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Review

Stochastic localization

For µ on Rn, and adapted matrix pro-

cess Ct, we define ∀x

dµt(x) = 〈x− mean(µt), CtdBt〉µt(x)

Distribution at time t is

µt ∝ µ · exp
(
−xᵀAtx

2 + 〈ht, x〉
)

µ µt

Localization scheme: a

measure-valued martingale.

Conservation of φ-entropies:

E
[
Entφµt

[f]
]
> γ · Entφµ [f]

For Markov chains constructed as

NN◦, we can transfer functional

ineqs for µt to µ with a loss of γ.

[Eldan-Koehler-Zeitouni]

Glauber for Ising models µ on {±1}n

µ(x) ∝ exp
(
xᵀJx
2 + 〈h, x〉

)
fast when λmax(J) − λmin(J) < 1.
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Continuous space

Optimization

Sampling

U : Rn → R

Tractable: U convex

Even better (well-conditioned):

αI � ∇2U � βI.

and condition number κ = β/α.

Gradient descent: poly(κ, log(1/ε)).

µ on Rn, dµ ∝ e−U(x)dx

Tractable: µ is log-concave, i.e., U

convex

Open: can we sample (say within

dTV 6 0.1) in poly(κ) steps?
Best known: Õ(

√
n) · poly(κ)

[Altschuler-Chewi]
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We will see how to sample in poly(n, κ).
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Rejection sampling

As a first attempt, let us try

rejection sampling.

Well-conditionedness is measuring

local deviation from Gaussianity.

Propose Gaussians and

accept/reject into µ?

Wlog assume µ has mode at 0

mode with GD

and

U(0) = 0

subtract constant

.

Proposal dist ν = N(0, I/α):

dν ∝ exp
(
−

α·‖x‖2
2

)
dx

Observation: everywhere we have

α‖x‖2
2 6 U(x) 6 β‖x‖2

2

Because U(x) − α‖x‖2/2 is convex
and U(x) − β‖x‖2/2 is concave.
Acceptance prob for sample x:

exp
(
α‖x‖2

2 −U(x)
)
6 1

Chance of acceptance:

∫
exp(−U(x))dx∫
exp

(
−

α‖x‖2
2

)
dx

>

∫
exp

(
−

β‖x‖2
2

)
dx∫

exp
(
−

α‖x‖2
2

)
dx

This is (
√
2πα/

√
2πβ)n = 1/κn/2.
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Rejection sampling works for κ 6 1+ Õ(1/n)
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Restricted Gaussian dynamics [Lee-Shen-Tian]

Markov chain

µ: dist on Rn

N: x 7→ y = x+ g for g ∼ N(0, I/η)

P = NN◦: then sample z w.p. ∝
µ(z) · e−η·‖z−y‖2/2

restricted Gaussian

If µ has cond κ = β/α, then cond

number for restricted Gaussian is:

κ ′ = β+η
α+η

As long as η > nβ, we can use

rejection sampling: κ ′ 6 1+ 1/n.

All that remains is to bound mixing

time of Markov chain.

Will show

tmix 6 poly(η/α, n)
In fact, we will show χ2 contraction:

trel 6
α+η
α

Warm start: Gaussian!

[Chen-Eldan]: same for entropy.
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Stochastic localization

Stochastic localization

For µ on Rn, and adapted matrix pro-

cess Ct, we define ∀x

dµt(x) = 〈x− mean(µt), CtdBt〉µt(x)

We will use Ct = I today!

We will always deal with restricted

Gaussians:

µt ∝ µ · exp
(
−

t‖x‖2
2 + 〈ht, x〉

)
µt is a posterior: it is N◦(ht/t, ·),
where N is the Gaussian noise

operator adding N(0, I/t).

In fact, ht/t, the center of the

Gaussian, follows nice dist:
ht

t ∼ µ ∗N(0, I/t) = µN.

Exercise: ht follows

dht = mean(µt)dt+ dBt

This means that

Entφµ [f] − EntφµN[f] = E
[
Entφµt

[f]
]

So, as long as we prove

γ-approximate conservation of

Entφ, we have proved N contracts

Entφ by 1− γ. Do this at t = η.



