CS 263: Counting and Sampling

Nima Anari
s Salard
slides for
Continuous Sampling

Review

Stochastic localization

For μ on \mathbb{R}^{n}, and adapted matrix process C_{t}, we define $\forall x$

$$
\mathrm{d} \mu_{\mathrm{t}}(x)=\left\langle x-\operatorname{mean}\left(\mu_{\mathrm{t}}\right), \mathrm{C}_{\mathrm{t}} \mathrm{~dB}_{\mathrm{t}}\right\rangle \mu_{\mathrm{t}}(x)
$$

Review

Stochastic localization

For μ on \mathbb{R}^{n}, and adapted matrix process C_{t}, we define $\forall x$

$$
\mathrm{d} \mu_{\mathrm{t}}(x)=\left\langle x-\operatorname{mean}\left(\mu_{\mathrm{t}}\right), \mathrm{C}_{\mathrm{t}} \mathrm{~dB} \mathrm{~B}_{\mathrm{t}}\right\rangle \mu_{\mathrm{t}}(x)
$$

Distribution at time t is

$$
\mu_{\mathrm{t}} \propto \mu \cdot \exp \left(-\frac{\chi^{\top} A_{\mathrm{t}} \mathrm{x}}{2}+\left\langle h_{\mathrm{t}}, x\right\rangle\right)
$$

Review

Stochastic localization

For μ on \mathbb{R}^{n}, and adapted matrix process C_{t}, we define $\forall x$

- Localization scheme: a measure-valued martingale.

$$
\mathrm{d} \mu_{\mathrm{t}}(x)=\left\langle x-\operatorname{mean}\left(\mu_{\mathrm{t}}\right), \mathrm{C}_{\mathrm{t}} \mathrm{~dB} B_{\mathrm{t}}\right\rangle \mu_{\mathrm{t}}(x)
$$

Distribution at time t is

$$
\mu_{t} \propto \mu \cdot \exp \left(-\frac{x^{\top} A_{t} x}{2}+\left\langle h_{t}, x\right\rangle\right)
$$

Review

Stochastic localization

For μ on \mathbb{R}^{n}, and adapted matrix process C_{t}, we define $\forall x$

$$
\mathrm{d} \mu_{\mathrm{t}}(x)=\left\langle x-\operatorname{mean}\left(\mu_{\mathrm{t}}\right), \mathrm{C}_{\mathrm{t}} \mathrm{~dB} \mathrm{~B}_{\mathrm{t}}\right\rangle \mu_{\mathrm{t}}(x)
$$

- Localization scheme: a measure-valued martingale.
- Conservation of ϕ-entropies: $\mathbb{E}\left[\operatorname{Ent}_{\mu_{\mathrm{t}}}^{\phi}[\mathrm{ff}] \geqslant \gamma \cdot \operatorname{Ent}_{\mu}^{\phi}[\mathrm{f}]\right.$

Distribution at time t is

$$
\mu_{t} \propto \mu \cdot \exp \left(-\frac{x^{\top} A_{t} x}{2}+\left\langle h_{t}, x\right\rangle\right)
$$

Review

Stochastic localization

For μ on \mathbb{R}^{n}, and adapted matrix process C_{t}, we define $\forall x$

$$
\mathrm{d} \mu_{\mathrm{t}}(x)=\left\langle x-\operatorname{mean}\left(\mu_{\mathrm{t}}\right), \mathrm{C}_{\mathrm{t}} \mathrm{~dB} \mathrm{~B}_{\mathrm{t}}\right\rangle \mu_{\mathrm{t}}(x)
$$

Distribution at time t is

$$
\mu_{t} \propto \mu \cdot \exp \left(-\frac{x^{\top} A_{t} x}{2}+\left\langle h_{t}, x\right\rangle\right)
$$

- Localization scheme: a measure-valued martingale.
D Conservation of ϕ-entropies:

$$
\mathbb{E}\left[\operatorname{Ent}_{\mu_{\mathrm{t}}}^{\phi}[\mathrm{f}]\right] \geqslant \gamma \cdot \operatorname{Ent}_{\mu}^{\phi}[\mathrm{f}]
$$

D For Markov chains constructed as NN°, we can transfer functional ineqs for μ_{t} to μ with a loss of γ.

Review

Stochastic localization

For μ on \mathbb{R}^{n}, and adapted matrix process C_{t}, we define $\forall x$

$$
\mathrm{d} \mu_{\mathrm{t}}(x)=\left\langle x-\operatorname{mean}\left(\mu_{\mathrm{t}}\right), \mathrm{C}_{\mathrm{t}} \mathrm{~dB} \mathrm{~B}_{\mathrm{t}}\right\rangle \mu_{\mathrm{t}}(x)
$$

Distribution at time t is

$$
\mu_{t} \propto \mu \cdot \exp \left(-\frac{x^{\top} A_{t} x}{2}+\left\langle h_{t}, x\right\rangle\right)
$$

- Localization scheme: a measure-valued martingale.
- Conservation of ϕ-entropies:

$$
\mathbb{E}\left[\operatorname{Ent}_{\mu_{\mathrm{t}}}^{\phi}[\mathrm{f}]\right] \geqslant \gamma \cdot \operatorname{Ent}_{\mu}^{\phi}[\mathrm{f}]
$$

- For Markov chains constructed as NN°, we can transfer functional ineqs for μ_{t} to μ with a loss of γ.

[Eldan-Koehler-Zeitouni]

Glauber for Ising models μ on $\{ \pm 1\}^{n}$

$$
\mu(x) \propto \exp \left(\frac{x^{\top} J x}{2}+\langle h, x\rangle\right)
$$

fast when $\lambda_{\max }(\mathrm{J})-\lambda_{\min }(\mathrm{J})<1$.

Continuous Sampling

- Log-concave distributions

D Restricted Gaussian dynamics

Highlights

© Deterministic methods

- Markov chains

Continuous Sampling

D Log-concave distributions
D Restricted Gaussian dynamics

Highlights

© Deterministic methods

- Markov chains

Continuous space

Optimization

$$
\mathrm{U}: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

Continuous space

Optimization

$$
\mathrm{U}: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

D Tractable: U convex

Continuous space

Optimization

D Tractable: U convex
D Even better (well-conditioned):

$$
\alpha \mathrm{I} \preceq \nabla^{2} \mathrm{U} \preceq \beta \mathrm{I} .
$$

and condition number $\kappa=\beta / \alpha$.
Gradient descent: $\operatorname{poly}(\kappa, \log (1 / \epsilon))$.

