CS 263: Counting and Sampling

Nima Anari
1 Stanford
slides for

Det Counting; Markov Chains

Review

- DNF counting:
$\underset{\uparrow}{\left|A_{1} \sqcup \cdots \sqcup A_{m}\right| \cdot \left\lvert\, \frac{\left|A_{1} \cup \cdots \cup A_{m}\right|}{\left|A_{1} \sqcup \cdots \sqcup A_{m}\right|}\right.} \underset{\uparrow}{\substack{\text { easy to compute } \\ \text { probability }}}$

Review

\bigcirc DNF counting:
$\left|A_{1} \sqcup \cdots \sqcup A_{m}\right| \cdot \frac{\left|A_{1} \cup \cdots \cup A_{m}\right|}{\left|A_{1} \sqcup \cdots \sqcup A_{m}\right|}$
$\underset{\uparrow}{\uparrow} \underset{\sim}{\text { easy to compute }} \quad$ probability
© Monte Carlo: estimate p from
$\operatorname{Ber}(p)$. Need $\simeq 1 / p \epsilon^{2}$ many.

Review

\bigcirc DNF counting:
$\left|A_{1} \sqcup \cdots \sqcup A_{m}\right| \cdot \frac{\left|A_{1} \cup \cdots \cup A_{m}\right|}{\left|A_{1} \sqcup \cdots \sqcup A_{m}\right|}$
easy to compute
\uparrow
D Monte Carlo: estimate p from
$\operatorname{Ber}(p)$. Need $\simeq 1 / p \epsilon^{2}$ many.
\checkmark Self-reducible problems:

Review

\bigcirc DNF counting:

D Monte Carlo: estimate p from $\operatorname{Ber}(p)$. Need $\simeq 1 / p \epsilon^{2}$ many.
\checkmark Self-reducible problems:

(FPRAS)
Exact Counting \longrightarrow Approx Counting

Exact Sampling \longrightarrow Approx Sampling (FPAUS)

Review

\bigcirc DNF counting:

D Monte Carlo: estimate p from
$\operatorname{Ber}(p)$. Need $\simeq 1 / p \epsilon^{2}$ many.
\checkmark Self-reducible problems:

(FPRAS)
Exact Counting \longrightarrow Approx Counting

Exact Sampling \longrightarrow Approx Sampling (FPAUS)
D Coupling: dist with marginals μ, ν.

Review

\bigcirc DNF counting:

D Monte Carlo: estimate p from
$\operatorname{Ber}(p)$. Need $\simeq 1 / p \epsilon^{2}$ many.
\checkmark Self-reducible problems:

(FPRAS)
Exact Counting \longrightarrow Approx Counting

Exact Sampling \longrightarrow Approx Sampling (FPAUS)

D Coupling: dist with marginals μ, ν.
\checkmark Matrix-tree theorem [Kirchhoff]: \#spanning trees $=\operatorname{det}($ matrix $)$

Laplacian, drop one row+col

Counting via Determinants

\bigcirc Spanning trees
\bigcirc Bipartite planar perfect matchings

Intro to Markov Chains

D Stationary distribution

- Fundamental theorem
- Mixing time

Counting via Determinants

\checkmark Spanning trees

- Bipartite planar perfect matchings

Intro to Markov Chains

D Stationary distribution
D Fundamental theorem

- Mixing time

Counting spanning trees

$\begin{array}{c}a \\ u \\ u \\ v \\ w \\ x \\ y \\ y\end{array}\left[\begin{array}{cccccc}+1 & 0 & 0 & d & e & f \\ 0 & -1 & +1 & 0 & +1 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & -1 & +1 & 0 & 0 \\ -1 & +1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & +1 \\ 0 & +1\end{array}\right]$					
vertex-edge adj matrix A					

Counting spanning trees

$\left.\begin{array}{c}\mathrm{u} \\ \mathrm{u} \\ \mathrm{v} \\ \mathrm{w} \\ \mathrm{x} \\ \mathrm{y}\end{array} \begin{array}{ccccccc}\mathrm{a} & \mathrm{b} & \mathrm{c} & \mathrm{d} & \mathrm{e} & \mathrm{f} & \mathrm{g} \\ +1 & 0 & 0 & 0 & +1 & 0 & 0 \\ 0 & -1 & +1 & 0 & -1 & -1 & 0 \\ 0 & 0 & -1 & +1 & 0 & 0 & 0 \\ -1 & +1 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 & 0 & +1 & +1\end{array}\right]$
vertex-edge adj matrix A

If we take $A A^{\top}$, we get the Laplacian:

$$
\left(A A^{\top}\right)_{\mathfrak{i j}}= \begin{cases}-\mathbb{1}[\mathfrak{i} \sim \mathfrak{j}] & \text { if } \mathfrak{i} \neq \mathfrak{j} \\ \operatorname{deg}(\mathfrak{i}) & \text { if } \mathfrak{i}=\mathfrak{j}\end{cases}
$$

