CS 263: Counting and Sampling

Stanford
S University

slides for

Sampling vs. Counting

Density pn on space Q

2/20

\Review /

Density p on space Q

& Sampling: Ploutput] o« u(output)

2/20

\Review /

Density p on space Q

& Sampling: Ploutput] o« u(output)
O Counting: compute 3 u(x)

2/20

\Review

Density p on space Q

& Sampling: Ploutput] o« u(output)
O Counting: compute 3 u(x)

O #P:

#accepting paths in TM

2/20

\Review /

Density p on space Q

& Sampling: Ploutput] o« u(output)
O Counting: compute 3 u(x)
> #P: #accepting paths in TM

> #P-complete:
> Natural counting variants of
known NP-complete problems.
> Natural counting variants of
some P problems too!

2/20

\Review /

Density p on space Q Approx counting Approx sampling
& Sampling: Ploutput] o« u(output) (1 + €)-approxin s-approx in dry in
D> Counting: compute Y. u(x) poly(n, 1/€) poly(n, log(1/8))
: X
> #P: #accepting paths in TM F;RAS/FPT@S FPAUS

randomized deterministic

> #P-complete:
> Natural counting variants of
known NP-complete problems.
> Natural counting variants of
some P problems too!

2/20

\Review

Density p on space Q

& Sampling: Ploutput] o« u(output)

O Counting: compute 3 u(x)
> #P: #accepting paths in TM

> #P-complete:
> Natural counting variants of

known NP-complete problems.

> Natural counting variants of
some P problems too!

randomized

Approx counting Approx sampling

(14 e)-approxin
poly(n,1/¢)

FPRAS/FPTAS
/ AN

d-approx in dty in
poly(n, log(1/5))

FPAUS
deterministic
Self-reducibles [Jerrum-Valiant-Vazirani]:

Exact Counting —— Approx Counting

bS

Exact Sampling —— Approx Sampling

J

2/20

DNF Counting

> Rejection sampling
> Monte Carlo estimation

Counting vs. Sampling
> Self-reducibility

> Reductions

> Total variation and coupling

Counting via Determinants«— i time
> Spanning trees

> Rejection sampling
> Monte Carlo estimation

Counting vs. Sampling
> Self-reducibility

> Reductions

> Total variation and coupling

Counting via Determinants«— i time
> Spanning trees

\DNF sampling [Karp-Luby]

$=C1VCyV--VCnm

> A; ={sat assignments of C;}

> Sampleur e Ay U--

1
[]
1
N -

1
1
1
L.

I.I4 IIIIIIIIIIIIIII
awIps

|

! 1
||||| L Y T
auwIps | !

1 r==-

1 "_ 1
. Rt SEr
awIpsS ! ' '

LI | 1

! 1
! 1
.......... - @ -
ENTlelS ' '
LU |
~ —
< <

Am

e accept

e reject

5/20

\DNF sampling [Karp-Luby] /
6=C1VCV oV Cn

> A ={sat assignments of Ci} 0} :xT1 \/XTZ
& Sampleur e AjU---UAL C. G
Ao e e e b
ol ol ol ol
€1 €1 E£1 £,
2. 2 3 3
As S ¢ I
At Le e
| I [- 1 1

® reject e accept

5/20

\DNF sampling [Karp-Luby] /
6=C1VCV oV Cn

> A ={sat assignments of Ci} b =x1Vx2
& Sampleur e AjU---UAL CT1 CTZ

> Goal: sample u.r. from

Am & o o o, A1 UA; ={10,01,11)
o of o o
E E € €
31 81 3 8

Az e b

At e

® reject e accept

5/20

\DNF sampling [Karp-Luby] /
6=C1VCV oV Cn

> A; ={sat assignments of C;} 1 =\
> Sampleur e A;U---UA, tt

C G

:"f""i‘""l""f": > Goal: sample u.r. from

Am 1 e & & o, Ay UA, ={10,01,11}
ol o1 o1 o > A; ={10,11}, A, = {01,11}
3! 3 3 3

Az e b

At e

® reject e accept

5/20

\DNF sampling [Karp-Luby] /
6=C1VCV oV Cn

> A ={sat assignments of Ci} b =x1Vx2
& Sampleur e AjU---UAL CT1 CTZ

> Goal: sample u.r. from

Am 1@ ¢ & . A1 UA; ={10,01,11)
i el ol o > A; ={10,11}, A, ={01,11}
3 _9_>Ir___8_l__1gl C Sample u.r. from {10,11,01,11},
As e b L reject the second 11
At e

