CS 263: Counting and Sampling

Nima Anari
1 Stanford
slides for

Sampling vs. Counting

Review
Density μ on space Ω

Review
Density μ on space Ω
\bigcirc Sampling: $\mathbb{P}[$ output $\propto \mu$ (output)

Review
Density μ on space Ω
\bigcirc Sampling: \mathbb{P} [output] $\propto \mu$ (output)
D Counting: compute $\sum_{x} \mu(x)$

Review

Density μ on space Ω

\bigcirc Sampling: $\mathbb{P}[$ output $\propto \mu$ (output)
D Counting: compute $\sum_{x} \mu(x)$
D \#P: \#accepting paths in TM

Review

Density μ on space Ω
\bigcirc Sampling: $\mathbb{P}[$ output $\propto \mu$ (output)
D Counting: compute $\Sigma_{x} \mu(x)$
D \#P: \#accepting paths in TM

© \#P-complete:
D Natural counting variants of known NP-complete problems.
D Natural counting variants of some P problems too!

Review

Density μ on space Ω
D Sampling: $\mathbb{P}[$ output $] \propto \mu($ output $)$
D Counting: compute $\sum_{x} \mu(x)$
D \#P: \#accepting paths in TM

D \#P-complete:
D Natural counting variants of known NP-complete problems.
D Natural counting variants of some P problems too!

Approx counting Approx sampling

$$
\begin{array}{cc}
(1+\epsilon) \text {-approx in } & \delta \text {-approx in d } \text { TV }^{\text {in }} \\
\operatorname{poly}(n, 1 / \epsilon) & \operatorname{poly}(\mathrm{n}, \log (1 / \delta))
\end{array}
$$

Density μ on space Ω
D Sampling: \mathbb{P} [output] $\propto \mu($ output $)$
D Counting: compute $\sum_{x} \mu(x)$
D \#P: \#accepting paths in TM

\bigcirc \#P-complete:
D Natural counting variants of known NP-complete problems.
D Natural counting variants of some P problems too!

Approx counting Approx sampling

$$
\begin{array}{cc}
(1+\epsilon) \text {-approx in } & \delta \text {-approx in } d_{\text {TV }} \text { in } \\
\operatorname{poly}(\mathrm{n}, 1 / \epsilon) & \operatorname{poly}(\mathrm{n}, \log (1 / \delta))
\end{array}
$$

FPRAS/FPTAS
randomized deterministic

Self-reducibles [Jerrum-Valiant-Vazirani]:
Exact Counting \longrightarrow Approx Counting

Exact Sampling \longrightarrow Approx Sampling

DNF Counting

\checkmark Rejection sampling
D Monte Carlo estimation
Counting vs. Sampling
© Self-reducibility

- Reductions

D Total variation and coupling
Counting via Determinants \leftarrow if time
\checkmark Spanning trees

DNF Counting

\checkmark Rejection sampling
D Monte Carlo estimation
Counting vs. Sampling
© Self-reducibility

- Reductions

D Total variation and coupling
Counting via Determinants \leftarrow if time
\bigcirc Spanning trees

DNF sampling [Karp-Luby]

$$
\phi=C_{1} \vee C_{2} \vee \cdots \vee C_{m}
$$

$D A_{i}=\left\{\right.$ sat assignments of $\left.C_{i}\right\}$
\bigcirc Sample u.r. $\in A_{1} \sqcup \cdots \sqcup A_{m}$

DNF sampling [Karp-Luby]

$$
\phi=C_{1} \vee C_{2} \vee \cdots \vee C_{m}
$$

$D A_{i}=\left\{\right.$ sat assignments of $\left.C_{i}\right\}$
\bigcirc Sample u.r. $\in A_{1} \sqcup \cdots \sqcup A_{m}$

Example

$$
\phi=\begin{array}{cc}
\mathrm{x}_{1} \vee \\
\uparrow & \mathrm{x}_{2} \\
\mathrm{C}_{1} & \mathrm{C}_{2}
\end{array}
$$

DNF sampling [Karp-Luby]

$$
\phi=C_{1} \vee C_{2} \vee \cdots \vee C_{m}
$$

$D A_{i}=\left\{\right.$ sat assignments of $\left.C_{i}\right\}$
\bigcirc Sample u.r. $\in A_{1} \sqcup \cdots \sqcup A_{m}$

Example

$$
\begin{array}{cc}
\phi=\begin{array}{cc}
x_{1} \\
\uparrow & \\
\uparrow & x_{2} \\
C_{1} & C_{2}
\end{array}
\end{array}
$$

\checkmark Goal: sample u.r. from $A_{1} \cup A_{2}=\{10,01,11\}$

DNF sampling [Karp-Luby]

$$
\phi=C_{1} \vee C_{2} \vee \cdots \vee C_{m}
$$

$D A_{i}=\left\{\right.$ sat assignments of $\left.C_{i}\right\}$
\bigcirc Sample u.r. $\in A_{1} \sqcup \cdots \sqcup A_{m}$

Example

$$
\begin{array}{cc}
\phi=\begin{array}{cc}
x_{1} \\
\uparrow & \\
\uparrow & x_{2} \\
C_{1} & C_{2}
\end{array}
\end{array}
$$

\checkmark Goal: sample u.r. from
$A_{1} \cup A_{2}=\{10,01,11\}$
D $A_{1}=\{10,11\}, A_{2}=\{01,11\}$

DNF sampling [Karp-Luby]

$$
\phi=C_{1} \vee C_{2} \vee \cdots \vee C_{m}
$$

$D A_{i}=\left\{\right.$ sat assignments of $\left.C_{i}\right\}$
\bigcirc Sample u.r. $\in A_{1} \sqcup \cdots \sqcup A_{m}$

Example

$$
\begin{array}{cc}
\phi=\begin{array}{cc}
x_{1} \\
\uparrow & \\
\uparrow & x_{2} \\
C_{1} & C_{2}
\end{array}
\end{array}
$$

\checkmark Goal: sample u.r. from
$A_{1} \cup A_{2}=\{10,01,11\}$
$D A_{1}=\{10,11\}, A_{2}=\{01,11\}$
D Sample u.r. from $\{10,11,01,11\}$, reject the second 11

DNF sampling [Karp-Luby]

$$
\phi=C_{1} \vee C_{2} \vee \cdots \vee C_{m}
$$

$D A_{i}=\left\{\right.$ sat assignments of $\left.C_{i}\right\}$
\bigcirc Sample u.r. $\in A_{1} \sqcup \cdots \sqcup A_{m}$

Example

$$
\begin{array}{cc}
\phi=\begin{array}{cc}
x_{1} \\
\uparrow & \\
\uparrow & x_{2} \\
C_{1} & C_{2}
\end{array}
\end{array}
$$

\bigcirc Goal: sample u.r. from
$A_{1} \cup A_{2}=\{10,01,11\}$
$D A_{1}=\{10,11\}, A_{2}=\{01,11\}$
D Sample u.r. from $\{10,11,01,11\}$, reject the second 11

How to sample $\sim A_{1} \sqcup \cdots \sqcup A_{m}$?