Counting spanning trees

u
v
w
x
$y$$\left[\begin{array}{ccccccc}a & b & c & d & e & f & g \\ +1 & 0 & 0 & 0 & +1 & 0 & 0 \\ 0 & -1 & +1 & 0 & -1 & -1 & 0 \\ 0 & 0 & -1 & +1 & 0 & 0 & 0 \\ -1 & +1 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 & 0 & +1 & +1\end{array}\right]$
vertex-edge adj matrix A
If we take $A A^{\top}$, we get the Laplacian:

$$
\left(A A^{\top}\right)_{i j}= \begin{cases}-\mathbb{1}[\mathfrak{i} \sim \mathfrak{j}] & \text { if } \mathfrak{i} \neq \mathfrak{j} \\ \operatorname{deg}(\mathfrak{i}) & \text { if } \mathfrak{i}=\mathfrak{j}\end{cases}
$$

Matrix-tree theorem [Kirchhoff]

det of $(n-1) \times(n-1)$ principal submatrix of Laplacian is \#spanning trees.

Counting spanning trees

u
v
w
x
$y$$\left[\begin{array}{ccccccc}a & b & c & d & e & f & g \\ +1 & 0 & 0 & 0 & +1 & 0 & 0 \\ 0 & -1 & +1 & 0 & -1 & -1 & 0 \\ 0 & 0 & -1 & +1 & 0 & 0 & 0 \\ -1 & +1 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 & 0 & +1 & +1\end{array}\right]$

Matrix-tree theorem [Kirchhoff]

det of $(n-1) \times(n-1)$ principal submatrix of Laplacian is \#spanning trees.

D Directed graphs: exercise!
vertex-edge adj matrix A
If we take $A A^{\top}$, we get the Laplacian:

$$
\left(A A^{\top}\right)_{i j}= \begin{cases}-\mathbb{1}[\mathfrak{i} \sim \mathfrak{j}] & \text { if } \mathfrak{i} \neq \mathfrak{j} \\ \operatorname{deg}(\mathfrak{i}) & \text { if } \mathfrak{i}=\mathfrak{j}\end{cases}
$$

Counting spanning trees

u
v
w
x
$y$$\left[\begin{array}{ccccccc}a & b & c & d & e & f & g \\ +1 & 0 & 0 & 0 & +1 & 0 & 0 \\ 0 & -1 & +1 & 0 & -1 & -1 & 0 \\ 0 & 0 & -1 & +1 & 0 & 0 & 0 \\ -1 & +1 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 & 0 & +1 & +1\end{array}\right]$

Matrix-tree theorem [Kirchhoff]

det of $(n-1) \times(n-1)$ principal submatrix of Laplacian is \#spanning trees.

D Directed graphs: exercise!
\bigcirc Counting \Longrightarrow sampling. :
vertex-edge adj matrix A
If we take $A A^{\top}$, we get the Laplacian:

$$
\left(A A^{\top}\right)_{i j}= \begin{cases}-\mathbb{1}[\mathfrak{i} \sim \mathfrak{j}] & \text { if } \mathfrak{i} \neq \mathfrak{j} \\ \operatorname{deg}(\mathfrak{i}) & \text { if } \mathfrak{i}=\mathfrak{j}\end{cases}
$$

Counting \Rightarrow sampling.

