CS 263: Counting and Sampling

Stanford
S University

slides for

Det Counting; Markov Chains

\Review /

(> DNF counting:

|A1U--UA |
AT U UAm A TnAL

easy to compute probability

2/16

\Review

(> DNF counting:

|Aq |_|...|_|Am|.M

JAU--UA]

easy to compute probability

> Monte Carlo: estimate p from
Ber(p). Need ~ 1/pe? many.

2/16

\Review /

(> DNF counting:

[AJU---UA |
AT U UAm A TnAL

easy to compute probability

> Monte Carlo: estimate p from
Ber(p). Need ~ 1/pe? many.

> Self-reducible problems:

2/16

\Review /

> DNF counting: (FPRAS)
AL AM-M Exact Counting —— Approx Counting
easy to compute probability \’x?
> Monte Carlo: estimate p from
Ber(p). Need ~ 1/pe? many. Exact Sampling —— Approx Sampling

> Self-reducible problems: (FPAUS)

2/16

\Review /

(> DNF counting: (FPRAS)
AL U AM-M Exact Counting —— Approx Counting
easy to compute probability \’x?\)

> Monte Carlo: estimate p from

Ber(p). Need ~ 1/pe? many. Exact Sampling —— Approx Sampling
> Self-reducible problems: (FPAUS)

> Coupling: dist with marginals w, v.

2/16

\Review

J

(> DNF counting:
AU UAp|

AU UAm A TrmAn

easy to compute probability

> Monte Carlo: estimate p from
Ber(p). Need ~ 1/pe? many.

> Self-reducible problems:

(FPRAS)
Exact Counting —— Approx Counting

<P
.\;\Q\) [

Exact Sampling —— Approx Sampling
(FPAUS)

> Coupling: dist with marginals w, v.
> Matrix-tree theorem [Kirchhoff]:
#spanning trees = det(matrix)
/7

Laplacian, drop one row+col

2/16

Counting via Determinants
> Spanning trees
O Bipartite planar perfect matchings

Intro to Markov Chains
> Stationary distribution

> Fundamental theorem

> Mixing time

> Spanning trees
O Bipartite planar perfect matchings

Intro to Markov Chains
> Stationary distribution

> Fundamental theorem

> Mixing time

\Counting spanning trees /

R
prany

a b C d e f
uf+1 0 O 0 +1 0
vio =1 +1 0 -1 -1
w0 0 —-1T 41 0 0
x|—1 +1 0 0 0 0 -1
ylo o0 0O =1 0 41 +1

S O o\v

vertex-edge adj matrix A

5/16

\Counting spanning trees /

If we take AAT, we get the Laplacian:

CV R _P (AAT).].:{—"[“J'] i),
' deg(i) ifi=j.
& Q{

a b C d e f
uf+1 0 O 0 +1 0
vio =1 +1 0 -1 -1
w0 0 —-1T 41 0 0
x|—1 +1 0 0 0 0 -1
ylo o0 0O =1 0 41 +1

S O o\v

vertex-edge adj matrix A

5/16

\Counting spanning trees /

If we take AAT, we get the Laplacian:

CV R _P (AAT).].:{—"“”'] i),
' deg(i) ifi=j.
& Q{

a b c d e f
uf+1 0 0 0 +1 0
vio =1 +1 0 -1 -1
w0 0 —-1T 41 0 0
x|—1 +1 0 0 0 0 -1
ylo o0 0 -1 0 +1 41

Matrix-tree theorem [Kirchhoff]

det of (n—1) x (n—1) principal subma-
trix of Laplacian is #spanning trees.

o O o

vertex-edge adj matrix A

5/16

\Counting spanning trees /

If we take AAT, we get the Laplacian:

CV R _P (AAT).].:{—"“”'] i),
' deg(i) ifi=j.
& Q{

Matrix-tree theorem [Kirchhoff]

det of (n—1) x (n—1) principal subma-
trix of Laplacian is #spanning trees.

a b ¢ d e f g
uf+1 0 0 O +1 0 O
vi0 -1 41 0 -1 -1 0
wio 0 -1 41 0 0 O
x|-1. 41 0 0 0 0 -1
y,o o0 0 -1 0 +1 +1

> Directed graphs: exercise!

vertex-edge adj matrix A
5/16

\Counting spanning trees /

If we take AAT, we get the Laplacian:

CV R _P (AAT).].:{—"“”'] i),
' deg(i) ifi=j.
& Q{

a b ¢ d e f g
uf+1 0 0 0 +1 0 O
O -1 +1 0 -1 =1 0
o 0 -1 +1 0 0 O > Directed graphs: exercise!