DNF sampling [Karp-Luby]

$$
\phi=C_{1} \vee C_{2} \vee \cdots \vee C_{m}
$$

$D A_{i}=\left\{\right.$ sat assignments of $\left.C_{i}\right\}$
\bigcirc Sample u.r. $\in A_{1} \sqcup \cdots \sqcup A_{m}$

Example

$$
\begin{array}{cc}
\phi=\begin{array}{cc}
x_{1} \\
\uparrow & \\
\uparrow & x_{2} \\
C_{1} & C_{2}
\end{array}
\end{array}
$$

\checkmark Goal: sample u.r. from
$A_{1} \cup A_{2}=\{10,01,11\}$
$D A_{1}=\{10,11\}, A_{2}=\{01,11\}$
D Sample u.r. from $\{10,11,01,11\}$, reject the second 11

How to sample $\sim A_{1} \sqcup \cdots \sqcup A_{m}$?
\bigcirc Sample i w.p. $\propto\left|A_{i}\right|$

DNF sampling [Karp-Luby]

$$
\phi=C_{1} \vee C_{2} \vee \cdots \vee C_{m}
$$

$D A_{i}=\left\{\right.$ sat assignments of $\left.C_{i}\right\}$
\bigcirc Sample u.r. $\in A_{1} \sqcup \cdots \sqcup A_{m}$

Example

$$
\begin{array}{cc}
\phi=\begin{array}{cc}
x_{1} \\
\uparrow & \\
\uparrow & x_{2} \\
C_{1} & C_{2}
\end{array}
\end{array}
$$

\checkmark Goal: sample u.r. from
$A_{1} \cup A_{2}=\{10,01,11\}$
$D A_{1}=\{10,11\}, A_{2}=\{01,11\}$
D Sample u.r. from $\{10,11,01,11\}$, reject the second 11

How to sample $\sim A_{1} \sqcup \cdots \sqcup A_{m}$?
\bigcirc Sample i w.p. $\propto\left|A_{i}\right|$
\triangle Sample $x \in A_{i}$ u.a.r.

DNF counting [Karp-Luby]
How to count solutions?

DNF counting [Karp-Luby]
How to count solutions?
\bigcirc Idea: Write $\left|A_{1} \cup \cdots \cup A_{m}\right|$ as

easy to compute accept prob

DNF counting [Karp-Luby]
How to count solutions?
D Idea: Write $\left|A_{1} \cup \cdots \cup A_{m}\right|$ as

easy to compute accept prob

- Approximate accept prob p

Monte Carlo estimation

```
for i = 1,\ldots,t do
    sample ~ A }\mp@subsup{A}{1}{}\sqcup\cdots\sqcup\mp@subsup{A}{m}{
        and }\mp@subsup{X}{i}{}\leftarrow\mathbb{1}[\mathrm{ [accept]
    return X = 售+\cdots+\mp@subsup{X}{t}{}
```


DNF counting [Karp-Luby]

How to count solutions?

$$
\bigcirc \mathbb{E}\left[X_{i}\right]=p \quad \operatorname{Var}\left(X_{i}\right)=p(1-p)
$$

\bigcirc Idea: Write $\left|A_{1} \cup \cdots \cup A_{m}\right|$ as

- Approximate accept prob p

Monte Carlo estimation

```
for i = 1,\ldots,t do
    sample ~ A A \sqcup\cdots\sqcup ( 
    and }\mp@subsup{X}{i}{}\leftarrow\mathbb{1}[\mathrm{ [accept]
return X = 釷+\cdots+\mp@subsup{X}{t}{}
```


DNF counting [Karp-Luby]

How to count solutions?
\bigcirc Idea: Write $\left|A_{1} \cup \cdots \cup A_{m}\right|$ as

- Approximate accept prob p

Monte Carlo estimation

$$
\begin{aligned}
& \text { for } i=1, \ldots, t \text { do } \\
& \qquad \begin{array}{c}
\text { sample } \sim A_{1} \sqcup \cdots \sqcup A_{m} \\
\text { and } X_{i} \leftarrow \mathbb{1}[\text { accept }]
\end{array} \\
& \text { return } X=\frac{X_{1}+\cdots+X_{t}}{t}
\end{aligned}
$$

$\bigcirc \mathbb{E}\left[X_{i}\right]=p \quad \operatorname{Var}\left(X_{i}\right)=p(1-p)$
$\bigcirc \mathbb{E}[X]=p \quad \operatorname{Var}(X)=p(1-p) / t$

DNF counting [Karp-Luby]

How to count solutions?
\bigcirc Idea: Write $\left|A_{1} \cup \cdots \cup A_{m}\right|$ as

\bigcirc Approximate accept prob p

Monte Carlo estimation

$$
\begin{aligned}
& \text { for } i=1, \ldots, t \text { do } \\
& \qquad \begin{array}{c}
\text { sample } \sim A_{1} \sqcup \cdots \sqcup A_{m} \\
\text { and } X_{i} \leftarrow \mathbb{1}[\text { accept }]
\end{array} \\
& \text { return } X=\frac{X_{1}+\cdots+X_{t}}{t}
\end{aligned}
$$

$\bigcirc \mathbb{E}\left[X_{i}\right]=p \quad \operatorname{Var}\left(X_{i}\right)=p(1-p)$
$\bigcirc \mathbb{E}[X]=p \quad \operatorname{Var}(X)=p(1-p) / t$
\triangle By Chebyshev's inequality

$$
\mathbb{P}\left[X \notin\left[p-\frac{\epsilon p}{3}, p+\frac{\epsilon p}{3}\right]\right] \leqslant \frac{\operatorname{Var}(X)}{(\epsilon p / 3)^{2}}
$$

which is $\leqslant 9 /$ tp 2.

