
1/16

CS 263: Counting and Sampling

Nima Anari

slides for

Det Counting; Markov Chains

2/16

Review

DNF counting:

|A1 t · · · tAm|

easy to compute

· |A1∪···∪Am|

|A1t···tAm|

probability

Monte Carlo: estimate p from

Ber(p). Need ' 1/pε2 many.

Self-reducible problems:

/∈matching ∈matching

Exact Counting Approx Counting

(FPRAS)

Exact Sampling Approx Sampling

(FPAUS)

if F
PT
AS

Coupling: dist with marginals µ, ν.

Matrix-tree theorem [Kirchhoff]:

#spanning trees = det(matrix)

Laplacian, drop one row+col

2/16

Review

DNF counting:

|A1 t · · · tAm|

easy to compute

· |A1∪···∪Am|

|A1t···tAm|

probability

Monte Carlo: estimate p from

Ber(p). Need ' 1/pε2 many.

Self-reducible problems:

/∈matching ∈matching

Exact Counting Approx Counting

(FPRAS)

Exact Sampling Approx Sampling

(FPAUS)

if F
PT
AS

Coupling: dist with marginals µ, ν.

Matrix-tree theorem [Kirchhoff]:

#spanning trees = det(matrix)

Laplacian, drop one row+col

2/16

Review

DNF counting:

|A1 t · · · tAm|

easy to compute

· |A1∪···∪Am|

|A1t···tAm|

probability

Monte Carlo: estimate p from

Ber(p). Need ' 1/pε2 many.

Self-reducible problems:

/∈matching ∈matching

Exact Counting Approx Counting

(FPRAS)

Exact Sampling Approx Sampling

(FPAUS)

if F
PT
AS

Coupling: dist with marginals µ, ν.

Matrix-tree theorem [Kirchhoff]:

#spanning trees = det(matrix)

Laplacian, drop one row+col

2/16

Review

DNF counting:

|A1 t · · · tAm|

easy to compute

· |A1∪···∪Am|

|A1t···tAm|

probability

Monte Carlo: estimate p from

Ber(p). Need ' 1/pε2 many.

Self-reducible problems:

/∈matching ∈matching

Exact Counting Approx Counting

(FPRAS)

Exact Sampling Approx Sampling

(FPAUS)

if F
PT
AS

Coupling: dist with marginals µ, ν.

Matrix-tree theorem [Kirchhoff]:

#spanning trees = det(matrix)

Laplacian, drop one row+col

2/16

Review

DNF counting:

|A1 t · · · tAm|

easy to compute

· |A1∪···∪Am|

|A1t···tAm|

probability

Monte Carlo: estimate p from

Ber(p). Need ' 1/pε2 many.

Self-reducible problems:

/∈matching ∈matching

Exact Counting Approx Counting

(FPRAS)

Exact Sampling Approx Sampling

(FPAUS)

if F
PT
AS

Coupling: dist with marginals µ, ν.

Matrix-tree theorem [Kirchhoff]:

#spanning trees = det(matrix)

Laplacian, drop one row+col

2/16

Review

DNF counting:

|A1 t · · · tAm|

easy to compute

· |A1∪···∪Am|

|A1t···tAm|

probability

Monte Carlo: estimate p from

Ber(p). Need ' 1/pε2 many.

Self-reducible problems:

/∈matching ∈matching

Exact Counting Approx Counting

(FPRAS)

Exact Sampling Approx Sampling

(FPAUS)

if F
PT
AS

Coupling: dist with marginals µ, ν.

Matrix-tree theorem [Kirchhoff]:

#spanning trees = det(matrix)

Laplacian, drop one row+col

4/16

Counting via Determinants
Spanning trees

Bipartite planar perfect matchings

Intro to Markov Chains
Stationary distribution

Fundamental theorem

Mixing time

4/16

Counting via Determinants
Spanning trees

Bipartite planar perfect matchings

Intro to Markov Chains
Stationary distribution

Fundamental theorem

Mixing time

5/16

Counting spanning trees

u v w

x y

a b

c

d

e

f

g



a b c d e f g

u +1 0 0 0 +1 0 0

v 0 −1 +1 0 −1 −1 0

w 0 0 −1 +1 0 0 0

x −1 +1 0 0 0 0 −1

y 0 0 0 −1 0 +1 +1


vertex-edge adj matrix A

If we take AAᵀ, we get the Laplacian:

(AAᵀ)ij =

{
−1[i ∼ j] if i 6= j,

deg(i) if i = j.

Matrix-tree theorem [Kirchhoff]

det of (n−1)×(n−1) principal subma-

trix of Laplacian is #spanning trees.

Directed graphs: exercise!

Counting =⇒ sampling.

5/16

Counting spanning trees

u v w

x y

a b

c

d

e

f

g



a b c d e f g

u +1 0 0 0 +1 0 0

v 0 −1 +1 0 −1 −1 0

w 0 0 −1 +1 0 0 0

x −1 +1 0 0 0 0 −1

y 0 0 0 −1 0 +1 +1


vertex-edge adj matrix A

If we take AAᵀ, we get the Laplacian:

(AAᵀ)ij =

{
−1[i ∼ j] if i 6= j,

deg(i) if i = j.

Matrix-tree theorem [Kirchhoff]

det of (n−1)×(n−1) principal subma-

trix of Laplacian is #spanning trees.

Directed graphs: exercise!

Counting =⇒ sampling.

5/16

Counting spanning trees

u v w

x y

a b

c

d

e

f

g



a b c d e f g

u +1 0 0 0 +1 0 0

v 0 −1 +1 0 −1 −1 0

w 0 0 −1 +1 0 0 0

x −1 +1 0 0 0 0 −1

y 0 0 0 −1 0 +1 +1


vertex-edge adj matrix A

If we take AAᵀ, we get the Laplacian:

(AAᵀ)ij =

{
−1[i ∼ j] if i 6= j,

deg(i) if i = j.

Matrix-tree theorem [Kirchhoff]

det of (n−1)×(n−1) principal subma-

trix of Laplacian is #spanning trees.

Directed graphs: exercise!

Counting =⇒ sampling.

5/16

Counting spanning trees

u v w

x y

a b

c

d

e

f

g



a b c d e f g

u +1 0 0 0 +1 0 0

v 0 −1 +1 0 −1 −1 0

w 0 0 −1 +1 0 0 0

x −1 +1 0 0 0 0 −1

y 0 0 0 −1 0 +1 +1


vertex-edge adj matrix A

If we take AAᵀ, we get the Laplacian:

(AAᵀ)ij =

{
−1[i ∼ j] if i 6= j,

deg(i) if i = j.