-1 41 0 0 0 0 -1 > Counting = sampling. ©
0 0 0 —1 0 41 41

Matrix-tree theorem [Kirchhoff]

det of (n—1) x (n—1) principal subma-
trix of Laplacian is #spanning trees.

e x T <

vertex-edge adj matrix A

5/16

> Runtime for counting: O(n®)
4

matrix multiplication exponent w ~ 2.37

6/16

> Runtime for counting: O(n®)
4
matrix multiplication exponent w ~ 2.37

> Runtime for sampling:
> Naive: m x counting = O(mn®)
> Smarter [Colbourn-Myrvold-Neufeld'96]: O (n®)

6/16

> Runtime for counting: O(n®)
4
matrix multiplication exponent w ~ 2.37

> Runtime for sampling:

> Naive: m x counting = O(mn®)

> Smarter [Colbourn-Myrvold-Neufeld'96]: O (n®)
> Best-known (approx) counting

[Chu-Gao-Peng-Sachdeva-Sawlani-wang™18]:
~ ml+o(l) + n15/8+o0(1)

6/16

Runtime for counting: O(n®)
4
matrix multiplication exponent w ~ 2.37

Runtime for sampling:

> Naive: m x counting = O(mn®)

> Smarter [Colbourn-Myrvold-Neufeld'96]: 6(nw)
Best-known (approx) counting
[Chu-Gao-Peng-Sachdeva-Sawlani-wang™18]:
~ ml+o(1) 4 n15/8+0(1)
Best-known (approx) sampling
[~-Liu-OveisGharan-Vinzant-Vuong’20]: 6(m)

Runtime for counting: O(n®)
4
matrix multiplication exponent w ~ 2.37

Runtime for sampling:

> Naive: m x counting = O(mn®)

> Smarter [Colbourn-Myrvold-Neufeld'96]: O (n®)
Best-known (approx) counting

[Chu-Gao-Peng-Sachdeva-Sawlani-wang™18]:
~ m1+o(1) 4 n'15/8—0—0(1)

> Best-known (approx) sampling

[~-Liu-OveisGharan-Vinzant-Vuong’20]: 6(m)
improve counting.

> Runtime for counting: O(n®)
4
matrix multiplication exponent w ~ 2.37

> Runtime for sampling:

> Naive: m x counting = O(mn®)

> Smarter [Colbourn-Myrvold-Neufeld'96]: O (n®)
> Best-known (approx) counting

[Chu-Gao-Peng-Sachdeva-Sawlani-wang™18]:
~ m1+o(1) 4 n'15/8—0—0(1)

> Best-known (approx) sampling N
[/-Liu-OveisGharan-Vinzant-Vuong20]: O(m)
improve counting.
(> speedups in directed graphs?

\Biportite perfect matchings /

Bipartite PMs is #P-complete [Valiant].

> Count approximately«— later
> Restrict graphs<— today

7/16

\Biportite perfect matchings /

Bipartite PMs is #P-complete [Valiant].

> Count approximately«— later
> Restrict graphs<— today

7/16

\Biportite perfect matchings /

Bipartite PMs is #P-complete [Valiant].

> Count approximately«— later
> Restrict graphs<— today

> Permanent: a b
2 s Ao Ancn) /

c a

c d

all 0
b1 1

7/16

\Biportite perfect matchings /

Bipartite PMs is #P-complete [Valiant].

> Count approximately«— later
> Restrict graphs<— today

> Permanent: a b

ZUA]G(U"'ATLG(TL) /

per(bipartite adj) = #PMs

c d

7/16

\Biportite perfect matchings

Bipartite PMs is #P-complete [Valiant].
> Count approximately«— later
> Restrict graphs<— today

> Permanent: a b

ZUA]G(U"'ATLG(TL) /

per(bipartite adj) = #PMs N 1

> Determinant: c d

. all 0
2 o5enl0)AT6(1) Anen) b|l 1

7/16

\Biportite perfect matchings /

Bipartite PMs is #P-complete [Valiant].