DNF counting [Karp-Luby]

How to count solutions?
\bigcirc Idea: Write $\left|A_{1} \cup \cdots \cup A_{m}\right|$ as

\checkmark Approximate accept prob p

Monte Carlo estimation

$$
\begin{aligned}
& \text { for } i=1, \ldots, t \text { do } \\
& \qquad \begin{array}{c}
\text { sample } \sim A_{1} \sqcup \cdots \sqcup A_{m} \\
\text { and } X_{i} \leftarrow \mathbb{1}[\text { accept }]
\end{array} \\
& \text { return } X=\frac{X_{1}+\cdots+X_{t}}{t}
\end{aligned}
$$

$D \mathbb{E}\left[X_{i}\right]=p \quad \operatorname{Var}\left(X_{i}\right)=p(1-p)$
$\bigcirc \mathbb{E}[X]=p \quad \operatorname{Var}(X)=p(1-p) / t$
\triangle By Chebyshev's inequality
$\mathbb{P}\left[X \notin\left[p-\frac{\epsilon p}{3}, p+\frac{\epsilon p}{3}\right]\right] \leqslant \frac{\operatorname{Var}(X)}{(\epsilon p / 3)^{2}}$ which is $\leqslant 9 /$ tp 2.
D Enough to let $t>27 / p \epsilon^{2}$ to have success with prob $\geqslant 2 / 3$.

DNF counting [Karp-Luby]

How to count solutions?
D Idea: Write $\left|A_{1} \cup \cdots \cup A_{m}\right|$ as

\checkmark Approximate accept prob p

Monte Carlo estimation

$$
\begin{aligned}
& \text { for } i=1, \ldots, t \text { do } \\
& \qquad \begin{array}{c}
\text { sample } \sim A_{1} \sqcup \cdots \sqcup A_{m} \\
\text { and } X_{i} \leftarrow \mathbb{1}[\text { accept }]
\end{array} \\
& \text { return } X=\frac{X_{1}+\cdots+X_{t}}{t}
\end{aligned}
$$

$\bigcirc \mathbb{E}\left[X_{i}\right]=p \quad \operatorname{Var}\left(X_{i}\right)=p(1-p)$
$\bigcirc \mathbb{E}[X]=p \quad \operatorname{Var}(X)=p(1-p) / t$
\triangle By Chebyshev's inequality

$$
\mathbb{P}\left[X \notin\left[p-\frac{\epsilon p}{3}, p+\frac{\epsilon p}{3}\right]\right] \leqslant \frac{\operatorname{Var}(X)}{(\epsilon p / 3)^{2}}
$$

which is $\leqslant 9 /$ tp 2.
D Enough to let $t>27 / p \epsilon^{2}$ to have success with prob $\geqslant 2 / 3$.

Lemma

To mult. estimate p from $\operatorname{Ber}(p)$ samples, $\mathrm{O}\left(1 / \mathrm{p} \epsilon^{2}\right)$ many enough.

Open problem: Is there an FPTAS for DNF counting?

Open problem: Is there an FPTAS for DNF counting?
[Gopalan-Meka-Reingold'12]
$\pm \epsilon 2^{n}$ approximation in time

$$
n^{\widetilde{O}(\log \log n)}
$$

DNF Counting

\checkmark Rejection sampling
D Monte Carlo estimation
Counting vs. Sampling
© Self-reducibility

- Reductions

D Total variation and coupling
Counting via Determinants \leftarrow if time
\bigcirc Spanning trees

DNF Counting

\checkmark Rejection sampling
D Monte Carlo estimation
Counting vs. Sampling
\bigcirc Self-reducibility

- Reductions

D Total variation and coupling
Counting via Determinants \leftarrow if time
\bigcirc Spanning trees

Self-reducible problems

advanced: measure-decomposed
Solutions of instance I parrtitioned. Each part \equiv smaller instance I'.

Key: branching factor, depth \leqslant poly

Self-reducible problems

advanced: measure-decomposed
Solutions of instance I partitioned. Each part \equiv smaller instance I'.

Key: branching factor, depth \leqslant poly

Self-reducible problems

advanced: measure-decomposed
Solutions of instance I partitioned. Each part \equiv smaller instance I ${ }^{\prime}$.

Key: branching factor, depth \leqslant poly

Other requirements:
D Instances I' produced efficiently.

Self-reducible problems

advanced: measure-decomposed
Solutions of instance I partitioned. Each part \equiv smaller instance I ${ }^{\prime}$.

Key: branching factor, depth \leqslant poly

Other requirements:
D Instances I' produced efficiently.
D One-to-one correspondence of solutions efficiently computable.

Self-reducible problems

advanced: measure-decomposed
Solutions of instance I partitioned. Each part \equiv smaller instance I ${ }^{\prime}$.

Key: branching factor, depth \leqslant poly

Other requirements:
D Instances I' produced efficiently.
D One-to-one correspondence of solutions efficiently computable.
\checkmark Base cases easy to sample/count.

Self-reducible problems

advanced: measure-decomposed
Solutions of instance I pârtitioned. Each part \equiv smaller instance I'.

Key: branching factor, depth \leqslant poly

Other requirements:
D Instances I' produced efficiently.
D One-to-one correspondence of solutions efficiently computable.
\checkmark Base cases easy to sample/count.

Example: perfect matchings

Example: spanning trees

Example: spanning trees

Example: independent sets

Example: spanning trees

Non-example: colorings
Instance: graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and $\mathrm{q}>0$ Solutions: $x \in[q]^{V}$ with $x_{u} \neq x_{v}$ for adjacent u, v

Example: independent sets

Example: spanning trees

Example: independent sets

Non-example: colorings
Instance: graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and $\mathrm{q}>0$ Solutions: $x \in[q]^{V}$ with $x_{u} \neq x_{v}$ for adjacent u, v

Note that

$$
\#\left(\begin{array}{ll}
u & v \\
0 & 0 \\
0 & 0
\end{array}\right)=\#\left(\begin{array}{ll}
u & v \\
0 & 0 \\
0 & 0
\end{array}\right)-\#\left(\begin{array}{c}
u / v \\
0 \\
0
\end{array}\right)
$$

but this is not self-reducibility.

Theorem [Jerrum-Valiant-Vazirani]
For "self-reducible" problems:
approx counting \equiv approx sampling

Theorem [Jerrum-Valiant-Vazirani]
For "self-reducible" problems:
approx counting \equiv approx sampling
(FPRAS)
Exact Counting \longrightarrow Approx Counting

Exact Sampling \longrightarrow Approx Sampling

Exact Counting \Longrightarrow Exact Sampling

while I not base case do
compute children $\mathrm{I}_{1}, \ldots, \mathrm{I}_{\mathrm{k}}$
for $i=1, \ldots, k$ do
$c_{i} \leftarrow \#\left(I_{i}\right)$
choose iw.p. $\propto c_{i}$
$\mathrm{I} \leftarrow \mathrm{I}_{\mathrm{i}}$
output sample for I

$$
\mathbb{P}[\text { sample }]=\frac{\#\left(\mathrm{I}_{\mathrm{i}}\right)}{\#(\mathrm{I})} \cdot \frac{\#\left(\mathrm{I}_{\mathrm{ij}}\right)}{\#\left(\mathrm{I}_{\mathrm{i}}\right)} \cdots=\frac{1}{\#(\mathrm{I})}
$$

FPTAS \Longrightarrow Exact Sampling

FPTAS \Longrightarrow Exact Sampling

\bigcirc Instead of $c_{i}=\#\left(I_{i}\right)$, compute $1+\epsilon$ approx $\widetilde{\mathfrak{c}}_{i}$.