\bigcirc Runtime for counting: $\mathrm{O}\left(\mathfrak{n}^{\omega}\right)$

matrix multiplication exponent $\omega \simeq 2.37$
\bigcirc Runtime for counting: $\mathrm{O}\left(\mathfrak{n}^{\omega}\right)$
matrix multiplication exponent $\omega \simeq 2.37$
D Runtime for sampling:
D Naïve: $\mathrm{m} \times$ counting $=\mathrm{O}\left(\mathrm{mn}^{\omega}\right)$
\bigcirc Smarter [Colbourn-Myrvold-Neufeld'96]: $\widetilde{\mathrm{O}}\left(\mathrm{n}^{\omega}\right)$
D Runtime for counting: $\mathrm{O}\left(\mathrm{n}^{\omega}\right)$
matrix multiplication exponent $\omega \simeq 2.37$
D Runtime for sampling:
D Naïve: $\mathrm{m} \times$ counting $=\mathrm{O}\left(\mathrm{mn}^{\omega}\right)$
\bigcirc Smarter [Colbourn-Myrvold-Neufeld'96]: $\widetilde{\mathrm{O}}\left(\mathrm{n}^{\omega}\right)$
\checkmark Best-known (approx) counting [Chu-Gao-Peng-Sachdeva-Sawlani-Wang'18]:
$\simeq \mathrm{m}^{1+\mathrm{o}(1)}+\mathrm{n}^{15 / 8+\mathrm{o}(1)}$
D Runtime for counting: $\mathrm{O}\left(\mathrm{n}^{\omega}\right)$
matrix multiplication exponent $\omega \simeq 2.37$
D Runtime for sampling:
D Naïve: $\mathrm{m} \times$ counting $=\mathrm{O}\left(\mathrm{mn}^{\omega}\right)$
\bigcirc Smarter [Colbourn-Myrvold-Neufeld'96]: $\widetilde{\mathrm{O}}\left(\mathrm{n}^{\omega}\right)$
\bigcirc Best-known (approx) counting [Chu-Gao-Peng-Sachdeva-Sawlani-Wang'18]:
$\simeq m^{1+o(1)}+n^{15 / 8+o(1)}$
D Best-known (approx) sampling [A-Liu-OveisGharan-Vinzant-Vuong'20]: $\widetilde{O}(m)$
D Runtime for counting: $\mathrm{O}\left(\mathrm{n}^{\omega}\right)$
matrix multiplication exponent $\omega \simeq 2.37$
D Runtime for sampling:
D Naïve: $\mathrm{m} \times$ counting $=\mathrm{O}\left(\mathrm{mn}^{\omega}\right)$
\bigcirc Smarter [Colbourn-Myrvold-Neufeld'96]: $\widetilde{\mathrm{O}}\left(\mathrm{n}^{\omega}\right)$
\checkmark Best-known (approx) counting [Chu-Gao-Peng-Sachdeva-Sawlani-Wang'18]:
$\simeq m^{1+o(1)}+n^{15 / 8+o(1)}$
D Best-known (approx) sampling [A-Liu-OveisGharan-Vinzant-Vuong'20]: $\widetilde{O}(m)$
D Open problem: improve counting.
D Runtime for counting: $\mathrm{O}\left(\mathrm{n}^{\omega}\right)$
matrix multiplication exponent $\omega \simeq 2.37$
D Runtime for sampling:
D Naïve: $\mathrm{m} \times$ counting $=\mathrm{O}\left(\mathrm{mn}^{\omega}\right)$
\bigcirc Smarter [Colbourn-Myrvold-Neufeld'96]: $\widetilde{O}\left(n^{\omega}\right)$
\bigcirc Best-known (approx) counting [Chu-Gao-Peng-Sachdeva-Sawlani-Wang'18]:
$\simeq \mathrm{m}^{1+\mathrm{o}(1)}+\mathrm{n}^{15 / 8+\mathrm{o}(1)}$
D Best-known (approx) sampling [A-Liu-OveisGharan-Vinzant-Vuong'20]: $\widetilde{O}(m)$
D Open problem: improve counting.
D Open problem: speedups in directed graphs?

Bipartite perfect matchings

Bipartite PMs is \#P-complete [Valiant].
D Count approximately \longleftarrow later
D Restrict graphs \longleftarrow today

Bipartite perfect matchings

Bipartite PMs is \#P-complete [Valiant].
D Count approximately \longleftarrow later
D Restrict graphs \longleftarrow today

Bipartite perfect matchings

Bipartite PMs is \#P-complete [Valiant].
D Count approximately \longleftarrow later
D Restrict graphs \longleftarrow today

D Permanent:

$$
\sum_{\sigma} A_{1 \sigma(1)} \cdots A_{n \sigma(n)}
$$

Bipartite perfect matchings

Bipartite PMs is \#P-complete [Valiant].
D Count approximately \longleftarrow later
D Restrict graphs \longleftarrow today
© Permanent:

$$
\begin{gathered}
\sum_{\sigma} A_{1 \sigma(1)} \cdots A_{n \sigma(n)} \\
\operatorname{per}(\text { bipartite adj })=\# \text { PMs }
\end{gathered}
$$

Bipartite perfect matchings

Bipartite PMs is \#P-complete [Valiant].
D Count approximately \longleftarrow later
D Restrict graphs \longleftarrow today
\checkmark Permanent:

$$
\begin{gathered}
\sum_{\sigma} A_{1 \sigma(1)} \cdots A_{n \sigma(n)} \\
\operatorname{per}(\text { bipartite adj })=\# \text { PMs }
\end{gathered}
$$

D Determinant:
$\sum_{\sigma} \operatorname{sign}(\sigma) A_{1 \sigma(1)} \cdots A_{n \sigma(n)}$

c d
$\mathrm{a}\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$

Bipartite perfect matchings

Bipartite PMs is \#P-complete [Valiant].
D Count approximately \longleftarrow later
D Restrict graphs \longleftarrow today
© Permanent:

$$
\begin{gathered}
\sum_{\sigma} A_{1 \sigma(1)} \cdots A_{n \sigma(n)} \\
\operatorname{per}(\text { bipartite adj })=\# \text { PMs }
\end{gathered}
$$

D Determinant:
$\sum_{\sigma} \operatorname{sign}(\sigma) A_{1 \sigma(1)} \cdots A_{n \sigma(n)}$

c d
$\mathrm{a}\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$
[Pólya]'s scheme: replace 1 s with ± 1 s to make all terms in sum equal-signed.

Bipartite perfect matchings

Bipartite PMs is \#P-complete [Valiant]. D Count approximately \longleftarrow later
D Restrict graphs \longleftarrow today

Example: $\mathrm{K}_{2,2}$

$$
\operatorname{det}\left(\left[\begin{array}{ll}
+1 & -1 \\
+1 & +1
\end{array}\right]\right)=\operatorname{per}\left(\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\right)
$$

© Permanent:

c d
$\mathrm{a}\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$
[Pólya]'s scheme: replace 1 s with ± 1 s to make all terms in sum equal-signed.