Continuous space

Optimization

$$
\mathrm{U}: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

- Tractable: U convex

D Even better (well-conditioned):

$$
\alpha \mathrm{I} \preceq \nabla^{2} \mathrm{U} \preceq \beta \mathrm{I} .
$$

and condition number $\kappa=\beta / \alpha$. Gradient descent: $\operatorname{poly}(\kappa, \log (1 / \epsilon))$.

Sampling

$\mu \circ \cap \mathbb{R}^{n}, d \mu \propto e^{-U(x)} d x$

Continuous space

Optimization

$$
\mathrm{U}: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

D Tractable: U convex
\checkmark Even better (well-conditioned):

$$
\alpha \mathrm{I} \preceq \nabla^{2} \mathrm{U} \preceq \beta \mathrm{I} .
$$

and condition number $\kappa=\beta / \alpha$. Gradient descent: poly $(\kappa, \log (1 / \epsilon))$.

Sampling

D Tractable: μ is log-concave, i.e., U convex

Continuous space

Optimization

$$
\mathrm{U}: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

D Tractable: U convex
D Even better (well-conditioned):

$$
\alpha \mathrm{I} \preceq \nabla^{2} \mathrm{U} \preceq \beta \mathrm{I} .
$$

Sampling

D Tractable: μ is log-concave, i.e., U convex
\checkmark Open: can we sample (say within $\mathrm{d}_{\mathrm{TV}} \leqslant 0.1$) in poly (κ) steps?
and condition number $\kappa=\beta / \alpha$. Gradient descent: $\operatorname{poly}(\kappa, \log (1 / \epsilon))$.

Continuous space

Optimization

$$
\mathrm{U}: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

D Tractable: U convex
D Even better (well-conditioned):

$$
\alpha \mathrm{I} \preceq \nabla^{2} \mathrm{U} \preceq \beta \mathrm{I} .
$$

and condition number $\kappa=\beta / \alpha$. Gradient descent: $\operatorname{poly}(\kappa, \log (1 / \epsilon))$.

Sampling

$$
\mu \circ \cap \mathbb{R}^{n}, d \mu \propto e^{-u(x)} d x
$$

D Tractable: μ is log-concave, i.e., U convex
\bigcirc Open: can we sample (say within $\mathrm{d}_{\mathrm{TV}} \leqslant 0.1$) in poly (κ) steps?
\checkmark Best known: $\widetilde{O}(\sqrt{n}) \cdot \operatorname{poly}(\kappa)$ [Altschuler-Chewi]

We will see how to sample in poly (n, k).

Rejection sampling

© As a first attempt, let us try rejection sampling.

Rejection sampling

© As a first attempt, let us try rejection sampling.

- Well-conditionedness is measuring local deviation from Gaussianity.

Rejection sampling

© As a first attempt, let us try rejection sampling.
D Well-conditionedness is measuring local deviation from Gaussianity.
\bigcirc Propose Gaussians and accept/reject into μ ?

Rejection sampling

© As a first attempt, let us try rejection sampling.
D Well-conditionedness is measuring local deviation from Gaussianity.
D Propose Gaussians and accept/reject into μ ?
D Wlog assume μ has mode at 0 and $\mathrm{U}(0)=0$. \uparrow
mode with GD
subtract constant

Rejection sampling

D As a first attempt, let us try rejection sampling.
D Well-conditionedness is measuring local deviation from Gaussianity.
D Propose Gaussians and accept/reject into μ ?
D Wlog assume μ has mode at 0 and $\mathrm{U}(0)=0$. \uparrow
mode with GD
subtract constant
\checkmark Proposal dist $v=\mathcal{N}(0, I / \alpha)$:

$$
d v \propto \exp \left(-\frac{\alpha \cdot\|x\|^{2}}{2}\right) d x
$$

Rejection sampling

D As a first attempt, let us try rejection sampling.
D Well-conditionedness is measuring local deviation from Gaussianity.
\bigcirc Propose Gaussians and accept/reject into μ ?
\bigcirc Wlog assume μ has mode at 0 and $\mathrm{U}(0)=0$. \uparrow
mode with GD
subtract constant
\checkmark Proposal dist $v=\mathcal{N}(0, I / \alpha)$:

$$
d v \propto \exp \left(-\frac{\alpha \cdot\|x\|^{2}}{2}\right) d x
$$

D Observation: everywhere we have

$$
\frac{\alpha\|x\|^{2}}{2} \leqslant U(x) \leqslant \frac{\beta\|x\|^{2}}{2}
$$

Because $\mathrm{U}(x)-\alpha\|x\|^{2} / 2$ is convex and $U(x)-\beta\|x\|^{2} / 2$ is concave.

Rejection sampling

D As a first attempt, let us try rejection sampling.
\bigcirc Well-conditionedness is measuring local deviation from Gaussianity.
\checkmark Propose Gaussians and accept/reject into μ ?
\checkmark Wlog assume μ has mode at 0 and $\mathrm{u}(0)=0$. \uparrow
mode with GD

D Observation: everywhere we have

$$
\frac{\alpha\|x\|^{2}}{2} \leqslant U(x) \leqslant \frac{\beta\|x\|^{2}}{2}
$$

Because $\mathrm{U}(x)-\alpha\|x\|^{2} / 2$ is convex and $u(x)-\beta\|x\|^{2} / 2$ is concave.
\bigcirc Acceptance prob for sample x :

$$
\exp \left(\frac{\alpha\|x\|^{2}}{2}-U(x)\right) \leqslant 1
$$

subtract constant
\checkmark Proposal dist $v=\mathcal{N}(0, I / \alpha)$:

$$
d v \propto \exp \left(-\frac{\alpha \cdot\|x\|^{2}}{2}\right) d x
$$

Rejection sampling

D As a first attempt, let us try rejection sampling.
\bigcirc Well-conditionedness is measuring local deviation from Gaussianity.
\checkmark Propose Gaussians and accept/reject into μ ?
D Wlog assume μ has mode at 0 and $\mathrm{U}(0)=0$.
subtract constant
\bigcirc Proposal dist $v=\mathcal{N}(0, I / \alpha)$:

$$
d v \propto \exp \left(-\frac{\alpha \cdot\|x\|^{2}}{2}\right) d x
$$

D Observation: everywhere we have

$$
\frac{\alpha\|x\|^{2}}{2} \leqslant U(x) \leqslant \frac{\beta\|x\|^{2}}{2}
$$

