) & =\min \left\{\mathrm{t} \mid \mathrm{d}_{\mathrm{Tv}}\left(\mu, v \mathrm{P}^{\mathrm{t}}\right) \leqslant \epsilon\right\} \\
\mathrm{t}_{\text {mix }}(\mathrm{P}, \epsilon) & =\max \left\{\mathrm{t}_{\text {mix }}(\mathrm{P}, \epsilon, v) \mid v\right\} \\
\mathrm{t}_{\text {mix }}(\mathrm{P}) & =\mathrm{t}_{\text {mix }}(\mathrm{P}, 1 / 4)
\end{aligned}
$$

Proof:

\triangle Sample $X_{0} \sim v, X_{0}^{\prime} \sim v^{\prime}$
D Worst case v : $\mathbb{1}_{x}$ for some x
\checkmark We often talk about $t_{\text {mix }}$ without specifying ϵ. This is justified by

Lemma: mixing time growth

$$
t_{\text {mix }}(P, \epsilon) \leqslant t_{\text {mix }}(P, 1 / 4) \cdot O(\log (1 / \epsilon))
$$

Mixing time

Mixing time

For chain P with stationary μ :

$$
\begin{aligned}
\mathrm{t}_{\text {mix }}(\mathrm{P}, \epsilon, v) & =\min \left\{\mathrm{t} \mid \mathrm{d}_{\mathrm{TV}}\left(\mu, v \mathrm{P}^{\mathrm{t}}\right) \leqslant \epsilon\right\} \\
\mathrm{t}_{\text {mix }}(\mathrm{P}, \epsilon) & =\max \left\{\mathrm{t}_{\text {mix }}(P, \epsilon, v) \mid v\right\} \\
\mathrm{t}_{\text {mix }}(\mathrm{P}) & =\mathrm{t}_{\text {mix }}(\mathrm{P}, 1 / 4)
\end{aligned}
$$

D Worst case v : $\mathbb{1}_{x}$ for some x
\checkmark We often talk about $t_{\text {mix }}$ without specifying ϵ. This is justified by

Proof:

D Sample $X_{0} \sim v, X_{0}^{\prime} \sim v^{\prime}$
D Couple X_{t}, X_{t}^{\prime} for $t=t_{\text {mix }}(P)$:
D if $X_{0}=X_{0}^{\prime}$, use same transition
D else, couple them so

$$
\mathbb{P}\left[X_{t} \neq X_{t}^{\prime} \mid X_{0}, X_{0}^{\prime}\right] \leqslant 2 \cdot 1 / 4=1 / 2
$$

Lemma: mixing time growth

$$
t_{\text {mix }}(P, \epsilon) \leqslant t_{\text {mix }}(P, 1 / 4) \cdot O(\log (1 / \epsilon))
$$

Mixing time

Mixing time

For chain P with stationary μ :

$$
\begin{aligned}
t_{\text {mix }}(P, \epsilon, v) & =\min \left\{t \mid d_{T V}\left(\mu, v P^{t}\right) \leqslant \epsilon\right\} \\
t_{\text {mix }}(P, \epsilon) & =\max \left\{t_{\text {mix }}(P, \epsilon, v) \mid v\right\} \\
t_{\text {mix }}(P) & =t_{\text {mix }}(P, 1 / 4)
\end{aligned}
$$

D Worst case v : $\mathbb{1}_{x}$ for some x
\checkmark We often talk about $t_{\text {mix }}$ without specifying ϵ. This is justified by

Lemma: mixing time growth

$$
t_{\text {mix }}(P, \epsilon) \leqslant t_{\text {mix }}(P, 1 / 4) \cdot O(\log (1 / \epsilon))
$$

Proof:

\checkmark Sample $X_{0} \sim v, X_{0}^{\prime} \sim v^{\prime}$
D Couple X_{t}, X_{t}^{\prime} for $t=t_{\text {mix }}(P)$:
D if $X_{0}=X_{0}^{\prime}$, use same transition
D else, couple them so

$$
\mathbb{P}\left[X_{t} \neq X_{t}^{\prime} \mid X_{0}, X_{0}^{\prime}\right] \leqslant 2 \cdot 1 / 4=1 / 2
$$