> Count approximately«— later
> Restrict graphs<— today

> Permanent: a b
ZUA]G(U"'ATLG(TL) /
per(bipartite adj) = #PMs - .
> Determinant: c d

o all 0
2 o5en0)A16(1) Anom) b1 1

[Polyal’s scheme: replace 1s with £1s to
make all terms in sum equal-signed.

7/16

\Biportite perfect matchings /

Bipartite PMs is #P-complete [Valiant].

Example: K
> Count approximately«— later P 2.2

> Restrict graphs<— today N

> Permanent: a b
det +1 =11\ _ o 1 1
ZcAlcr(U"'AnG(n) € +1 +1 —P 1 1
per(bipartite adj) = #PMs
> Determinant: c d

o all 0
2 o5en0)A16(1) Anom) b1 1

[Polyal’s scheme: replace 1s with £1s to
make all terms in sum equal-signed.

7/16

\Biportite perfect matchings

Bipartite PMs is #P-complete [Valiant]. - o
ample:
> Count approximately<— later xampie: Kz,»

> Restrict graphs<— today N

> Permanent: a b

- det([1) per(1
> s Ate() no(n) +1 41 11

per(bipartite adj) = #PMs Ml Non-example: K

C
> Determinant: c d
o all 0
2 o5en0)A16(1) Anom) b1 1

[PelyaT's scheme: replace Ts with £1s 10 |mpossible! Exercise: show this.
make all terms in sum equal-signed.

7/16

Theorem [Fisher-Kasteleyn-Temperley]

If graphis planar, [Pélyal’s scheme can
be implemented. E.g., 2D lattice:

8/16

Theorem [Fisher-Kasteleyn-Temperley]

If graphis planar, [Pélyal’s scheme can
be implemented. E.g., 2D lattice:

> Goal: find signing where all terms
in det equal.

8/16

Theorem [Fisher-Kasteleyn-Temperley]

If graphis planar, [Pélyal’s scheme can
be implemented. E.g., 2D lattice:

1]

> Goal: find signing where all terms
in det equal.

> Strategy: compare “neighboring”
terms. Make sure equal.

8/16

Theorem [Fisher-Kasteleyn-Temperley]

If graphis planar, [Pélyal’s scheme can
be implemented. E.g., 2D lattice:

1]

> Goal: find signing where all terms
in det equal.

Strategy: compare “neighboring”
terms. Make sure equal.

C Neighboring: PMs that differ in
one cycle.

8/16

Theorem [Fisher-Kasteleyn-Temperley] i><g E><g @

If graphis planar, [Pélyal’s scheme can
be implemented. E.g., 2D lattice:

I

> Goal: find signing where all terms
in det equal.

Strategy: compare “neighboring”
terms. Make sure equal.

C Neighboring: PMs that differ in
one cycle.

8/16

Theorem [Fisher-Kasteleyn-Temperley] i><g E><g @

If graphis planar, [Pélyal’s scheme can
be implemented. E.g., 2D lattice: To move from orange PM to blue PM:

I

> Goal: find signing where all terms
in det equal.

Strategy: compare “neighboring”
terms. Make sure equal.

C Neighboring: PMs that differ in
one cycle.

8/16

Theorem [Fisher-Kasteleyn-Temperley] i><g E><g @

If graphis planar, [Pélyal’s scheme can
be implemented. E.g., 2D lattice: To move from orange PM to blue PM:

et LS E:

> Goal: find signing where all terms
in det equal.

Strategy: compare “neighboring”
terms. Make sure equal.

C Neighboring: PMs that differ in
one cycle.

8/16

Theorem [Fisher-Kasteleyn-Temperley] i><g E><g @

If graphis planar, [Pélyal’s scheme can
be implemented. E.g., 2D lattice: To move from orange PM to blue PM:

ot LS

O O O O
> Goal: find signing where all terms é) é) A) é)

in det equal.

-0 OO

Strategy: compare “neighboring”
terms. Make sure equal.

C Neighboring: PMs that differ in
one cycle.

8/16

Theorem [Fisher-Kasteleyn-Temperley] i><g g><i @

If graphis planar, [Pélyal’s scheme can
be implemented. E.g., 2D lattice: To move from orange PM to blue PM:

I
:

@) o O

> Goal: find signing where all terms é) A) A) §
in det equal.

> Strategy: compare “neighboring” g 8><8 §
terms. Make sure equal.