Matrix-tree theorem [Kirchhoff]

det of (n−1)×(n−1) principal subma-

trix of Laplacian is #spanning trees.

Directed graphs: exercise!

Counting =⇒ sampling.

5/16

Counting spanning trees

u v w

x y

a b

c

d

e

f

g



a b c d e f g

u +1 0 0 0 +1 0 0

v 0 −1 +1 0 −1 −1 0

w 0 0 −1 +1 0 0 0

x −1 +1 0 0 0 0 −1

y 0 0 0 −1 0 +1 +1


vertex-edge adj matrix A

If we take AAᵀ, we get the Laplacian:

(AAᵀ)ij =

{
−1[i ∼ j] if i 6= j,

deg(i) if i = j.

Matrix-tree theorem [Kirchhoff]

det of (n−1)×(n−1) principal subma-

trix of Laplacian is #spanning trees.

Directed graphs: exercise!

Counting =⇒ sampling.

6/16

Runtime for counting: O(nω)

matrix multiplication exponent ω ' 2.37

Runtime for sampling:

Naïve: m× counting = O(mnω)

Smarter [Colbourn-Myrvold-Neufeld’96]: Õ(nω)

Best-known (approx) counting

[Chu-Gao-Peng-Sachdeva-Sawlani-Wang’18]:

' m1+o(1) + n15/8+o(1)

Best-known (approx) sampling

[A-Liu-OveisGharan-Vinzant-Vuong’20]: Õ(m)

Open problem: improve counting.

Open problem: speedups in directed graphs?

6/16

Runtime for counting: O(nω)

matrix multiplication exponent ω ' 2.37

Runtime for sampling:

Naïve: m× counting = O(mnω)

Smarter [Colbourn-Myrvold-Neufeld’96]: Õ(nω)

Best-known (approx) counting

[Chu-Gao-Peng-Sachdeva-Sawlani-Wang’18]:

' m1+o(1) + n15/8+o(1)

Best-known (approx) sampling

[A-Liu-OveisGharan-Vinzant-Vuong’20]: Õ(m)

Open problem: improve counting.

Open problem: speedups in directed graphs?

6/16

Runtime for counting: O(nω)

matrix multiplication exponent ω ' 2.37

Runtime for sampling:

Naïve: m× counting = O(mnω)

Smarter [Colbourn-Myrvold-Neufeld’96]: Õ(nω)

Best-known (approx) counting

[Chu-Gao-Peng-Sachdeva-Sawlani-Wang’18]:

' m1+o(1) + n15/8+o(1)

Best-known (approx) sampling

[A-Liu-OveisGharan-Vinzant-Vuong’20]: Õ(m)

Open problem: improve counting.

Open problem: speedups in directed graphs?

6/16

Runtime for counting: O(nω)

matrix multiplication exponent ω ' 2.37

Runtime for sampling:

Naïve: m× counting = O(mnω)

Smarter [Colbourn-Myrvold-Neufeld’96]: Õ(nω)

Best-known (approx) counting

[Chu-Gao-Peng-Sachdeva-Sawlani-Wang’18]:

' m1+o(1) + n15/8+o(1)

Best-known (approx) sampling

[A-Liu-OveisGharan-Vinzant-Vuong’20]: Õ(m)

Open problem: improve counting.

Open problem: speedups in directed graphs?

6/16

Runtime for counting: O(nω)

matrix multiplication exponent ω ' 2.37

Runtime for sampling:

Naïve: m× counting = O(mnω)

Smarter [Colbourn-Myrvold-Neufeld’96]: Õ(nω)

Best-known (approx) counting

[Chu-Gao-Peng-Sachdeva-Sawlani-Wang’18]:

' m1+o(1) + n15/8+o(1)

Best-known (approx) sampling

[A-Liu-OveisGharan-Vinzant-Vuong’20]: Õ(m)

Open problem: improve counting.

Open problem: speedups in directed graphs?

6/16

Runtime for counting: O(nω)

matrix multiplication exponent ω ' 2.37

Runtime for sampling:

Naïve: m× counting = O(mnω)

Smarter [Colbourn-Myrvold-Neufeld’96]: Õ(nω)

Best-known (approx) counting

[Chu-Gao-Peng-Sachdeva-Sawlani-Wang’18]:

' m1+o(1) + n15/8+o(1)

Best-known (approx) sampling

[A-Liu-OveisGharan-Vinzant-Vuong’20]: Õ(m)

Open problem: improve counting.

Open problem: speedups in directed graphs?

7/16

Bipartite perfect matchings

Bipartite PMs is #P-complete [Valiant].

Count approximately later

Restrict graphs today

Permanent:∑
σA1σ(1) · · ·Anσ(n)

per(bipartite adj) = #PMs

Determinant:∑
σ sign(σ)A1σ(1) · · ·Anσ(n)

a b

c d

[c d

a 1 0

b 1 1

]
[Pólya]’s scheme: replace 1s with ±1s to

make all terms in sum equal-signed.

Example: K2,2

det
([

+1 −1

+1 +1

])
= per

([
1 1

1 1

])
Non-example: K3,3

Impossible! Exercise: show this.

7/16

Bipartite perfect matchings

Bipartite PMs is #P-complete [Valiant].

Count approximately later

Restrict graphs today

Permanent:∑
σA1σ(1) · · ·Anσ(n)

per(bipartite adj) = #PMs

Determinant:∑
σ sign(σ)A1σ(1) · · ·Anσ(n)

a b

c d

[c d

a 1 0

b 1 1

]

[Pólya]’s scheme: replace 1s with ±1s to

make all terms in sum equal-signed.

Example: K2,2

det
([

+1 −1

+1 +1

])
= per

([
1 1

1 1

])
Non-example: K3,3

Impossible! Exercise: show this.

7/16

Bipartite perfect matchings

Bipartite PMs is #P-complete [Valiant].

Count approximately later

Restrict graphs today

Permanent:∑
σA1σ(1) · · ·Anσ(n)

per(bipartite adj) = #PMs

Determinant:∑
σ sign(σ)A1σ(1) · · ·Anσ(n)

a b

c d

[c d

a 1 0

b 1 1

]

[Pólya]’s scheme: replace 1s with ±1s to

make all terms in sum equal-signed.