\checkmark Possible because

$$
\begin{gathered}
\mathrm{d}_{\operatorname{TV}}\left(\mathrm{P}^{\mathrm{t}}(\mathrm{x}, \cdot), \mathrm{P}^{\mathrm{t}}(\mathrm{y}, \cdot)\right) \leqslant \\
\mathrm{d}_{\operatorname{TV}\left(\mathrm{P}^{\mathrm{t}}(\mathrm{x}, \cdot), \mu\right)+\mathrm{d}_{\mathrm{TV}}\left(\mathrm{P}^{\mathrm{t}}(\mathrm{y}, \cdot), \mu\right)}
\end{gathered}
$$

D So we proved

$$
\mathrm{d}_{\mathrm{TV}}\left(v \mathrm{P}^{\mathrm{t}_{\text {mix }}}, v^{\prime} \mathrm{P}^{\mathrm{t}_{\text {mix }}}\right) \leqslant \mathrm{d}_{\mathrm{TV}}\left(v, v^{\prime}\right) / 2
$$

\bigcirc So we proved

$$
\mathrm{d}_{\mathrm{TV}}\left(v \mathrm{P}^{\mathrm{t}_{\text {mix }}}, v^{\prime} \mathrm{P}^{\mathrm{t}_{\text {mix }}}\right) \leqslant \mathrm{d}_{\mathrm{TV}}\left(v, v^{\prime}\right) / 2
$$

\bigcirc This finishes the proof: :)

$$
\mathrm{d}_{\mathrm{TV}}\left(v \mathrm{P}^{\mathrm{k} \mathrm{t}_{\text {mix }}}, \mu\right) \leqslant 1 / 2^{k}
$$

\bigcirc So we proved

$$
\mathrm{d}_{\mathrm{TV}}\left(v \mathrm{P}^{\mathrm{t}_{\text {mix }}}, v^{\prime} \mathrm{P}^{\mathrm{t}_{\text {mix }}}\right) \leqslant \mathrm{d}_{\mathrm{TV}}\left(v, v^{\prime}\right) / 2
$$

\bigcirc This finishes the proof: :)

$$
\mathrm{d}_{\operatorname{TV}}\left(v \mathrm{P}^{k t_{\text {mix }}}, \mu\right) \leqslant 1 / 2^{\mathrm{k}}
$$

D Note: usually

$$
t_{\text {mix }}(P, \epsilon) \ll t_{\text {mix }}(P) \log (1 / \epsilon)
$$

\bigcirc So we proved

$$
\mathrm{d}_{\mathrm{Tv}}\left(v \mathrm{P}^{\mathrm{t}_{\text {mix }}}, v^{\prime} \mathrm{P}^{\mathrm{t}_{\text {mix }}}\right) \leqslant \mathrm{d}_{\mathrm{TV}}\left(v, v^{\prime}\right) / 2
$$

\bigcirc This finishes the proof: :)

$$
d_{\operatorname{TV}}\left(v P^{k t_{\text {mix }}}, \mu\right) \leqslant 1 / 2^{k}
$$

\bigcirc Note: usually

$$
t_{\text {mix }}(P, \epsilon) \ll t_{\text {mix }}(P) \log (1 / \epsilon)
$$

\bigcirc So we proved

$$
\mathrm{d}_{\mathrm{TV}}\left(v \mathrm{P}^{\mathrm{t}_{\text {mix }}}, v^{\prime} \mathrm{P}^{\mathrm{t}_{\text {mix }}}\right) \leqslant \mathrm{d}_{\mathrm{TV}}\left(v, v^{\prime}\right) / 2
$$

\bigcirc This finishes the proof: $;$

$$
\mathrm{d}_{\mathrm{TV}}\left(\mathrm{v}^{\mathrm{k} \mathrm{t}_{\text {mix }}}, \mu\right) \leqslant 1 / 2^{\mathrm{k}}
$$

D Note: usually

$$
t_{\text {mix }}(P, \epsilon) \ll t_{\text {mix }}(P) \log (1 / \epsilon)
$$

- Cutoff phenomenon:

(asymptotically) plot becomes a step function
© So we proved
How to bound mixing time?

