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Open problem: Is there an FPTAS for DNF counting?

[Gopalan-Meka-Reingold’12]

+e2™ approximation in time

nO(IogIogn)

7/20



> Rejection sampling
> Monte Carlo estimation

Counting vs. Sampling
> Self-reducibility

> Reductions

> Total variation and coupling

Counting via Determinants«— i time
> Spanning trees




DNF Counting

> Rejection sampling
> Monte Carlo estimation

> Self-reducibility
> Reductions
> Total variation and coupling

Counting via Determinants«— i time
> Spanning trees




\Self—reducible problems

advanced: measure-decomposed

. . \ ey .
Solutions of instance I partitioned. Each
part = smaller instance 1.

[0 V32V xs) A 37V xa)

Key: branching factor, depth < poly

9/20



\Self—reducible problems

advanced: measure-decomposed

~
Solutions of instance I partitioned. Each
part = smaller instance 1.

[0 V32V xs) A 37V xa)

Key: branching factor, depth < poly

Other requirements:

9/20



\Self—reducible problems /

advanced: measure-decomposed

. . - Other requirements:
Solutions of instance I partitioned. Each D> Instances I’

: , produced efficiently.
part = smaller instance I'.

[0 V32V xs) A 37V xa)

Key: branching factor, depth < poly

9/20



\Self—reducible problems /

advanced: measure-decomposed

. | - Other requirements:
Solutions of instance I partitioned. Each D> Instances I’

: , produced efficiently.
part = smaller instance I'.

> One-to-one correspondence of
[(x1 VgV x3) A (W\/M)] solutions efficiently computable.

Key: branching factor, depth < poly

9/20



\Self—reducible problems /

advanced: measure-decomposed

Other requirements:

~
Solutions of instance I partitioned. Each > Instances I’ produced efficiently

part = smaller instance 1.
> One-to-one correspondence of

[(x1 VgV x3) A (ﬁ\/m)] solutions efficiently computable.
\ (> Base cases easy to sample/count.
X1 < 1
X4

Key: branching factor, depth < poly

9/20



\Self—reducible problems /

advanced: measure-decomposed

Other requirements:

. . \ ey .
Solutions of instance I partitioned. Each > Instances I’ produced efficiently
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Example: spanning trees

¢treV ctree
delete contract

Example: independent sets

Non-example: colorings

Instance: graph G = (V,E) and q > 0
Solutions: x € [q]Y with x, # x, for
adjacent u,v

Note that

((88)+(33)+(2)

but this is not self-reducibility.
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For “self-reducible” problems:

approx counting = approx sampling

(FPRAS)
Exact Counting —— Approx Counting

S

Exact Sampling —— Approx Sampling

(FPAUS)
arrows are poly-time reductions

Exact Counting = Exact Sampling

while T not base case do
compute children Iy, ..., Iy
fori=1,...,kdo
| ci e #(I)
choose i w.p. x ¢;
I+ Ii

output sample for I

#(1i)
#(I)

RALT
#(1;)

Plsample] =
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> Instead of ¢; = #(1;), compute
1+ € approx ¢;.

> We get P[sample] is (1 + ¢)dePth
approx to 1/4(1).

> Set e ~ 1/depth:

1
Plsample] = @() .
> #(0)

3 if v is output dist, we can
compute v(x). Rejection sample
this into the target dist .

> Since p(x) = O(v(x)) for all x, it
takes only O(1) rejections.

FPRAS — Approx Sampling

Now there is a chance of error. ®
But we only want dty < 6. ©

3 cut rejection sampling after
O(log1/5) iterations:

P[not finishing] < §/2

> Total number of approx counts we
need is poly(n) log(1/5).
> Make sure each fails with prob
5 1
g — .
2 poly(n)log(1/6)

> Runtime: poly(n, log(1/8)) ©
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> lIdea: choose root — leaf path

O Estimate #(I14)/#(1), #(111)/#(11),

. using Monte Carlo.
> Multiply with #(Ipgse) and output.

(B

o

(B

Need 1+ €/(2 - depth) approx for
each ratio.

Set failure prob for each

estimation task to < 1/(6 - depth).

Approx factor: @

depth
1+ S <l+e
2 - depth =

Success prob: @

9)]

> 1—depth-

>
6-depth © 6

Problem: if any ratio p is small, it
takes > 1/p time to estimate.
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O Fix: while #(14)/4(1) could be

small, i s.t. #(1;)/#(1) is large.

> Take a sample x and see which I;

it belongs to. Assume

#(11) S 1
#(I) = 6k-depth

> Branch into I; and recursively find

the root — leaf path.

> Prob of wrong assumption: < 1/6

Approx Sampling = Approx Counting

> We have a poly-time randomized
algorithm that uses samples.

> In general in such algorithms,
exact samplers can be replaced
by approx samplers.

Lemma

In a randomized poly-time algorithm,
exact samplers can be replaced by
FPAUS while guaranteeing the output
changes no more than 6 in dty at the
cost of poly(n,log(1/8)) in runtime.
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\Coupling /

For dists u, v, a coupling is a joint dist 7t
of (X,Y)where X~upand¥Y ~v. .

Theorem 4

The minimum

min{Px,y)~=[X # Y] | coupling 7t}

is drv(p, v).

> Proof: exercisel

O Useful mindset: think of coupling
as an alg to produce X, Y. coupling 7
Compose these algs together. Ping

15/20
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> Suppose alg uses samples Xi,..., Xm.
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\Replocing exact samples with approx samples /

> Suppose alg uses samples Xi,..., Xm.

> Instead feed it samples Yy, ..., Yy from FPAUS.
O Couple each X; and Y; so that P[X; # Y] < §/m.
> Chance of deviation (using Xs vs Ys):
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\Replacing exact samples with approx samples /

> Suppose alg uses samples Xi,..., Xm.