Bipartite perfect matchings

Bipartite PMs is \#P-complete [Valiant].
\bigcirc Count approximately \longleftarrow later
D Restrict graphs \longleftarrow today

D Permanent:

$$
\begin{gathered}
\sum_{\sigma} A_{1 \sigma(1)} \cdots A_{n \sigma(n)} \\
\operatorname{per}(\text { bipartite adj })=\# \text { PMs }
\end{gathered}
$$

a b

C

Example: K ${ }_{2,2}$

$$
\operatorname{det}\left(\left[\begin{array}{ll}
+1 & -1 \\
+1 & +1
\end{array}\right]\right)=\operatorname{per}\left(\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\right)
$$

Non-example: $\mathrm{K}_{3,3}$

D Determinant:

c	d
a	
b	

1 \& 1\end{array}\right]\)
[Pólya]'s scheme: replace 1 s with ± 1 s to make all terms in sum equal-signed.

Impossible! Exercise: show this.

Theorem [Fisher-Kasteleyn-Temperley]
If graph is planar, [Pólya]'s scheme can be implemented. E.g., 2D lattice:

Theorem [Fisher-Kasteleyn-Temperley]

If graph is planar, [Pólya]'s scheme can be implemented. E.g., 2D lattice:

D Goal: find signing where all terms in det equal.

Theorem [Fisher-Kasteleyn-Temperley]

If graph is planar, [Pólya]'s scheme can be implemented. E.g., 2D lattice:

D Goal: find signing where all terms in det equal.
D Strategy: compare "neighboring" terms. Make sure equal.

Theorem [Fisher-Kasteleyn-Temperley]

If graph is planar, [Pólya]'s scheme can be implemented. E.g., 2D lattice:

D Goal: find signing where all terms in det equal.

- Strategy: compare "neighboring" terms. Make sure equal.
D Neighboring: PMs that differ in one cycle.

Theorem [Fisher-Kasteleyn-Temperley]

If graph is planar, [Pólya]'s scheme can be implemented. E.g., 2D lattice:

\bigcirc Goal: find signing where all terms in det equal.
\bigcirc Strategy: compare "neighboring" terms. Make sure equal.

- Neighboring: PMs that differ in one cycle.

Theorem [Fisher-Kasteleyn-Temperley]

If graph is planar, [Pólya]'s scheme can be implemented. E.g., 2D lattice:

D Goal: find signing where all terms in det equal.

- Strategy: compare "neighboring" terms. Make sure equal.
\bigcirc Neighboring: PMs that differ in one cycle.

To move from orange PM to blue PM:

Theorem [Fisher-Kasteleyn-Temperley]

If graph is planar, [Pólya]'s scheme can be implemented. E.g., 2D lattice:

D Goal: find signing where all terms in det equal.
D Strategy: compare "neighboring" terms. Make sure equal.
D Neighboring: PMs that differ in one cycle.

To move from orange PM to blue PM:

Theorem [Fisher-Kasteleyn-Temperley]

If graph is planar, [Pólya]'s scheme can be implemented. E.g., 2D lattice:

D Goal: find signing where all terms in det equal.
D Strategy: compare "neighboring" terms. Make sure equal.
D Neighboring: PMs that differ in one cycle.

To move from orange PM to blue PM:

8

Theorem [Fisher-Kasteleyn-Temperley]

If graph is planar, [Pólya]'s scheme can be implemented. E.g., 2D lattice:

D Goal: find signing where all terms in det equal.

- Strategy: compare "neighboring" terms. Make sure equal.
\bigcirc Neighboring: PMs that differ in one cycle.

\%
To move from orange PM to blue PM:

Theorem [Fisher-Kasteleyn-Temperley]

If graph is planar, [Pólya]'s scheme can be implemented. E.g., 2D lattice:

D Goal: find signing where all terms in det equal.
D Strategy: compare "neighboring" terms. Make sure equal.
D Neighboring: PMs that differ in one cycle.

\%
To move from orange PM to blue PM:
(1)

0
0
(3)

(4)
$\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}$

\}

D Can move from any PM to any PM one cycle at a time.

D Can move from any PM to any PM one cycle at a time.

- Nice cycle: a cycle whose vertex-complement has a PM.
- Can move from any PM to any PM one cycle at a time.
D Nice cycle: a cycle whose vertex-complement has a PM.
\bigcirc Goal: signing where nice cycles don't change term's sign.

D Can move from any PM to any PM one cycle at a time.
D Nice cycle: a cycle whose vertex-complement has a PM.
\bigcirc Goal: signing where nice cycles don't change term's sign.

\bigcirc Term is $\operatorname{sign}(\sigma) A_{1 \sigma(1)} \cdots A_{n \sigma(n)}$.

- Can move from any PM to any PM one cycle at a time.
D Nice cycle: a cycle whose vertex-complement has a PM.
\bigcirc Goal: signing where nice cycles don't change term's sign.

- Term is $\operatorname{sign}(\sigma) A_{1 \sigma(1)} \cdots A_{n \sigma(n)}$.
$\bigcirc \operatorname{sign}(\sigma)$ changes by $(-1)^{\mathrm{len} / 2+1}$.
- Can move from any PM to any PM one cycle at a time.
- Nice cycle: a cycle whose vertex-complement has a PM.
\bigcirc Goal: signing where nice cycles don't change term's sign.