$$
\mathrm{d}_{\mathrm{TV}}\left(v \mathrm{P}^{\mathrm{t}_{\text {mix }}}, v^{\prime} \mathrm{P}^{\mathrm{t}_{\text {mix }}}\right) \leqslant \mathrm{d}_{\mathrm{TV}}\left(v, v^{\prime}\right) / 2
$$

\bigcirc This finishes the proof: $;$

$$
\mathrm{d}_{\mathrm{Tv}}\left(\mathrm{P}^{\mathrm{k} \mathrm{t}_{\text {mix }}}, \mu\right) \leqslant 1 / 2^{k}
$$

\bigcirc Note: usually

$$
t_{\text {mix }}(P, \epsilon) \ll t_{\text {mix }}(P) \log (1 / \epsilon)
$$

- Cutoff phenomenon: (asymptotically) plot becomes a step function
\bigcirc So we proved
How to bound mixing time?

$$
\mathrm{d}_{\mathrm{TV}}\left(v \mathrm{P}^{\mathrm{t}_{\text {mix }}}, v^{\prime} \mathrm{P}^{\mathrm{t}_{\text {mix }}}\right) \leqslant \mathrm{d}_{\mathrm{TV}}\left(v, v^{\prime}\right) / 2
$$

\bigcirc This finishes the proof: $;$

$$
\mathrm{d}_{\mathrm{Tv}}\left(\mathrm{P}^{\mathrm{k} \mathrm{t}_{\text {mix }}}, \mu\right) \leqslant 1 / 2^{k}
$$

D Note: usually

$$
t_{\text {mix }}(P, \epsilon) \ll t_{\text {mix }}(P) \log (1 / \epsilon)
$$

D Stationary time \longleftarrow today
D Coupling

- Functional analysis
- Fourier analysis

D Canonical paths

- Comparison
- Localization

D ...

- Cutoff phenomenon: (asymptotically) plot becomes a step function
\bigcirc So we proved
How to bound mixing time?

$$
\mathrm{d}_{\mathrm{TV}}\left(v \mathrm{P}^{\mathrm{t}_{\text {mix }}}, v^{\prime} \mathrm{P}^{\mathrm{t}_{\text {mix }}}\right) \leqslant \mathrm{d}_{\mathrm{TV}}\left(v, v^{\prime}\right) / 2
$$

\bigcirc This finishes the proof: $;$

$$
\mathrm{d}_{\mathrm{Tv}}\left(\mathrm{P}^{\mathrm{k} \mathrm{t}_{\text {mix }}}, \mu\right) \leqslant 1 / 2^{k}
$$

D Note: usually

$$
t_{\text {mix }}(P, \epsilon) \ll t_{\text {mix }}(P) \log (1 / \epsilon)
$$

- Cutoff phenomenon: (asymptotically) plot becomes a step function

D Stationary time \longleftarrow today
D Coupling
D Functional analysis

- Fourier analysis
- Canonical paths
- Comparison
- Localization

D ...
prevalent idea: contraction of some proxy for dTV

Strong stationary time

Example: hypercube

$D \Omega=\{0,1\}^{n}$
D Pick u.r. $i \in[n]$
\checkmark Replace coord i with $\operatorname{Ber}\left(\frac{1}{2}\right)$

stationary: uniform

$$
X_{0} \rightarrow X_{1} \rightarrow X_{2} \rightarrow \ldots
$$

Strong stationary time

Example: hypercube

$D \Omega=\{0,1\}^{n}$
D Pick u.r. $i \in[n]$
\checkmark Replace coord i with $\operatorname{Ber}\left(\frac{1}{2}\right)$

stationary: uniform

$$
X_{0} \rightarrow X_{1} \rightarrow X_{2} \rightarrow \ldots
$$

D Define τ : first time we have replaced every coordinate $\in[n]$

Strong stationary time

Example: hypercube

$D \Omega=\{0,1\}^{n}$
D Pick u.r. $i \in[n]$
\checkmark Replace coord i with $\operatorname{Ber}\left(\frac{1}{2}\right)$

stationary: uniform

$$
X_{0} \rightarrow X_{1} \rightarrow X_{2} \rightarrow \ldots
$$

D Define τ : first time we have replaced every coordinate $\in[n]$
\bigcirc We have for every k :