> Instead feed it samples Yy, ..., Yy from FPAUS.
O Couple each X; and Y; so that P[X; # Y] < §/m.
> Chance of deviation (using Xs vs Ys):

5§ 8 5
—+— 4 +— <0,
m m m

> Alg’s output changes no more than & in dty. ©

16/20
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> Rejection sampling
> Monte Carlo estimation

> Self-reducibility
> Reductions
> Total variation and coupling
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DNF Counting

> Rejection sampling
> Monte Carlo estimation

Counting vs. Sampling
> Self-reducibility

> Reductions

> Total variation and coupling

> Spanning trees

<~ if time
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R
prany

a b C d e f
uf+1 0 0O 0 +1 0
vio =1 +1 0 -1 -1
w0 0 —-1T 41 0 0
x|—1 +1 0 0 0 0 -1
ylo o0 0O =1 0 41 +1

S O o\v

vertex-edge adj matrix
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\Counting spanning trees /

> Sum of rows =0
R
& A{
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\Counting spanning trees /

> Sum of rows =0

C{* —;{— —;) > n x n submatrices have det = 0
& Q{

a b C d e f
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\Counting spanning trees /

> Sum of rows =0

(D b ices h —
URP Brmmmeemronsss
& Q{

a b C d e f
uf+1 0 0O 0 +1 0
vio =1 +1 0 -1 -1
w0 0 —-1T 41 0 0
x|—1 +1 0 0 0 0 -1
ylo o0 0O =1 0 41 +1

S O o\v

vertex-edge adj matrix
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\Counting spanning trees /

> Sum of rows =0

C{* —;{— —;) > n x n submatrices have det = 0

> Howabout(m—1) x (n—1)?

S O o\v

+1 0 0 0 +1 O \:{7_}:{
-1 41 0 0 0 0 -1

8 8 > If cucle exists, det = 0:
O -1 +1 0 —1 I
0 0 0 -1 0 +1 =+1 For some choice of signs:

a b C d e f Ct ; ; _})
O 0 -1 +41 0 O
+(col a) £ (col b) £ (cole) =0

e » T e

vertex-edge adj matrix

18/20



Otherwise, columns are a spanning tree. In this case det € {:1}. Sketch:

CV_P\‘ ‘P
\cL Q:’
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Otherwise, columns are a spanning tree. In this case det € {:1}. Sketch:
u v w
Q- QP

a b f d

g- -9

X

Y

submatrix
a b c
uf+1 0 0
vi 0 —1 +1
w|l0 0 -1
x|[—1 41 0

d
0
0

+1
0

19/20



Otherwise, columns are a spanning tree. In this case det € {:1}. Sketch:

submatrix added row u to x

u v w
O—c¢ —C{ c =0 a b ¢ d a b ¢ d
ul[+1 0 0 0 ul[+1 0 0 0
«@ b fod vio —1 41 0 vio —1 41 0
O_Q_E) wl0 0 -1 +1 wl0 0 -1 +1
x y x[—=1 +1 0 0 x{0O +1 0 0
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Otherwise, columns are a spanning tree. In this case det € {:1}. Sketch:

submatrix added row u to x

u v w
O—c¢ —C{ c =0 a b ¢ d a b ¢ d
ul[+1 0 0 0 ul[+1 0 0 0
«@ b fod vio —1 41 0 vio —1 41 0
O_Q_E) wl0 0 -1 +1 wl0 0 -1 +1
x y x[—=1 +1 0 0 x{0O +1 0 0

added row x to v

a b c d
ul+1 0 0 0
vio 0 41 0
wl0 0 —1 +1
x| 0 +1 0 O
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Otherwise, columns are a spanning tree. In this case det € {:1}. Sketch:

u AY w
Q- QP
a b f d

g- -9

x Y

added row x to v

a b c d
ul+1 0 0 0
vio 0 41 0
wl0 0 —1 +1
x| 0 +1 0 O

submatrix
a b c d a
uf+1 0 0 0 u[+1
vi0 =1 +1 0 v| 0
w|l0 0 =1 +1 wi| 0
x|—1 +1 0 O x| 0

added row v to w

—_—

d
0
0
+1
0

OOO+D

b
0
0
0
+

%S <ee
cotoon

added row u to x

b ¢ d
o 0 o0
-1 +1 0
0 -1 +1
+1 0 O
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Otherwise, columns are a spanning tree. In this case det € {:1}. Sketch:

submatrix added row u to x
u v w
O—e—({ ¢ =0 a b ¢ d a b ¢ d
ul[+1 0 0 0 ul[+1 0 0 0
LA vio =1 41 0 vio =1 41 0
O_Q_E) wl0 0 —1 41 wl0 0 =1 41
X y x[—=1 +1 0 0 x{0O +1 0 0
added row x to v added row v tow permuted and fixed signs
a b c d a b c d
ul[+1 0 0 0 ul[+1 0 0 0
vio 0 +1 0 vio 0 +1 0
wl0 0 -1 +1 w0 0 0 +1
x[0O +1 0 0 x{0O +1 0 0

19/20
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> Let A =BT be vertex-edge adj matrix with o?e row removed.
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se('n)
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> Determinants tell us which subsets are spanning trees ...
> How to sum?

[Cauchy-Binet]

If Aisn x mand Bism x n:

det(AB) = Z det(Acols:S)det(Brows:S)-
se('n)

> Let A =BT be vertex-edge adj matrix with o?e row removed.

B We get arbitrary

det(AAT) = Z(iﬂ [S spanning tree])? = #spanning trees.
5

> Next lecture: other determinant-based counting algs.
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