FPTAS \Longrightarrow Exact Sampling

\bigcirc Instead of $c_{i}=\#\left(I_{i}\right)$, compute $1+\epsilon$ approx $\widetilde{\mathfrak{c}}_{i}$.
\checkmark We get \mathbb{P} [sample] is $(1+\epsilon)^{\text {depth }}$ approx to $1 / \#(\mathrm{I})$.

FPTAS \Longrightarrow Exact Sampling

D Instead of $c_{i}=\#\left(I_{i}\right)$, compute $1+\epsilon$ approx $\widetilde{\mathfrak{c}}_{i}$.
\checkmark We get \mathbb{P} [sample] is $(1+\epsilon)^{\text {depth }}$ approx to $1 / \#(\mathrm{I})$.
\checkmark Set $\epsilon \simeq 1 /$ depth:

$$
\mathbb{P}[\text { sample }]=\Theta\left(\frac{1}{\#(\mathrm{I})}\right)
$$

FPTAS \Longrightarrow Exact Sampling

- Instead of $\mathfrak{c}_{\mathfrak{i}}=\#\left(\mathrm{I}_{\mathrm{i}}\right)$, compute $1+\epsilon$ approx $\widetilde{\mathfrak{c}}_{\mathrm{i}}$.
\checkmark We get \mathbb{P} [sample] is $(1+\epsilon)^{\text {depth }}$ approx to $1 / \#(\mathrm{I})$.
\triangleright Set $\epsilon \simeq 1 /$ depth:

$$
\mathbb{P}[\text { sample }]=\Theta\left(\frac{1}{\#(\mathrm{I})}\right) .
$$

D Idea: if v is output dist, we can compute $v(x)$. Rejection sample this into the target dist μ.

FPTAS \Longrightarrow Exact Sampling
D Instead of $c_{i}=\#\left(I_{i}\right)$, compute $1+\epsilon$ approx $\widetilde{\mathfrak{c}}_{i}$.
\checkmark We get \mathbb{P} [sample] is $(1+\epsilon)^{\text {depth }}$ approx to $1 / \#(\mathrm{I})$.
\checkmark Set $\epsilon \simeq 1 /$ depth:

$$
\mathbb{P}[\text { sample }]=\Theta\left(\frac{1}{\#(\mathrm{I})}\right)
$$

D Idea: if v is output dist, we can compute $v(x)$. Rejection sample this into the target dist μ.
D Since $\mu(x)=O(v(x))$ for all x, it takes only $\mathrm{O}(1)$ rejections.

FPRAS \Longrightarrow Approx Sampling

But we only want $d_{T V} \leqslant \delta$. $;$
Now there is a chance of error. $:$
\checkmark We get \mathbb{P} [sample] is $(1+\epsilon)^{\text {depth }}$ approx to $1 / \#(I)$.
Set $\epsilon \simeq 1 /$ depth: \checkmark Set $\epsilon \simeq 1 /$ depth:

$$
\mathbb{P}[\text { sample }]=\Theta\left(\frac{1}{\#(\mathrm{I})}\right) .
$$

D Idea: if v is output dist, we can compute $v(x)$. Rejection sample this into the target dist μ.
D Since $\mu(x)=O(v(x))$ for all x, it takes only $\mathrm{O}(1)$ rejections.
\triangleright Instead of $\mathfrak{c}_{\mathfrak{i}}=\#\left(\mathrm{I}_{\mathrm{i}}\right)$, compute $1+\epsilon$ approx $\widetilde{\mathfrak{c}}_{\mathrm{i}}$.
\qquad
\square

- Instead of $c_{i}=\#\left(\mathrm{I}_{\mathrm{i}}\right)$, compute $1+\epsilon$ approx $\widetilde{\mathfrak{c}}_{\mathrm{i}}$.
\checkmark We get $\mathbb{P}\left[\right.$ sample] is $(1+\epsilon)^{\text {depth }}$ approx to $1 / \#(\mathrm{I})$.
\triangleright Set $\epsilon \simeq 1 /$ depth:

$$
\mathbb{P}[\text { sample }]=\Theta\left(\frac{1}{\#(\mathrm{I})}\right) .
$$

\bigcirc Idea: if v is output dist, we can compute $v(x)$. Rejection sample this into the target dist μ.
D Since $\mu(x)=O(v(x))$ for all x, it takes only $\mathrm{O}(1)$ rejections.

Now there is a chance of error. : But we only want $\mathrm{d}_{\mathrm{TV}} \leqslant \delta$. :)
\bigcirc Idea: cut rejection sampling after $\mathrm{O}(\log 1 / \delta)$ iterations:
$\mathbb{P}[$ not finishing $] \leqslant \delta / 2$
\checkmark Instead of $c_{i}=\#\left(\mathrm{I}_{\mathrm{i}}\right)$, compute $1+\epsilon$ approx $\widetilde{\mathfrak{c}}_{\mathfrak{i}}$.
\checkmark We get $\mathbb{P}\left[\right.$ sample] is $(1+\epsilon)^{\text {depth }}$ approx to $1 / \#(\mathrm{I})$.
\triangleright Set $\epsilon \simeq 1 /$ depth:

$$
\mathbb{P}[\text { sample }]=\Theta\left(\frac{1}{\#(\mathrm{I})}\right) .
$$

\bigcirc Idea: if v is output dist, we can compute $v(x)$. Rejection sample this into the target dist μ.
D Since $\mu(x)=O(v(x))$ for all x, it takes only $\mathrm{O}(1)$ rejections.

