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CS 263: Counting and Sampling

Nima Anari
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Review

Density µ on space Ω

Sampling: P[output] ∝ µ(output)

Counting: compute
∑

x µ(x)

#P: #accepting paths in TM

#P-complete:

Natural counting variants of

known NP-complete problems.

Natural counting variants of

some P problems too!

Approx counting

(1+ ε)-approx in
poly(n, 1/ε)

FPR

randomized

AS/FPT

deterministic

AS

Approx sampling

δ-approx in dTV in

poly(n, log(1/δ))

FPAUS

Self-reducibles [Jerrum-Valiant-Vazirani]:

Exact Counting Approx Counting

Exact Sampling Approx Sampling

if F
PT
AS
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DNF sampling [Karp-Luby]

φ = C1 ∨ C2 ∨ · · ·∨ Cm

Ai = {sat assignments of Ci}

Sample u.r. ∈ A1 t · · · tAm

A1

A2

...

Am

s
a
m
e

s
a
m
e

s
a
m
e

s
a
m
e

reject accept

Example

φ =x1

C1

∨x2

C2

Goal: sample u.r. from

A1 ∪A2 = {10, 01, 11}

A1 = {10, 11}, A2 = {01, 11}

Sample u.r. from {10, 11, 01, 11},

reject the second 11

How to sample ∼ A1 t · · · tAm?

Sample i w.p. ∝ |Ai|

Sample x ∈ Ai u.a.r.
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DNF counting [Karp-Luby]

How to count solutions?

Idea: Write |A1 ∪ · · · ∪Am| as

|A1 t · · · tAm|

easy to compute

· |A1∪···∪Am|

|A1t···tAm|

accept prob

Approximate accept prob p

Monte Carlo estimation

for i = 1, . . . , t do
sample ∼ A1 t · · · tAm

and Xi ← 1[accept]

return X = X1+···+Xt

t

E[Xi] = p Var(Xi) = p(1− p)

E[X] = p Var(X) = p(1− p)/t

By Chebyshev’s inequality

P
[
X /∈

[
p−

εp

3
, p+

εp

3

]]
6

Var(X)
(εp/3)2

which is 6 9/tpε2.

Enough to let t > 27/pε2 to have

success with prob > 2/3.

Lemma

To mult. estimate p from Ber(p) sam-

ples, O(1/pε2) many enough.
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Open problem: Is there an FPTAS for DNF counting?

[Gopalan-Meka-Reingold’12]

±ε2n approximation in time

nÕ(log logn)
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Self-reducible problems

Solutions of instance I partitioned

advanced: measure-decomposed

. Each

part ≡ smaller instance I ′.

(x1 ∨ x2 ∨ x3)∧ (x1 ∨ x4)

(x2 ∨ x3) x4

true false . . . . . .

x1 ← 0 x1 ← 1

x2 ← 0 x2 ← 1

Key: branching factor, depth 6 poly

Other requirements:

Instances I ′ produced efficiently.

One-to-one correspondence of

solutions efficiently computable.

Base cases easy to sample/count.

Example: perfect matchings

/∈matching ∈matching
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Example: spanning trees

delete contract

/∈tree ∈tree

Example: independent sets

/∈ind set ∈ind set

Non-example: colorings

Instance: graph G = (V, E) and q > 0

Solutions: x ∈ [q]V with xu 6= xv for

adjacent u, v

good bad

Note that

#

 vu
 = #

 vu
−#

 u/v
 ,

but this is not self-reducibility.
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Theorem [Jerrum-Valiant-Vazirani]

For “self-reducible” problems:

approx counting ≡ approx sampling

Exact Counting Approx Counting

(FPRAS)

Exact Sampling Approx Sampling

(FPAUS)

if F
PT
AS

arrows are poly-time reductions

Exact Counting =⇒ Exact Sampling

I

I1 I2 Ik. . .

while I not base case do

compute children I1, . . . , Ik
for i = 1, . . . , k do

ci ← #(Ii)

choose i w.p. ∝ ci
I← Ii

output sample for I

P[sample] =
#(Ii)

#(I)
·

#(Iij)

#(Ii)
· · · = 1

#(I)
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FPTAS =⇒ Exact Sampling

Instead of ci = #(Ii), compute

1+ ε approx c̃i.

We get P[sample] is (1+ ε)depth

approx to 1/#(I).

Set ε ' 1/depth:

P[sample] = Θ

(
1

#(I)

)
.

Idea: if ν is output dist, we can

compute ν(x). Rejection sample

this into the target dist µ.