$$
\operatorname{dist}\left(X_{\tau} \mid \tau=k\right)=\text { uniform }
$$

Strong stationary time

Example: hypercube

$D \Omega=\{0,1\}^{n}$
\triangle Pick u.r. $i \in[n]$

- Replace coord i with $\operatorname{Ber}\left(\frac{1}{2}\right)$

stationary: uniform

$$
X_{0} \rightarrow X_{1} \rightarrow X_{2} \rightarrow \ldots
$$

D Define τ : first time we have replaced every coordinate $\in[n]$
\bigcirc We have for every k :

$$
\operatorname{dist}\left(X_{\tau} \mid \tau=k\right)=\text { uniform }
$$

D Such a τ is called a strong stationary time [Aldous-Diaconis]

Strong stationary time

Example: hypercube

$D \Omega=\{0,1\}^{n}$
D Pick u.r. $i \in[n]$

- Replace coord i with $\operatorname{Ber}\left(\frac{1}{2}\right)$

stationary: uniform

$$
X_{0} \rightarrow X_{1} \rightarrow X_{2} \rightarrow \ldots
$$

D Define τ : first time we have replaced every coordinate $\in[n]$
\bigcirc We have for every k :

$$
\operatorname{dist}\left(X_{\tau} \mid \tau=k\right)=\text { uniform }
$$

D Such a τ is called a strong
stationary time [Aldous-Diaconis]

Lemma

$$
\mathbb{P}[\tau>t] \leqslant \epsilon \Longrightarrow t_{\text {mix }}(\epsilon) \leqslant t
$$

Strong stationary time

Example: hypercube

$D \Omega=\{0,1\}^{n}$
D Pick u.r. $i \in[n]$

- Replace coord i with $\operatorname{Ber}\left(\frac{1}{2}\right)$
 stationary: uniform

$$
X_{0} \rightarrow X_{1} \rightarrow X_{2} \rightarrow \ldots
$$

D Define τ : first time we have replaced every coordinate $\in[n]$
\bigcirc We have for every k :

$$
\operatorname{dist}\left(X_{\tau} \mid \tau=k\right)=\text { uniform }
$$

D Such a τ is called a strong
stationary time [Aldous-Diaconis]

Lemma

$$
\mathbb{P}[\tau>t] \leqslant \epsilon \Longrightarrow t_{\text {mix }}(\epsilon) \leqslant t
$$

Proof: we can write $\operatorname{dist}\left(X_{t}\right)$ as

$$
\begin{aligned}
& \mathbb{P}[\tau=0] \operatorname{dist}\left(\mathrm{X}_{0} \mid \tau=0\right) \mathrm{P}^{\mathrm{t}}+ \\
& \mathbb{P}[\tau=1] \operatorname{dist}\left(\mathrm{X}_{1} \mid \tau=1\right) \mathrm{P}^{\mathrm{t}-1}+
\end{aligned}
$$

$$
\cdots+
$$

$$
\begin{aligned}
& \mathbb{P}[\tau=\mathrm{t}] \operatorname{dist}\left(\mathrm{X}_{\mathrm{t}} \mid \tau=\mathrm{t}\right)+ \\
& \mathbb{P}[\tau>\mathrm{t}] \operatorname{dist}\left(\mathrm{X}_{\mathrm{t}} \mid \tau>\mathrm{t}\right)
\end{aligned}
$$

and every $\operatorname{dist}\left(X_{i} \mid \tau=\mathfrak{i}\right)$ is μ.

- For the hypercube, we have

$$
\mathbb{P}[\tau>t] \leqslant n(1-1 / n)^{t} \leqslant n e^{-t / n}
$$

- For the hypercube, we have

$$
\mathbb{P}[\tau>t] \leqslant n(1-1 / n)^{t} \leqslant n e^{-t / n}
$$

\bigcirc So we can bound the mixing time ;

$$
\mathrm{t}_{\text {mix }}(\epsilon) \leqslant n \log n+n \log (1 / \epsilon)
$$

- For the hypercube, we have

$$
\mathbb{P}[\tau>t] \leqslant n(1-1 / n)^{t} \leqslant n e^{-t / n}
$$

\bigcirc So we can bound the mixing time ;

$$
\mathrm{t}_{\text {mix }}(\epsilon) \leqslant n \log n+n \log (1 / \epsilon)
$$

D Poll: is this tight?