FPRAS \Longrightarrow Approx Sampling
Now there is a chance of error. : But we only want $\mathrm{d}_{\mathrm{TV}} \leqslant \delta$. :
\bigcirc Idea: cut rejection sampling after $\mathrm{O}(\log 1 / \delta)$ iterations:

$$
\mathbb{P}[\text { not finishing }] \leqslant \delta / 2
$$

- Total number of approx counts we need is poly $(n) \log (1 / \delta)$.
\checkmark Instead of $c_{i}=\#\left(\mathrm{I}_{\mathrm{i}}\right)$, compute $1+\epsilon$ approx $\widetilde{\mathfrak{c}}_{\mathfrak{i}}$.
\checkmark We get $\mathbb{P}\left[\right.$ sample] is $(1+\epsilon)^{\text {depth }}$ approx to $1 / \#(\mathrm{I})$.
\triangleright Set $\epsilon \simeq 1 /$ depth:

$$
\mathbb{P}[\text { sample }]=\Theta\left(\frac{1}{\#(\mathrm{I})}\right) .
$$

\bigcirc Idea: if v is output dist, we can compute $v(x)$. Rejection sample this into the target dist μ.
D Since $\mu(x)=O(v(x))$ for all x, it takes only $\mathrm{O}(1)$ rejections.

FPRAS \Longrightarrow Approx Sampling
Now there is a chance of error. : But we only want $\mathrm{d}_{\mathrm{TV}} \leqslant \delta$. :
\bigcirc Idea: cut rejection sampling after $\mathrm{O}(\log 1 / \delta)$ iterations:

$$
\mathbb{P}[\text { not finishing }] \leqslant \delta / 2
$$

- Total number of approx counts we need is poly $(n) \log (1 / \delta)$.
\bigcirc Make sure each fails with prob

$$
\leqslant \frac{\delta}{2} \cdot \frac{1}{\text { poly }(n) \log (1 / \delta)}
$$

\checkmark Instead of $c_{i}=\#\left(\mathrm{I}_{\mathrm{i}}\right)$, compute $1+\epsilon$ approx $\widetilde{\mathfrak{c}}_{\mathfrak{i}}$.
\checkmark We get \mathbb{P} [sample] is $(1+\epsilon)^{\text {depth }}$ approx to $1 / \#(\mathrm{I})$.
\triangleright Set $\epsilon \simeq 1 /$ depth:

$$
\mathbb{P}[\text { sample }]=\Theta\left(\frac{1}{\#(\mathrm{I})}\right) .
$$

\bigcirc Idea: if v is output dist, we can compute $v(x)$. Rejection sample this into the target dist μ.
D Since $\mu(x)=O(v(x))$ for all x, it takes only $\mathrm{O}(1)$ rejections.

FPRAS \Longrightarrow Approx Sampling
Now there is a chance of error. : But we only want $\mathrm{d}_{\mathrm{TV}} \leqslant \delta$. :
\bigcirc Idea: cut rejection sampling after $\mathrm{O}(\log 1 / \delta)$ iterations:

$$
\mathbb{P}[\text { not finishing }] \leqslant \delta / 2
$$

- Total number of approx counts we need is poly $(n) \log (1 / \delta)$.
\bigcirc Make sure each fails with prob

$$
\leqslant \frac{\delta}{2} \cdot \frac{1}{\text { poly }(n) \log (1 / \delta)}
$$

\bigcirc Runtime: $\operatorname{poly}(\mathrm{n}, \log (1 / \delta))$)

Exact Sampling \Longrightarrow Approx Counting

Exact Sampling \Longrightarrow Approx Counting

\bigcirc Idea: choose root \rightarrow leaf path

Exact Sampling \Longrightarrow Approx Counting

D Idea: choose root \rightarrow leaf path

- Estimate \#($\left.\mathrm{I}_{1}\right) / \#(\mathrm{I}), \#\left(\mathrm{I}_{11}\right) / \#\left(\mathrm{I}_{1}\right)$,
... using Monte Carlo.

Exact Sampling \Longrightarrow Approx Counting

D Idea: choose root \rightarrow leaf path
\checkmark Estimate \#($\left.\mathrm{I}_{1}\right) / \#(\mathrm{I}), \#\left(\mathrm{I}_{11}\right) / \#\left(\mathrm{I}_{1}\right)$, ... using Monte Carlo.

- Multiply with \# ($\mathrm{I}_{\text {base }}$) and output.

Exact Sampling \Longrightarrow Approx Counting

\bigcirc Need $1+\epsilon /(2 \cdot$ depth $)$ approx for each ratio.

D Idea: choose root \rightarrow leaf path
\checkmark Estimate \#($\left.\mathrm{I}_{1}\right) / \#(\mathrm{I}), \#\left(\mathrm{I}_{11}\right) / \#\left(\mathrm{I}_{1}\right)$, ... using Monte Carlo.
\bigcirc Multiply with \# ($\mathrm{I}_{\text {base }}$) and output.

Exact Sampling \Longrightarrow Approx Counting

\bigcirc Need $1+\epsilon /(2 \cdot$ depth $)$ approx for each ratio.
\bigcirc Set failure prob for each estimation task to $\leqslant 1 /(6 \cdot$ depth $)$.

D Idea: choose root \rightarrow leaf path
\checkmark Estimate \#($\left.\mathrm{I}_{1}\right) / \#(\mathrm{I}), \#\left(\mathrm{I}_{11}\right) / \#\left(\mathrm{I}_{1}\right)$, ... using Monte Carlo.
\bigcirc Multiply with \# ($\mathrm{I}_{\text {base }}$) and output.

Exact Sampling \Longrightarrow Approx Counting

\bigcirc Idea: choose root \rightarrow leaf path
\checkmark Estimate $\#\left(\mathrm{I}_{1}\right) / \#(\mathrm{I}), \#\left(\mathrm{I}_{11}\right) / \#\left(\mathrm{I}_{1}\right)$, ... using Monte Carlo.
\bigcirc Multiply with \# ($\mathrm{I}_{\text {base }}$) and output.
\bigcirc Need $1+\epsilon /(2 \cdot$ depth $)$ approx for each ratio.
D Set failure prob for each estimation task to $\leqslant 1 /(6 \cdot$ depth $)$.
\checkmark Approx factor: ;

$$
\left(1+\frac{\epsilon}{2 \cdot \text { depth }}\right)^{\text {depth }} \leqslant 1+\epsilon
$$

Exact Sampling \Longrightarrow Approx Counting

D Idea: choose root \rightarrow leaf path
\checkmark Estimate \#($\left.\mathrm{I}_{1}\right) / \#(\mathrm{I}), \#\left(\mathrm{I}_{11}\right) / \#\left(\mathrm{I}_{1}\right)$, ... using Monte Carlo.
\bigcirc Multiply with \# ($\mathrm{I}_{\text {base }}$) and output.
\bigcirc Need $1+\epsilon /(2 \cdot$ depth $)$ approx for each ratio.
\triangle Set failure prob for each estimation task to $\leqslant 1 /(6 \cdot$ depth $)$.
\checkmark Approx factor: ;

$$
\left(1+\frac{\epsilon}{2 \cdot \text { depth }}\right)^{\text {depth }} \leqslant 1+\epsilon
$$