® reject e accept

5/20

\DNF sampling [Karp-Luby] /
6=C1VCV oV Cn

> A ={sat assignments of Ci} b =x1Vx2
& Sampleur e AjU---UAL CT1 CTZ

> Goal: sample u.r. from

Am 1@ & & o, A1UA, ={10,01,11)

i el ol ol > Ay ={10,11}, A, = {01,11}

3 _9_>Ir___3_l__1gl C Sample u.r. from {10,11,01,11},
As e b L reject the second 11

- : How to sample ~ A U--- LUAR?
Avle e Pes "

® reject e accept

5/20

\DNF sampling [Karp-Luby]

$=C1VCyV--VCnm

> A ={sat assignments of Ci}
& Sampleur e AjU---UAL

I__L____l_____l____.l__I
Am @ o @ o
U R U U (s g |
o1 o o o
= = = =
g 2 8 B
Ay Y I
LT CEEET TE
At e
| IR N - 1 1
® reject e accept

d =x1Vx2
ro1
C; G,

> Goal: sample u.r. from
A1 UA, ={10,01,11}
C A ={10,11} A, ={01,11}
& Sample u.r. from {10, 11,01,11},
reject the second 11
How to sample ~ A L --- LLAR?

> Sampleiw.p. o< |Aj]

5/20

\DNF sampling [Karp-Luby]

$=C1VCyV--VCnm

> A ={sat assignments of Ci}
& Sampleur e AjU---UAL

Am 1 ® e e o
U R U U (s g |
o1 o o o
= = = =
g 2 8 B
Ay Y I
LT CEEET TE
At e
| IR N - 1 1
® reject e accept

d =x1Vx2
Pt

C G

> Goal: sample u.r. from
A1 UA, ={10,01,11}
> A; ={10,11}, A, ={01,11}
& Sample u.r. from {10,11,01,11},
reject the second 11
How to sample ~ A L --- LLAR?
> Sampleiw.p. o< |Aj]
> Sample x € A; var.

5/20

\DNF counting [Karp-Luby] /

How to count solutions?

6/20

\DNF counting [Karp-Luby] /

How to count solutions?

O ldea: Write JAU---UA | as

|A1U-UA |
AT U UAm A TnA L

easy to compute accept prob

6/20

\DNF counting [Karp-Luby]

How to count solutions?

O ldea: Write |Aj U---UA | as

[AJU---UA |
AT U UAm A TnA L

easy to compute accept prob

> Approximate accept prob p

Monte Carlo estimation

fori=1,...,tdo
sample~A; U---UAm
and X; < T[accept]

Xy +Xy

return X = T

6/20

\DNF counting [Karp-Luby] /

How to count solutions? C EXi=p Var(X;)=p(1—p)

O ldea: Write |Aj U---UA | as

[AqU--UA L]
|A1 U Am| [ATU--UA L]

easy to compute accept prob

> Approximate accept prob p

Monte Carlo estimation

fori=1,...,tdo
sample~A; U---UAm
and X; < T[accept]

Xy +Xy

return X = G

6/20

\DNF counting [Karp-Luby] /

How to count solutions? O EXil=p Var(Xi)=p(1—p)
G EXI=p Var(X)=p(1—-p)/t

O ldea: Write |Aj U---UA | as

[AqU--UA L]
|A1 U Am| [ATU--UA L]

easy to compute accept prob

> Approximate accept prob p

Monte Carlo estimation

fori=1,...,tdo
sample~A; U---UAm
and X; < T[accept]

Xy +Xy

return X = G

6/20

\DNF counting [Karp-Luby]

J

How to count solutions?

O ldea: Write |Aj U---UA | as

[AJU---UA |
AT U UAm A TnA L

easy to compute accept prob

> Approximate accept prob p

Monte Carlo estimation

fori=1,...,tdo
sample~A; U---UAm
and X; < T[accept]

Xy +Xy

return X = T

ElXil=p Var(Xi) =p(1—7p)
EXI=p Var(X)=p(1—-p)/t
By Chebyshev’s inequality

Pixe ool <

< 9/tpe2.

