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(> DNF counting:
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AU UAm A TrmAn

easy to compute  probability

> Monte Carlo: estimate p from
Ber(p). Need ~ 1/pe? many.

> Self-reducible problems:

(FPRAS)
Exact Counting —— Approx Counting

<P
.\;\Q\) [

Exact Sampling —— Approx Sampling
(FPAUS)

> Coupling: dist with marginals w, v.
> Matrix-tree theorem [Kirchhoff]:
#spanning trees = det(matrix)
/7

Laplacian, drop one row+col
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O -1 +1 0 -1 =1 0
o 0 -1 +1 0 0 O > Directed graphs: exercise!

-1 41 0 0 0 0 -1 > Counting = sampling. ©
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Matrix-tree theorem [Kirchhoff]
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> Runtime for counting: O(n®)
4
matrix multiplication exponent w ~ 2.37

> Runtime for sampling:

> Naive: m x counting = O(mn®)

> Smarter [Colbourn-Myrvold-Neufeld'96]: O (n®)
> Best-known (approx) counting

[Chu-Gao-Peng-Sachdeva-Sawlani-wang™18]:
~ m1+o(1) 4 n'15/8—0—0(1)

> Best-known (approx) sampling N
[/-Liu-OveisGharan-Vinzant-Vuong20]: O(m)
improve counting.
(> speedups in directed graphs?



\Biportite perfect matchings /

Bipartite PMs is #P-complete [Valiant].

> Count approximately«— later
> Restrict graphs<— today

7/16



\Biportite perfect matchings /

Bipartite PMs is #P-complete [Valiant].

> Count approximately«— later
> Restrict graphs<— today

7/16



\Biportite perfect matchings /

Bipartite PMs is #P-complete [Valiant].

> Count approximately«— later
> Restrict graphs<— today

> Permanent: a b
2 s Ao Ancn) /

c  a

c d

all 0
b1 1

7/16



\Biportite perfect matchings /

Bipartite PMs is #P-complete [Valiant].

> Count approximately«— later
> Restrict graphs<— today

> Permanent: a b

ZUA]G(U"'ATLG(TL) /

per(bipartite adj) = #PMs

c d

7/16



\Biportite perfect matchings

Bipartite PMs is #P-complete [Valiant].
> Count approximately«— later
> Restrict graphs<— today

> Permanent: a b

ZUA]G(U"'ATLG(TL) /

per(bipartite adj) = #PMs N 1

> Determinant: c d

. all 0
2 o5enl0)AT6(1) Anen) b|l 1

7/16



\Biportite perfect matchings /

Bipartite PMs is #P-complete [Valiant].

> Count approximately«— later
> Restrict graphs<— today

> Permanent: a b
ZUA]G(U"'ATLG(TL) /
per(bipartite adj) = #PMs - .
> Determinant: c d

o all 0
2 o5en0)A16(1)  Anom) b1 1

[Polyal’s scheme: replace 1s with £1s to
make all terms in sum equal-signed.

7/16



\Biportite perfect matchings /

Bipartite PMs is #P-complete [Valiant].

Example: K
> Count approximately«— later P 2.2

> Restrict graphs<— today N

> Permanent: a b
det +1 =11\ _ o 1 1
ZcAlcr(U"'AnG(n) € +1 +1 —P 1 1
per(bipartite adj) = #PMs
> Determinant: c d

o all 0
2 o5en0)A16(1)  Anom) b1 1

[Polyal’s scheme: replace 1s with £1s to
make all terms in sum equal-signed.

7/16



\Biportite perfect matchings

Bipartite PMs is #P-complete [Valiant]. - o
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> Count approximately<— later xampie: Kz,»

> Restrict graphs<— today N

> Permanent: a b

- det( [ 1) per(1
> s Ate() no(n) +1 41 11

per(bipartite adj) = #PMs Ml Non-example: K

C
> Determinant: c d
o all 0
2 o5en0)A16(1)  Anom) b1 1

[PelyaT's scheme: replace Ts with £1s 10 |mpossible! Exercise: show this.
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If graphis planar, [Pélyal’s scheme can
be implemented. E.g., 2D lattice: To move from orange PM to blue PM:

®

> Goal: find signing where all terms
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®
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> Can move from any

one cycle at a time.

to any PM

Nice cycle: a cycle whose
vertex-complement has a PM.

> Goal: signing where nice cycles
don’t change term’s sign.

\VARV

5

Termis sign(o)Aq4(1)

sign(o) changes by (—1

: 'Ano'(n)'

)Ien/2+1.

> Represent signing by orientation.

(> Orient edges from one side to
other. Thisis all +1 signing.

YEl i &gl

(> For any cycle, #cw edges: len/2.

(> flip some
directions so that in each nice
cycle, #cw edges is odd.

> This means: ©

H Ae = Ien/Z—H

eccycle
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> Find Pfaffian orientation: nice
cycles have odd #cw edges.

Example: lattice

|

Lemma: if all faces have odd #cw
edges, so do all nice cycles.

Lemma: we can find orientation
with odd #cw edges per face.

> Modulo 2, #(cw around cucle) is

= ) intface £ #(Cw around f) +
#(int edges)
(> By Euler’s formula
#verts + #faces — #edges = 1, so
#(int faces) + #(int edges) =
#(int verts) + 1
> Because of niceness, there are
even many interior vertices. ©
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one-by-one. Each time, orient the
single remaining edge of peeled
face uniquely.

Summary: counting via dets

> Spanning trees:

> Undirected: [Kirchhoff]'s
matrix-tree theorem.

> Directed: exercise!

> Planar perfect matchings:

> Bipartite:
[Fisher-Kasteleyn-TemperleyT’s
Pfaffian orientation.

> Non-bipartite: exercise!

> Holographic reductions [Valiant]

> Eulerian tours: exercise!

> Determinantal point processes
0

will see later
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\Morkov chains

0=

1
2
(<;->O<; space Q
1 a b ¢
4\04 1 1 1
o
Transition matrix: l;e RQXQ cll 1o

large and implicit

& P(x,y) is chance of going to y if > Given (random) start Xo, we get
we start from x Markovian process:

> Z )U = T<«— row-stochastic X}'_>X1_>Y¥ .
transition via P transition via P
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where uis the stationary dist.

row vector transition matrix

O Stationary dist: if uP =, then pis
called a stationary dist.

C Note: if there is any limit, it must
be stationary!

> Sampling via Markov chains:

> Steps are easy< easy
> Correct stationary p«—— easy
> Convergence to wis fast

*

hard

> Ideally, we want to stop at small t
and have small dtv to
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Example: hypercube

C a=/{o, 1}“

O Pickuriel %
> Replace coord i
with Ber

stationary: uniform

Example: coloring
& Q = valid colorings
O Pick ur vertv
> Replace v’s color u.r.
with valid color
stationary: uniform

O Irreducible: possible to reach from
every x to every y.

O Aperiodic: length of cycles from x
to x have ged = 1.

O Ergodic: irreducible+aperiodic

Fundamental theorem

Every ergodic chain has a unique sta-
tionary dist u, and for any dist v

lim vP' = .
t—o0

> Note: this convergence can be
very slow.
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> We will see later that we don’t even have to
specify % and we can just talk about tmix(P).
ie,it’s fine tosetitto 1/4

> We usually want tmix(P) = poly log(1Q)]) for
efficient algs.
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