Example: K2,2

det
([

+1 −1

+1 +1

])
= per

([
1 1

1 1

])
Non-example: K3,3

Impossible! Exercise: show this.

7/16

Bipartite perfect matchings

Bipartite PMs is #P-complete [Valiant].

Count approximately later

Restrict graphs today

Permanent:∑
σA1σ(1) · · ·Anσ(n)

per(bipartite adj) = #PMs

Determinant:∑
σ sign(σ)A1σ(1) · · ·Anσ(n)

a b

c d

[c d

a 1 0

b 1 1

]

[Pólya]’s scheme: replace 1s with ±1s to

make all terms in sum equal-signed.

Example: K2,2

det
([

+1 −1

+1 +1

])
= per

([
1 1

1 1

])
Non-example: K3,3

Impossible! Exercise: show this.

7/16

Bipartite perfect matchings

Bipartite PMs is #P-complete [Valiant].

Count approximately later

Restrict graphs today

Permanent:∑
σA1σ(1) · · ·Anσ(n)

per(bipartite adj) = #PMs

Determinant:∑
σ sign(σ)A1σ(1) · · ·Anσ(n)

a b

c d

[c d

a 1 0

b 1 1

]

[Pólya]’s scheme: replace 1s with ±1s to

make all terms in sum equal-signed.

Example: K2,2

det
([

+1 −1

+1 +1

])
= per

([
1 1

1 1

])
Non-example: K3,3

Impossible! Exercise: show this.

7/16

Bipartite perfect matchings

Bipartite PMs is #P-complete [Valiant].

Count approximately later

Restrict graphs today

Permanent:∑
σA1σ(1) · · ·Anσ(n)

per(bipartite adj) = #PMs

Determinant:∑
σ sign(σ)A1σ(1) · · ·Anσ(n)

a b

c d

[c d

a 1 0

b 1 1

]
[Pólya]’s scheme: replace 1s with ±1s to

make all terms in sum equal-signed.

Example: K2,2

det
([

+1 −1

+1 +1

])
= per

([
1 1

1 1

])
Non-example: K3,3

Impossible! Exercise: show this.

7/16

Bipartite perfect matchings

Bipartite PMs is #P-complete [Valiant].

Count approximately later

Restrict graphs today

Permanent:∑
σA1σ(1) · · ·Anσ(n)

per(bipartite adj) = #PMs

Determinant:∑
σ sign(σ)A1σ(1) · · ·Anσ(n)

a b

c d

[c d

a 1 0

b 1 1

]
[Pólya]’s scheme: replace 1s with ±1s to

make all terms in sum equal-signed.

Example: K2,2

det
([

+1 −1

+1 +1

])
= per

([
1 1

1 1

])

Non-example: K3,3

Impossible! Exercise: show this.

7/16

Bipartite perfect matchings

Bipartite PMs is #P-complete [Valiant].

Count approximately later

Restrict graphs today

Permanent:∑
σA1σ(1) · · ·Anσ(n)

per(bipartite adj) = #PMs

Determinant:∑
σ sign(σ)A1σ(1) · · ·Anσ(n)

a b

c d

[c d

a 1 0

b 1 1

]
[Pólya]’s scheme: replace 1s with ±1s to

make all terms in sum equal-signed.

Example: K2,2

det
([

+1 −1

+1 +1

])
= per

([
1 1

1 1

])
Non-example: K3,3

Impossible! Exercise: show this.

8/16

Theorem [Fisher-Kasteleyn-Temperley]

If graph is planar, [Pólya]’s scheme can

be implemented. E.g., 2D lattice:

Goal: find signing where all terms

in det equal.
Strategy: compare “neighboring”

terms. Make sure equal.

Neighboring: PMs that differ in

one cycle.

To move from orange PM to blue PM:

1

1

2

2

3

3

4

4

8/16

Theorem [Fisher-Kasteleyn-Temperley]

If graph is planar, [Pólya]’s scheme can

be implemented. E.g., 2D lattice:

Goal: find signing where all terms

in det equal.

Strategy: compare “neighboring”

terms. Make sure equal.

Neighboring: PMs that differ in

one cycle.

To move from orange PM to blue PM:

1

1

2

2

3

3

4

4

8/16

Theorem [Fisher-Kasteleyn-Temperley]

If graph is planar, [Pólya]’s scheme can

be implemented. E.g., 2D lattice:

Goal: find signing where all terms

in det equal.
Strategy: compare “neighboring”

terms. Make sure equal.

Neighboring: PMs that differ in

one cycle.

To move from orange PM to blue PM:

1

1

2

2

3

3

4

4

8/16

Theorem [Fisher-Kasteleyn-Temperley]

If graph is planar, [Pólya]’s scheme can

be implemented. E.g., 2D lattice:

Goal: find signing where all terms

in det equal.
Strategy: compare “neighboring”

terms. Make sure equal.

Neighboring: PMs that differ in

one cycle.

To move from orange PM to blue PM:

1

1

2

2

3

3

4

4

8/16

Theorem [Fisher-Kasteleyn-Temperley]

If graph is planar, [Pólya]’s scheme can

be implemented. E.g., 2D lattice:

Goal: find signing where all terms

in det equal.
Strategy: compare “neighboring”

terms. Make sure equal.

Neighboring: PMs that differ in

one cycle.

To move from orange PM to blue PM:

1

1

2

2

3

3

4

4

8/16

Theorem [Fisher-Kasteleyn-Temperley]

If graph is planar, [Pólya]’s scheme can

be implemented. E.g., 2D lattice:

Goal: find signing where all terms

in det equal.
Strategy: compare “neighboring”

terms. Make sure equal.

Neighboring: PMs that differ in

one cycle.

To move from orange PM to blue PM:

1

1

2

2

3

3

4

4

8/16

Theorem [Fisher-Kasteleyn-Temperley]

If graph is planar, [Pólya]’s scheme can

be implemented. E.g., 2D lattice:

Goal: find signing where all terms

in det equal.
Strategy: compare “neighboring”

terms. Make sure equal.

Neighboring: PMs that differ in

one cycle.

To move from orange PM to blue PM:

1

1

2

2

3

3

4

4

8/16

Theorem [Fisher-Kasteleyn-Temperley]

If graph is planar, [Pólya]’s scheme can

be implemented. E.g., 2D lattice:

Goal: find signing where all terms

in det equal.
Strategy: compare “neighboring”

terms. Make sure equal.

Neighboring: PMs that differ in

one cycle.