(D
(D
(D

Var(X)
= (ep/3)?

which is

6/20

\DNF counting [Karp-Luby] /

How to count solutions? C EXi=p Var(X;)=p(1—p)
G EXI=p Var(X)=p(1—-p)/t
> By Chebyshev’s inequality

pxe [p- Lop+ L] < 2,

O ldea: Write |Aj U---UA | as

[AqU--UA L]
|A1 U Am| [ATU--UA L]

easy to compute accept prob

Approximate accept prob
> App PEPrObP which is < 9/tpe?.

Monte Carlo estimation > Enough to let t > 27/pe? to have

fori=1,...,tdo success with prob > 2/3.
sample~A; U---UAm
and X; < T[accept]

Xy +Xy

return X = G

6/20

\DNF counting [Karp-Luby] /

How to count solutions? C EXi=p Var(X;)=p(1—p)
G EXI=p Var(X)=p(1—-p)/t
> By Chebyshev’s inequality

e [p-For Tl <

O ldea: Write |Aj U---UA | as

[AqU--UA L]
|A1 U Am| [ATU--UA L]

easy to compute accept prob

Approximate accept prob
> App PEPrObP which is < 9/tpe?.

Monte Carlo estimation > Enoughto let t > 27/pe? to have

fori=1,...,tdo success with prob > 2/3.

SRS Sy Lol
and X; < T[accept] .
To mult. estimate p from Ber(p) sam-
Xq+-+Xy

return X = 21+ ples, O(1/pe?) many enough.

6/20

Is there an FPTAS for DNF counting?

7/20

Open problem: Is there an FPTAS for DNF counting?

[Gopalan-Meka-Reingold’12]

+e2™ approximation in time

nO(IogIogn)

7/20

> Rejection sampling
> Monte Carlo estimation

Counting vs. Sampling
> Self-reducibility

> Reductions

> Total variation and coupling

Counting via Determinants«— i time
> Spanning trees

DNF Counting

> Rejection sampling
> Monte Carlo estimation

> Self-reducibility
> Reductions
> Total variation and coupling

Counting via Determinants«— i time
> Spanning trees

\Self—reducible problems

advanced: measure-decomposed

. . \ ey .
Solutions of instance I partitioned. Each
part = smaller instance 1.

[0 V32V xs) A 37V xa)

Key: branching factor, depth < poly

9/20

\Self—reducible problems

advanced: measure-decomposed

~
Solutions of instance I partitioned. Each
part = smaller instance 1.

[0 V32V xs) A 37V xa)

Key: branching factor, depth < poly

Other requirements:

9/20

\Self—reducible problems /

advanced: measure-decomposed

. . - Other requirements:
Solutions of instance I partitioned. Each D> Instances I’

: , produced efficiently.
part = smaller instance I'.

[0 V32V xs) A 37V xa)

Key: branching factor, depth < poly

9/20

\Self—reducible problems /

advanced: measure-decomposed

. | - Other requirements:
Solutions of instance I partitioned. Each D> Instances I’

: , produced efficiently.
part = smaller instance I'.

> One-to-one correspondence of
[(x1 VgV x3) A (W\/M)] solutions efficiently computable.

Key: branching factor, depth < poly

9/20

\Self—reducible problems /

advanced: measure-decomposed

Other requirements:

~
Solutions of instance I partitioned. Each > Instances I’ produced efficiently

part = smaller instance 1.
> One-to-one correspondence of

[(x1 VgV x3) A (ﬁ\/m)] solutions efficiently computable.
\ (> Base cases easy to sample/count.
X1 < 1
X4

Key: branching factor, depth < poly

9/20

\Self—reducible problems /

advanced: measure-decomposed

Other requirements:

. . \ ey .
Solutions of instance I partitioned. Each > Instances I’ produced efficiently

part = smaller instance 1.
> One-to-one correspondence of

[(x1 VgV x3) A (ﬁ\/m)] solutions efficiently computable.
(> Base cases easy to sample/count.

y — 1
X2 Example: perfect matchings

9/20

Example: spanning trees

delete contract

10/20

Example: spanning trees

delete contract

Example: independent sets

10/20

Example: spanning trees

¢treg ctree
delete contract

Example: independent sets

Non-example: colorings

Instance: graph G = (V,E) and q > 0
Solutions: x € [q]Y with x, # x, for
adjacent u,v

good

10/20

Example: spanning trees

¢treV ctree
delete contract

Example: independent sets

Non-example: colorings

Instance: graph G = (V,E) and q > 0
Solutions: x € [q]Y with x, # x, for
adjacent u,v

Note that

((88)+(33)+(2)

but this is not self-reducibility.