\bigcirc Success prob: :

$$
\geqslant 1-\text { depth } \cdot \frac{1}{6 \cdot \text { depth }} \geqslant \frac{5}{6}
$$

Exact Sampling \Longrightarrow Approx Counting

D Idea: choose root \rightarrow leaf path
\checkmark Estimate \#($\left.\mathrm{I}_{1}\right) / \#(\mathrm{I}), \#\left(\mathrm{I}_{11}\right) / \#\left(\mathrm{I}_{1}\right)$, ... using Monte Carlo.
D Multiply with \# ($\mathrm{I}_{\text {base }}$) and output.
\bigcirc Need $1+\epsilon /(2 \cdot$ depth $)$ approx for each ratio.
\triangle Set failure prob for each estimation task to $\leqslant 1 /(6 \cdot$ depth $)$.
\checkmark Approx factor: ;

$$
\left(1+\frac{\epsilon}{2 \cdot \text { depth }}\right)^{\text {depth }} \leqslant 1+\epsilon
$$

\bigcirc Success prob: ©

$$
\geqslant 1-\text { depth } \cdot \frac{1}{6 \cdot \text { depth }} \geqslant \frac{5}{6}
$$

D Problem: if any ratio p is small, it takes $\geqslant 1 / p$ time to estimate.

\bigcirc Fix: while \#($\left.\mathrm{I}_{1}\right) / \#(\mathrm{I})$ could be small, $\exists i$ is.t. \# $\left(\mathrm{I}_{\mathrm{i}}\right) / \#(\mathrm{I})$ is large.

- Fix: while $\#\left(\mathrm{I}_{1}\right) / \#(\mathrm{I})$ could be small, $\exists \mathrm{i}$ s.t. $\#\left(\mathrm{I}_{\mathrm{i}}\right) / \#(\mathrm{I})$ is large.
D Take a sample x and see which I_{i} it belongs to. Assume

$$
\frac{\#\left(\mathrm{I}_{\mathrm{i}}\right)}{\#(\mathrm{I})} \geqslant \frac{1}{6 \mathrm{k} \cdot \text { depth }}
$$

- Fix: while $\#\left(\mathrm{I}_{1}\right) / \#(\mathrm{I})$ could be small, $\exists \mathrm{i}$ s.t. $\#\left(\mathrm{I}_{\mathrm{i}}\right) / \#(\mathrm{I})$ is large.
D Take a sample x and see which I_{i} it belongs to. Assume

$$
\frac{\#\left(\mathrm{I}_{\mathrm{i}}\right)}{\#(\mathrm{I})} \geqslant \frac{1}{6 \mathrm{k} \cdot \text { depth }}
$$

D Branch into I_{i} and recursively find the root \rightarrow leaf path.

- Fix: while $\#\left(\mathrm{I}_{1}\right) / \#(\mathrm{I})$ could be small, $\exists \mathrm{i}$ s.t. $\#\left(\mathrm{I}_{\mathrm{i}}\right) / \#(\mathrm{I})$ is large.
D Take a sample x and see which I_{i} it belongs to. Assume

$$
\frac{\#\left(\mathrm{I}_{\mathrm{i}}\right)}{\#(\mathrm{I})} \geqslant \frac{1}{6 \mathrm{k} \cdot \text { depth }}
$$

D Branch into I_{i} and recursively find the root \rightarrow leaf path.
D Prob of wrong assumption: $\leqslant 1 / 6$

$$
\text { Approx Sampling } \Longrightarrow \text { Approx Counting }
$$

- Fix: while $\#\left(\mathrm{I}_{1}\right) / \#(\mathrm{I})$ could be small, $\exists \mathrm{i}$ s.t. $\#\left(\mathrm{I}_{\mathrm{i}}\right) / \#(\mathrm{I})$ is large.
D Take a sample x and see which I_{i} it belongs to. Assume

$$
\frac{\#\left(\mathrm{I}_{\mathrm{i}}\right)}{\#(\mathrm{I})} \geqslant \frac{1}{6 \mathrm{k} \cdot \text { depth }}
$$

D Branch into I_{i} and recursively find the root \rightarrow leaf path.
D Prob of wrong assumption: $\leqslant 1 / 6$

Approx Sampling \Longrightarrow Approx Counting

- We have a poly-time randomized algorithm that uses samples.
- Fix: while $\#\left(\mathrm{I}_{1}\right) / \#(\mathrm{I})$ could be small, $\exists \mathrm{i}$ s.t. $\#\left(\mathrm{I}_{\mathrm{i}}\right) / \#(\mathrm{I})$ is large.
D Take a sample x and see which I_{i} it belongs to. Assume

$$
\frac{\#\left(\mathrm{I}_{\mathrm{i}}\right)}{\#(\mathrm{I})} \geqslant \frac{1}{6 \mathrm{k} \cdot \text { depth }}
$$

D Branch into I_{i} and recursively find the root \rightarrow leaf path.
D Prob of wrong assumption: $\leqslant 1 / 6$

\bigcirc Fix: while $\#\left(\mathrm{I}_{1}\right) / \#(\mathrm{I})$ could be small, $\exists \mathrm{i}$ s.t. $\#\left(\mathrm{I}_{\mathrm{i}}\right) / \#(\mathrm{I})$ is large.

- Take a sample x and see which I_{i} it belongs to. Assume

$$
\frac{\#\left(\mathrm{I}_{\mathrm{i}}\right)}{\#(\mathrm{I})} \geqslant \frac{1}{6 \mathrm{k} \cdot \text { depth }}
$$

D Branch into I_{i} and recursively find the root \rightarrow leaf path.
D Prob of wrong assumption: $\leqslant 1 / 6$

Approx Sampling \Longrightarrow Approx Counting

- We have a poly-time randomized algorithm that uses samples.
D In general in such algorithms, exact samplers can be replaced by approx samplers.

\bigcirc Fix: while $\#\left(\mathrm{I}_{1}\right) / \#(\mathrm{I})$ could be small, $\exists \mathrm{i}$ s.t. \#($\left.\mathrm{I}_{\mathrm{i}}\right) / \#(\mathrm{I})$ is large.
- Take a sample x and see which I_{i} it belongs to. Assume

$$
\frac{\#\left(\mathrm{I}_{\mathrm{i}}\right)}{\#(\mathrm{I})} \geqslant \frac{1}{6 \mathrm{k} \cdot \text { depth }}
$$

D Branch into I_{i} and recursively find the root \rightarrow leaf path.
D Prob of wrong assumption: $\leqslant 1 / 6$

Approx Sampling \Longrightarrow Approx Counting

- We have a poly-time randomized algorithm that uses samples.
D In general in such algorithms, exact samplers can be replaced by approx samplers.