Because $\mathrm{U}(x)-\alpha\|x\|^{2} / 2$ is convex and $u(x)-\beta\|x\|^{2} / 2$ is concave.
\bigcirc Acceptance prob for sample x :

$$
\exp \left(\frac{\alpha\|x\|^{2}}{2}-U(x)\right) \leqslant 1
$$

D Chance of acceptance:

$$
\frac{\int \exp (-\mathrm{u}(x)) \mathrm{d} x}{\int \exp \left(-\frac{\alpha\|x\|^{2}}{2}\right) \mathrm{d} x} \geqslant \frac{\int \exp \left(-\frac{\beta\|x\|^{2}}{2}\right) \mathrm{dx}}{\int \exp \left(-\frac{\alpha\|x\|^{2}}{2}\right) \mathrm{d} x}
$$

Rejection sampling

D As a first attempt, let us try rejection sampling.
\bigcirc Well-conditionedness is measuring local deviation from Gaussianity.
\bigcirc Propose Gaussians and accept/reject into μ ?
\checkmark Wlog assume μ has mode at 0 and $\mathrm{U}(0)=0$.
subtract constant
\checkmark Proposal dist $v=\mathcal{N}(0, \mathrm{I} / \alpha)$:

$$
d v \propto \exp \left(-\frac{\alpha \cdot\|x\|^{2}}{2}\right) d x
$$

D Observation: everywhere we have

$$
\frac{\alpha\|x\|^{2}}{2} \leqslant U(x) \leqslant \frac{\beta\|x\|^{2}}{2}
$$

Because $\mathrm{U}(x)-\alpha\|x\|^{2} / 2$ is convex and $U(x)-\beta\|x\|^{2} / 2$ is concave.
\bigcirc Acceptance prob for sample x :

$$
\exp \left(\frac{\alpha\|x\|^{2}}{2}-U(x)\right) \leqslant 1
$$

D Chance of acceptance:

$$
\frac{\int \exp (-\mathrm{u}(x)) \mathrm{d} x}{\int \exp \left(-\frac{\alpha\|x\|^{2}}{2}\right) \mathrm{d} x} \geqslant \frac{\int \exp \left(-\frac{\beta\|x\|^{2}}{2}\right) \mathrm{d} x}{\int \exp \left(-\frac{\alpha\|x\|^{2}}{2}\right) d x}
$$

\bigcirc This is $(\sqrt{2 \pi \alpha} / \sqrt{2 \pi \beta})^{n}=1 / \kappa^{n / 2}$.

Rejection sampling works for $\kappa \leqslant 1+\widetilde{O}(1 / n)$

Restricted Gaussian dynamics [Lee-Shen-Tian]

Markov chain

D μ : dist on \mathbb{R}^{n}
$\bigcirc \mathrm{N}: \mathrm{x} \mapsto \mathrm{y}=\mathrm{x}+\mathrm{g}$ for $\mathrm{g} \sim \mathcal{N}(0, \mathrm{I} / \eta)$
D $\mathrm{P}=\mathrm{NN}^{\circ}$: then sample z w.p. \propto
$\mu(z) \cdot e^{-\eta \cdot\|z-y\|^{2} / 2}$
restricted Gaussian

Restricted Gaussian dynamics [Lee-Shen-Tian]

Markov chain

D μ : dist on \mathbb{R}^{n}
$\bigcirc \mathrm{N}: \mathrm{x} \mapsto \mathrm{y}=\mathrm{x}+\mathrm{g}$ for $\mathrm{g} \sim \mathcal{N}(0, \mathrm{I} / \eta)$
$D \mathrm{P}=\mathrm{NN}^{\circ}$: then sample z w.p. \propto

$$
\mu(z) \cdot e^{-\eta \cdot\|z-y\|^{2} / 2}
$$

restricted Gaussian
D If μ has cond $k=\beta / \alpha$, then cond number for restricted Gaussian is:

$$
\kappa^{\prime}=\frac{\beta+\eta}{\alpha+\eta}
$$

Restricted Gaussian dynamics [Lee-Shen-Tian]

Markov chain

D μ : dist on \mathbb{R}^{n}
$D \mathrm{~N}: \mathrm{x} \mapsto \mathrm{y}=\mathrm{x}+\mathrm{g}$ for $\mathrm{g} \sim \mathcal{N}(0, \mathrm{I} / \mathrm{\eta})$
D $\mathrm{P}=\mathrm{NN}^{\circ}$: then sample z w.p. \propto

$$
\mu(z) \cdot e^{-\eta \cdot\|z-y\|^{2} / 2}
$$

restricted Gaussian
D If μ has cond $k=\beta / \alpha$, then cond number for restricted Gaussian is:

$$
\kappa^{\prime}=\frac{\beta+\eta}{\alpha+\eta}
$$

D As long as $\eta \geqslant n \beta$, we can use
rejection sampling: $\kappa^{\prime} \leqslant 1+1 / n$.

Restricted Gaussian dynamics [Lee-Shen-Tian]

Markov chain

$D \mu$: dist on \mathbb{R}^{n}
$D \mathrm{~N}: \mathrm{x} \mapsto \mathrm{y}=\mathrm{x}+\mathrm{g}$ for $\mathrm{g} \sim \mathcal{N}(0, \mathrm{I} / \mathrm{\eta})$
D $\mathrm{P}=\mathrm{NN}^{\circ}$: then sample z w.p. \propto

restricted Gaussian
D If μ has cond $k=\beta / \alpha$, then cond number for restricted Gaussian is:

$$
\kappa^{\prime}=\frac{\beta+\eta}{\alpha+\eta}
$$

D As long as $\eta \geqslant n \beta$, we can use
rejection sampling: $\kappa^{\prime} \leqslant 1+1 / n$.

Restricted Gaussian dynamics [Lee-Shen-Tian]

Markov chain

$D \mu$: dist on \mathbb{R}^{n}
$D \mathrm{~N}: \mathrm{x} \mapsto \mathrm{y}=\mathrm{x}+\mathrm{g}$ for $\mathrm{g} \sim \mathcal{N}(0, \mathrm{I} / \mathrm{\eta})$
D $\mathrm{P}=\mathrm{NN}^{\circ}$: then sample z w.p. \propto

$$
\mu(z) \cdot e^{-\eta \cdot\|z-y\|^{2} / 2}
$$

restricted Gaussian
D If μ has cond $k=\beta / \alpha$, then cond number for restricted Gaussian is:

$$
K^{\prime}=\frac{\beta+\eta}{\alpha+\eta}
$$

D As long as $\eta \geqslant n \beta$, we can use
rejection sampling: $\kappa^{\prime} \leqslant 1+1 / n$.

D All that remains is to bound mixing time of Markov chain.