10/20

Theorem [Jerrum-Valiant-Vazirani]

For “self-reducible” problems:
approx counting = approx sampling

(FPRAS)
Exact Counting —— Approx Counting

po
& Q?ﬂ

Exact Sampling —— Approx Sampling

(FPAUS)
arrows are poly-time reductions

1/20

Theorem [Jerrum-Valiant-Vazirani]

For “self-reducible” problems:

approx counting = approx sampling

(FPRAS)
Exact Counting —— Approx Counting

S

Exact Sampling —— Approx Sampling

(FPAUS)
arrows are poly-time reductions

Exact Counting = Exact Sampling

while T not base case do
compute children Iy, ..., Iy
fori=1,...,kdo
| ci e #(I)
choose i w.p. x ¢;
I+ Ii

output sample for I

#(1i)
#(I)

RALT
#(1;)

Plsample] =

1/20

FPTAS = Exact Sampling

12/20

FPTAS = Exact Sampling

> Instead of ¢; = #(1;), compute
1+ € approx ¢;.

12/20

FPTAS = Exact Sampling

> Instead of ¢; = #(1;), compute
1+ € approx ¢;.

> We get P[sample] is (1 + ¢)dePth
approx to 1/4(1).

12/20

FPTAS = Exact Sampling

> Instead of ¢; = #(1;), compute
1+ € approx ¢;.

> We get P[sample] is (1 + ¢)dePth
approx to 1/4(1).

> Set e ~ 1/depth:

1
Plsample] = 6(#(I)> .

12/20

FPTAS = Exact Sampling

> Instead of ¢; = #(1;), compute
1+ € approx ¢;.

> We get P[sample] is (1 + ¢)dePth
approx to 1/4(1).

> Set e ~ 1/depth:

1
Plsample] = 6(#(I)> .

3 if v is output dist, we can
compute v(x). Rejection sample
this into the target dist .

12/20

FPTAS = Exact Sampling

> Instead of ¢; = #(1;), compute
1+ € approx ¢;.

> We get P[sample] is (1 + ¢)dePth
approx to 1/4(1).

> Set e ~ 1/depth:

1
Plsample] = 6(#(I)> .

3 if v is output dist, we can
compute v(x). Rejection sample
this into the target dist .

> Since p(x) = O(v(x)) for all x, it
takes only O(1) rejections.

12/20

FPTAS = Exact Sampling

> Instead of ¢; = #(1;), compute
1+ € approx ¢;.

> We get P[sample] is (1 + ¢)dePth
approx to 1/4(1).

> Set e ~ 1/depth:

1
Plsample] = 6(#(I)> .

3 if v is output dist, we can
compute v(x). Rejection sample
this into the target dist .

> Since p(x) = O(v(x)) for all x, it
takes only O(1) rejections.

FPRAS — Approx Sampling

Now there is a chance of error. ®
But we only want dty < 6. ©

12/20

FPTAS = Exact Sampling

> Instead of ¢; = #(1;), compute
1+ € approx ¢;.

> We get P[sample] is (1 + ¢)dePth
approx to 1/4(1).

> Set e ~ 1/depth:

1
Plsample] = 6(#(I)> .

3 if v is output dist, we can
compute v(x). Rejection sample
this into the target dist .

> Since p(x) = O(v(x)) for all x, it
takes only O(1) rejections.

FPRAS — Approx Sampling

Now there is a chance of error. ®
But we only want dty < 6. ©

3 cut rejection sampling after
O(log1/5) iterations:

P[not finishing] < §/2

12/20

FPTAS = Exact Sampling

> Instead of ¢; = #(1;), compute
1+ € approx ¢;.

> We get P[sample] is (1 + ¢)dePth
approx to 1/4(1).

> Set e ~ 1/depth:

1
Plsample] = 6(#(I)> .

3 if v is output dist, we can
compute v(x). Rejection sample
this into the target dist .