10/21

Stochastic localization

Stochastic localization

For µ on Rn, and adapted matrix pro-

cess Ct, we define ∀x

dµt(x) = 〈x− mean(µt), CtdBt〉µt(x)

We will use Ct = I today!

We will always deal with restricted

Gaussians:

µt ∝ µ · exp
(
−

t‖x‖2
2 + 〈ht, x〉

)
µt is a posterior: it is N◦(ht/t, ·),
where N is the Gaussian noise

operator adding N(0, I/t).

In fact, ht/t, the center of the

Gaussian, follows nice dist:
ht

t ∼ µ ∗N(0, I/t) = µN.

Exercise: ht follows

dht = mean(µt)dt+ dBt

This means that

Entφµ [f] − EntφµN[f] = E
[
Entφµt

[f]
]

So, as long as we prove

γ-approximate conservation of

Entφ, we have proved N contracts

Entφ by 1− γ. Do this at t = η.



10/21

Stochastic localization

Stochastic localization

For µ on Rn, and adapted matrix pro-

cess Ct, we define ∀x

dµt(x) = 〈x− mean(µt), CtdBt〉µt(x)

We will use Ct = I today!

We will always deal with restricted

Gaussians:

µt ∝ µ · exp
(
−

t‖x‖2
2 + 〈ht, x〉

)

µt is a posterior: it is N◦(ht/t, ·),
where N is the Gaussian noise

operator adding N(0, I/t).

In fact, ht/t, the center of the

Gaussian, follows nice dist:
ht

t ∼ µ ∗N(0, I/t) = µN.

Exercise: ht follows

dht = mean(µt)dt+ dBt

This means that

Entφµ [f] − EntφµN[f] = E
[
Entφµt

[f]
]

So, as long as we prove

γ-approximate conservation of

Entφ, we have proved N contracts

Entφ by 1− γ. Do this at t = η.



10/21

Stochastic localization

Stochastic localization

For µ on Rn, and adapted matrix pro-

cess Ct, we define ∀x

dµt(x) = 〈x− mean(µt), CtdBt〉µt(x)

We will use Ct = I today!

We will always deal with restricted

Gaussians:

µt ∝ µ · exp
(
−

t‖x‖2
2 + 〈ht, x〉

)
µt is a posterior: it is N◦(ht/t, ·),
where N is the Gaussian noise

operator adding N(0, I/t).

In fact, ht/t, the center of the

Gaussian, follows nice dist:
ht

t ∼ µ ∗N(0, I/t) = µN.

Exercise: ht follows

dht = mean(µt)dt+ dBt

This means that

Entφµ [f] − EntφµN[f] = E
[
Entφµt

[f]
]

So, as long as we prove

γ-approximate conservation of

Entφ, we have proved N contracts

Entφ by 1− γ. Do this at t = η.



10/21

Stochastic localization

Stochastic localization

For µ on Rn, and adapted matrix pro-

cess Ct, we define ∀x

dµt(x) = 〈x− mean(µt), CtdBt〉µt(x)

We will use Ct = I today!

We will always deal with restricted

Gaussians:

µt ∝ µ · exp
(
−

t‖x‖2
2 + 〈ht, x〉

)
µt is a posterior: it is N◦(ht/t, ·),
where N is the Gaussian noise

operator adding N(0, I/t).

In fact, ht/t, the center of the

Gaussian, follows nice dist:
ht

t ∼ µ ∗N(0, I/t) = µN.

Exercise: ht follows

dht = mean(µt)dt+ dBt

This means that

Entφµ [f] − EntφµN[f] = E
[
Entφµt

[f]
]

So, as long as we prove

γ-approximate conservation of

Entφ, we have proved N contracts

Entφ by 1− γ. Do this at t = η.



10/21

Stochastic localization

Stochastic localization

For µ on Rn, and adapted matrix pro-

cess Ct, we define ∀x

dµt(x) = 〈x− mean(µt), CtdBt〉µt(x)

We will use Ct = I today!

