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Review

[Pólya]’s scheme:

det
([

+1 −1

+1 +1

])
= per

([
1 1

1 1

])

Good signing exists for planar

graphs [Fisher-Kasteleyn-Temperley].

root

1
2

1
4

1
4

space Ω

transition matrix: P ∈ RΩ×Ω
>0

Stationary dist: µ = µP

Fundamental theorem

Every ergodic chain has a unique sta-

tionary dist µ, and for any dist ν

lim
t→∞νPt = µ.



2/19

Review

[Pólya]’s scheme:

det
([

+1 −1

+1 +1

])
= per

([
1 1

1 1

])
Good signing exists for planar

graphs [Fisher-Kasteleyn-Temperley].

root

1
2

1
4

1
4

space Ω

transition matrix: P ∈ RΩ×Ω
>0

Stationary dist: µ = µP

Fundamental theorem

Every ergodic chain has a unique sta-

tionary dist µ, and for any dist ν

lim
t→∞νPt = µ.



2/19

Review

[Pólya]’s scheme:

det
([

+1 −1

+1 +1

])
= per

([
1 1

1 1

])
Good signing exists for planar

graphs [Fisher-Kasteleyn-Temperley].

root

1
2

1
4

1
4

space Ω

transition matrix: P ∈ RΩ×Ω
>0

Stationary dist: µ = µP

Fundamental theorem

Every ergodic chain has a unique sta-

tionary dist µ, and for any dist ν

lim
t→∞νPt = µ.



2/19

Review

[Pólya]’s scheme:

det
([

+1 −1

+1 +1

])
= per

([
1 1

1 1

])
Good signing exists for planar

graphs [Fisher-Kasteleyn-Temperley].

root

1
2

1
4

1
4

space Ω

transition matrix: P ∈ RΩ×Ω
>0

Stationary dist: µ = µP

Fundamental theorem

Every ergodic chain has a unique sta-

tionary dist µ, and for any dist ν

lim
t→∞νPt = µ.



2/19

Review

[Pólya]’s scheme:

det
([

+1 −1

+1 +1

])
= per

([
1 1

1 1

])
Good signing exists for planar

graphs [Fisher-Kasteleyn-Temperley].

root

1
2

1
4

1
4

space Ω

transition matrix: P ∈ RΩ×Ω
>0

Stationary dist: µ = µP

Fundamental theorem

Every ergodic chain has a unique sta-

tionary dist µ, and for any dist ν

lim
t→∞νPt = µ.



4/19

Markov Chain Mixing
Fundamental theorem

Mixing time growth

Strong stationary time

Designing Markov Chains
Reversible chains

Metropolis filter



4/19

Markov Chain Mixing
Fundamental theorem

Mixing time growth

Strong stationary time

Designing Markov Chains
Reversible chains

Metropolis filter



5/19

Irreducible: possible to reach from

every x to every y.

Aperiodic: length of cycles from x

to x have gcd = 1.

Ergodic: irreducible + aperiodic

Fundamental theorem

Every ergodic chain has a unique sta-

tionary dist µ, and for any dist ν

lim
t→∞νPt = µ.

Stationary dist: µ = µP

x y z · · ·

νP0

x y z · · ·

νP1

x y z · · ·

νP2

...
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Weak contraction

dTV(νP, ν
′P) 6

if we could sneak in a 0.99 we’d be done

dTV(ν, ν
′)

Strong contraction =⇒
ν, νP, νP2, . . . is Cauchy:

dTV(νP
n, νPm) 6 0.99min{n,m}

so it converges.

Stationary is unique, because

dTV = 0 for any two limits.

Example: no strong contraction

ν ν ′

Proof of weak contraction:

There is an optimal coupling π:

dTV(ν, ν
′) = P(X,X ′)∼π[X 6= X ′].

Will construct coupling for νP, ν ′P.

Sample (X0, X
′
0) ∼ π.

Evolve by P to get X1, X
′
1:

if X0 = X ′
0, use same transition

else, evolve arbitrarily

for example, independently
We get

P[X1 6= X ′
1] 6 P[X0 6= X ′

0]

Rhs is dTV(ν, ν
′) and lhs is an

upper bound on dTV(νP, ν
′P).
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Weak contraction always

no ergodicity needed

holds,

but not enough

Idea: what if different starts X0, X
′
0

have chance of collision?

Suppose P(x, y) > 0 for all x, y:

Then in our coupling

P[X1 6= X ′
1] 6 (1− ε)P[X0 6= X ′

0]

Strong contraction holds

For general P, no strong

contraction , but

ergodic =⇒ Pt>

every entry

0 for some t

Enough for fundamental theorem.

x y

Aperiodic: there are x → x loops of

every len ` ∈ [`0,∞)

Irreducible: there is one x → y

path (of len 6 |Ω|)

So P`0+|Ω| > 0
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Suppose P(x, y) > 0 for all x, y:

Then in our coupling

P[X1 6= X ′
1] 6 (1− ε)P[X0 6= X ′

0]

Strong contraction holds

For general P, no strong

contraction , but

ergodic =⇒ Pt>

every entry

0 for some t

Enough for fundamental theorem.

x y

Aperiodic: there are x → x loops of

every len ` ∈ [`0,∞)

Irreducible: there is one x → y

path (of len 6 |Ω|)

So P`0+|Ω| > 0
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Fundamental theorem

Every ergodic chain has a unique stationary dist µ, and for

any dist ν

lim
t→∞νPt = µ.

When irreducible, all x ∈ Ω have same period.

Aperiodicity is easy to get via lazification:

P 7→ λI+ (1− λ)P

Lazy chain has the same stationary dist.