> Since p(x) = O(v(x)) for all x, it
takes only O(1) rejections.

FPRAS — Approx Sampling

Now there is a chance of error. ®
But we only want dty < 6. ©

3 cut rejection sampling after
O(log1/5) iterations:

P[not finishing] < §/2

> Total number of approx counts we
need is poly(n) log(1/5).

12/20

FPTAS = Exact Sampling

> Instead of ¢; = #(1;), compute
1+ € approx ¢;.

> We get P[sample] is (1 + ¢)dePth
approx to 1/4(1).

> Set e ~ 1/depth:

1
Plsample] = 6(#(I)> .

3 if v is output dist, we can
compute v(x). Rejection sample
this into the target dist .

> Since p(x) = O(v(x)) for all x, it
takes only O(1) rejections.

FPRAS — Approx Sampling

Now there is a chance of error. ®
But we only want dty < 6. ©

3 cut rejection sampling after
O(log1/5) iterations:

P[not finishing] < §/2

> Total number of approx counts we
need is poly(n) log(1/5).

> Make sure each fails with prob

b 1
<= -
2 poly(n)log(1/6)

12/20

FPTAS = Exact Sampling

> Instead of ¢; = #(1;), compute
1+ € approx ¢;.

> We get P[sample] is (1 + ¢)dePth
approx to 1/4(1).

> Set e ~ 1/depth:

1
Plsample] = @() .
> #(0)

3 if v is output dist, we can
compute v(x). Rejection sample
this into the target dist .

> Since p(x) = O(v(x)) for all x, it
takes only O(1) rejections.

FPRAS — Approx Sampling

Now there is a chance of error. ®
But we only want dty < 6. ©

3 cut rejection sampling after
O(log1/5) iterations:

P[not finishing] < §/2

> Total number of approx counts we
need is poly(n) log(1/5).
> Make sure each fails with prob
5 1
g — .
2 poly(n)log(1/6)

> Runtime: poly(n, log(1/8)) ©

12/20

Exact Sampling = Approx Counting

13/20

Exact Sampling = Approx Counting

Toose] -+

> lIdea: choose root — leaf path

13/20

Exact Sampling = Approx Counting

> lIdea: choose root — leaf path

O Estimate #(I1)/#(1), #(111)/#(Th),

. using Monte Carlo.

13/20

Exact Sampling = Approx Counting

> lIdea: choose root — leaf path

O Estimate #(I14)/#(1), #(111)/#(11),

. using Monte Carlo.
> Multiply with #(Ipgse) and output.

13/20

Exact Sampling = Approx Counting (> Need 1+ ¢/(2 - depth) approx for
each ratio.

> lIdea: choose root — leaf path

O Estimate #(I14)/#(1), #(111)/#(11),

. using Monte Carlo.
> Multiply with #(Ipgse) and output.

13/20

Exact Sampling = Approx Counting (> Need 1+ ¢/(2 - depth) approx for
each ratio.

> Set failure prob for each
estimation task to < 1/(6 - depth).

> lIdea: choose root — leaf path

O Estimate #(I14)/#(1), #(111)/#(11),

. using Monte Carlo.
> Multiply with #(Ipgse) and output.

13/20

Exact Sampling = Approx Counting

> lIdea: choose root — leaf path

O Estimate #(I14)/#(1), #(111)/#(11),

. using Monte Carlo.
> Multiply with #(Ipgse) and output.

> Need 1+ ¢/(2- depth) approx for
each ratio.

> Set failure prob for each

estimation task to < 1/(6 - depth).

> Approx factor: ©

depth
1+ S <l+e
2 - depth =

13/20

Exact Sampling = Approx Counting

Toose] -+

> lIdea: choose root — leaf path

O Estimate #(I14)/#(1), #(111)/#(11),

. using Monte Carlo.
> Multiply with #(Ipgse) and output.

> Need 1+ ¢/(2- depth) approx for
each ratio.

> Set failure prob for each

estimation task to < 1/(6 - depth).

> Approx factor: ©

depth
1+ S <l+e
2 - depth =

> Success prob: ©

9)]

1
>1— th.7>,
depth - = Septh = &

13/20

Exact Sampling = Approx Counting

> lIdea: choose root — leaf path

O Estimate #(I14)/#(1), #(111)/#(11),

. using Monte Carlo.
> Multiply with #(Ipgse) and output.