- For the hypercube, we have

$$
\mathbb{P}[\tau>t] \leqslant n(1-1 / n)^{t} \leqslant n e^{-t / n}
$$

\bigcirc So we can bound the mixing time ;

$$
\mathrm{t}_{\text {mix }}(\epsilon) \leqslant n \log n+n \log (1 / \epsilon)
$$

D Poll: is this tight?
D Exercise: show $t_{\text {mix }} \geqslant \Omega(n \log n)$

- For the hypercube, we have

$$
\mathbb{P}[\tau>t] \leqslant n(1-1 / n)^{t} \leqslant n e^{-t / n}
$$

\bigcirc So we can bound the mixing time ;

$$
\mathrm{t}_{\text {mix }}(\epsilon) \leqslant n \log n+n \log (1 / \epsilon)
$$

D Poll: is this tight?
D Exercise: show $t_{\text {mix }} \geqslant \Omega(n \log n)$
D Note: we have NOT proved cutoff, even though cutoff does hold for this chain.

Markov Chain Mixing

- Fundamental theorem
- Mixing time growth
- Strong stationary time

Designing Markov Chains
D Reversible chains
© Metropolis filter

Markov Chain Mixing

- Fundamental theorem
- Mixing time growth
- Strong stationary time

Designing Markov Chains
\bigcirc Reversible chains
\bigcirc Metropolis filter

How to design chains?
Criteria: correct stationary dist

How to design chains?

Criteria: correct stationary dist

Definition: ergodic flow

For dist μ and chain P we define ergodic flow $\mathrm{Q} \in \mathbb{R}_{\geqslant 0}^{\Omega \times \Omega}$ as

$$
\begin{aligned}
& \mathrm{Q}(x, y)=\mu(x) \mathrm{P}(x, y) \\
& \text { prob flow from } x \text { to } y
\end{aligned}
$$

How to design chains?

Criteria: correct stationary dist

Definition: ergodic flow

For dist μ and chain P we define ergodic flow $Q \in \mathbb{R}_{\geqslant 0}^{\Omega \times \Omega}$ as

$$
Q(x, y)=\mu(x) P_{\uparrow}(x, y)
$$

D Lemma:

$$
\text { prob flow from } x \text { to } y
$$

μ stationary \leftrightarrow Q proper flow
incoming=outgoing

How to design chains?

Criteria: correct stationary dist

Definition: ergodic flow

For dist μ and chain P we define ergodic flow $Q \in \mathbb{R}_{\geqslant 0}^{\Omega \times \Omega}$ as

$$
Q(x, y)=\mu(x) \underset{\uparrow}{P}(x, y)
$$

D Lemma:

$$
\text { prob flow from } x \text { to } y
$$

μ stationary \leftrightarrow Q proper flow
incoming=outgoing
\bigcirc Proof:

$$
\sum_{\substack{x \\(\mu P)(y)}}^{\mu(x) P(x, y)}=\sum_{z} \mu \underset{\mu(y)}{\mu(y)} P(y, z)
$$

How to design chains?

Criteria: correct stationary dist

Definition: ergodic flow

For dist μ and chain P we define ergodic flow $\mathrm{Q} \in \mathbb{R}_{\geqslant 0}^{\Omega \times \Omega}$ as

$$
\mathrm{Q}(x, y)=\mu(x) \underset{\sim}{P}(x, y)
$$

D Lemma:

$$
\text { prob flow from } x \text { to } y
$$

$$
\mu \text { stationary } \leftrightarrow \text { Q proper flow }
$$

incoming=outgoing
\bigcirc Proof:

Example

The two-state chain

has stationary $\mu=[q /(p+q), p /(p+$ q)] and ergodic flow

Time-reversible

$$
Q(x, y)=Q(y, x)
$$

Time-reversible

$$
Q(x, y)=Q(y, x)
$$

- This is also called detailed balance.

