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Stochastic localization > Localization scheme: @

For pon R™, and adapted matrix pro- measure-valued martingale.
cess C¢, we define Vx

> Conservation of ¢p-entropies:
due(x) = (x —mean(p), CdBy)pe(x) [E[Entﬂft [f]] >y Entﬂf [f]
> For Markov chains constructed as

NNP°, we can transfer functional
g OC WL - exp(—% + <ht,x>> inegs for uy to w with a loss of .

.\ [Eldan-Koehler-Zeitouni]

Glauber for Ising models pon {£1}"

Distribution at time t is

LY u(x) oc exp(XF* + (R, x))

M fast when Amax(J) — Amin(]) < 1.
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Optimization

U:R™" =R

7
7
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o8
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> Tractable: U convex
(> Even better (well-conditioned):

ol < V2U < BL.

and condition number k = 3/«.
Gradient descent: poly(k, log(1/¢€)).
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Optimization
~ 2

U:R"™ 5 R pon R™ du oc e U ax
> Tractable: U convex > Tractable: uis log-concave, ie., U
(> Even better (well-conditioned): convex
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Optimization

U:R" - R pon R™ dp ox e 4 dx
> Tractable: U convex > Tractable: uis log-concave, ie., U
> Even better (well-conditioned): convex
5 > Open: can we sample (say within
al 2 VU< BL drv < 0.1) in poly(k) steps?
and condition number k = B /. B Best known: O(v/n) - poly(x)

Gradient descent: poly(k, log(1/€)). [Altschuler-Chew]
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We will see how to sample in poly(n, k).
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> As afirst attempt, let us try
rejection sampling.

7/21



\Rejection sampling /

> As afirst attempt, let us try
rejection sampling.

> Well-conditionedness is measuring
local deviation from Gaussianity.

7/21



\Rejection sampling

> As afirst attempt, let us try
rejection sampling.

> Well-conditionedness is measuring
local deviation from Gaussianity.

> Propose Gaussians and
accept/reject into u?

7/21



\Rejection sampling /

As a first attempt, let us try
rejection sampling.
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v ¢ ¢ ©

As a first attempt, let us try > Observation: everywhere we have
rejection sampling. (XHX” Blx|2

. . . SUX) < =5
Well-conditionedness is measuring 5 U 2]
local deviation from Gaussianity. ecause U(x]) — CZXHX“ /2 1s convex

. and U(x) — B|x||</2 is concave.
Propose Gaussians and > A ; b f e x:
accept/reject into u? cceptance lFrHCj or sampie x.
x| X

Wlog assume p has mode at (T) and exP( z U(x)) <
u(o) =o.

) mode with GD

subtract constant

o

Proposal dist v = N(0,1/x):
dv exp( ”X” > dx
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> As afirst attempt, let us try > Observation: everywhere we have
‘XHXH Bllx|
<UKX) <=5

Because U( — off|x||?/2 is convex
and U(x) — B||x||?/2 is concave.

> Well-conditionedness is measuring
from Gaussianity.

> Propose Gaussians and

accept/reject into w? > Acceptance prob for sample x:

2
> Wilog assume p has mode at 0 and eXP(% - U(x)) <
U(O)T =0. mode with 6o > Chance of acceptance:
subtract constant [exp(—U(x))dx N fexp<,f5\l’zq|2>dx
> Proposal dist v =N(0, [/x): fexp(, auzuz)dx z fexp<, auzuz)dx

dv o exp (—7“'”2""2) dx
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> As afirst attempt, let us try > Observation: everywhere we have
‘XHXH Bllx|
<UKX) <=5

Because U( — off|x||?/2 is convex
and U(x) — B||x||?/2 is concave.

> Well-conditionedness is measuring
from Gaussianity.

> Propose Gaussians and

accept/reject into w? > Acceptance prob for sample x:

> Wilog assume p has mode at 0 and eXP(%XHZ - U(x)) <
U(O)T =0. mode aﬁh oo B> Chance of acceptance:

subtract constant [ ))dx fexp<,%x\lz> dx

> Proposal dist v =N(0, [/x): Jexp(— I )dx fexp<7%xu2>dx

dv o exp(—%x”z) dx > Thisis (V2ra/y/2mB)™ = 1/k™/2,
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Rejection sampling works for k < 1+ 6(1/n)



\Restricted Gaussian dynamics [Lee-Shen-Tian] /

O w diston R™
O Nix—y=x+gforg~N(01I/Mm)
> P =NN¢°: then sample z w.p.
w(z) - e~nllz—yl?/2
)

restricted Gaussian

9/21



\Restricted Gaussian dynamics [Lee-Shen-Tian]