Since µ(x) = O(ν(x)) for all x, it
takes only O(1) rejections.

FPRAS =⇒ Approx Sampling

Now there is a chance of error.

But we only want dTV 6 δ.

Idea: cut rejection sampling after

O(log 1/δ) iterations:

P[not finishing] 6 δ/2

Total number of approx counts we

need is poly(n) log(1/δ).
Make sure each fails with prob

6
δ

2
· 1

poly(n) log(1/δ)

Runtime: poly(n, log(1/δ))



12/20

FPTAS =⇒ Exact Sampling

Instead of ci = #(Ii), compute

1+ ε approx c̃i.

We get P[sample] is (1+ ε)depth

approx to 1/#(I).

Set ε ' 1/depth:

P[sample] = Θ

(
1

#(I)

)
.

Idea: if ν is output dist, we can

compute ν(x). Rejection sample

this into the target dist µ.

Since µ(x) = O(ν(x)) for all x, it
takes only O(1) rejections.

FPRAS =⇒ Approx Sampling

Now there is a chance of error.

But we only want dTV 6 δ.

Idea: cut rejection sampling after

O(log 1/δ) iterations:

P[not finishing] 6 δ/2

Total number of approx counts we

need is poly(n) log(1/δ).
Make sure each fails with prob

6
δ

2
· 1

poly(n) log(1/δ)

Runtime: poly(n, log(1/δ))



12/20

FPTAS =⇒ Exact Sampling

Instead of ci = #(Ii), compute

1+ ε approx c̃i.

We get P[sample] is (1+ ε)depth

approx to 1/#(I).

Set ε ' 1/depth:

P[sample] = Θ

(
1

#(I)

)
.

Idea: if ν is output dist, we can

compute ν(x). Rejection sample

this into the target dist µ.

Since µ(x) = O(ν(x)) for all x, it
takes only O(1) rejections.

FPRAS =⇒ Approx Sampling

Now there is a chance of error.

But we only want dTV 6 δ.

Idea: cut rejection sampling after

O(log 1/δ) iterations:

P[not finishing] 6 δ/2

Total number of approx counts we

need is poly(n) log(1/δ).
Make sure each fails with prob

6
δ

2
· 1

poly(n) log(1/δ)

Runtime: poly(n, log(1/δ))



12/20

FPTAS =⇒ Exact Sampling

Instead of ci = #(Ii), compute

1+ ε approx c̃i.

We get P[sample] is (1+ ε)depth

approx to 1/#(I).

Set ε ' 1/depth:

P[sample] = Θ

(
1

#(I)

)
.

Idea: if ν is output dist, we can

compute ν(x). Rejection sample

this into the target dist µ.

Since µ(x) = O(ν(x)) for all x, it
takes only O(1) rejections.

FPRAS =⇒ Approx Sampling

Now there is a chance of error.

But we only want dTV 6 δ.

Idea: cut rejection sampling after

O(log 1/δ) iterations:

P[not finishing] 6 δ/2

Total number of approx counts we

need is poly(n) log(1/δ).
Make sure each fails with prob

6
δ

2
· 1

poly(n) log(1/δ)

Runtime: poly(n, log(1/δ))



12/20

FPTAS =⇒ Exact Sampling

Instead of ci = #(Ii), compute

1+ ε approx c̃i.

We get P[sample] is (1+ ε)depth

approx to 1/#(I).

Set ε ' 1/depth:

P[sample] = Θ

(
1

#(I)

)
.

Idea: if ν is output dist, we can

compute ν(x). Rejection sample

this into the target dist µ.

Since µ(x) = O(ν(x)) for all x, it
takes only O(1) rejections.

FPRAS =⇒ Approx Sampling

Now there is a chance of error.

But we only want dTV 6 δ.

Idea: cut rejection sampling after

O(log 1/δ) iterations:

P[not finishing] 6 δ/2

Total number of approx counts we

need is poly(n) log(1/δ).
Make sure each fails with prob

6
δ

2
· 1

poly(n) log(1/δ)

Runtime: poly(n, log(1/δ))



12/20

FPTAS =⇒ Exact Sampling

Instead of ci = #(Ii), compute

1+ ε approx c̃i.

We get P[sample] is (1+ ε)depth

approx to 1/#(I).

Set ε ' 1/depth:

P[sample] = Θ

(
1

#(I)

)
.

Idea: if ν is output dist, we can

compute ν(x). Rejection sample

this into the target dist µ.

Since µ(x) = O(ν(x)) for all x, it
takes only O(1) rejections.

FPRAS =⇒ Approx Sampling

Now there is a chance of error.