(B

o

(B

Need 1+ €/(2 - depth) approx for
each ratio.

Set failure prob for each

estimation task to < 1/(6 - depth).

Approx factor: @

depth
1+ S <l+e
2 - depth =

Success prob: @

9)]

> 1—depth-

>
6-depth © 6

Problem: if any ratio p is small, it
takes > 1/p time to estimate.

13/20

O Fix: while #(14)/4(1) could be
small, 31 s.t. #(1;)/#(1) is large.

14/20

I

1)

O Fix: while #(14)/4(1) could be
small, i s.t. #(1;)/#(1) is large.

> Take a sample x and see which I;
it belongs to. Assume

#(1) S 1
#(I) = 6k-depth

14/20

I

1

O Fix: while #(14)/4(1) could be
small, i s.t. #(1;)/#(1) is large.

> Take a sample x and see which I;
it belongs to. Assume

#(11) S 1
#(I) = 6k-depth

> Branch into I; and recursively find
the root — leaf path.

14/20

(B

I

1

while #(17)/#(1) could be
small, i s.t. #(1;)/#(1) is large.

> Take a sample x and see which I;

it belongs to. Assume

#(11) S 1
#(I) = 6k-depth

> Branch into I; and recursively find

the root — leaf path.

> Prob of wrong assumption: < 1/6

14/20

(B

I

1

while #(17)/#(1) could be
small, i s.t. #(1;)/#(1) is large.

> Take a sample x and see which I;

it belongs to. Assume

#(11) S 1
#(I) = 6k-depth

> Branch into I; and recursively find

the root — leaf path.

> Prob of wrong assumption: < 1/6

Approx Sampling = Approx Counting

14/20

(B

I

1

while #(17)/#(1) could be
small, i s.t. #(1;)/#(1) is large.

> Take a sample x and see which I;

it belongs to. Assume

#(11) S 1
#(I) = 6k-depth

> Branch into I; and recursively find

the root — leaf path.

> Prob of wrong assumption: < 1/6

Approx Sampling = Approx Counting

> We have a poly-time randomized
algorithm that uses samples.

14/20

(B

I

1

while #(17)/#(1) could be
small, i s.t. #(1;)/#(1) is large.

> Take a sample x and see which I;

it belongs to. Assume

#(11) S 1
#(I) = 6k-depth

> Branch into I; and recursively find

the root — leaf path.

> Prob of wrong assumption: < 1/6

Approx Sampling = Approx Counting

> We have a poly-time randomized
algorithm that uses samples.

> In general in such algorithms,
can be replaced
by

14/20

I

1

O Fix: while #(14)/4(1) could be

small, i s.t. #(1;)/#(1) is large.

> Take a sample x and see which I;

it belongs to. Assume

#(11) S 1
#(I) = 6k-depth

> Branch into I; and recursively find

the root — leaf path.

> Prob of wrong assumption: < 1/6

Approx Sampling = Approx Counting

> We have a poly-time randomized
algorithm that uses samples.

> In general in such algorithms,
exact samplers can be replaced
by approx samplers.

Lemma

In a randomized poly-time algorithm,
exact samplers can be replaced by
FPAUS while guaranteeing the output
changes no more than 6 in dty at the
cost of poly(n,log(1/8)) in runtime.

14/20

\Coupling /

For dists u, v, a coupling is a joint dist 7t
of (X,Y)where X~puandY ~v.

coupling 7

15/20

\Coupling /

For dists u, v, a coupling is a joint dist 7t
of (X,Y)where X~upand¥Y ~v. - -

/ v
Theorem 4

The minimum

min{Px,y)~=[X # Y] | coupling 7t}

is dTV(H, V)‘

coupling 7

15/20

\Coupling /

For dists u, v, a coupling is a joint dist 7t
of (X,Y)where X~upand¥Y ~v. - -

/ v
Theorem 4

The minimum

min{Px,y)~=[X # Y] | coupling 7t}
is dTV(Hﬂ’)-

> Proof: exercisel
coupling 7

15/20

\Coupling /

For dists u, v, a coupling is a joint dist 7t
of (X,Y)where X~upand¥Y ~v. .