O w diston R™
O Nix—y=x+gforg~N(01I/Mm)
> P =NN¢°: then sample z w.p.
w(z) - e~nllz—yl?/2
)

restricted Gaussian

O If whas cond k = B/«, then cond
number for restricted Gaussian is:

/_ B4n
K T x+4m

9/21



\Restricted Gaussian dynamics [Lee-Shen-Tian] /

O w diston R™
O Nix—y=x+gforg~N(01I/Mm)
> P =NN¢°: then sample z w.p.
w(z) - e~nllz—yl?/2
)

restricted Gaussian

O If whas cond k = B/«, then cond
number for restricted Gaussian is:

/_ B4n
K T x+4m

> Aslong asn > nf, we can use
rejection sampling: x’ <1+ 1/n.

9/21



\Restricted Gaussian dynamics [Lee-Shen-Tian] /

O w diston R™
O Nix—y=x+gforg~N(01I/Mm)
> P =NN¢°: then sample z w.p.
w(z) - e~nllz—yl?/2
)

restricted Gaussian

O If whas cond k = B/«, then cond
number for restricted Gaussian is:

/_ B4n
K T x+4m

> Aslong asn > nf, we can use
rejection sampling: x’ <1+ 1/n.

9/21



\Restricted Gaussian dynamics [Lee-Shen-Tian] /

O w diston R™
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O w diston R™
O Nix—y=x+gforg~N(01I/Mm)
> P =NN¢°: then sample z w.p.
w(z) - e~nllz—yl?/2
)

A

All that remains is to bound mixing
time of Markov chain.

Will show

(>
restricted Gaussian >
> If uhas cond k = B/, then cond tmix < poly(n/e, )
number for restricted Gaussianis: > In fact, we will show x? contraction:
(>
(>

=B trelgcxﬁl—n

K = x+n
Warm start; Gaussian!

> Aslong asn > nf, we can use
rejection sampling: k' < 1T+ 1/n. [Chen-Eldan]: same for entropy.
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Stochastic localization

For won R™, and adapted matrix pro-
cess Cg, we define Vx

> Infact, hy/t, the center of the
Gaussian, follows nice dist:

% ~uxN(0,I/t) = uN.
due(x) = <X - mean(PH)) CtdBt>|th(X) (> Exercise: h¢ follows
> We will use C, = I today! § dhy = n;]ean(ut)dt—i- dB¢
> We will always deal with restricted & This r;:ecmst ?J &
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Stochastic localization

For won R™, and adapted matrix pro-
cess Cg, we define Vx

> Infact, hy/t, the of the
Gaussian, follows nice dist:

% ~uxN(0,I/t) = uN.

dpe(x) = (x —mean(uy), CedB)ue(x) > Exercise: hy follows

> We will use Cy = I today! dhy = mean(p)dt + dBy

> We will always deal with restricted & This r;:ecms th?; &
Gaussians: Enty? [f] — Enty [f] = E[Ent}, []]

2
Lt OC L - exp (—% + (ht,x>> & So, as long as we prove
) o y-approximate conservation of
® i is a posterior: itis N°(he/t, ), Ent®, we have proved N contracts
where N is the Gaussian noise Ent® by 1—v. Do thisat t =1, ©

operator adding N(0,1/t).
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> Let us specialize to Ent?® = Var. > But note that g is (o + t)-strongly
> We saw last time that d Vary, [f] = log-concave:
(martingale term) — v Zyvy dt. —V2log e = (e +t)1

Here ; = I and
Vi = Exp [f(x) (x — mean(pe))].
> Claim: by Cauchy-Schwartz
[vel|2 < Vary, [f] - Amax(cov(t)).
> This means that

E[d Vary [f] | F] >
_Amax (COV(Ht)) Varp.t [ﬂ dt

O If Amax(cov(pt)) < g(t), then we get:
Y = exp(— [ g(t)dt)
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> Let us specialize to Ent® = Var. B> But note that e is (a + £)-strongly
> We saw last time that d Vary, [f] = log-concave:
(martingale term) — vl v dt. —V2log e = (e +t)1
Here Xy = I and > We can compare cov(ut) with that
v = Ex—p [f(x)(x — mean(pe))]. of N(0, I/(ax+1)):
> Claim: by Cauchy-Schwartz cov(i) =X

[ve]|? < Vary, [f] - Amax (cov(p)):
(> This means that
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> Let us specialize to Ent® = Var.
> We saw last time that d Vary, [f] =
(martingale term) — vl Zivdt.
Here ; = I and
Ve = Exeyo, [F(x) (x — mean(ia,))]
> Claim: by Cauchy-Schwartz
[Vell? < Vary, [f] - Amax(cov(pe)).
> This means that