To move from orange PM to blue PM:

1

1

2

2

3

3

4

4

8/16

Theorem [Fisher-Kasteleyn-Temperley]

If graph is planar, [Pólya]’s scheme can

be implemented. E.g., 2D lattice:

Goal: find signing where all terms

in det equal.
Strategy: compare “neighboring”

terms. Make sure equal.

Neighboring: PMs that differ in

one cycle.

To move from orange PM to blue PM:

1

1

2

2

3

3

4

4

8/16

Theorem [Fisher-Kasteleyn-Temperley]

If graph is planar, [Pólya]’s scheme can

be implemented. E.g., 2D lattice:

Goal: find signing where all terms

in det equal.
Strategy: compare “neighboring”

terms. Make sure equal.

Neighboring: PMs that differ in

one cycle.

To move from orange PM to blue PM:

1

1

2

2

3

3

4

4

9/16

Can move from any PM to any PM

one cycle at a time.

Nice cycle: a cycle whose

vertex-complement has a PM.

Goal: signing where nice cycles

don’t change term’s sign.

Term is sign(σ)A1σ(1) · · ·Anσ(n).

sign(σ) changes by (−1)len/2+1.

Represent signing by orientation.

Orient edges from one side to

other. This is all +1 signing.[
+ 0

+ +

] [
+ 0

− +

]

For any cycle, #cw edges: len/2.

Pfaffian orientation: flip some

directions so that in each nice

cycle, #cw edges is odd.

This means:∏
e∈cycle

Ae = (−1)len/2+1

9/16

Can move from any PM to any PM

one cycle at a time.

Nice cycle: a cycle whose

vertex-complement has a PM.

Goal: signing where nice cycles

don’t change term’s sign.

Term is sign(σ)A1σ(1) · · ·Anσ(n).

sign(σ) changes by (−1)len/2+1.

Represent signing by orientation.

Orient edges from one side to

other. This is all +1 signing.[
+ 0

+ +

] [
+ 0

− +

]

For any cycle, #cw edges: len/2.

Pfaffian orientation: flip some

directions so that in each nice

cycle, #cw edges is odd.

This means:∏
e∈cycle

Ae = (−1)len/2+1

9/16

Can move from any PM to any PM

one cycle at a time.

Nice cycle: a cycle whose

vertex-complement has a PM.

Goal: signing where nice cycles

don’t change term’s sign.

Term is sign(σ)A1σ(1) · · ·Anσ(n).

sign(σ) changes by (−1)len/2+1.

Represent signing by orientation.

Orient edges from one side to

other. This is all +1 signing.[
+ 0

+ +

] [
+ 0

− +

]

For any cycle, #cw edges: len/2.

Pfaffian orientation: flip some

directions so that in each nice

cycle, #cw edges is odd.

This means:∏
e∈cycle

Ae = (−1)len/2+1

9/16

Can move from any PM to any PM

one cycle at a time.

Nice cycle: a cycle whose

vertex-complement has a PM.

Goal: signing where nice cycles

don’t change term’s sign.

Term is sign(σ)A1σ(1) · · ·Anσ(n).

sign(σ) changes by (−1)len/2+1.

Represent signing by orientation.

Orient edges from one side to

other. This is all +1 signing.[
+ 0

+ +

] [
+ 0

− +

]

For any cycle, #cw edges: len/2.

Pfaffian orientation: flip some

directions so that in each nice

cycle, #cw edges is odd.

This means:∏
e∈cycle

Ae = (−1)len/2+1

9/16

Can move from any PM to any PM

one cycle at a time.

Nice cycle: a cycle whose

vertex-complement has a PM.

Goal: signing where nice cycles

don’t change term’s sign.

Term is sign(σ)A1σ(1) · · ·Anσ(n).

sign(σ) changes by (−1)len/2+1.

Represent signing by orientation.

Orient edges from one side to

other. This is all +1 signing.[
+ 0

+ +

] [
+ 0

− +

]

For any cycle, #cw edges: len/2.

Pfaffian orientation: flip some

directions so that in each nice

cycle, #cw edges is odd.

This means:∏
e∈cycle

Ae = (−1)len/2+1

9/16

Can move from any PM to any PM

one cycle at a time.

Nice cycle: a cycle whose

vertex-complement has a PM.

Goal: signing where nice cycles

don’t change term’s sign.

Term is sign(σ)A1σ(1) · · ·Anσ(n).

sign(σ) changes by (−1)len/2+1.

Represent signing by orientation.

Orient edges from one side to

other. This is all +1 signing.[
+ 0

+ +

] [
+ 0

− +

]

For any cycle, #cw edges: len/2.

Pfaffian orientation: flip some

directions so that in each nice

cycle, #cw edges is odd.

This means:∏
e∈cycle

Ae = (−1)len/2+1

9/16

Can move from any PM to any PM

one cycle at a time.

Nice cycle: a cycle whose

vertex-complement has a PM.

Goal: signing where nice cycles

don’t change term’s sign.

Term is sign(σ)A1σ(1) · · ·Anσ(n).

sign(σ) changes by (−1)len/2+1.

Represent signing by orientation.

Orient edges from one side to

other. This is all +1 signing.[
+ 0

+ +

] [
+ 0

− +

]

For any cycle, #cw edges: len/2.

Pfaffian orientation: flip some

directions so that in each nice

cycle, #cw edges is odd.

This means:∏
e∈cycle

Ae = (−1)len/2+1

9/16

Can move from any PM to any PM

one cycle at a time.

Nice cycle: a cycle whose

vertex-complement has a PM.

Goal: signing where nice cycles

don’t change term’s sign.

Term is sign(σ)A1σ(1) · · ·Anσ(n).

sign(σ) changes by (−1)len/2+1.

Represent signing by orientation.

Orient edges from one side to

other. This is all +1 signing.[
+ 0

+ +

] [
+ 0

− +

]

For any cycle, #cw edges: len/2.

Pfaffian orientation: flip some

directions so that in each nice

cycle, #cw edges is odd.

This means:∏
e∈cycle

Ae = (−1)len/2+1

9/16

Can move from any PM to any PM

one cycle at a time.

Nice cycle: a cycle whose

vertex-complement has a PM.

Goal: signing where nice cycles

don’t change term’s sign.

Term is sign(σ)A1σ(1) · · ·Anσ(n).

sign(σ) changes by (−1)len/2+1.

Represent signing by orientation.