Theorem 4

The minimum

min{Px,y)~=[X # Y] | coupling 7t}

is drv(p, v).

> Proof: exercisel

O Useful mindset: think of coupling
as an alg to produce X, Y. coupling 7
Compose these algs together. Ping

15/20

\Replocing exact samples with approx samples /

> Suppose alg uses samples Xi,..., Xm.

16/20

\Replocing exact samples with approx samples /

> Suppose alg uses samples Xi,..., Xm.
> Instead feed it samples Yy, ..., Yy from FPAUS.

16/20

\Replocing exact samples with approx samples /

> Suppose alg uses samples Xi,..., Xm.
> Instead feed it samples Yy, ..., Yy from FPAUS.
O Couple each X; and Y; so that P[X; # Y] < §/m.

16/20

\Replocing exact samples with approx samples /

> Suppose alg uses samples Xi,..., Xm.

> Instead feed it samples Yy, ..., Yy from FPAUS.
O Couple each X; and Y; so that P[X; # Y] < §/m.
> Chance of deviation (using Xs vs Ys):

5§ 8 5
—+— 4 +— <0,
m m m

16/20

\Replacing exact samples with approx samples /

> Suppose alg uses samples Xi,..., Xm.

> Instead feed it samples Yy, ..., Yy from FPAUS.
O Couple each X; and Y; so that P[X; # Y] < §/m.
> Chance of deviation (using Xs vs Ys):

5§ 8 5
—+— 4 +— <0,
m m m

> Alg’s output changes no more than & in dty. ©

16/20

DNF Counting

> Rejection sampling
> Monte Carlo estimation

> Self-reducibility
> Reductions
> Total variation and coupling

Counting via Determinants«— i time
> Spanning trees

DNF Counting

> Rejection sampling
> Monte Carlo estimation

Counting vs. Sampling
> Self-reducibility

> Reductions

> Total variation and coupling

> Spanning trees

<~ if time

\Counting spanning trees

R
prany

18/20

\Counting spanning trees /

R
prany

a b C d e f
uf+1 0 0O 0 +1 0
vio =1 +1 0 -1 -1
w0 0 —-1T 41 0 0
x|—1 +1 0 0 0 0 -1
ylo o0 0O =1 0 41 +1

S O o\v

vertex-edge adj matrix

18/20

\Counting spanning trees /

> Sum of rows =0
R
& A{

a b C d e f
uf+1 0 0O 0 +1 0
vio =1 +1 0 -1 -1
w0 0 —-1T 41 0 0
x|—1 +1 0 0 0 0 -1
ylo o0 0O =1 0 41 +1

S O o\v

vertex-edge adj matrix

18/20

\Counting spanning trees /

> Sum of rows =0

C{* —;{— —;) > n x n submatrices have det = 0
& Q{

a b C d e f
uf+1 0 0O 0 +1 0
vio =1 +1 0 -1 -1
w0 0 —-1T 41 0 0
x|—1 +1 0 0 0 0 -1
ylo o0 0O =1 0 41 +1

S O o\v

vertex-edge adj matrix

18/20

\Counting spanning trees /

> Sum of rows =0

(D b ices h —
URP Brmmmeemronsss
& Q{

a b C d e f
uf+1 0 0O 0 +1 0
vio =1 +1 0 -1 -1
w0 0 —-1T 41 0 0
x|—1 +1 0 0 0 0 -1
ylo o0 0O =1 0 41 +1

S O o\v

vertex-edge adj matrix

18/20

\Counting spanning trees /

> Sum of rows =0

C{* —;{— —;) > n x n submatrices have det = 0

> Howabout(m—1) x (n—1)?

S O o\v

+1 0 0 0 +1 O \:{7_}:{
-1 41 0 0 0 0 -1

8 8 > If cucle exists, det = 0:
O -1 +1 0 —1 I
0 0 0 -1 0 +1 =+1 For some choice of signs:

a b C d e f Ct ; ; _})
O 0 -1 +41 0 O
+(col a) £ (col b) £ (cole) =0

e » T e

vertex-edge adj matrix

18/20

Otherwise, columns are a spanning tree. In this case det € {:1}. Sketch:

CV_P\‘ ‘P
\cL Q:’