E[d Vary [f] | F] >
_Amax (COV(Ht)) Varp.t [ﬂ dt

[> If Amax(cov(ut))

> exp(— [7 g(t)dt)

g(t), then we get:

> But note that py is

—VZlogpt = (ax+ 1)1
> We can compare cov(p) with that
of N(O, I/(x+t)):
cov(pt) =X 5

> Proof sketch: reduce to 1D using
the fact that marginals of
log-concave are log-concave.
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> Let us specialize to Ent® = Var.
> We saw last time that d Vary, [f] =
(martingale term) — vl Zivdt.
Here ; = I and
Ve = Exeyo, [F(x) (x — mean(ia,))]
> Claim: by Cauchy-Schwartz
[Vell? < Vary, [f] - Amax(cov(pe)).
> This means that

E[d Vary [f] | F] >
_Amax (COV(Ht)) Varp.t [ﬂ dt

[> If Amax(cov(ut))

> exp(— [7 g(t)dt)

g(t), then we get:

> But note that py is

—VZlogpt = (ax+ 1)1
> We can compare cov(p) with that
of N(O, I/(x+t)):
cov(pt) =X 5

> Proof sketch: reduce to 1D using
the fact that marginals of
log-concave are log-concave.

> Thisgivesus g(t) = 1/(x+t), so

Jo g(t)dt = log(=31)
which meansy > o/(x+1). ©
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Theorem [Jerrum-Valiant-Vazirani]
For “self-reducible” problems:

approx counting = approx sampling

(FPRAS)
Exact Counting —— Approx Counting
S
.\g@ﬂk
Exact Sampling —— Approx Sampling

(FPAUS)
arrows are poly-time reductions
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Deterministic counting
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\Determinont—bosed counting

> [PolyaT's scheme:

T RP 4

+1 —1 1 1
Yoy [ )=l 1)
a b ¢ d e f g
ul+1 0 0 0O +1 0 0
vioO -1 41 0 -1 —1 0
wl 0 O —1 +1 0 0 0
x|—=1 +1 0 0 0 0 -1
ylo 0 0 —1 0 41 41

> Good signing exists for planar
graphs [Fisher-Kasteleyn-Temperley].

#spanning trees = det(matrix)
7

Laplacian, drop one row+col



\Correlation decay

J

graph saw tree

> Root marginals are the same.
> Weak spatial mixing:
dtv(root | o,root | o’) — 0
as the following goes to oo:
min{d(root,u) | u € S}.

> Strong spatial mixing:
dtv(root | o,root | 0/) — 0
as the following goes to oo:
min{d(root,u) | o(u) # o’(u)}.
> [weitz]'s alg forms truncated saw
tree and uses recursion:

_ 1
f(p1 A apd) = T+Ap1-—-pa

P

> Attractive exactly when A < Ac(A)
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\[Borvinok]’s method /

zero-free region

\ 1

O [Barvinok]: approx p(1) via p)(0) for i =0,..., O(log deg(p))
> Idea 1. Riemann map from disk

& Idea 2 trunc Taylor series of logp
> Matchings via [Heilmann-Lieb]:
Qal(1)

N EE—

—O0—00
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Markov chains

18/21



\Tro nsport /

O Influence: X, X’ differing in coord j:
drv (diSt(Xi | X,i),dist(X{ | XLJ)

Example: hardcore

. L C a={0,1m
& Call maximum value J[j — 1]. > < ]%\ ad m
Dobrushin’s condition
If columns of 7 sum to < 1— 5, then Example: Ising
W(VP,v'P) < (1 —8/n) W(v,v’) C Q={=x1" j@:i
G 95 — il < 1Byl o

tmix(€) = O(gnlog(n/e))

Example: coloring > Dobrushin++: if cJ < (1 —98)c

> 0=[q" tix(e) = O (% log (2t ) )
BINES ql_A -adj > Existence: Amax(J) < 1
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\Compo rison /

> P, P’ reversible with same Lemma: comparison

stationary distribution Suppose p, p’ are x? contraction rates:
(> Comparison: route Q' through Q )

with low congestion and length. p= (Congesﬂon)?(mox length)
n(path | Xg = s,X¢ = t)
O Iflen < 1,canuse any Dy,
s O<O—> 20t Canonical paths: a few-to-one
mapping enc from (s, t)-pairs
whose path passes x — y to Q:
p(s)u(t) < C- plenc(s,t))Q(x,y)
If M-to-one, then cong < CM.
> Matching walks mix in poly(n).

ol | ) g e

v

Congestion

Suppose 7t is dist over paths and Q is >
ergodic flow. Congestion is
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