Orient edges from one side to

other. This is all +1 signing.[
+ 0

+ +

] [
+ 0

− +

]

For any cycle, #cw edges: len/2.

Pfaffian orientation: flip some

directions so that in each nice

cycle, #cw edges is odd.

This means:∏
e∈cycle

Ae = (−1)len/2+1

10/16

Find Pfaffian orientation: nice

cycles have odd #cw edges.

Example: lattice

1 Lemma: if all faces have odd #cw

edges, so do all nice cycles.

2 Lemma: we can find orientation

with odd #cw edges per face.

Modulo 2, #(cw around cycle) is

≡
∑

int face f #(cw around f) +
#(int edges)

By Euler’s formula

#verts+ #faces− #edges = 1, so

#(int faces) + #(int edges) ≡
#(int verts) + 1

Because of niceness, there are

even many interior vertices.

10/16

Find Pfaffian orientation: nice

cycles have odd #cw edges.

Example: lattice

1 Lemma: if all faces have odd #cw

edges, so do all nice cycles.

2 Lemma: we can find orientation

with odd #cw edges per face.

Modulo 2, #(cw around cycle) is

≡
∑

int face f #(cw around f) +
#(int edges)

By Euler’s formula

#verts+ #faces− #edges = 1, so

#(int faces) + #(int edges) ≡
#(int verts) + 1

Because of niceness, there are

even many interior vertices.

10/16

Find Pfaffian orientation: nice

cycles have odd #cw edges.

Example: lattice

1 Lemma: if all faces have odd #cw

edges, so do all nice cycles.

2 Lemma: we can find orientation

with odd #cw edges per face.

Modulo 2, #(cw around cycle) is

≡
∑

int face f #(cw around f) +
#(int edges)

By Euler’s formula

#verts+ #faces− #edges = 1, so

#(int faces) + #(int edges) ≡
#(int verts) + 1

Because of niceness, there are

even many interior vertices.

10/16

Find Pfaffian orientation: nice

cycles have odd #cw edges.

Example: lattice

1 Lemma: if all faces have odd #cw

edges, so do all nice cycles.

2 Lemma: we can find orientation

with odd #cw edges per face.

Modulo 2, #(cw around cycle) is

≡
∑

int face f #(cw around f) +
#(int edges)

By Euler’s formula

#verts+ #faces− #edges = 1, so

#(int faces) + #(int edges) ≡
#(int verts) + 1

Because of niceness, there are

even many interior vertices.

10/16

Find Pfaffian orientation: nice

cycles have odd #cw edges.

Example: lattice

1 Lemma: if all faces have odd #cw

edges, so do all nice cycles.

2 Lemma: we can find orientation

with odd #cw edges per face.

Modulo 2, #(cw around cycle) is

≡
∑

int face f #(cw around f) +
#(int edges)

By Euler’s formula

#verts+ #faces− #edges = 1, so

#(int faces) + #(int edges) ≡
#(int verts) + 1

Because of niceness, there are

even many interior vertices.

10/16

Find Pfaffian orientation: nice

cycles have odd #cw edges.

Example: lattice

1 Lemma: if all faces have odd #cw

edges, so do all nice cycles.

2 Lemma: we can find orientation

with odd #cw edges per face.

Modulo 2, #(cw around cycle) is

≡
∑

int face f #(cw around f) +
#(int edges)

By Euler’s formula

#verts+ #faces− #edges = 1, so

#(int faces) + #(int edges) ≡
#(int verts) + 1

Because of niceness, there are

even many interior vertices.

10/16

Find Pfaffian orientation: nice

cycles have odd #cw edges.

Example: lattice

1 Lemma: if all faces have odd #cw

edges, so do all nice cycles.

2 Lemma: we can find orientation

with odd #cw edges per face.

Modulo 2, #(cw around cycle) is

≡
∑

int face f #(cw around f) +
#(int edges)

By Euler’s formula

#verts+ #faces− #edges = 1, so

#(int faces) + #(int edges) ≡
#(int verts) + 1

Because of niceness, there are

even many interior vertices.

10/16

Find Pfaffian orientation: nice

cycles have odd #cw edges.

Example: lattice

1 Lemma: if all faces have odd #cw

edges, so do all nice cycles.

2 Lemma: we can find orientation

with odd #cw edges per face.

Modulo 2, #(cw around cycle) is

≡
∑

int face f #(cw around f) +
#(int edges)

By Euler’s formula

#verts+ #faces− #edges = 1, so

#(int faces) + #(int edges) ≡
#(int verts) + 1

Because of niceness, there are

even many interior vertices.

11/16

How to make faces happy?

Choose spanning tree

Comes with dual spanning tree

root

1

2

3

4

Orient spanning tree arbitrarily.

Peel leaves of dual spanning tree

one-by-one. Each time, orient the

single remaining edge of peeled

face uniquely.

Summary: counting via dets

Spanning trees:

Undirected: [Kirchhoff]’s

matrix-tree theorem.

Directed: exercise!

Planar perfect matchings:

Bipartite:

[Fisher-Kasteleyn-Temperley]’s

Pfaffian orientation.

Non-bipartite: exercise!

Holographic reductions [Valiant]

Eulerian tours: exercise!

Determinantal point processes

will see later

11/16

How to make faces happy?

Choose spanning tree

Comes with dual spanning tree

root

1

2

3

4

Orient spanning tree arbitrarily.

Peel leaves of dual spanning tree

one-by-one. Each time, orient the

single remaining edge of peeled

face uniquely.

Summary: counting via dets

Spanning trees:

Undirected: [Kirchhoff]’s

matrix-tree theorem.

Directed: exercise!

Planar perfect matchings:

Bipartite:

[Fisher-Kasteleyn-Temperley]’s

Pfaffian orientation.

Non-bipartite: exercise!

Holographic reductions [Valiant]

Eulerian tours: exercise!

Determinantal point processes

will see later

11/16

How to make faces happy?

Choose spanning tree

Comes with dual spanning tree

root

1

2

3

4

Orient spanning tree arbitrarily.

Peel leaves of dual spanning tree

one-by-one. Each time, orient the

single remaining edge of peeled

face uniquely.

Summary: counting via dets

Spanning trees:

Undirected: [Kirchhoff]’s

matrix-tree theorem.

Directed: exercise!

Planar perfect matchings:

Bipartite:

[Fisher-Kasteleyn-Temperley]’s

Pfaffian orientation.

Non-bipartite: exercise!

Holographic reductions [Valiant]

Eulerian tours: exercise!