Restricted Gaussian dynamics [Lee-Shen-Tian]

Markov chain

$D \mu$: dist on \mathbb{R}^{n}
$D \mathrm{~N}: \mathrm{x} \mapsto \mathrm{y}=\mathrm{x}+\mathrm{g}$ for $\mathrm{g} \sim \mathcal{N}(0, \mathrm{I} / \eta)$
$D \mathrm{P}=\mathrm{NN}^{\circ}$: then sample z w.p. \propto

$$
\mu(z) \cdot e^{-\eta \cdot\|z-y\|^{2} / 2}
$$

restricted Gaussian
D If μ has cond $k=\beta / \alpha$, then cond number for restricted Gaussian is:

$$
\kappa^{\prime}=\frac{\beta+\eta}{\alpha+\eta}
$$

D As long as $\eta \geqslant n \beta$, we can use rejection sampling: $\kappa^{\prime} \leqslant 1+1 / n$.

D All that remains is to bound mixing time of Markov chain.

D Will show

$$
t_{\text {mix }} \leqslant \operatorname{poly}(\eta / \alpha, n)
$$

Restricted Gaussian dynamics [Lee-Shen-Tian]

Markov chain

$D \mu$: dist on \mathbb{R}^{n}
$D \mathrm{~N}: \mathrm{x} \mapsto \mathrm{y}=\mathrm{x}+\mathrm{g}$ for $\mathrm{g} \sim \mathcal{N}(0, \mathrm{I} / \eta)$
$D \mathrm{P}=\mathrm{NN}^{\circ}$: then sample z w.p. \propto

$$
\mu(z) \cdot e^{-\eta \cdot\|z-y\|^{2} / 2}
$$

restricted Gaussian
D If μ has cond $k=\beta / \alpha$, then cond number for restricted Gaussian is:

$$
K^{\prime}=\frac{\beta+\eta}{\alpha+\eta}
$$

D As long as $\eta \geqslant n \beta$, we can use rejection sampling: $\kappa^{\prime} \leqslant 1+1 / n$.

D All that remains is to bound mixing time of Markov chain.
D Will show

$$
\mathrm{t}_{\text {mix }} \leqslant \operatorname{poly}(\eta / \alpha, n)
$$

D In fact, we will show χ^{2} contraction:

$$
t_{\text {rel }} \leqslant \frac{\alpha+\eta}{\alpha}
$$

Restricted Gaussian dynamics [Lee-Shen-Tian]

Markov chain

$D \mu$: dist on \mathbb{R}^{n}
$\bigcirc \mathrm{N}: \mathrm{x} \mapsto \mathrm{y}=\mathrm{x}+\mathrm{g}$ for $\mathrm{g} \sim \mathcal{N}(0, \mathrm{I} / \eta)$
$D \mathrm{P}=\mathrm{NN}^{\circ}$: then sample z w.p. \propto

$$
\mu(z) \cdot e^{-\eta \cdot\|z-y\|^{2} / 2}
$$

restricted Gaussian
D If μ has cond $k=\beta / \alpha$, then cond number for restricted Gaussian is:

$$
K^{\prime}=\frac{\beta+\eta}{\alpha+\eta}
$$

D As long as $\eta \geqslant n \beta$, we can use rejection sampling: $\kappa^{\prime} \leqslant 1+1 / n$.

D All that remains is to bound mixing time of Markov chain.
D Will show

$$
\mathrm{t}_{\text {mix }} \leqslant \operatorname{poly}(\eta / \alpha, n)
$$

\bigcirc In fact, we will show χ^{2} contraction:

$$
\mathrm{t}_{\text {rel }} \leqslant \frac{\alpha+\eta}{\alpha}
$$

D Warm start: Gaussian!

Restricted Gaussian dynamics [Lee-Shen-Tian]

Markov chain

μ : dist on \mathbb{R}^{n}
$D \mathrm{~N}: \mathrm{x} \mapsto \mathrm{y}=\mathrm{x}+\mathrm{g}$ for $\mathrm{g} \sim \mathcal{N}(0, \mathrm{I} / \eta)$
$D \mathrm{P}=\mathrm{NN}^{\circ}$: then sample z w.p. \propto

$$
\mu(z) \cdot e^{-\eta \cdot\|z-y\|^{2} / 2}
$$

restricted Gaussian
D If μ has cond $\kappa=\beta / \alpha$, then cond number for restricted Gaussian is:

$$
K^{\prime}=\frac{\beta+\eta}{\alpha+\eta}
$$

D As long as $\eta \geqslant n \beta$, we can use rejection sampling: $\kappa^{\prime} \leqslant 1+1 / n$.

D All that remains is to bound mixing time of Markov chain.
D Will show

$$
\mathrm{t}_{\text {mix }} \leqslant \operatorname{poly}(\eta / \alpha, n)
$$

\bigcirc In fact, we will show χ^{2} contraction:

$$
t_{\text {rel }} \leqslant \frac{\alpha+\eta}{\alpha}
$$

D Warm start: Gaussian!
D [Chen-Eldan]: same for entropy.

Stochastic localization

Stochastic localization

For μ on \mathbb{R}^{n}, and adapted matrix process C_{t}, we define $\forall x$

$$
\mathrm{d} \mu_{\mathrm{t}}(x)=\left\langle x-\operatorname{mean}\left(\mu_{\mathrm{t}}\right), C_{t} \mathrm{~dB}_{\mathrm{t}}\right\rangle \mu_{\mathrm{t}}(x)
$$

Stochastic localization

Stochastic localization

For μ on \mathbb{R}^{n}, and adapted matrix process C_{t}, we define $\forall x$

$$
\mathrm{d} \mu_{\mathrm{t}}(x)=\left\langle x-\operatorname{mean}\left(\mu_{\mathrm{t}}\right), C_{t} \mathrm{~dB}_{\mathrm{t}}\right\rangle \mu_{\mathrm{t}}(x)
$$

D We will use $C_{t}=I$ today!