- Term is $\operatorname{sign}(\sigma) A_{1 \sigma(1)} \cdots A_{n \sigma(n)}$.
$\bigcirc \operatorname{sign}(\sigma)$ changes by $(-1)^{\mathrm{len} / 2+1}$.
\checkmark Represent signing by orientation.
\bigcirc Orient edges from one side to other. This is all +1 signing.
- Can move from any PM to any PM one cycle at a time.
D Nice cycle: a cycle whose vertex-complement has a PM.
\bigcirc Goal: signing where nice cycles don't change term's sign.

- Term is $\operatorname{sign}(\sigma) A_{1 \sigma(1)} \cdots A_{n \sigma(n)}$.
\bigcirc sign (σ) changes by $(-1)^{\operatorname{len} / 2+1}$.
\bigcirc Represent signing by orientation.
\bigcirc Orient edges from one side to other. This is all +1 signing.

$$
\begin{array}{cc}
\mathrm{O} \\
\mathrm{O} & \mathrm{O} \\
\mathrm{O}
\end{array}\left[\begin{array}{ll}
+ & 0 \\
+ & +
\end{array}\right] \begin{array}{lll}
\mathrm{O} & \mathrm{O} \\
\mathrm{O} & \mathrm{O}
\end{array}\left[\begin{array}{ll}
+ & 0 \\
- & +
\end{array}\right]
$$

- For any cycle, \#cw edges: len/2.

D Can move from any PM to any PM one cycle at a time.
D Nice cycle: a cycle whose vertex-complement has a PM.
\bigcirc Goal: signing where nice cycles don't change term's sign.

- Term is $\operatorname{sign}(\sigma) A_{1 \sigma(1)} \cdots A_{n \sigma(n)}$.
D sign (σ) changes by $(-1)^{\text {len } / 2+1}$.
\bigcirc Represent signing by orientation.
\bigcirc Orient edges from one side to other. This is all +1 signing.

$\begin{array}{lll}O & 0 \\ 0 & 0\end{array}\left[\begin{array}{ll}+ & 0 \\ - & +\end{array}\right]$
\checkmark For any cycle, \#cw edges: Ien $/ 2$.
\bigcirc Pfaffian orientation: flip some directions so that in each nice cycle, \#cw edges is odd.

D Can move from any PM to any PM one cycle at a time.

- Nice cycle: a cycle whose vertex-complement has a PM.
\checkmark Goal: signing where nice cycles don't change term's sign.

D Term is $\operatorname{sign}(\sigma) A_{1 \sigma(1)} \cdots A_{n \sigma(n)}$.
$D \operatorname{sign}(\sigma)$ changes by $(-1)^{\text {len } / 2+1}$.
D Represent signing by orientation.
- Orient edges from one side to other. This is all +1 signing.
0 O
$00\left[\begin{array}{ll}+ & 0 \\ - & +\end{array}\right]$
\checkmark For any cycle, \#cw edges: len $/ 2$.
\checkmark Pfaffian orientation: flip some directions so that in each nice cycle, \#cw edges is odd.
- This means: ;)

$$
\prod_{e \in \mathrm{cycle}} A_{e}=(-1)^{\operatorname{len} / 2+1}
$$

© Find Pfaffian orientation: nice cycles have odd \#cw edges.
\checkmark Find Pfaffian orientation: nice cycles have odd \#cw edges.

Example: lattice

\checkmark Find Pfaffian orientation: nice cycles have odd \#cw edges.

Example: lattice

(1) Lemma: if all faces have odd \#cw edges, so do all nice cycles.
© Find Pfaffian orientation: nice cycles have odd \#cw edges.

Example: lattice

(1) Lemma: if all faces have odd \#cw edges, so do all nice cycles.
(2) Lemma: we can find orientation with odd \#cw edges per face.

D Find Pfaffian orientation: nice cycles have odd \#cw edges.

Example: lattice

(1) Lemma: if all faces have odd \#cw edges, so do all nice cycles.
(2) Lemma: we can find orientation with odd \#cw edges per face.
\checkmark Find Pfaffian orientation: nice cycles have odd \#cw edges.

Example: Iattice

(1) Lemma: if all faces have odd \#cw edges, so do all nice cycles.
(2) Lemma: we can find orientation with odd \#cw edges per face.

- Modulo 2, \#(cw around cycle) is

$$
\begin{gathered}
\equiv \sum_{\text {int face } \mathrm{f}} \#(\mathrm{cw} \text { around } \mathrm{f})+ \\
\#(\text { int edges })
\end{gathered}
$$

D Find Pfaffian orientation: nice cycles have odd \#cw edges.

Example: Iattice

(1) Lemma: if all faces have odd \#cw edges, so do all nice cycles.
(2) Lemma: we can find orientation with odd \#cw edges per face.

- Modulo 2, \#(cw around cycle) is

$$
\begin{gathered}
\equiv \sum_{\text {int face } f} \#(\mathrm{cw} \text { around } \mathrm{f})+ \\
\#(\text { int edges })
\end{gathered}
$$

\bigcirc By Euler's formula \#verts + \#faces - \#edges = 1, so $\#$ (int faces) $+\#$ (int edges) \equiv \#(int verts) +1

D Find Pfaffian orientation: nice cycles have odd \#cw edges.