Determinantal point processes

will see later

11/16

How to make faces happy?

Choose spanning tree

Comes with dual spanning tree

root

1

2

3

4

Orient spanning tree arbitrarily.

Peel leaves of dual spanning tree

one-by-one. Each time, orient the

single remaining edge of peeled

face uniquely.

Summary: counting via dets

Spanning trees:

Undirected: [Kirchhoff]’s

matrix-tree theorem.

Directed: exercise!

Planar perfect matchings:

Bipartite:

[Fisher-Kasteleyn-Temperley]’s

Pfaffian orientation.

Non-bipartite: exercise!

Holographic reductions [Valiant]

Eulerian tours: exercise!

Determinantal point processes

will see later

11/16

How to make faces happy?

Choose spanning tree

Comes with dual spanning tree

root

1

2

3

4

Orient spanning tree arbitrarily.

Peel leaves of dual spanning tree

one-by-one. Each time, orient the

single remaining edge of peeled

face uniquely.

Summary: counting via dets

Spanning trees:

Undirected: [Kirchhoff]’s

matrix-tree theorem.

Directed: exercise!

Planar perfect matchings:

Bipartite:

[Fisher-Kasteleyn-Temperley]’s

Pfaffian orientation.

Non-bipartite: exercise!

Holographic reductions [Valiant]

Eulerian tours: exercise!

Determinantal point processes

will see later

11/16

How to make faces happy?

Choose spanning tree

Comes with dual spanning tree

root

1

2

3

4

Orient spanning tree arbitrarily.

Peel leaves of dual spanning tree

one-by-one. Each time, orient the

single remaining edge of peeled

face uniquely.

Summary: counting via dets

Spanning trees:

Undirected: [Kirchhoff]’s

matrix-tree theorem.

Directed: exercise!

Planar perfect matchings:

Bipartite:

[Fisher-Kasteleyn-Temperley]’s

Pfaffian orientation.

Non-bipartite: exercise!

Holographic reductions [Valiant]

Eulerian tours: exercise!

Determinantal point processes

will see later

11/16

How to make faces happy?

Choose spanning tree

Comes with dual spanning tree

root

1

2

3

4

Orient spanning tree arbitrarily.

Peel leaves of dual spanning tree

one-by-one. Each time, orient the

single remaining edge of peeled

face uniquely.

Summary: counting via dets

Spanning trees:

Undirected: [Kirchhoff]’s

matrix-tree theorem.

Directed: exercise!

Planar perfect matchings:

Bipartite:

[Fisher-Kasteleyn-Temperley]’s

Pfaffian orientation.

Non-bipartite: exercise!

Holographic reductions [Valiant]

Eulerian tours: exercise!

Determinantal point processes

will see later

11/16

How to make faces happy?

Choose spanning tree

Comes with dual spanning tree

root

1

2

3

4

Orient spanning tree arbitrarily.

Peel leaves of dual spanning tree

one-by-one. Each time, orient the

single remaining edge of peeled

face uniquely.

Summary: counting via dets

Spanning trees:

Undirected: [Kirchhoff]’s

matrix-tree theorem.

Directed: exercise!

Planar perfect matchings:

Bipartite:

[Fisher-Kasteleyn-Temperley]’s

Pfaffian orientation.

Non-bipartite: exercise!

Holographic reductions [Valiant]

Eulerian tours: exercise!

Determinantal point processes

will see later

11/16

How to make faces happy?

Choose spanning tree

Comes with dual spanning tree

root

1

2

3

4

Orient spanning tree arbitrarily.

Peel leaves of dual spanning tree

one-by-one. Each time, orient the

single remaining edge of peeled

face uniquely.

Summary: counting via dets

Spanning trees:

Undirected: [Kirchhoff]’s

matrix-tree theorem.

Directed: exercise!

Planar perfect matchings:

Bipartite:

[Fisher-Kasteleyn-Temperley]’s

Pfaffian orientation.

Non-bipartite: exercise!

Holographic reductions [Valiant]

Eulerian tours: exercise!

Determinantal point processes

will see later

11/16

How to make faces happy?

Choose spanning tree

Comes with dual spanning tree

root

1

2

3

4

Orient spanning tree arbitrarily.

Peel leaves of dual spanning tree

one-by-one. Each time, orient the

single remaining edge of peeled

face uniquely.

Summary: counting via dets

Spanning trees:

Undirected: [Kirchhoff]’s

matrix-tree theorem.

Directed: exercise!

Planar perfect matchings:

Bipartite:

[Fisher-Kasteleyn-Temperley]’s

Pfaffian orientation.

Non-bipartite: exercise!

Holographic reductions [Valiant]

Eulerian tours: exercise!

Determinantal point processes

will see later

11/16

How to make faces happy?

Choose spanning tree

Comes with dual spanning tree

root

1

2

3

4

Orient spanning tree arbitrarily.

Peel leaves of dual spanning tree

one-by-one. Each time, orient the

single remaining edge of peeled

face uniquely.

Summary: counting via dets

Spanning trees:

Undirected: [Kirchhoff]’s

matrix-tree theorem.

Directed: exercise!

Planar perfect matchings:

Bipartite:

[Fisher-Kasteleyn-Temperley]’s

Pfaffian orientation.

Non-bipartite: exercise!

Holographic reductions [Valiant]

Eulerian tours: exercise!

Determinantal point processes

will see later

11/16

How to make faces happy?

Choose spanning tree

Comes with dual spanning tree

root

1

2

3

4

Orient spanning tree arbitrarily.

Peel leaves of dual spanning tree

one-by-one. Each time, orient the

single remaining edge of peeled

face uniquely.

Summary: counting via dets

Spanning trees:

Undirected: [Kirchhoff]’s

matrix-tree theorem.

Directed: exercise!

Planar perfect matchings:

Bipartite:

[Fisher-Kasteleyn-Temperley]’s

Pfaffian orientation.

Non-bipartite: exercise!

Holographic reductions [Valiant]

Eulerian tours: exercise!

Determinantal point processes

will see later

11/16

How to make faces happy?

Choose spanning tree

Comes with dual spanning tree

root

1

2

3

4

Orient spanning tree arbitrarily.

Peel leaves of dual spanning tree

one-by-one. Each time, orient the

single remaining edge of peeled

face uniquely.

Summary: counting via dets

Spanning trees:

Undirected: [Kirchhoff]’s

matrix-tree theorem.

Directed: exercise!