Stochastic localization

Stochastic localization

For μ on \mathbb{R}^{n}, and adapted matrix process C_{t}, we define $\forall x$

$$
\mathrm{d} \mu_{\mathrm{t}}(x)=\left\langle x-\operatorname{mean}\left(\mu_{\mathrm{t}}\right), \mathrm{C}_{\mathrm{t}} \mathrm{~dB}_{\mathrm{t}}\right\rangle \mu_{\mathrm{t}}(\mathrm{x})
$$

D We will use $\mathrm{C}_{\mathrm{t}}=\mathrm{I}$ today!
D We will always deal with restricted Gaussians:

$$
\mu_{\mathrm{t}} \propto \mu \cdot \exp \left(-\frac{\mathrm{t}\|x\|^{2}}{2}+\left\langle h_{t}, x\right\rangle\right)
$$

Stochastic localization

Stochastic localization

For μ on \mathbb{R}^{n}, and adapted matrix process C_{t}, we define $\forall x$

$$
\mathrm{d} \mu_{\mathrm{t}}(x)=\left\langle x-\operatorname{mean}\left(\mu_{\mathrm{t}}\right), \mathrm{C}_{\mathrm{t}} \mathrm{~dB} B_{\mathrm{t}}\right\rangle \mu_{\mathrm{t}}(x)
$$

D We will use $\mathrm{C}_{\mathrm{t}}=\mathrm{I}$ today!
D We will always deal with restricted Gaussians:

$$
\mu_{\mathrm{t}} \propto \mu \cdot \exp \left(-\frac{\mathrm{t}\|x\|^{2}}{2}+\left\langle h_{\mathrm{t}}, x\right\rangle\right)
$$

$D \mu_{t}$ is a posterior: it is $N^{\circ}\left(h_{t} / t, \cdot\right)$, where N is the Gaussian noise operator adding $\mathcal{N}(0, I / t)$.

Stochastic localization

Stochastic localization

For μ on \mathbb{R}^{n}, and adapted matrix process C_{t}, we define $\forall x$

$$
\mathrm{d} \mu_{\mathrm{t}}(x)=\left\langle x-\operatorname{mean}\left(\mu_{\mathrm{t}}\right), \mathrm{C}_{\mathrm{t}} \mathrm{~dB} B_{\mathrm{t}}\right\rangle \mu_{\mathrm{t}}(x)
$$

D In fact, h_{t} / t, the center of the Gaussian, follows nice dist:

$$
\frac{h_{t}}{t} \sim \mu * \mathcal{N}(0, I / t)=\mu N
$$

D We will use $\mathrm{C}_{\mathrm{t}}=\mathrm{I}$ today!
D We will always deal with restricted Gaussians:

$$
\mu_{\mathrm{t}} \propto \mu \cdot \exp \left(-\frac{\mathrm{t}\|x\|^{2}}{2}+\left\langle h_{t}, x\right\rangle\right)
$$

$D \mu_{t}$ is a posterior: it is $N^{\circ}\left(h_{t} / t, \cdot\right)$, where N is the Gaussian noise operator adding $\mathcal{N}(0, I / t)$.

Stochastic localization

Stochastic localization

For μ on \mathbb{R}^{n}, and adapted matrix process C_{t}, we define $\forall x$

$$
\mathrm{d} \mu_{\mathrm{t}}(\mathrm{x})=\left\langle x-\operatorname{mean}\left(\mu_{\mathrm{t}}\right), \mathrm{C}_{\mathrm{t}} \mathrm{~dB}_{\mathrm{t}}\right\rangle \mu_{\mathrm{t}}(x)
$$

D We will use $C_{t}=I$ today!
D In fact, h_{t} / t, the center of the Gaussian, follows nice dist:

$$
\frac{h_{t}}{t} \sim \mu * \mathcal{N}(0, I / t)=\mu N
$$

\bigcirc Exercise: h_{t} follows

$$
\mathrm{dh}_{\mathrm{t}}=\operatorname{mean}\left(\mu_{\mathrm{t}}\right) \mathrm{dt}+\mathrm{dB}_{\mathrm{t}}
$$

D We will always deal with restricted Gaussians:

$$
\mu_{\mathrm{t}} \propto \mu \cdot \exp \left(-\frac{\mathrm{t}\|x\|^{2}}{2}+\left\langle h_{\mathrm{t}}, x\right\rangle\right)
$$

- μ_{t} is a posterior: it is $N^{\circ}\left(h_{t} / t, \cdot\right)$, where N is the Gaussian noise operator adding $\mathcal{N}(0, I / t)$.

Stochastic localization

Stochastic localization

For μ on \mathbb{R}^{n}, and adapted matrix process C_{t}, we define $\forall x$

$$
\mathrm{d} \mu_{\mathrm{t}}(x)=\left\langle x-\operatorname{mean}\left(\mu_{\mathrm{t}}\right), C_{t} d B_{t}\right\rangle \mu_{\mathrm{t}}(x)
$$

D We will use $\mathrm{C}_{\mathrm{t}}=\mathrm{I}$ today!
D We will always deal with restricted Gaussians:

$$
\mu_{t} \propto \mu \cdot \exp \left(-\frac{t\|x\|^{2}}{2}+\left\langle h_{t}, x\right\rangle\right)
$$

- μ_{t} is a posterior: it is $N^{\circ}\left(h_{t} / t, \cdot\right)$, where N is the Gaussian noise operator adding $\mathcal{N}(0, I / t)$.
D In fact, h_{t} / t, the center of the Gaussian, follows nice dist:

$$
\frac{h_{t}}{t} \sim \mu * \mathcal{N}(0, I / t)=\mu N
$$

\bigcirc Exercise: h_{t} follows

$$
d h_{t}=\operatorname{mean}\left(\mu_{t}\right) d t+d B_{t}
$$

- This means that

$$
\operatorname{Ent}_{\mu}^{\phi}[f]-\operatorname{Ent}_{\mu N}^{\phi}[f]=\mathbb{E}\left[\operatorname{Ent}_{\mu_{t}}^{\phi}[f]\right]
$$

Stochastic localization

Stochastic localization

For μ on \mathbb{R}^{n}, and adapted matrix process C_{t}, we define $\forall x$

$$
\mathrm{d} \mu_{\mathrm{t}}(x)=\left\langle x-\operatorname{mean}\left(\mu_{\mathrm{t}}\right), C_{t} d B_{t}\right\rangle \mu_{\mathrm{t}}(x)
$$

D We will use $\mathrm{C}_{\mathrm{t}}=\mathrm{I}$ today!
D We will always deal with restricted Gaussians:

$$
\mu_{t} \propto \mu \cdot \exp \left(-\frac{t\|x\|^{2}}{2}+\left\langle h_{t}, x\right\rangle\right)
$$

$D \mu_{t}$ is a posterior: it is $N^{\circ}\left(h_{t} / t, \cdot\right)$, where N is the Gaussian noise operator adding $\mathcal{N}(0, I / t)$.

D In fact, h_{t} / t, the center of the Gaussian, follows nice dist:

$$
\frac{h_{t}}{t} \sim \mu * \mathcal{N}(0, I / t)=\mu N
$$

D Exercise: h_{t} follows

$$
d h_{t}=\operatorname{mean}\left(\mu_{t}\right) d t+d B_{t}
$$

- This means that

$$
\operatorname{Ent}_{\mu}^{\phi}[f]-\operatorname{Ent}_{\mu N}^{\phi}[f]=\mathbb{E}\left[\operatorname{Ent}_{\mu_{t}}^{\phi}[f]\right]
$$

© So, as long as we prove γ-approximate conservation of Ent ${ }^{\phi}$, we have proved N contracts Ent ${ }^{\phi}$ by $1-\gamma$. Do this at $t=\eta$.