Example: Iattice

(1) Lemma: if all faces have odd \#cw edges, so do all nice cycles.
(2) Lemma: we can find orientation with odd \#cw edges per face.

- Modulo 2, \#(cw around cycle) is

$$
\begin{gathered}
\equiv \sum_{\text {int face } f} \#(\mathrm{cw} \text { around } \mathrm{f})+ \\
\#(\text { int edges })
\end{gathered}
$$

- By Euler's formula \#verts + \#faces - \#edges = 1, so \#(int faces) $+\#$ (int edges) \equiv \# (int verts) +1
\checkmark Because of niceness, there are even many interior vertices. :)

D How to make faces happy?

D How to make faces happy?
D Choose spanning tree

D How to make faces happy?
\bigcirc Choose spanning tree

- Comes with dual spanning tree

D How to make faces happy?
\bigcirc Choose spanning tree

- Comes with dual spanning tree

D How to make faces happy?
\bigcirc Choose spanning tree

- Comes with dual spanning tree

\bigcirc Orient spanning tree arbitrarily.

D How to make faces happy?
D Choose spanning tree

- Comes with dual spanning tree

\bigcirc Orient spanning tree arbitrarily.
- Peel leaves of dual spanning tree one-by-one. Each time, orient the single remaining edge of peeled face uniquely.
\bigcirc How to make faces happy?
- Choose spanning tree
- Comes with dual spanning tree

D Orient spanning tree arbitrarily.
\checkmark Peel leaves of dual spanning tree one-by-one. Each time, orient the single remaining edge of peeled face uniquely.
\bigcirc How to make faces happy?
- Choose spanning tree
\bigcirc Comes with dual spanning tree

D Orient spanning tree arbitrarily.
\checkmark Peel leaves of dual spanning tree one-by-one. Each time, orient the single remaining edge of peeled face uniquely.

Summary: counting via dets
\bigcirc How to make faces happy?

- Choose spanning tree
- Comes with dual spanning tree

- Orient spanning tree arbitrarily.
\bigcirc Peel leaves of dual spanning tree one-by-one. Each time, orient the single remaining edge of peeled face uniquely.

Summary: counting via dets

- Spanning trees:
© Undirected: [Kirchhoff]'s matrix-tree theorem.
\checkmark Directed: exercise!
\bigcirc How to make faces happy?
- Choose spanning tree
- Comes with dual spanning tree

- Orient spanning tree arbitrarily.
\bigcirc Peel leaves of dual spanning tree one-by-one. Each time, orient the single remaining edge of peeled face uniquely.

Summary: counting via dets

D Spanning trees:
D Undirected: [Kirchhoff]'s matrix-tree theorem.
D Directed: exercise!
\bigcirc Planar perfect matchings:

- Bipartite:
[Fisher-Kasteleyn-Temperley]'s Pfaffian orientation.
D Non-bipartite: exercise!
\bigcirc How to make faces happy?
- Choose spanning tree
- Comes with dual spanning tree

D Orient spanning tree arbitrarily.
\checkmark Peel leaves of dual spanning tree one-by-one. Each time, orient the single remaining edge of peeled face uniquely.

Summary: counting via dets

© Spanning trees:
D Undirected: [Kirchhoff]'s matrix-tree theorem.
D Directed: exercise!

- Planar perfect matchings:
- Bipartite:
[Fisher-Kasteleyn-Temperley]'s
Pfaffian orientation.
D Non-bipartite: exercise!
D Holographic reductions [Valiant]
\bigcirc How to make faces happy?
- Choose spanning tree
- Comes with dual spanning tree

D Orient spanning tree arbitrarily.
\bigcirc Peel leaves of dual spanning tree one-by-one. Each time, orient the single remaining edge of peeled face uniquely.

Summary: counting via dets

© Spanning trees:
D Undirected: [Kirchhoff]'s matrix-tree theorem.
\checkmark Directed: exercise!
\checkmark Planar perfect matchings:

- Bipartite:
[Fisher-Kasteleyn-Temperley]'s
Pfaffian orientation.
D Non-bipartite: exercise!
D Holographic reductions [Valiant]
D Eulerian tours: exercise!
\bigcirc How to make faces happy?
- Choose spanning tree
- Comes with dual spanning tree

D Orient spanning tree arbitrarily.
\checkmark Peel leaves of dual spanning tree one-by-one. Each time, orient the single remaining edge of peeled face uniquely.