Planar perfect matchings:

Bipartite:

[Fisher-Kasteleyn-Temperley]’s

Pfaffian orientation.

Non-bipartite: exercise!

Holographic reductions [Valiant]

Eulerian tours: exercise!

Determinantal point processes

will see later

12/16

Counting via Determinants
Spanning trees

Bipartite planar perfect matchings

Intro to Markov Chains
Stationary distribution

Fundamental theorem

Mixing time

12/16

Counting via Determinants
Spanning trees

Bipartite planar perfect matchings

Intro to Markov Chains
Stationary distribution

Fundamental theorem

Mixing time

13/16

Markov chains

1
2

1
4

1
4

space Ω

Transition matrix: P

large and implicit

∈ RΩ×Ω
>0

P(x, y) is chance of going to y if

we start from x∑
y P(x, y) = 1 row-stochastic

Example

a

b c

1/4 1/4

1/2

1

1/2

1/2


a b c

a 1
2

1
4

1
4

b 0 1 0

c 1
2

1
2 0



Given (random) start X0, we get

Markovian process:

X0→

transition via P

X1→

transition via P

X2 → . . .

13/16

Markov chains

1
2

1
4

1
4

space Ω

Transition matrix: P

large and implicit

∈ RΩ×Ω
>0

P(x, y) is chance of going to y if

we start from x

∑
y P(x, y) = 1 row-stochastic

Example

a

b c

1/4 1/4

1/2

1

1/2

1/2


a b c

a 1
2

1
4

1
4

b 0 1 0

c 1
2

1
2 0



Given (random) start X0, we get

Markovian process:

X0→

transition via P

X1→

transition via P

X2 → . . .

13/16

Markov chains

1
2

1
4

1
4

space Ω

Transition matrix: P

large and implicit

∈ RΩ×Ω
>0

P(x, y) is chance of going to y if

we start from x∑
y P(x, y) = 1 row-stochastic

Example

a

b c

1/4 1/4

1/2

1

1/2

1/2


a b c

a 1
2

1
4

1
4

b 0 1 0

c 1
2

1
2 0



Given (random) start X0, we get

Markovian process:

X0→

transition via P

X1→

transition via P

X2 → . . .

13/16

Markov chains

1
2

1
4

1
4

space Ω

Transition matrix: P

large and implicit

∈ RΩ×Ω
>0

P(x, y) is chance of going to y if

we start from x∑
y P(x, y) = 1 row-stochastic

Example

a

b c

1/4 1/4

1/2

1

1/2

1/2


a b c

a 1
2

1
4

1
4

b 0 1 0

c 1
2

1
2 0



Given (random) start X0, we get

Markovian process:

X0→

transition via P

X1→

transition via P

X2 → . . .

13/16

Markov chains

1
2

1
4

1
4

space Ω

Transition matrix: P

large and implicit

∈ RΩ×Ω
>0

P(x, y) is chance of going to y if

we start from x∑
y P(x, y) = 1 row-stochastic

Example

a

b c

1/4 1/4

1/2

1

1/2

1/2


a b c

a 1
2

1
4

1
4

b 0 1 0

c 1
2

1
2 0



Given (random) start X0, we get

Markovian process:

X0→

transition via P

X1→

transition via P

X2 → . . .

14/16

Fundamental theorem

Under “mild conditions”:

dist(Xt) → µ

where µ is the stationary dist.

x y z · · ·

⇓

x y z · · ·

Suppose X0 ∼ ν, then X1 ∼ν

row vector

P

transition matrix

Stationary dist: if µP = µ, then µ is

called a stationary dist.

Note: if there is any limit, it must

be stationary!

Sampling via Markov chains:

Steps are easy easy

Correct stationary µ easy

Convergence to µ is fast

hard

Ideally, we want to stop at small t

and have small dTV to µ.

14/16

Fundamental theorem

Under “mild conditions”:

dist(Xt) → µ

where µ is the stationary dist.

x y z · · ·

⇓

x y z · · ·

Suppose X0 ∼ ν, then X1 ∼ν

row vector

P

transition matrix

Stationary dist: if µP = µ, then µ is

called a stationary dist.

Note: if there is any limit, it must

be stationary!

Sampling via Markov chains:

Steps are easy easy

Correct stationary µ easy

Convergence to µ is fast

hard

Ideally, we want to stop at small t

and have small dTV to µ.

14/16

Fundamental theorem

Under “mild conditions”:

dist(Xt) → µ

where µ is the stationary dist.

x y z · · ·

⇓

x y z · · ·

Suppose X0 ∼ ν, then X1 ∼ν

row vector

P

transition matrix

Stationary dist: if µP = µ, then µ is

called a stationary dist.

Note: if there is any limit, it must

be stationary!

Sampling via Markov chains:

Steps are easy easy

Correct stationary µ easy

Convergence to µ is fast

hard

Ideally, we want to stop at small t

and have small dTV to µ.

14/16

Fundamental theorem

Under “mild conditions”:

dist(Xt) → µ

where µ is the stationary dist.

x y z · · ·

⇓

x y z · · ·

Suppose X0 ∼ ν, then X1 ∼ν

row vector

P

transition matrix

Stationary dist: if µP = µ, then µ is

called a stationary dist.

Note: if there is any limit, it must

be stationary!

Sampling via Markov chains:

Steps are easy easy

Correct stationary µ easy

Convergence to µ is fast

hard

Ideally, we want to stop at small t

and have small dTV to µ.

14/16

Fundamental theorem

Under “mild conditions”:

dist(Xt) → µ

where µ is the stationary dist.

x y z · · ·

⇓

x y z · · ·

Suppose X0 ∼ ν, then X1 ∼ν

row vector

P

transition matrix

Stationary dist: if µP = µ, then µ is

called a stationary dist.

Note: if there is any limit, it must

be stationary!

Sampling via Markov chains:

Steps are easy easy

Correct stationary µ easy

Convergence to µ is fast

hard

Ideally, we want to stop at small t

and have small dTV to µ.

14/16

Fundamental theorem

Under “mild conditions”:

dist(Xt) → µ

where µ is the stationary dist.

x y z · · ·

⇓

x y z · · ·

Suppose X0 ∼ ν, then X1 ∼ν

row vector

P

transition matrix

Stationary dist: if µP = µ, then µ is

called a stationary dist.

Note: if there is any limit, it must

be stationary!

Sampling via Markov chains:

Steps are easy easy

Correct stationary µ easy

Convergence to µ is fast

hard

Ideally, we want to stop at small t

and have small dTV to µ.