Conservation

D Let us specialize to $\mathrm{Ent}^{\phi}=$ Var.

Conservation

D Let us specialize to $\mathrm{Ent}^{\phi}=$ Var.
© We saw last time that $\mathrm{d} \operatorname{Var}_{\mu_{\mathrm{t}}}[\mathrm{f}]=$ (martingale term) $-v_{t}^{\top} \Sigma_{t} v_{t} d t$.
Here $\Sigma_{t}=I$ and

$$
v_{t}=\mathbb{E}_{x \sim \mu_{t}}\left[f(x)\left(x-\operatorname{mean}\left(\mu_{t}\right)\right)\right] .
$$

Conservation

D Let us specialize to $\mathrm{Ent}^{\phi}=$ Var.
© We saw last time that $\mathrm{d} \operatorname{Var}_{\mu_{\mathrm{t}}}[\mathrm{f}]=$ (martingale term) $-v_{t}^{\top} \Sigma_{t} \nu_{t} d t$.
Here $\Sigma_{t}=I$ and

$$
v_{t}=\mathbb{E}_{x \sim \mu_{t}}\left[f(x)\left(x-\operatorname{mean}\left(\mu_{t}\right)\right)\right] .
$$

\bigcirc Claim: by Cauchy-Schwartz

$$
\left\|v_{\mathrm{t}}\right\|^{2} \leqslant \operatorname{Var}_{\mu_{\mathrm{t}}}[\mathrm{f}] \cdot \lambda_{\max }\left(\operatorname{cov}\left(\mu_{\mathrm{t}}\right)\right) .
$$

Conservation

D Let us specialize to $\mathrm{Ent}^{\phi}=$ Var.
D We saw last time that $\mathrm{d} \operatorname{Var}_{\mu_{\mathrm{t}}}[\mathrm{f}]=$ (martingale term) $-v_{t}^{\top} \Sigma_{t} \nu_{t} d t$.
Here $\Sigma_{t}=I$ and

$$
v_{t}=\mathbb{E}_{x \sim \mu_{t}}\left[f(x)\left(x-\operatorname{mean}\left(\mu_{t}\right)\right)\right] .
$$

\bigcirc Claim: by Cauchy-Schwartz

$$
\left\|v_{\mathrm{t}}\right\|^{2} \leqslant \operatorname{Var}_{\mu_{\mathrm{t}}}[\mathrm{f}] \cdot \lambda_{\max }\left(\operatorname{cov}\left(\mu_{\mathrm{t}}\right)\right) .
$$

\bigcirc This means that

$$
\begin{gathered}
\mathbb{E}\left[d \operatorname{Var}_{\mu_{t}}[f] \mid \mathcal{F}_{t}\right] \geqslant \\
-\lambda_{\max }\left(\operatorname{cov}\left(\mu_{t}\right)\right) \operatorname{Var}_{\mu_{t}}[f] d t
\end{gathered}
$$

Conservation

D Let us specialize to $\mathrm{Ent}^{\phi}=$ Var.
D We saw last time that $\mathrm{d} \operatorname{Var}_{\mu_{\mathrm{t}}}[\mathrm{f}]=$ (martingale term) $-v_{t}^{\top} \Sigma_{t} \nu_{t} d t$.
Here $\Sigma_{t}=I$ and

$$
v_{t}=\mathbb{E}_{x \sim \mu_{t}}\left[f(x)\left(x-\operatorname{mean}\left(\mu_{t}\right)\right)\right] .
$$

\bigcirc Claim: by Cauchy-Schwartz

$$
\left\|v_{\mathrm{t}}\right\|^{2} \leqslant \operatorname{Var}_{\mu_{\mathrm{t}}}[\mathrm{f}] \cdot \lambda_{\max }\left(\operatorname{cov}\left(\mu_{\mathrm{t}}\right)\right) .
$$

\checkmark This means that

$$
\begin{gathered}
\mathbb{E}\left[d \operatorname{Var}_{\mu_{t}}[f] \mid \mathcal{F}_{t}\right] \geqslant \\
-\lambda_{\max }\left(\operatorname{cov}\left(\mu_{t}\right)\right) \operatorname{Var}_{\mu_{t}}[f] d t
\end{gathered}
$$

D If $\lambda_{\max }\left(\operatorname{cov}\left(\mu_{\mathrm{t}}\right)\right) \leqslant \mathrm{g}(\mathrm{t})$, then we get:

$$
\gamma \geqslant \exp \left(-\int_{0}^{\eta} g(t) d t\right)
$$

Conservation

D Let us specialize to $\mathrm{Ent}^{\phi}=$ Var.
D We saw last time that $\mathrm{d} \operatorname{Var}_{\mu_{\mathrm{t}}}[\mathrm{f}]=$ (martingale term) $-v_{t}^{\top} \Sigma_{t} \nu_{t} d t$.
Here $\Sigma_{t}=I$ and

$$
v_{t}=\mathbb{E}_{x \sim \mu_{t}}\left[f(x)\left(x-\operatorname{mean}\left(\mu_{t}\right)\right)\right] .
$$

\bigcirc Claim: by Cauchy-Schwartz

$$
\left\|v_{\mathrm{t}}\right\|^{2} \leqslant \operatorname{Var}_{\mu_{\mathrm{t}}}[\mathrm{f}] \cdot \lambda_{\max }\left(\operatorname{cov}\left(\mu_{\mathrm{t}}\right)\right) .
$$

\bigcirc This means that

$$
\begin{gathered}
\mathbb{E}\left[\mathrm{d} \operatorname{Var}_{\mu_{\mathrm{t}}}[\mathrm{f}] \mid \mathcal{F}_{\mathrm{t}}\right] \geqslant \\
-\lambda_{\max }\left(\operatorname{cov}\left(\mu_{\mathrm{t}}\right)\right) \operatorname{Var}_{\mu_{\mathrm{t}}}[\mathrm{f}] \mathrm{dt}
\end{gathered}
$$