Lemma

In a randomized poly-time algorithm, exact samplers can be replaced by FPAUS while guaranteeing the output changes no more than δ in $\mathrm{d}_{\text {TV }}$ at the cost of poly $(n, \log (1 / \delta))$ in runtime.

Coupling

For dists μ, ν, a coupling is a joint dist π of (X, Y) where $X \sim \mu$ and $Y \sim v$.

Coupling

For dists μ, ν, a coupling is a joint dist π of (X, Y) where $X \sim \mu$ and $Y \sim v$.

Theorem

The minimum
$\min \left\{\mathbb{P}_{(\mathrm{X}, \mathrm{Y}) \sim \pi}[\mathrm{X} \neq \mathrm{Y}] \mid\right.$ coupling $\left.\pi\right\}$
is $\mathrm{d}_{\mathrm{TV}}(\mu, v)$.

Coupling

For dists μ, ν, a coupling is a joint dist π of (X, Y) where $X \sim \mu$ and $Y \sim v$.

Theorem

The minimum
$\min \left\{\mathbb{P}_{(\mathrm{X}, \mathrm{Y}) \sim \pi}[\mathrm{X} \neq \mathrm{Y}] \mid\right.$ coupling $\left.\pi\right\}$
is $\mathrm{d}_{\mathrm{TV}}(\mu, v)$.
D Proof: exercise!

Coupling

For dists μ, v, a coupling is a joint dist π of (X, Y) where $X \sim \mu$ and $Y \sim v$.

Theorem

The minimum
$\min \left\{\mathbb{P}_{(X, Y) \sim \pi}[X \neq Y] \mid\right.$ coupling $\left.\pi\right\}$
is $\mathrm{d}_{\mathrm{TV}}(\mu, v)$.
D Proof: exercise!
D Useful mindset: think of coupling as an alg to produce X, Y. Compose these algs together.

Replacing exact samples with approx samples
\triangleright Suppose alg uses samples X_{1}, \ldots, X_{m}.

Replacing exact samples with approx samples

D Suppose alg uses samples X_{1}, \ldots, X_{m}.
\bigcirc Instead feed it samples Y_{1}, \ldots, Y_{m} from FPAUS.

Replacing exact samples with approx samples

D Suppose alg uses samples X_{1}, \ldots, X_{m}.
\bigcirc Instead feed it samples Y_{1}, \ldots, Y_{m} from FPAUS.
D Couple each X_{i} and Y_{i} so that $\mathbb{P}\left[X_{i} \neq Y_{i}\right] \leqslant \delta / m$.

Replacing exact samples with approx samples

D Suppose alg uses samples X_{1}, \ldots, X_{m}.
D Instead feed it samples Y_{1}, \ldots, Y_{m} from FPAUS.
D Couple each X_{i} and Y_{i} so that $\mathbb{P}\left[X_{i} \neq Y_{i}\right] \leqslant \delta / m$.
\bigcirc Chance of deviation (using $X s$ vs Y s):

$$
\frac{\delta}{m}+\frac{\delta}{m}+\cdots+\frac{\delta}{m} \leqslant \delta
$$

Replacing exact samples with approx samples

D Suppose alg uses samples X_{1}, \ldots, X_{m}.
D Instead feed it samples Y_{1}, \ldots, Y_{m} from FPAUS.
D Couple each X_{i} and Y_{i} so that $\mathbb{P}\left[X_{i} \neq Y_{i}\right] \leqslant \delta / m$.
\bigcirc Chance of deviation (using $X s$ vs $Y s$):

$$
\frac{\delta}{m}+\frac{\delta}{m}+\cdots+\frac{\delta}{m} \leqslant \delta
$$

D Alg's output changes no more than δ in $d_{T V}$. $)$

DNF Counting

\checkmark Rejection sampling
D Monte Carlo estimation
Counting vs. Sampling
\bigcirc Self-reducibility

- Reductions

D Total variation and coupling
Counting via Determinants \leftarrow if time
\bigcirc Spanning trees

DNF Counting

\checkmark Rejection sampling
D Monte Carlo estimation
Counting vs. Sampling
\bigcirc Self-reducibility

- Reductions

D Total variation and coupling
Counting via Determinants \leftarrow iftime
\bigcirc Spanning trees

Counting spanning trees

Counting spanning trees

Counting spanning trees

D Sum of rows $=0$

$$
\left.\begin{array}{c}
\\
u \\
u \\
v \\
w \\
x \\
y
\end{array} \begin{array}{ccccccc}
a & b & c & d & e & f & g \\
+1 & 0 & 0 & 0 & +1 & 0 & 0 \\
0 & -1 & +1 & 0 & -1 & -1 & 0 \\
0 & 0 & -1 & +1 & 0 & 0 & 0 \\
-1 & +1 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & -1 & 0 & +1 & +1
\end{array}\right]
$$

Counting spanning trees

D Sum of rows $=0$
D $n \times n$ submatrices have det $=0$

$$
\left.\begin{array}{c}
\\
u \\
u \\
v \\
w \\
x \\
y
\end{array} \begin{array}{ccccccc}
a & b & c & d & e & f & g \\
+1 & 0 & 0 & 0 & +1 & 0 & 0 \\
0 & -1 & +1 & 0 & -1 & -1 & 0 \\
0 & 0 & -1 & +1 & 0 & 0 & 0 \\
-1 & +1 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & -1 & 0 & +1 & +1
\end{array}\right]
$$

Counting spanning trees

D Sum of rows $=0$
D $n \times n$ submatrices have det $=0$
\bigcirc How about $(n-1) \times(n-1)$?

$$
\left.\begin{array}{c}
\\
u \\
u \\
v \\
w \\
x \\
y
\end{array} \begin{array}{ccccccc}
a & b & c & d & e & f & g \\
+1 & 0 & 0 & 0 & +1 & 0 & 0 \\
0 & -1 & +1 & 0 & -1 & -1 & 0 \\
0 & 0 & -1 & +1 & 0 & 0 & 0 \\
-1 & +1 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & -1 & 0 & +1 & +1
\end{array}\right]
$$

Counting spanning trees

u
v
v
w
y
$y$$\left[\begin{array}{ccccccc}a & b & c & d & e & f & g \\ +1 & 0 & 0 & 0 & +1 & 0 & 0 \\ 0 & -1 & +1 & 0 & -1 & -1 & 0 \\ 0 & 0 & -1 & +1 & 0 & 0 & 0 \\ -1 & +1 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 & 0 & +1 & +1\end{array}\right]$
vertex-edge adj matrix