Summary: counting via dets

© Spanning trees:
D Undirected: [Kirchhoff]'s matrix-tree theorem.
\checkmark Directed: exercise!
\bigcirc Planar perfect matchings:

- Bipartite:
[Fisher-Kasteleyn-Temperley]'s
Pfaffian orientation.
D Non-bipartite: exercise!
D Holographic reductions [Valiant]
D Eulerian tours: exercise!
\checkmark Determinantal point processes will see later

Counting via Determinants

\checkmark Spanning trees

- Bipartite planar perfect matchings

Intro to Markov Chains

D Stationary distribution
D Fundamental theorem

- Mixing time

Counting via Determinants

\bigcirc Spanning trees

- Bipartite planar perfect matchings

Intro to Markov Chains

D Stationary distribution

- Fundamental theorem
- Mixing time

Markov chains

Transition matrix: $\underset{\uparrow}{P} \in \mathbb{R} \underset{\geqslant 0}{\Omega \times \Omega}$
large and implicit

Markov chains

Transition matrix: $\mathrm{P}_{\uparrow} \in \mathbb{R}_{\geqslant 0}^{\Omega \times \Omega}$
large and implicit
D $P(x, y)$ is chance of going to y if we start from x

Markov chains

Transition matrix: $\mathrm{P}_{\uparrow} \in \mathbb{R}_{\geqslant 0}^{\Omega \times \Omega}$
large and implicit
D $P(x, y)$ is chance of going to y if we start from x
$\triangleright \sum_{y} P(x, y)=1 \longleftarrow$ row-stochastic

Markov chains

Transition matrix: $\mathrm{P}_{\uparrow} \in \underset{\mathbb{R}}{\underset{刃 c}{\Omega \times \Omega}}$
large and implicit

Example

© $P(x, y)$ is chance of going to y if we start from x
$\triangleright \sum_{y} P(x, y)=1 \longleftarrow$ row-stochastic

Markov chains

Transition matrix: $\mathrm{P}_{\uparrow} \in \underset{\mathbb{R}}{\underset{刃}{\Omega} \times \Omega}$ large and implicit

- $\mathrm{P}(x, y)$ is chance of going to y if we start from x
$\triangleright \sum_{y} P(x, y)=1 \longleftarrow$ row-stochastic

Example

$$
\begin{aligned}
& \quad \begin{array}{lll}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{a} \\
\mathrm{~b} \\
\mathrm{c}
\end{array}\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\
0 & 1 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0
\end{array}\right]
\end{aligned}
$$

D Given (random) start X_{0}, we get Markovian process:

Fundamental theorem

Under "mild conditions":

$$
\operatorname{dist}\left(X_{t}\right) \rightarrow \mu
$$

where μ is the stationary dist.

Fundamental theorem

Under "mild conditions":

$$
\operatorname{dist}\left(X_{t}\right) \rightarrow \mu
$$

where μ is the stationary dist.

Fundamental theorem
Under "mild conditions":

$$
\operatorname{dist}\left(X_{t}\right) \rightarrow \mu
$$

where μ is the stationary dist.

Fundamental theorem

Under "mild conditions":

$$
\operatorname{dist}\left(X_{t}\right) \rightarrow \mu
$$

where μ is the stationary dist.

D Suppose $X_{0} \sim v$, then $X_{1} \sim \sim P$
row vector transition matrix
D Stationary dist: if $\mu \mathrm{P}=\mu$, then μ is called a stationary dist.

Fundamental theorem

Under "mild conditions":

$$
\operatorname{dist}\left(X_{t}\right) \rightarrow \mu
$$

where μ is the stationary dist.

\Downarrow

x y
\triangleright Suppose $X_{0} \sim v$, then $X_{1} \approx \sim P$
row vector transition matrix
D Stationary dist: if $\mu \mathrm{P}=\mu$, then μ is called a stationary dist.
\bigcirc Note: if there is any limit, it must be stationary!

Fundamental theorem

Under "mild conditions":

$$
\operatorname{dist}\left(X_{t}\right) \rightarrow \mu
$$

where μ is the stationary dist.

D Suppose $X_{0} \sim v$, then $X_{1} \sim v P$
row vector transition matrix
D Stationary dist: if $\mu \mathrm{P}=\mu$, then μ is called a stationary dist.

- Note: if there is any limit, it must be stationary!
D Sampling via Markov chains:
\bigcirc Steps are easy \leftarrow easy
D Correct stationary $\mu \longleftarrow$ easy
D Convergence to μ is fast
\uparrow
hard

Fundamental theorem

Under "mild conditions":

$$
\operatorname{dist}\left(X_{t}\right) \rightarrow \mu
$$

where μ is the stationary dist.

D Suppose $X_{0} \sim v$, then $X_{1} \approx \sim P$
row vector transition matrix
D Stationary dist: if $\mu \mathrm{P}=\mu$, then μ is called a stationary dist.

- Note: if there is any limit, it must be stationary!
D Sampling via Markov chains:
\bigcirc Steps are easy \leftarrow easy
D Correct stationary $\mu \longleftarrow$ easy
D Convergence to μ is fast
\uparrow
hard
D Ideally, we want to stop at small t and have small $d_{\text {TV }}$ to μ.