D If $\lambda_{\max }\left(\operatorname{cov}\left(\mu_{t}\right)\right) \leqslant g(t)$, then we get:

$$
\gamma \geqslant \exp \left(-\int_{0}^{\eta} g(t) d t\right)
$$

\bigcirc But note that μ_{t} is $(\alpha+\mathrm{t})$-strongly log-concave:

$$
-\nabla^{2} \log \mu_{t} \succeq(\alpha+\mathrm{t}) \mathrm{I}
$$

Conservation

D Let us specialize to $\mathrm{Ent}^{\phi}=$ Var.
\checkmark We saw last time that $d \operatorname{Var}_{\mu_{\mathrm{t}}}[\mathrm{f}]=$ (martingale term) $-\nu_{t}^{\top} \Sigma_{t} \nu_{t} d t$.
Here $\Sigma_{t}=I$ and

$$
v_{t}=\mathbb{E}_{x \sim \mu_{t}}\left[f(x)\left(x-\operatorname{mean}\left(\mu_{t}\right)\right)\right] .
$$

D Claim: by Cauchy-Schwartz

$$
\left\|v_{t}\right\|^{2} \leqslant \operatorname{Var}_{\mu_{t}}[f] \cdot \lambda_{\max }\left(\operatorname{cov}\left(\mu_{t}\right)\right) .
$$

\bigcirc This means that

$$
\begin{gathered}
\mathbb{E}\left[\mathrm{d} \operatorname{Var}_{\mu_{\mathrm{t}}}[\mathrm{f}] \mid \mathcal{F}_{\mathrm{t}}\right] \geqslant \\
-\lambda_{\max }\left(\operatorname{cov}\left(\mu_{\mathrm{t}}\right)\right) \operatorname{Var}_{\mu_{\mathrm{t}}}[\mathrm{ff}] \mathrm{dt}
\end{gathered}
$$

D If $\lambda_{\max }\left(\operatorname{cov}\left(\mu_{\mathrm{t}}\right)\right) \leqslant \mathrm{g}(\mathrm{t})$, then we get:

$$
\gamma \geqslant \exp \left(-\int_{0}^{\eta} g(t) d t\right)
$$

D But note that μ_{t} is $(\alpha+\mathrm{t})$-strongly log-concave:

$$
-\nabla^{2} \log \mu_{t} \succeq(\alpha+t) I
$$

\bigcirc We can compare $\operatorname{cov}\left(\mu_{\mathrm{t}}\right)$ with that of $\mathcal{N}(0, I /(\alpha+t))$:

$$
\operatorname{cov}\left(\mu_{\mathrm{t}}\right) \preceq \frac{\mathrm{I}}{\alpha+\mathrm{t}}
$$

Conservation

D Let us specialize to $\mathrm{Ent}^{\phi}=$ Var.
D We saw last time that $\mathrm{d} \operatorname{Var}_{\mu_{\mathrm{t}}}[\mathrm{f}]=$ (martingale term) $-v_{t}^{\top} \Sigma_{t} \nu_{t} d t$.
Here $\Sigma_{t}=I$ and

$$
v_{t}=\mathbb{E}_{x \sim \mu_{t}}\left[f(x)\left(x-\operatorname{mean}\left(\mu_{t}\right)\right)\right] .
$$

\bigcirc Claim: by Cauchy-Schwartz

$$
\left\|v_{\mathrm{t}}\right\|^{2} \leqslant \operatorname{Var}_{\mu_{\mathrm{t}}}[\mathrm{f}] \cdot \lambda_{\max }\left(\operatorname{cov}\left(\mu_{\mathrm{t}}\right)\right) .
$$

- This means that

$$
\begin{gathered}
\mathbb{E}\left[\operatorname{dVar}_{\mu_{t}}[\mathrm{f}] \mid \mathcal{F}_{\mathrm{t}}\right] \geqslant \\
-\lambda_{\max }\left(\operatorname{cov}\left(\mu_{\mathrm{t}}\right)\right) \operatorname{Var}_{\mu_{\mathrm{t}}}[\mathrm{f}] \mathrm{dt}
\end{gathered}
$$

\bigcirc If $\lambda_{\max }\left(\operatorname{cov}\left(\mu_{\mathrm{t}}\right)\right) \leqslant \mathrm{g}(\mathrm{t})$, then we get:

$$
\gamma \geqslant \exp \left(-\int_{0}^{\eta} g(t) d t\right)
$$

\checkmark But note that μ_{t} is $(\alpha+\mathrm{t})$-strongly log-concave:

$$
-\nabla^{2} \log \mu_{t} \succeq(\alpha+t) I
$$

\bigcirc We can compare $\operatorname{cov}\left(\mu_{t}\right)$ with that of $\mathcal{N}(0, I /(\alpha+t))$:

$$
\operatorname{cov}\left(\mu_{\mathrm{t}}\right) \preceq \frac{\mathrm{I}}{\alpha+\mathrm{t}}
$$

\bigcirc Proof sketch: reduce to 1D using the fact that marginals of log-concave are log-concave.

Conservation

D Let us specialize to $\mathrm{Ent}^{\phi}=$ Var.
D We saw last time that $\mathrm{d} \operatorname{Var}_{\mu_{\mathrm{t}}}[\mathrm{f}]=$ (martingale term) $-v_{t}^{\top} \Sigma_{t} \nu_{t} d t$.
Here $\Sigma_{t}=I$ and

$$
v_{\mathrm{t}}=\mathbb{E}_{x \sim \mu_{\mathrm{t}}}\left[f(x)\left(x-\operatorname{mean}\left(\mu_{\mathrm{t}}\right)\right)\right] .
$$

\bigcirc Claim: by Cauchy-Schwartz

$$
\left\|v_{\mathrm{t}}\right\|^{2} \leqslant \operatorname{Var}_{\mu_{\mathrm{t}}}[\mathrm{f}] \cdot \lambda_{\max }\left(\operatorname{cov}\left(\mu_{\mathrm{t}}\right)\right) .
$$

- This means that

$$
\begin{gathered}
\mathbb{E}\left[\operatorname{dVar}_{\mu_{t}}[\mathrm{f}] \mid \mathcal{F}_{\mathrm{t}}\right] \geqslant \\
-\lambda_{\max }\left(\operatorname{cov}\left(\mu_{\mathrm{t}}\right)\right) \operatorname{Var}_{\mu_{\mathrm{t}}}[\mathrm{f}] \mathrm{dt}
\end{gathered}
$$

D If $\lambda_{\max }\left(\operatorname{cov}\left(\mu_{\mathrm{t}}\right)\right) \leqslant \mathrm{g}(\mathrm{t})$, then we get:

$$
\gamma \geqslant \exp \left(-\int_{0}^{\eta} g(t) d t\right)
$$

\checkmark But note that μ_{t} is $(\alpha+\mathrm{t})$-strongly log-concave:

$$
-\nabla^{2} \log \mu_{t} \succeq(\alpha+t) I
$$

\checkmark We can compare $\operatorname{cov}\left(\mu_{t}\right)$ with that of $\mathcal{N}(0, I /(\alpha+t))$:

$$
\operatorname{cov}\left(\mu_{\mathrm{t}}\right) \preceq \frac{\mathrm{I}}{\alpha+\mathrm{t}}
$$