> Neighboring: PMs that differ in

one cycle.

8/16

%
&

Theorem [Fisher-Kasteleyn-Temperley]

If graphis planar, [Pélyal’s scheme can
be implemented. E.g., 2D lattice: To move from orange PM to blue PM:

®

> Goal: find signing where all terms
in det equal.

®
o0 OO
o0 OO

Strategy: compare “neighboring”
terms. Make sure equal.

> Neighboring: PMs that differ in
one cycle.

®

00O OO OO0
00O OO0 OO0
OO0 0.0 0.0 0.0

8/16

> Can move from any
one cycle at a time.

to any PM

9/16

> Can move from any to any PM
one cycle at a time.

> Nice cycle: a cycle whose
vertex-complement has a PM.

> Can move from any to any PM

one cycle at a time.

Nice cycle: a cycle whose
vertex-complement has a PM.

> Goal: signing where nice cycles

don’t change term’s sign.

5

9/16

> Can move from any to any PM

one cycle at a time.

Nice cycle: a cycle whose
vertex-complement has a PM.

> Goal: signing where nice cycles

don’t change term’s sign.
O—O

Term is sign(0)A15(1) - - - Ano(n)-

9/16

> Can move from any to any PM

one cycle at a time.

Nice cycle: a cycle whose
vertex-complement has a PM.

> Goal: signing where nice cycles

\VARV

don’t change term’s sign.
O—O

Term is sign(0)A15(1) - - - Ano(n)-

sign(o) changes by (—1)'en/2+1,

> Can move from any to any PM

one cycle at a time.

Nice cycle: a cycle whose
vertex-complement has a PM.

> Goal: signing where nice cycles

\VARV

don’t change term’s sign.
O—O

Term is sign(0)A15(1) - - - Ano(n)-

sign(o) changes by (—1)'en/2+1,

> Represent signing by orientation.

(> Orient edges from one side to
other. Thisis all +1 signing.

YEl i &gl

9/16

> Can move from any toany PM (> Represent signing by orientation.

one cycle at a time. > Orient edges from one side to
Nice cycle: a cycle whose other. Thisis all +1 signing.
vertex-complement has a PM.

> Goal: signing where nice cycles g/g [+ O] g/g [Jr 0}
don’t change term’s sign. T - T

\VARV

f CX) > For any cycle, #cw edges: len/2.
O—O

Term is sign(0)A15(1) - - - Ano(n)-

sign(o) changes by (—1)'en/2+1,

> Can move from any

one cycle at a time.

to any PM

Nice cycle: a cycle whose
vertex-complement has a PM.

> Goal: signing where nice cycles
don’t change term’s sign.

\VARV

5

Termis sign(o)Aq (1) - - -

sign(o) changes by (—1)

Ano‘(n)'
Ien/2+1.

> Represent signing by orientation.

(> Orient edges from one side to
other. Thisis all +1 signing.

YEl i &gl

(> For any cycle, #cw edges: len/2.

(> flip some
directions so that in each nice
cycle, #cw edges is odd.

> Can move from any

one cycle at a time.

to any PM

Nice cycle: a cycle whose
vertex-complement has a PM.

> Goal: signing where nice cycles
don’t change term’s sign.

\VARV

5

Termis sign(o)Aq4(1)

sign(o) changes by (—1

: 'Ano'(n)'

)Ien/2+1.

> Represent signing by orientation.

(> Orient edges from one side to
other. Thisis all +1 signing.

YEl i &gl

(> For any cycle, #cw edges: len/2.

(> flip some
directions so that in each nice
cycle, #cw edges is odd.

> This means: ©

H Ae = Ien/Z—H

eccycle

> Find Pfaffian orientation: nice
cycles have odd #cw edges.

10/16

> Find Pfaffian orientation: nice
cycles have odd #cw edges.

Example: lattice

9!

10/16

> Find Pfaffian orientation: nice
cycles have odd #cw edges.

Example: lattice

9!

Lemma: if all faces have odd #cw
edges, so do all nice cycles.

10/16

> Find Pfaffian orientation: nice
cycles have odd #cw edges.

Example: lattice

|

Lemma: if all faces have odd #cw
edges, so do all nice cycles.

Lemma: we can find orientation
with odd #cw edges per face.

10/16

> Find Pfaffian orientation: nice
cycles have odd #cw edges.