Time-reversible

$$
\mathrm{Q}(x, y)=\mathrm{Q}(y, x)
$$

D This is also called detailed balance.

- Meaning of time-reversibility: if we watch a movie of the chain at stationarity we cannot tell the direction of time.

Time-reversible

$$
Q(x, y)=Q(y, x)
$$

D This is also called detailed balance.
\bigcirc Meaning of time-reversibility: if we watch a movie of the chain at stationarity we cannot tell the direction of time.
\checkmark Very useful design tool: make sure P is chosen so that

$$
\mu(x) P(x, y)=\mu(y) P(y, x)
$$

Time-reversible

$$
Q(x, y)=Q(y, x)
$$

- This is also called detailed balance.
- Meaning of time-reversibility: if we watch a movie of the chain at stationarity we cannot tell the direction of time.
\checkmark Very useful design tool: make sure
P is chosen so that

$$
\mu(x) P(x, y)=\mu(y) P(y, x)
$$

Example: hypercube
$D \Omega=\{0,1\}^{n}$
\bigcirc Pick u.r. $i \in[n]$

- Replace coord i with $\operatorname{Ber}\left(\frac{1}{2}\right)$

Time-reversible

$$
Q(x, y)=Q(y, x)
$$

- This is also called detailed balance.
- Meaning of time-reversibility: if we watch a movie of the chain at stationarity we cannot tell the direction of time.
\checkmark Very useful design tool: make sure P is chosen so that

$$
\mu(x) P(x, y)=\mu(y) P(y, x)
$$

Example: hypercube

$D \Omega=\{0,1\}^{n}$
\bigcirc Pick u.r. $i \in[n]$

- Replace coord i with $\operatorname{Ber}\left(\frac{1}{2}\right)$

Non-example: cycle
$D \Omega=\mathbb{Z}_{n}$
D Go from x to $x+1$

Time-reversal

A Markov chain P and stationary dist μ defines process

$$
\cdots \rightarrow X_{-1} \rightarrow X_{0} \rightarrow X_{1} \rightarrow \ldots
$$

Time-reversal

A Markov chain P and stationary dist μ defines process

$$
\cdots \rightarrow X_{-1} \rightarrow X_{0} \rightarrow X_{1} \rightarrow \ldots
$$

Properties:

- Conditioned on X_{i}, left and right are independent.
D Time-homogeneous: every $\left(X_{i}, X_{i+1}\right)$ is distributed $\sim \mathrm{Q}$

Time-reversal

A Markov chain P and stationary dist μ defines process

$$
\cdots \rightarrow X_{-1} \rightarrow X_{0} \rightarrow X_{1} \rightarrow \ldots
$$

Properties:

- Conditioned on X_{i}, left and right are independent.
© Time-homogeneous: every $\left(X_{i}, X_{i+1}\right)$ is distributed $\sim Q$
If we reverse the arrows, we still get a similar process

$$
\cdots \rightarrow X_{1} \rightarrow X_{0} \rightarrow X_{-1} \rightarrow \ldots
$$

Time-reversal

A Markov chain P and stationary dist μ defines process

$$
\cdots \rightarrow X_{-1} \rightarrow X_{0} \rightarrow X_{1} \rightarrow \ldots
$$

Properties:
\bigcirc Conditioned on X_{i}, left and right are independent.
© Time-homogeneous: every $\left(X_{i}, X_{i+1}\right)$ is distributed $\sim Q$
If we reverse the arrows, we still get a similar process

Time-reversal

Given P, μ, time-reversal P° is the chain whose ergodic flow is the reversal of P's.

$$
\mu(x) P(x, y)=\mu(y) P^{\circ}(y, x)
$$

$$
\cdots \rightarrow X_{1} \rightarrow X_{0} \rightarrow X_{-1} \rightarrow \ldots
$$

Time-reversal

A Markov chain P and stationary dist μ defines process

$$
\cdots \rightarrow X_{-1} \rightarrow X_{0} \rightarrow X_{1} \rightarrow \ldots
$$

Properties:

- Conditioned on X_{i}, left and right are independent.
© Time-homogeneous: every $\left(X_{i}, X_{i+1}\right)$ is distributed $\sim Q$
If we reverse the arrows, we still get a similar process