\bigcirc Proof sketch: reduce to 1D using the fact that marginals of log-concave are log-concave.
\bigcirc This gives us $g(t)=1 /(\alpha+t)$, so

$$
\int_{0}^{\eta} g(t) d t=\log \left(\frac{\alpha+\eta}{\alpha}\right)
$$

which means $\gamma \geqslant \alpha /(\alpha+\eta)$. :

Continuous Sampling

D Log-concave distributions
D Restricted Gaussian dynamics

Highlights

© Deterministic methods

- Markov chains

Continuous Sampling

D Log-concave distributions
D Restricted Gaussian dynamics

Highlights

D Deterministic methods

- Markov chains

Theorem [Jerrum-Valiant-Vazirani]

For "self-reducible" problems:

$$
\text { approx counting } \equiv \text { approx sampling }
$$

Exact Counting \longrightarrow Approx Counting

Exact Sampling \longrightarrow| Approx Sampling |
| :---: |
| (FPAUS) |

arrows are poly-time reductions

Deterministic counting

Determinant-based counting

u
u
v
w
x
$y$$\left[\begin{array}{ccccccc}a & c & d & e & f & g \\ +1 & 0 & 0 & 0 & +1 & 0 & 0 \\ 0 & -1 & +1 & 0 & -1 & -1 & 0 \\ 0 & 0 & -1 & +1 & 0 & 0 & 0 \\ -1 & +1 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 & 0 & +1 & +1\end{array}\right]$
\#spanning trees $=\operatorname{det}($ matrix $)$

D [Pólya]'s scheme:

$$
\operatorname{det}\left(\left[\begin{array}{ll}
+1 & -1 \\
+1 & +1
\end{array}\right]\right)=\operatorname{per}\left(\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\right)
$$

\bigcirc Good signing exists for planar graphs [Fisher-Kasteleyn-Temperley].

Correlation decay

D Root marginals are the same.

- Weak spatial mixing:

$$
\mathrm{d}_{\mathrm{TV}}\left(\text { root } \mid \sigma, \text { root } \mid \sigma^{\prime}\right) \rightarrow 0
$$

as the following goes to ∞ :

$$
\min \{d(\text { root }, u) \mid u \in S\} .
$$

\bigcirc Strong spatial mixing:

$$
\mathrm{d}_{\mathrm{TV}}\left(\text { root } \mid \sigma, \text { root } \mid \sigma^{\prime}\right) \rightarrow 0
$$

as the following goes to ∞ :

$$
\min \left\{\mathrm{d}(r o o t, u) \mid \sigma(u) \neq \sigma^{\prime}(u)\right\} .
$$

D [Weitz]'s alg forms truncated saw tree and uses recursion:

D Attractive exactly when $\lambda<\lambda_{c}(\Delta)$

[Barvinok]'s method

D [Barvinok]: $\operatorname{approx} p(1)$ via $p^{(i)}(0)$ for $i=0, \ldots, O(\log \operatorname{deg}(p))$
D Idea 1: Riemann map from disk

- Idea 2: trunc Taylor series of $\log p$

D Matchings via [Heilmann-Lieb]:

Markov chains

Transport

\bigcirc Influence: X, X^{\prime} differing in coord j :

$$
\mathrm{d}_{\mathrm{TV}}\left(\operatorname{dist}\left(X_{i} \mid \mathrm{X}_{-\mathrm{i}}\right), \operatorname{dist}\left(X_{i}^{\prime} \mid \mathrm{X}_{-\mathrm{i}}^{\prime}\right)\right)
$$

Example: hardcore

D $\Omega=\{0,1\}^{n}$

$$
\triangleright \mathcal{I} \leqslant \frac{\lambda}{1+\lambda} \cdot \operatorname{adj}
$$

\bigcirc Call maximum value $\mathfrak{J}[\mathfrak{j} \rightarrow \mathfrak{i}$.

Dobrushin's condition

If columns of \mathcal{J} sum to $\leqslant 1-\delta$, then

$$
\mathcal{W}\left(v P, v^{\prime} P\right) \leqslant(1-\delta / n) \mathcal{W}\left(v, v^{\prime}\right)
$$

$$
t_{\text {mix }}(\epsilon)=O\left(\frac{1}{\delta} n \log (n / \epsilon)\right)
$$

Example: coloring

$$
\begin{aligned}
& \triangleright \Omega=[q]^{n} \\
& \triangleright \mathcal{J} \leqslant \frac{1}{q-\Delta} \cdot \operatorname{adj}
\end{aligned}
$$

Example: Ising

$$
\begin{aligned}
& \bigcirc \Omega=\{ \pm 1\}^{n} \\
& \bigcirc \mathcal{J}[j \rightarrow i] \leqslant\left|\beta_{i j}\right|
\end{aligned}
$$

\bigcirc Dobrushin++: if c J $<(1-\delta)$ c

$$
t_{\text {mix }}(\epsilon)=O\left(\frac{n}{\delta} \log \left(\frac{n \cdot c_{\text {max }}}{\epsilon \cdot c_{\text {min }}}\right)\right)
$$

\bigcirc Existence: $\lambda_{\max }(\mathcal{J})<1$

Comparison

D P, P^{\prime} reversible with same
stationary distribution
D Comparison: route Q^{\prime} through Q with low congestion and length.

$$
\pi\left(\text { path } \mid X_{0}=s, X_{\ell}=t\right)
$$

Congestion

Suppose π is dist over paths and Q is ergodic flow. Congestion is

$$
\max \left\{\left.\frac{\mathbb{P}_{\text {path } \sim \pi}[(x \rightarrow y) \in \text { path }]}{Q(x, y)} \right\rvert\, x \neq y\right\}
$$

Lemma: comparison

Suppose ρ, ρ^{\prime} are χ^{2} contraction rates:

$$
\rho \geqslant \frac{\rho^{\prime}}{(\text { congestion }) \cdot(\text { max length })}
$$

D If len $\leqslant 1$, can use any \mathcal{D}_{ϕ}.
D Canonical paths: a few-to-one mapping enc from (s, t)-pairs whose path passes $x \rightarrow y$ to Ω :

$$
\mu(s) \mu(t) \leqslant C \cdot \mu(\operatorname{enc}(s, t)) Q(x, y)
$$

\bigcirc If M-to-one, then cong $\leqslant C M$.
\checkmark Matching walks mix in poly (n).