D Sum of rows $=0$
D $n \times n$ submatrices have det $=0$
\bigcirc How about $(n-1) \times(n-1)$?
\bigcirc If cycle exists, det $=0$:

For some choice of signs:

$$
\pm(\operatorname{col} a) \pm(\operatorname{col} b) \pm(\operatorname{col} e)=0
$$

Otherwise, columns are a spanning tree. In this case $\operatorname{det} \in\{ \pm 1\}$. Sketch:

Otherwise, columns are a spanning tree. In this case $\operatorname{det} \in\{ \pm 1\}$. Sketch:
submatrix

Otherwise, columns are a spanning tree. In this case $\operatorname{det} \in\{ \pm 1\}$. Sketch:
submatrix

added row u to x
a
\mathbf{u}
v
v
w
$x$$\left[\begin{array}{cccc}+1 & 0 & c & d \\ 0 & -1 & +1 & 0 \\ 0 & 0 & -1 & +1 \\ 0 & +1 & 0 & 0\end{array}\right]$

Otherwise, columns are a spanning tree. In this case $\operatorname{det} \in\{ \pm 1\}$. Sketch:
submatrix

added row u to x

$$
\begin{gathered}
\\
u \\
v \\
w \\
x
\end{gathered}\left[\begin{array}{cccc}
a & b & c & d \\
+1 & 0 & 0 & 0 \\
0 & -1 & +1 & 0 \\
0 & 0 & -1 & +1 \\
0 & +1 & 0 & 0
\end{array}\right]
$$

added row x to v
u
v
w
w
$x$$\left[\begin{array}{cccc}a & b & c & d \\ +1 & 0 & 0 & 0 \\ 0 & 0 & +1 & 0 \\ 0 & 0 & -1 & +1 \\ 0 & +1 & 0 & 0\end{array}\right]$

Otherwise, columns are a spanning tree. In this case $\operatorname{det} \in\{ \pm 1\}$. Sketch:
submatrix
a
u
v
w
x
x $\left[\begin{array}{cccc}+1 & \mathrm{~b} & \mathrm{c} & \mathrm{d} \\ 0 & -1 & +1 & 0 \\ 0 & 0 & -1 & +1 \\ -1 & +1 & 0 & 0\end{array}\right]$
added row u to x

$$
\left.\begin{array}{c}
\\
u \\
v \\
w \\
x
\end{array} \begin{array}{cccc}
a & b & c & d \\
+1 & 0 & 0 & 0 \\
0 & -1 & +1 & 0 \\
0 & 0 & -1 & +1 \\
0 & +1 & 0 & 0
\end{array}\right]
$$

added row v to w
u
v
v
w
$x$$\left[\begin{array}{cccc}a & c & d \\ +1 & 0 & 0 & 0 \\ 0 & 0 & +1 & 0 \\ 0 & 0 & 0 & +1 \\ 0 & +1 & 0 & 0\end{array}\right]$

Otherwise, columns are a spanning tree. In this case $\operatorname{det} \in\{ \pm 1\}$. Sketch:
submatrix
u
v
v
w
$x$$\left[\begin{array}{cccc}a & c & d \\ +1 & 0 & 0 & 0 \\ 0 & -1 & +1 & 0 \\ 0 & 0 & -1 & +1 \\ -1 & +1 & 0 & 0\end{array}\right]$
added row v to w
u
v
v
w
$x$$\left[\begin{array}{cccc}a & b & c & d \\ +1 & 0 & 0 & 0 \\ 0 & 0 & +1 & 0 \\ 0 & 0 & 0 & +1 \\ 0 & +1 & 0 & 0\end{array}\right]$
added row u to x

$$
\left.\begin{array}{c}
\\
u \\
v \\
w \\
x
\end{array} \begin{array}{cccc}
\mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{~d} \\
+1 & 0 & 0 & 0 \\
0 & -1 & +1 & 0 \\
0 & 0 & -1 & +1 \\
0 & +1 & 0 & 0
\end{array}\right]
$$

added row x to v
$\left.\begin{array}{c} \\ u \\ v \\ w \\ x\end{array} \begin{array}{cccc}a & b & c & d \\ +1 & 0 & 0 & 0 \\ 0 & 0 & +1 & 0 \\ 0 & 0 & -1 & +1 \\ 0 & +1 & 0 & 0\end{array}\right]$

D Determinants tell us which subsets are spanning trees ...

D Determinants tell us which subsets are spanning trees ...
\checkmark How to sum?

D Determinants tell us which subsets are spanning trees ...
D How to sum?

[Cauchy-Binet]

If A is $n \times m$ and B is $m \times n$:

$$
\operatorname{det}(A B)=\sum_{s \in\binom{[m]}{n}} \operatorname{det}\left(A_{\text {cols }}=S\right) \operatorname{det}\left(B_{\text {rows }}=s\right)
$$

D Determinants tell us which subsets are spanning trees ...
D How to sum?

[Cauchy-Binet]

If A is $n \times m$ and B is $m \times n$:

$$
\operatorname{det}(A B)=\sum_{S \in\binom{[m]}{n}} \operatorname{det}\left(A_{\text {cols }}=S\right) \operatorname{det}\left(B_{\text {rows }}=S\right)
$$

D Let $A=B^{\top}$ be vertex-edge adj matrix with one row removed. arbitrary

D Determinants tell us which subsets are spanning trees ...
D How to sum?

[Cauchy-Binet]

If A is $n \times m$ and B is $m \times n$:

$$
\operatorname{det}(A B)=\sum_{S \in\binom{[m]}{n}} \operatorname{det}\left(A_{\text {cols }}=S\right) \operatorname{det}\left(B_{\text {rows }}=S\right)
$$

D Let $A=B^{\top}$ be vertex-edge adj matrix with one row removed.
\bigcirc We get
arbitrary

$$
\operatorname{det}\left(A A^{\top}\right)=\sum_{S}(\pm \mathbb{1}[\text { S spanning tree }])^{2}=\# \text { spanning trees } .
$$

D Determinants tell us which subsets are spanning trees ...
D How to sum?

[Cauchy-Binet]

If A is $n \times m$ and B is $m \times n$:

$$
\operatorname{det}(A B)=\sum_{S \in\binom{[m]}{n}} \operatorname{det}\left(A_{\text {cols }}=S\right) \operatorname{det}\left(B_{\text {rows }}=S\right)
$$

D Let $A=B^{\top}$ be vertex-edge adj matrix with one row removed.
D We get

$$
\operatorname{det}\left(A A^{\top}\right)=\sum_{S}(\pm \mathbb{1}[\text { S spanning tree }])^{2}=\# \text { spanning trees } .
$$

\checkmark Next lecture: other determinant-based counting algs.