Example: lattice

|

Lemma: if all faces have odd #cw
edges, so do all nice cycles.

Lemma: we can find orientation
with odd #cw edges per face.

10/16

> Find Pfaffian orientation: nice
cycles have odd #cw edges.

Example: lattice

|

Lemma: if all faces have odd #cw
edges, so do all nice cycles.

Lemma: we can find orientation
with odd #cw edges per face.

> Modulo 2, #(cw around cucle) is

= Y int face £ #(Cw around f) +
#(int edges)

10/16

> Find Pfaffian orientation: nice
cycles have odd #cw edges.

Example: lattice

|

Lemma: if all faces have odd #cw
edges, so do all nice cycles.

Lemma: we can find orientation
with odd #cw edges per face.

> Modulo 2, #(cw around cucle) is

=) intface £ #(Cw around f) +
#(int edges)
(> By Euler’s formula
#verts + #faces — #edges = 1, so
#(int faces) + #(int edges) =
#(int verts) + 1

10/16

> Find Pfaffian orientation: nice
cycles have odd #cw edges.

Example: lattice

|

Lemma: if all faces have odd #cw
edges, so do all nice cycles.

Lemma: we can find orientation
with odd #cw edges per face.

> Modulo 2, #(cw around cucle) is

=) intface £ #(Cw around f) +
#(int edges)
(> By Euler’s formula
#verts + #faces — #edges = 1, so
#(int faces) + #(int edges) =
#(int verts) + 1
> Because of niceness, there are
even many interior vertices. ©

10/16

> How to make faces happy?

1/16

> How to make faces happy?
> Choose

1/16

> How to make faces happy?
> Choose spanning tree
> Comes with dual spanning tree

Oo—0O—0O

n/16

> How to make faces happy?
> Choose spanning tree
> Comes with dual spanning tree

2" root

n/16

> How to make faces happy?
> Choose spanning tree
> Comes with dual spanning tree

2" root

> Orient spanning tree arbitrarily.

n/16

\VAVAY,

\VAV,

How to make faces happy?
Choose spanning tree
Comes with dual spanning tree

2" root

Orient spanning tree arbitrarily.

Peel leaves of dual spanning tree
one-by-one. Each time, orient the
single remaining edge of peeled
face uniquely.

n/16

\VAVAY,

\VAV,

How to make faces happy?
Choose spanning tree
Comes with dual spanning tree

Orient spanning tree arbitrarily.

Peel leaves of dual spanning tree
one-by-one. Each time, orient the
single remaining edge of peeled
face uniquely.

n/16

\VAVAY,

\VAV,

How to make faces happy?
Choose spanning tree
Comes with dual spanning tree

Orient spanning tree arbitrarily.

Peel leaves of dual spanning tree
one-by-one. Each time, orient the
single remaining edge of peeled
face uniquely.

Summary: counting via dets

n/16

\VAVAY,

\VAV,

How to make faces happy?
Choose spanning tree
Comes with dual spanning tree

Orient spanning tree arbitrarily.

Peel leaves of dual spanning tree
one-by-one. Each time, orient the
single remaining edge of peeled
face uniquely.

Summary: counting via dets

> Spanning trees:
> Undirected: [Kirchhoff]'s
matrix-tree theorem.
> Directed: exercise!

n/16

\VAVAY,

\VAV,

How to make faces happy?
Choose
Comes with dual spanning tree

root
O
Orient arbitrarily.

Peel leaves of dual spanning tree
one-by-one. Each time, orient the
single remaining edge of peeled
face uniquely.

Summary: counting via dets

> Spanning trees:
> Undirected: [Kirchhoff]'s
matrix-tree theorem.
> Directed: exercise!
> Planar perfect matchings:
> Bipartite:
[Fisher-Kasteleyn-TemperleyT’s
Pfaffian orientation.
> Non-bipartite: exercise!

1/16

\VAVAY,

\VAV,

How to make faces happy?
Choose
Comes with dual spanning tree

root
O
Orient arbitrarily.

Peel leaves of dual spanning tree
one-by-one. Each time, orient the
single remaining edge of peeled
face uniquely.

Summary: counting via dets

> Spanning trees:
> Undirected: [Kirchhoff]'s
matrix-tree theorem.
> Directed: exercise!
> Planar perfect matchings:
> Bipartite:
[Fisher-Kasteleyn-TemperleyT’s
Pfaffian orientation.
> Non-bipartite: exercise!