Time-reversal

Given P, μ, time-reversal P° is the chain whose ergodic flow is the reversal of P's.

$$
\mu(x) P(x, y)=\mu(y) P^{\circ}(y, x)
$$

D Time-reversible: $\mathrm{P}=\mathrm{P}^{\circ}$

$$
\cdots \rightarrow X_{1} \rightarrow X_{0} \rightarrow X_{-1} \rightarrow \ldots
$$

Time-reversal

A Markov chain P and stationary dist μ defines process

$$
\cdots \rightarrow X_{-1} \rightarrow X_{0} \rightarrow X_{1} \rightarrow \ldots
$$

Properties:
D Conditioned on X_{i}, left and right are independent.
© Time-homogeneous: every $\left(X_{i}, X_{i+1}\right)$ is distributed $\sim \mathrm{Q}$
If we reverse the arrows, we still get a similar process

$$
\cdots \rightarrow X_{1} \rightarrow X_{0} \rightarrow X_{-1} \rightarrow \ldots
$$

Time-reversal

Given P, μ, time-reversal P° is the chain whose ergodic flow is the reversal of P's.

$$
\mu(x) P(x, y)=\mu(y) P^{\circ}(y, x)
$$

D Time-reversible: $\mathrm{P}=\mathrm{P}^{\circ}$
D Time-reversal is more generally defined for Markov kernels

$$
\begin{aligned}
P \in & \in \mathbb{R}^{\Omega} \cap \Omega^{\prime}: \\
& \mu(x) P(x, y)=\mu^{\circ}(y) P^{\circ}(y, x)
\end{aligned}
$$

where $\mu^{\circ}=\mu \mathrm{P}$.

How to design time-reversible chains?

Metropolis filter

- Suppose P doesn't have μ as stationary.

Metropolis filter

- Suppose P doesn't have μ as stationary.
D Define $\mathrm{P}^{\prime}(\mathrm{x}, \mathrm{y})$ for $\mathrm{x} \neq \mathrm{y}$:

$$
P(x, y) \min \left\{1, \frac{\mu(y) P(y, x)}{\mu(x) P(x, y)}\right\}
$$

Metropolis filter

- Suppose P doesn't have μ as stationary.
D Define $P^{\prime}(x, y)$ for $x \neq y$:

$$
P(x, y) \min \left\{1, \frac{\mu(y) P(y, x)}{\mu(x) P(x, y)}\right\}
$$

- Put remaining prob as $x \rightarrow x$ transition.

Metropolis filter

- Suppose P doesn't have μ as stationary.
D Define $\mathrm{P}^{\prime}(x, y)$ for $x \neq y$:

$$
P(x, y) \min \left\{1, \frac{\mu(y) P(y, x)}{\mu(x) P(x, y)}\right\}
$$

- Put remaining prob as $x \rightarrow x$ transition.
\bigcirc Only need to know μ up to proportionality.

Metropolis filter

- Suppose P doesn't have μ as stationary.
\triangleright Define $\mathrm{P}^{\prime}(x, y)$ for $x \neq y$:

$$
P(x, y) \min \left\{1, \frac{\mu(y) P(y, x)}{\mu(x) P(x, y)}\right\}
$$

D Put remaining prob as $x \rightarrow x$ transition.
D Only need to know μ up to proportionality.

Example: coloring

$\bigcirc \Omega=$ colorings
\checkmark Pick u.r. vert v
\bigcirc Pick u.r. color c
D Replace v's color with c
stationary: not proper colorings

Metropolis filter

\bigcirc Suppose P doesn't have μ as stationary.
D Define $P^{\prime}(x, y)$ for $x \neq y$:

$$
P(x, y) \min \left\{1, \frac{\mu(y) P(y, x)}{\mu(x) P(x, y)}\right\}
$$

© Put remaining prob as $x \rightarrow x$ transition.
D Only need to know μ up to proportionality.

Example: coloring

D $\Omega=$ colorings
\checkmark Pick u.r. vert v
\bigcirc Pick u.r. color c
D Replace v's color with c
stationary: not proper colorings
\checkmark Metropolis filter: reject transitions to invalid colorings.