Example: hypercube

$D \Omega=\{0,1\}^{n}$
\bigcirc Pick u.r. $i \in[n]$
\checkmark Replace coord i with $\operatorname{Ber}\left(\frac{1}{2}\right)$

stationary: uniform

Example: hypercube
$D \Omega=\{0,1\}^{n}$
\triangle Pick u.r. $i \in[n]$
\checkmark Replace coord i with $\operatorname{Ber}\left(\frac{1}{2}\right)$

stationary: uniform

Example: coloring

D $\Omega=$ valid colorings
\checkmark Pick u.r. vert v
\triangle Replace v 's color u.r.
 with valid color
stationary: uniform

Example: hypercube
$D \Omega=\{0,1\}^{n}$
D Pick u.r. $i \in[n]$
\checkmark Replace coord i with $\operatorname{Ber}\left(\frac{1}{2}\right)$

stationary: uniform

Example: coloring

D $\Omega=$ valid colorings
\checkmark Pick u.r. vert v
D Replace v 's color u.r. with valid color

stationary: uniform

D Irreducible: possible to reach from every x to every y.

Example: hypercube
$D \Omega=\{0,1\}^{n}$
D Pick u.r. $i \in[n]$
\checkmark Replace coord i with $\operatorname{Ber}\left(\frac{1}{2}\right)$

stationary: uniform

Example: coloring

D $\Omega=$ valid colorings
\checkmark Pick u.r. vert v
\triangle Replace v 's color u.r. with valid color

stationary: uniform

D Irreducible: possible to reach from every x to every y.
D Aperiodic: length of cycles from x to x have gcd $=1$.

Example: hypercube
$D \Omega=\{0,1\}^{n}$
D Pick u.r. $\mathrm{i} \in[\mathrm{n}]$
\checkmark Replace coord i with $\operatorname{Ber}\left(\frac{1}{2}\right)$

stationary: uniform

Example: coloring

D $\Omega=$ valid colorings
\checkmark Pick u.r. vert v
\triangle Replace v 's color u.r. with valid color

stationary: uniform

D Irreducible: possible to reach from every x to every y.
D Aperiodic: length of cycles from x to x have gcd $=1$.
\checkmark Ergodic: irreducible+aperiodic

Example: hypercube

$D \Omega=\{0,1\}^{n}$
D Pick u.r. $i \in[n]$
\checkmark Replace coord i with $\operatorname{Ber}\left(\frac{1}{2}\right)$

stationary: uniform

Example: coloring

$D \Omega=$ valid colorings
\checkmark Pick u.r. vert v

- Replace v's color u.r. with valid color

```
stationary: uniform
```

- Irreducible: possible to reach from every x to every y.
D Aperiodic: length of cycles from x to x have $\operatorname{gcd}=1$.
D Ergodic: irreducible+aperiodic

Fundamental theorem

Every ergodic chain has a unique stationary dist μ, and for any dist v

$$
\lim _{t \rightarrow \infty} v P^{t}=\mu
$$

Example: hypercube

$D \Omega=\{0,1\}^{n}$
D Pick u.r. $i \in[n]$
\checkmark Replace coord i with $\operatorname{Ber}\left(\frac{1}{2}\right)$

Example: coloring

$D \Omega=$ valid colorings
\checkmark Pick u.r. vert v
D Replace v's color u.r. with valid color stationary: uniform

- Irreducible: possible to reach from every x to every y.
D Aperiodic: length of cycles from x to x have $\operatorname{gcd}=1$.
- Ergodic: irreducible+aperiodic

Fundamental theorem

Every ergodic chain has a unique stationary dist μ, and for any dist v

$$
\lim _{t \rightarrow \infty} v P^{t}=\mu
$$

D Note: this convergence can be very slow.

Much more useful for us:

Mixing time

For Markov chain P with stationary μ, we set

$$
\mathrm{t}_{\text {mix }}(\mathrm{P}, \epsilon, v)=\min \left\{\mathrm{t} \mid \mathrm{d}_{\mathrm{Tv}}\left(\mu, v \mathrm{P}^{\mathrm{t}}\right) \leqslant \epsilon\right\}
$$

and

$$
t_{\text {mix }}(P, \epsilon)=\max \left\{t_{\text {mix }}(P, \epsilon, v) \mid v\right\}
$$

Much more useful for us:

Mixing time

For Markov chain P with stationary μ, we set

$$
t_{\text {mix }}(P, \epsilon, v)=\min \left\{t \mid d_{T v}\left(\mu, v P^{t}\right) \leqslant \epsilon\right\}
$$

and

$$
t_{\text {mix }}(P, \epsilon)=\max \left\{t_{\text {mix }}(P, \epsilon, v) \mid v\right\}
$$

D We will see later that we don't even have to specify $\underset{\uparrow}{\epsilon}$, and we can just talk about $t_{\text {mix }}(P)$.

```
i.e., it's fine to set it to 1/4
```

Much more useful for us:

Mixing time

For Markov chain P with stationary μ, we set

$$
t_{\text {mix }}(P, \epsilon, v)=\min \left\{t \mid d_{T v}\left(\mu, v P^{t}\right) \leqslant \epsilon\right\}
$$

and

$$
t_{\text {mix }}(P, \epsilon)=\max \left\{t_{\text {mix }}(P, \epsilon, v) \mid v\right\}
$$

D We will see later that we don't even have to specify $\underset{\uparrow}{\epsilon}$, and we can just talk about $t_{\text {mix }}(P)$.

```
    i.e., it's fine to set it to 1/4
```

\bigcirc We usually want $\mathrm{t}_{\text {mix }}(\mathrm{P})=$ poly $\log (|\Omega|)$ for efficient algs.