But we only want dTV 6 δ.

Idea: cut rejection sampling after

O(log 1/δ) iterations:

P[not finishing] 6 δ/2

Total number of approx counts we

need is poly(n) log(1/δ).
Make sure each fails with prob

6
δ

2
· 1

poly(n) log(1/δ)

Runtime: poly(n, log(1/δ))



12/20

FPTAS =⇒ Exact Sampling

Instead of ci = #(Ii), compute

1+ ε approx c̃i.

We get P[sample] is (1+ ε)depth

approx to 1/#(I).

Set ε ' 1/depth:

P[sample] = Θ

(
1

#(I)

)
.

Idea: if ν is output dist, we can

compute ν(x). Rejection sample

this into the target dist µ.

Since µ(x) = O(ν(x)) for all x, it
takes only O(1) rejections.

FPRAS =⇒ Approx Sampling

Now there is a chance of error.

But we only want dTV 6 δ.

Idea: cut rejection sampling after

O(log 1/δ) iterations:

P[not finishing] 6 δ/2

Total number of approx counts we

need is poly(n) log(1/δ).
Make sure each fails with prob

6
δ

2
· 1

poly(n) log(1/δ)

Runtime: poly(n, log(1/δ))



12/20

FPTAS =⇒ Exact Sampling

Instead of ci = #(Ii), compute

1+ ε approx c̃i.

We get P[sample] is (1+ ε)depth

approx to 1/#(I).

Set ε ' 1/depth:

P[sample] = Θ

(
1

#(I)

)
.

Idea: if ν is output dist, we can

compute ν(x). Rejection sample

this into the target dist µ.

Since µ(x) = O(ν(x)) for all x, it
takes only O(1) rejections.

FPRAS =⇒ Approx Sampling

Now there is a chance of error.

But we only want dTV 6 δ.

Idea: cut rejection sampling after

O(log 1/δ) iterations:

P[not finishing] 6 δ/2

Total number of approx counts we

need is poly(n) log(1/δ).
Make sure each fails with prob

6
δ

2
· 1

poly(n) log(1/δ)

Runtime: poly(n, log(1/δ))



12/20

FPTAS =⇒ Exact Sampling

Instead of ci = #(Ii), compute

1+ ε approx c̃i.

We get P[sample] is (1+ ε)depth

approx to 1/#(I).

Set ε ' 1/depth:

P[sample] = Θ

(
1

#(I)

)
.

Idea: if ν is output dist, we can

compute ν(x). Rejection sample

this into the target dist µ.

Since µ(x) = O(ν(x)) for all x, it
takes only O(1) rejections.

FPRAS =⇒ Approx Sampling

Now there is a chance of error.

But we only want dTV 6 δ.

Idea: cut rejection sampling after

O(log 1/δ) iterations:

P[not finishing] 6 δ/2

Total number of approx counts we

need is poly(n) log(1/δ).

Make sure each fails with prob

6
δ

2
· 1

poly(n) log(1/δ)

Runtime: poly(n, log(1/δ))



12/20

FPTAS =⇒ Exact Sampling

Instead of ci = #(Ii), compute

1+ ε approx c̃i.

We get P[sample] is (1+ ε)depth

approx to 1/#(I).

Set ε ' 1/depth:

P[sample] = Θ

(
1

#(I)

)
.

Idea: if ν is output dist, we can

compute ν(x). Rejection sample

this into the target dist µ.

Since µ(x) = O(ν(x)) for all x, it
takes only O(1) rejections.

FPRAS =⇒ Approx Sampling

Now there is a chance of error.

But we only want dTV 6 δ.

Idea: cut rejection sampling after

O(log 1/δ) iterations:

P[not finishing] 6 δ/2

Total number of approx counts we

need is poly(n) log(1/δ).
Make sure each fails with prob

6
δ

2
· 1

poly(n) log(1/δ)

Runtime: poly(n, log(1/δ))



12/20

FPTAS =⇒ Exact Sampling

Instead of ci = #(Ii), compute

1+ ε approx c̃i.

We get P[sample] is (1+ ε)depth

approx to 1/#(I).

Set ε ' 1/depth:

P[sample] = Θ

(
1

#(I)

)
.

Idea: if ν is output dist, we can

compute ν(x). Rejection sample

this into the target dist µ.

Since µ(x) = O(ν(x)) for all x, it
takes only O(1) rejections.

FPRAS =⇒ Approx Sampling

Now there is a chance of error.

But we only want dTV 6 δ.