Corollary: irreducible chains have unique stationary.
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Mixing time

Mixing time

For chain P with stationary µ:

tmix(P, ε, ν) = min
{
t
∣∣ dTV(µ, νP

t) 6 ε
}

tmix(P, ε) = max{tmix(P, ε, ν) | ν}

tmix(P) = tmix(P, 1/4)

Worst case ν: 1x for some x

We often talk about tmix without
specifying ε. This is justified by

Lemma: mixing time growth

tmix(P, ε) 6 tmix(P, 1/4) ·O(log(1/ε))

dTV

t

tmix

Proof:

Sample X0 ∼ ν, X ′
0 ∼ ν ′

Couple Xt, X
′
t for t = tmix(P):

if X0 = X ′
0, use same transition

else, couple them so

P[Xt 6= X ′
t | X0, X

′
0] 6 2 · 1/4 = 1/2

Possible because

dTV(P
t(x, ·), Pt(y, ·)) 6

dTV(P
t(x, ·), µ) + dTV(P

t(y, ·), µ)
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So we proved

dTV(νP
tmix , ν ′Ptmix) 6 dTV(ν, ν

′)/2

This finishes the proof:

dTV(νP
ktmix , µ) 6 1/2k

Note: usually

tmix(P, ε) � tmix(P) log(1/ε)

dTV

t

usual

unusual

Cutoff phenomenon:

(asymptotically) plot becomes a

step function

How to bound mixing time?

Stationary time today

Coupling

Functional analysis

Fourier analysis

Canonical paths

Comparison

Localization

. . .

prevalent idea: contraction of some

proxy for dTV
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Strong stationary time

Example: hypercube

Ω = {0, 1}n

Pick u.r. i ∈ [n]

Replace coord i

with Ber(12)

stationary: uniform

X0 → X1 → X2 → . . .

Define τ: first time we have

replaced every coordinate ∈ [n]

We have for every k:

dist(Xτ | τ = k) = uniform

Such a τ is called a strong

stationary time [Aldous-Diaconis]

Lemma

P[τ > t] 6 ε =⇒ tmix(ε) 6 t

Proof: we can write dist(Xt) as

P[τ = 0] dist(X0 | τ = 0)Pt+

P[τ = 1] dist(X1 | τ = 1)Pt−1+

· · ·+
P[τ = t] dist(Xt | τ = t)+

P[τ > t] dist(Xt | τ > t)

and every dist(Xi | τ = i) is µ.
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For the hypercube, we have

P[τ > t] 6 n(1− 1/n)t 6 ne−t/n

So we can bound the mixing time

tmix(ε) 6 n logn+ n log(1/ε)

Poll: is this tight?

Exercise: show tmix > Ω(n logn)
Note: we have NOT proved cutoff, even though

cutoff does hold for this chain.
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Markov Chain Mixing
Fundamental theorem

Mixing time growth

Strong stationary time

Designing Markov Chains
Reversible chains

Metropolis filter



14/19

Markov Chain Mixing
Fundamental theorem

Mixing time growth

Strong stationary time

Designing Markov Chains
Reversible chains

Metropolis filter



15/19

How to design chains?

Criteria: correct stationary dist

Definition: ergodic flow

For dist µ and chain P we define er-

godic flow Q ∈ RΩ×Ω
>0 as

Q(x, y) =µ(x)P(x, y)

prob flow from x to y
Lemma:

µ stationary ↔ Q proper

incoming=outgoing

flow

Proof:∑
x µ(x)P(x, y)

(µP)(y)

=
∑

z µ(y)P(y, z)

µ(y)

Example

The two-state chain

p

q

1− p 1− q

has stationary µ = [q/(p + q), p/(p +
q)] and ergodic flow
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p+q
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p+q

q−pq
p+q

p−pq
p+q
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Time-reversible

Q(x, y) = Q(y, x)

This is also called detailed balance.

Meaning of time-reversibility: if we

watch a movie of the chain at

stationarity we cannot tell the

direction of time.

Very useful design tool: make sure

P is chosen so that

µ(x)P(x, y) = µ(y)P(y, x)

Example: hypercube

Ω = {0, 1}n

Pick u.r. i ∈ [n]

Replace coord i

with Ber(12)

Non-example: cycle

Ω = Zn

Go from x to x+ 1
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Time-reversal

A Markov chain P and stationary dist µ

defines process

· · · → X−1 → X0 → X1 → . . .

Properties:

Conditioned on Xi, left and right

are independent.

Time-homogeneous: every

(Xi, Xi+1) is distributed ∼ Q

If we reverse the arrows, we still get a

similar process

· · · → X1 → X0 → X−1 → . . .

Time-reversal

Given P, µ, time-reversal P◦ is the

chain whose ergodic flow is the rever-

sal of P’s.

µ(x)P(x, y) = µ(y)P◦(y, x)

Time-reversible: P = P◦

Time-reversal is more generally

defined for Markov kernels

P ∈ RΩ×Ω ′

>0 :

µ(x)P(x, y) = µ◦(y)P◦(y, x)

where µ◦ = µP.
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How to design time-reversible chains?
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Metropolis filter

Suppose P doesn’t have µ as

stationary.

Define P ′(x, y) for x 6= y:

P(x, y)min
{
1,

µ(y)P(y, x)

µ(x)P(x, y)

}
Put remaining prob as x → x

transition.

Only need to know µ up to

proportionality.

Example: coloring

Ω = colorings

Pick u.r. vert v

Pick u.r. color c

Replace v’s color with c

stationary: not proper colorings

Metropolis filter: reject transitions

to invalid colorings.
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