14/16

Fundamental theorem

Under “mild conditions”:

dist(Xt) → µ

where µ is the stationary dist.

x y z · · ·

⇓

x y z · · ·

Suppose X0 ∼ ν, then X1 ∼ν

row vector

P

transition matrix

Stationary dist: if µP = µ, then µ is

called a stationary dist.

Note: if there is any limit, it must

be stationary!

Sampling via Markov chains:

Steps are easy easy

Correct stationary µ easy

Convergence to µ is fast

hard

Ideally, we want to stop at small t

and have small dTV to µ.

15/16

Example: hypercube

Ω = {0, 1}n

Pick u.r. i ∈ [n]

Replace coord i

with Ber(12)

stationary: uniform

Example: coloring

Ω = valid colorings

Pick u.r. vert v

Replace v’s color u.r.

with valid color

stationary: uniform

Irreducible: possible to reach from

every x to every y.

Aperiodic: length of cycles from x

to x have gcd = 1.

Ergodic: irreducible+aperiodic

Fundamental theorem

Every ergodic chain has a unique sta-

tionary dist µ, and for any dist ν

lim
t→∞νPt = µ.

Note: this convergence can be

very slow.

15/16

Example: hypercube

Ω = {0, 1}n

Pick u.r. i ∈ [n]

Replace coord i

with Ber(12)

stationary: uniform

Example: coloring

Ω = valid colorings

Pick u.r. vert v

Replace v’s color u.r.

with valid color

stationary: uniform

Irreducible: possible to reach from

every x to every y.

Aperiodic: length of cycles from x

to x have gcd = 1.

Ergodic: irreducible+aperiodic

Fundamental theorem

Every ergodic chain has a unique sta-

tionary dist µ, and for any dist ν

lim
t→∞νPt = µ.

Note: this convergence can be

very slow.

15/16

Example: hypercube

Ω = {0, 1}n

Pick u.r. i ∈ [n]

Replace coord i

with Ber(12)

stationary: uniform

Example: coloring

Ω = valid colorings

Pick u.r. vert v

Replace v’s color u.r.

with valid color

stationary: uniform

Irreducible: possible to reach from

every x to every y.

Aperiodic: length of cycles from x

to x have gcd = 1.

Ergodic: irreducible+aperiodic

Fundamental theorem

Every ergodic chain has a unique sta-

tionary dist µ, and for any dist ν

lim
t→∞νPt = µ.

Note: this convergence can be

very slow.

15/16

Example: hypercube

Ω = {0, 1}n

Pick u.r. i ∈ [n]

Replace coord i

with Ber(12)

stationary: uniform

Example: coloring

Ω = valid colorings

Pick u.r. vert v

Replace v’s color u.r.

with valid color

stationary: uniform

Irreducible: possible to reach from

every x to every y.

Aperiodic: length of cycles from x

to x have gcd = 1.

Ergodic: irreducible+aperiodic

Fundamental theorem

Every ergodic chain has a unique sta-

tionary dist µ, and for any dist ν

lim
t→∞νPt = µ.

Note: this convergence can be

very slow.

15/16

Example: hypercube

Ω = {0, 1}n

Pick u.r. i ∈ [n]

Replace coord i

with Ber(12)

stationary: uniform

Example: coloring

Ω = valid colorings

Pick u.r. vert v

Replace v’s color u.r.

with valid color

stationary: uniform

Irreducible: possible to reach from

every x to every y.

Aperiodic: length of cycles from x

to x have gcd = 1.

Ergodic: irreducible+aperiodic

Fundamental theorem

Every ergodic chain has a unique sta-

tionary dist µ, and for any dist ν

lim
t→∞νPt = µ.

Note: this convergence can be

very slow.

15/16

Example: hypercube

Ω = {0, 1}n

Pick u.r. i ∈ [n]

Replace coord i

with Ber(12)

stationary: uniform

Example: coloring

Ω = valid colorings

Pick u.r. vert v

Replace v’s color u.r.

with valid color

stationary: uniform

Irreducible: possible to reach from

every x to every y.

Aperiodic: length of cycles from x

to x have gcd = 1.

Ergodic: irreducible+aperiodic

Fundamental theorem

Every ergodic chain has a unique sta-

tionary dist µ, and for any dist ν

lim
t→∞νPt = µ.

Note: this convergence can be

very slow.

15/16

Example: hypercube

Ω = {0, 1}n

Pick u.r. i ∈ [n]

Replace coord i

with Ber(12)

stationary: uniform

Example: coloring

Ω = valid colorings

Pick u.r. vert v

Replace v’s color u.r.

with valid color

stationary: uniform

Irreducible: possible to reach from

every x to every y.

Aperiodic: length of cycles from x

to x have gcd = 1.

Ergodic: irreducible+aperiodic

Fundamental theorem

Every ergodic chain has a unique sta-

tionary dist µ, and for any dist ν

lim
t→∞νPt = µ.

Note: this convergence can be

very slow.

16/16

Much more useful for us:

Mixing time

For Markov chain P with stationary µ, we set

tmix(P, ε, ν) = min
{
t
∣∣ dTV(µ, νP

t) 6 ε
}

and

tmix(P, ε) = max{tmix(P, ε, ν) | ν}

We will see later that we don’t even have to

specify ε

i.e., it’s fine to set it to 1/4

, and we can just talk about tmix(P).

We usually want tmix(P) = poly log(|Ω|) for
efficient algs.

16/16

Much more useful for us:

Mixing time

For Markov chain P with stationary µ, we set

tmix(P, ε, ν) = min
{
t
∣∣ dTV(µ, νP

t) 6 ε
}

and

tmix(P, ε) = max{tmix(P, ε, ν) | ν}

We will see later that we don’t even have to

specify ε

i.e., it’s fine to set it to 1/4

, and we can just talk about tmix(P).

We usually want tmix(P) = poly log(|Ω|) for
efficient algs.

16/16

Much more useful for us:

Mixing time

For Markov chain P with stationary µ, we set

tmix(P, ε, ν) = min
{
t
∣∣ dTV(µ, νP

t) 6 ε
}

and

tmix(P, ε) = max{tmix(P, ε, ν) | ν}

We will see later that we don’t even have to

specify ε

i.e., it’s fine to set it to 1/4

, and we can just talk about tmix(P).

We usually want tmix(P) = poly log(|Ω|) for
efficient algs.