> Holographic reductions [Valiant]

1/16

\VAVAY,

\VAV,

How to make faces happy?
Choose
Comes with dual spanning tree

root
O
Orient arbitrarily.

Peel leaves of dual spanning tree
one-by-one. Each time, orient the
single remaining edge of peeled
face uniquely.

Summary: counting via dets

> Spanning trees:
> Undirected: [Kirchhoff]'s
matrix-tree theorem.
> Directed: exercise!
> Planar perfect matchings:
> Bipartite:
[Fisher-Kasteleyn-TemperleyT’s
Pfaffian orientation.
> Non-bipartite: exercise!

> Holographic reductions [Valiant]
(> Eulerian tours: exercisel!

1/16

\VAVAY,

\VAV,

How to make faces happy?
Choose
Comes with dual spanning tree

root
O
Orient arbitrarily.

Peel leaves of dual spanning tree
one-by-one. Each time, orient the
single remaining edge of peeled
face uniquely.

Summary: counting via dets

> Spanning trees:

> Undirected: [Kirchhoff]'s
matrix-tree theorem.

> Directed: exercise!

> Planar perfect matchings:

> Bipartite:
[Fisher-Kasteleyn-TemperleyT’s
Pfaffian orientation.

> Non-bipartite: exercise!

> Holographic reductions [Valiant]

> Eulerian tours: exercise!

> Determinantal point processes
0

will see later

1/16

> Spanning trees
O Bipartite planar perfect matchings

Intro to Markov Chains
> Stationary distribution

> Fundamental theorem

> Mixing time

Counting via Determinants
> Spanning trees
O Bipartite planar perfect matchings

> Stationary distribution
> Fundamental theorem
> Mixing time

\Markov chains /

SO=Z

-0z space Q

o=

Transition matrix: l;e RSOXQ

FN N

large and implicit

13/16

R

\Markov chains /
C< 0= space Q
~o=

Transition matrix: Pe R

Blm A= M=

large and implicit

> P(x,y) is chance of going to y if
we start from x

13/16

R

\Markov chains /
C< 0= space Q
~o=

Transition matrix: Pe R

Blm A= M=

large and implicit

> P(x,y) is chance of going to y if
we start from x

3 Z ,y = l<«— row-stochastic

13/16

\Morkov chains /

0=

0= space Q
Transition matrix: l;e RQXQ

Bl= A= N=

RS

N|—= — A= T

o OR=0O
| E—

N—= ON= O

o o Q@
1

large and implicit

> P(x,y) is chance of going to y if
we start from x

3 Z ,y = l<«— row-stochastic

13/16

\Morkov chains

0=

1
2
(<;->O<; space Q
1 a b ¢
4\04 1 1 1
o
Transition matrix: l;e RQXQ cll 1o

large and implicit

& P(x,y) is chance of going to y if > Given (random) start Xo, we get
we start from x Markovian process:

> Z)U = T<«— row-stochastic X}'_>X1_>Y¥ .
transition via P transition via P

13/16

Fundamental theorem

Under “mild conditions”:
dist(X¢) —

where p is the stationary dist.

14/16

Fundamental theorem

Under “mild conditions”
dist(X¢) —

where p is the stationary dist.

14/16

Fundamental theorem > Suppose Xg ~ v, then}wl;

Under “mild conditions™ row vector transition matrix
dist(X¢) —

where p is the stationary dist.

14/16

Fundamental theorem > Suppose Xp ~ v, then X7 »vP
PP 0 / A

Under “mild conditions™ row vector transition matrix

dist(X¢) — 1 O Stationary dist: if uP =, then pis
called a stationary dist.
where uis the stationary dist.

14/16

Fundamental theorem > Suppose Xp ~ v, then X7 »vP
PP 0 / A

Under “mild conditions”
dist(X¢) —

where uis the stationary dist.

row vector transition matrix
O Stationary dist: if uP =, then pis
called a stationary dist.

C Note: if there is any limit, it must
be stationary!

14/16

Fundamental theorem > Suppose Xy ~ v, then X7 5VvP
PP 0 / A

Under “mild conditions™ row vector transition matrix

dist(X¢) — 1 O Stationary dist: if uP = p, then wis
called a stationary dist.

C Note: if there is any limit, it must
be stationary!