19/20

Otherwise, columns are a spanning tree. In this case det € {:1}. Sketch:
u v w
Q- QP

a b f d

g- -9

X

Y

submatrix
a b c
uf+1 0 0
vi 0 —1 +1
w|l0 0 -1
x|[—1 41 0

d
0
0

+1
0

19/20

Otherwise, columns are a spanning tree. In this case det € {:1}. Sketch:

submatrix added row u to x

u v w
O—c¢ —C{ c =0 a b ¢ d a b ¢ d
ul[+1 0 0 0 ul[+1 0 0 0
«@ b fod vio —1 41 0 vio —1 41 0
O_Q_E) wl0 0 -1 +1 wl0 0 -1 +1
x y x[—=1 +1 0 0 x{0O +1 0 0

19/20

Otherwise, columns are a spanning tree. In this case det € {:1}. Sketch:

submatrix added row u to x

u v w
O—c¢ —C{ c =0 a b ¢ d a b ¢ d
ul[+1 0 0 0 ul[+1 0 0 0
«@ b fod vio —1 41 0 vio —1 41 0
O_Q_E) wl0 0 -1 +1 wl0 0 -1 +1
x y x[—=1 +1 0 0 x{0O +1 0 0

added row x to v

a b c d
ul+1 0 0 0
vio 0 41 0
wl0 0 —1 +1
x| 0 +1 0 O

19/20

Otherwise, columns are a spanning tree. In this case det € {:1}. Sketch:

u AY w
Q- QP
a b f d

g- -9

x Y

added row x to v

a b c d
ul+1 0 0 0
vio 0 41 0
wl0 0 —1 +1
x| 0 +1 0 O

submatrix
a b c d a
uf+1 0 0 0 u[+1
vi0 =1 +1 0 v| 0
w|l0 0 =1 +1 wi| 0
x|—1 +1 0 O x| 0

added row v to w

—_—

d
0
0
+1
0

OOO+D

b
0
0
0
+

%S <ee
cotoon

added row u to x

b ¢ d
o 0 o0
-1 +1 0
0 -1 +1
+1 0 O

19/20

Otherwise, columns are a spanning tree. In this case det € {:1}. Sketch:

submatrix added row u to x
u v w
O—e—({ ¢ =0 a b ¢ d a b ¢ d
ul[+1 0 0 0 ul[+1 0 0 0
LA vio =1 41 0 vio =1 41 0
O_Q_E) wl0 0 —1 41 wl0 0 =1 41
X y x[—=1 +1 0 0 x{0O +1 0 0
added row x to v added row v tow permuted and fixed signs
a b c d a b c d
ul[+1 0 0 0 ul[+1 0 0 0
vio 0 +1 0 vio 0 +1 0
wl0 0 -1 +1 w0 0 0 +1
x[0O +1 0 0 x{0O +1 0 0

19/20

> Determinants tell us which subsets are spanning trees ...

20/20

> Determinants tell us which subsets are spanning trees ...
> How to sum?

20/20

> Determinants tell us which subsets are spanning trees ...
> How to sum?

[Cauchy-Binet]

If Aisn x mand Bism x n:

det(AB) =) det(Acois—s) det(Brows—s)-
se(")

20/20

> Determinants tell us which subsets are spanning trees ...
> How to sum?

[Cauchy-Binet]
If Aisn x mand Bism x n:

det(AB) =) det(Acois—s) det(Brows—s)-
se(")

> Let A =BT be vertex-edge adj matrix with o?e row removed.

arbitrary

20/20

> Determinants tell us which subsets are spanning trees ...
> How to sum?

[Cauchy-Binet]
If Aisn x mand Bism x n:

det(AB) = Z det(Acols:S)det(Brows:S)-
se('n)

> Let A =BT be vertex-edge adj matrix with o?e row removed.

B We get arbitrary

det(AAT) = Z(iﬂ [S spanning tree])? = #spanning trees.
5

20/20

> Determinants tell us which subsets are spanning trees ...
> How to sum?

[Cauchy-Binet]

If Aisn x mand Bism x n:

det(AB) = Z det(Acols:S)det(Brows:S)-
se('n)

> Let A =BT be vertex-edge adj matrix with o?e row removed.

B We get arbitrary

det(AAT) = Z(iﬂ [S spanning tree])? = #spanning trees.
5

> Next lecture: other determinant-based counting algs.

20/20