Idea: cut rejection sampling after

O(log 1/δ) iterations:

P[not finishing] 6 δ/2

Total number of approx counts we

need is poly(n) log(1/δ).
Make sure each fails with prob

6
δ

2
· 1

poly(n) log(1/δ)

Runtime: poly(n, log(1/δ))



13/20

Exact Sampling =⇒ Approx Counting

I

I1 I2 Ik

I11

Ibase

. . .

. . .

. . .

. . .

Idea: choose root→ leaf path

Estimate #(I1)/#(I), #(I11)/#(I1),
. . . using Monte Carlo.

Multiply with #(Ibase) and output.

Need 1+ ε/(2 · depth) approx for
each ratio.

Set failure prob for each

estimation task to 6 1/(6 · depth).
Approx factor:(

1+
ε

2 · depth

)depth

6 1+ ε

Success prob:

> 1− depth · 1

6 · depth
>

5

6

Problem: if any ratio p is small, it

takes > 1/p time to estimate.
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I

I1 I2 Ik. . .

Fix: while #(I1)/#(I) could be

small, ∃i s.t. #(Ii)/#(I) is large.

Take a sample x and see which Ii
it belongs to. Assume

#(Ii)

#(I)
>

1

6k · depth

Branch into Ii and recursively find

the root→ leaf path.

Prob of wrong assumption: 6 1/6

Approx Sampling =⇒ Approx Counting

We have a poly-time randomized

algorithm that uses samples.

In general in such algorithms,

exact samplers can be replaced

by approx samplers.

Lemma

In a randomized poly-time algorithm,

exact samplers can be replaced by

FPAUS while guaranteeing the output

changes no more than δ in dTV at the

cost of poly(n, log(1/δ)) in runtime.
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Coupling

For dists µ, ν, a coupling is a joint dist π

of (X, Y) where X ∼ µ and Y ∼ ν.

Theorem

The minimum

min
{
P(X,Y)∼π[X 6= Y]

∣∣ coupling π
}

is dTV(µ, ν).

Proof: exercise!

Useful mindset: think of coupling

as an alg to produce X, Y .

Compose these algs together.

dists µ, ν

coupling π
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Replacing exact samples with approx samples

Suppose alg uses samples X1, . . . , Xm.

Instead feed it samples Y1, . . . , Ym from FPAUS.

Couple each Xi and Yi so that P[Xi 6= Yi] 6 δ/m.

Chance of deviation (using Xs vs Ys):

δ

m
+

δ

m
+ · · ·+ δ

m
6 δ.

Alg’s output changes no more than δ in dTV.
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Counting vs. Sampling
Self-reducibility

Reductions

Total variation and coupling

Counting via Determinants if time

Spanning trees
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Counting spanning trees

u v w

x y

a b

c

d

e

f

g



a b c d e f g

u +1 0 0 0 +1 0 0

v 0 −1 +1 0 −1 −1 0

w 0 0 −1 +1 0 0 0

x −1 +1 0 0 0 0 −1

y 0 0 0 −1 0 +1 +1


vertex-edge adj matrix

Sum of rows = 0

n× n submatrices have det = 0

How about (n− 1)× (n− 1)?

If cycle exists, det = 0:

u v w

x y

c

d

g

a b

e

f

For some choice of signs:

±(col a)± (col b)± (col e) = 0
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Otherwise, columns are a spanning tree. In this case det ∈ {±1}. Sketch:

u v w

x y

e

f

g

a b

c

d

submatrix


a b c d

u +1 0 0 0

v 0 −1 +1 0

w 0 0 −1 +1

x −1 +1 0 0



added row u to x


a b c d

u +1 0 0 0

v 0 −1 +1 0

w 0 0 −1 +1

x 0 +1 0 0


added row x to v


a b c d

u +1 0 0 0

v 0 0 +1 0

w 0 0 −1 +1

x 0 +1 0 0



added row v to w


a b c d

u +1 0 0 0

v 0 0 +1 0

w 0 0 0 +1

x 0 +1 0 0



permuted and fixed signs


a b c d

u +1 0 0 0

x 0 +1 0 0

v 0 0 +1 0

w 0 0 0 +1


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Determinants tell us which subsets are spanning trees . . .

How to sum?

[Cauchy-Binet]

If A is n×m and B is m× n:

det(AB) =
∑

S∈([m]
n )

det(Acols=S) det(Brows=S).

Let A = Bᵀ be vertex-edge adj matrix with one

arbitrary

row removed.

We get

det(AAᵀ) =
∑
S

(±1[S spanning tree])2 = #spanning trees.

Next lecture: other determinant-based counting algs.
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