> Sampling via Markov chains:

> Steps are easy< easy
X oy z ... > Correct stationary p«—— easy
(> Convergence to pis fost

A

where uis the stationary dist.

hard

14/16

Fundamental theorem > Suppose Xy ~ v, then X7 5VvP
pp 0 / A

Under “mild conditions”
dist(X¢) —

where uis the stationary dist.

row vector transition matrix

O Stationary dist: if uP =, then pis
called a stationary dist.

C Note: if there is any limit, it must
be stationary!

> Sampling via Markov chains:

> Steps are easy< easy
> Correct stationary p«—— easy
> Convergence to wis fast

*

hard

> Ideally, we want to stop at small t
and have small dtv to

14/16

Example: hypercube

> Q={o, 1}n

C Pickurie] %
C Replace coord i

with Ber

stationary: uniform

15/16

Example: hypercube

> Q={o, 1}n

C Pickurie] %
C Replace coord i
with Ber

stationary: uniform

Example: coloring

& Q = valid colorings

> Pick ur. vertv
> Replace v's color u.r.
with valid color

stationary: uniform

15/16

Example: hypercube
o Q={o, 1}“
O Pickurie]

> Replace coord i
with Ber

stationary: uniform

Example: coloring

& Q = valid colorings
O Pick ur vertv

> Replace v’s color u.r.
with valid color

stationary: uniform

O Irreducible: possible to reach from
every x to every y.

15/16

Example: hypercube

O Irreducible: possible to reach from
G a={o, 1}“ every x to every y.

O Pickurie] > Aperiodic: length of cycles from x
> Replace coord i to x have ged = 1.
with Ber

stationary: uniform

Example: coloring

& Q = valid colorings

> Pick ur vertv
> Replace v’s color u.r.
with valid color

stationary: uniform

15/16

Example: hypercube

O Irreducible: possible to reach from

G a={o, 1}“ every x to every y.
O Pickuriel g} O Aperiodic: length of cycles from x
> Replace coord i to x have ged = 1.

with Ber

O Ergodic: irreducible+aperiodic

stationary: uniform

Example: coloring

& Q = valid colorings

& Pick ur vertv
> Replace v’s color u.r.
with valid color

stationary: uniform

15/16

Example: hypercube O Irreducible: possible to reach from

G a={o, 1}“ every x to every v.
O Pickurie] % > Aperiodic: length of cycles from x
> Replace coord i iﬂ to x have ged = 1.

with Ber

O Ergodic: irreducible+aperiodic

stationary: uniform Fundamental theorem

Every ergodic chain has a unique sta-
tionary dist u, and for any dist v
& Q = valid colorings

. Pt _
O Pick ur vertv t"_>moo" R
> Replace v’s color u.r.

with valid color

Example: coloring

stationary: uniform

15/16

Example: hypercube

C a=/{o, 1}“

O Pickuriel %
> Replace coord i
with Ber

stationary: uniform

Example: coloring
& Q = valid colorings
O Pick ur vertv
> Replace v’s color u.r.
with valid color
stationary: uniform

O Irreducible: possible to reach from
every x to every y.

O Aperiodic: length of cycles from x
to x have ged = 1.

O Ergodic: irreducible+aperiodic

Fundamental theorem

Every ergodic chain has a unique sta-
tionary dist u, and for any dist v

lim vP' = .
t—o0

> Note: this convergence can be
very slow.

15/16

Much more useful for us:

For Markov chain P with stationary u, we set
tmix(P>€)V) = min{t ‘ dTV(u) VPt) < G}

and
tmix(P) €) = max{tmix(P> €>V) | V}

16/16

Much more useful for us:

For Markov chain P with stationary u, we set
tmix(P>€)V) = min{t ‘ dTV(le) VPt) < 6}

and
tmix(P) €) = max{tmix(P> €>V) | V}

> We will see later that we don’t even have to
specify % and we can just talk about tmix(P).

ie,it’s fine tosetitto 1/4

16/16

Much more useful for us:

For Markov chain P with stationary u, we set
tmix(P>€)V) = min{t ‘ dTV(le) VPt) < 6}

and
J[mix(P) €) = max{tmix(P> €>V) | V}

> We will see later that we don’t even have to
specify % and we can just talk about tmix(P).
ie,it’s fine tosetitto 1/4

> We usually want tmix(P) = poly log(1Q)]) for
efficient algs.

16/16