We will always deal with restricted

Gaussians:

µt ∝ µ · exp
(
−

t‖x‖2
2 + 〈ht, x〉

)
µt is a posterior: it is N◦(ht/t, ·),
where N is the Gaussian noise

operator adding N(0, I/t).

In fact, ht/t, the center of the

Gaussian, follows nice dist:
ht

t ∼ µ ∗N(0, I/t) = µN.

Exercise: ht follows

dht = mean(µt)dt+ dBt

This means that

Entφµ [f] − EntφµN[f] = E
[
Entφµt

[f]
]

So, as long as we prove

γ-approximate conservation of

Entφ, we have proved N contracts

Entφ by 1− γ. Do this at t = η.



10/21

Stochastic localization

Stochastic localization

For µ on Rn, and adapted matrix pro-

cess Ct, we define ∀x

dµt(x) = 〈x− mean(µt), CtdBt〉µt(x)

We will use Ct = I today!

We will always deal with restricted

Gaussians:

µt ∝ µ · exp
(
−

t‖x‖2
2 + 〈ht, x〉

)
µt is a posterior: it is N◦(ht/t, ·),
where N is the Gaussian noise

operator adding N(0, I/t).

In fact, ht/t, the center of the

Gaussian, follows nice dist:
ht

t ∼ µ ∗N(0, I/t) = µN.

Exercise: ht follows

dht = mean(µt)dt+ dBt

This means that

Entφµ [f] − EntφµN[f] = E
[
Entφµt

[f]
]

So, as long as we prove

γ-approximate conservation of

Entφ, we have proved N contracts

Entφ by 1− γ. Do this at t = η.



10/21

Stochastic localization

Stochastic localization

For µ on Rn, and adapted matrix pro-

cess Ct, we define ∀x

dµt(x) = 〈x− mean(µt), CtdBt〉µt(x)

We will use Ct = I today!

We will always deal with restricted

Gaussians:

µt ∝ µ · exp
(
−

t‖x‖2
2 + 〈ht, x〉

)
µt is a posterior: it is N◦(ht/t, ·),
where N is the Gaussian noise

operator adding N(0, I/t).

In fact, ht/t, the center of the

Gaussian, follows nice dist:
ht

t ∼ µ ∗N(0, I/t) = µN.

Exercise: ht follows

dht = mean(µt)dt+ dBt

This means that

Entφµ [f] − EntφµN[f] = E
[
Entφµt

[f]
]

So, as long as we prove

γ-approximate conservation of

Entφ, we have proved N contracts

Entφ by 1− γ. Do this at t = η.



11/21

Conservation

Let us specialize to Entφ = Var.

We saw last time that dVarµt [f] =

(martingale term) − v
ᵀ
tΣtvtdt.

Here Σt = I and

vt = Ex∼µt [f(x)(x− mean(µt))].

Claim: by Cauchy-Schwartz

‖vt‖2 6 Varµt [f] · λmax(cov(µt)).

This means that

E[dVarµt [f] | Ft] >
−λmax(cov(µt))Varµt [f]dt

If λmax(cov(µt)) 6 g(t), then we get:

γ > exp
(
−
∫η
0 g(t)dt

)

But note that µt is (α+ t)-strongly
log-concave:

−∇2 logµt � (α+ t)I

We can compare cov(µt) with that

of N(0, I/(α+ t)):

cov(µt) � I
α+t

Proof sketch: reduce to 1D using

the fact that marginals of

log-concave are log-concave.

This gives us g(t) = 1/(α+ t), so∫η
0 g(t)dt = log

(
α+η
α

)
which means γ > α/(α+ η).
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Log-concave distributions

Restricted Gaussian dynamics
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Deterministic methods

Markov chains
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Theorem [Jerrum-Valiant-Vazirani]

For “self-reducible” problems:

approx counting ≡ approx sampling

Exact Counting Approx Counting

(FPRAS)

Exact Sampling Approx Sampling

(FPAUS)

if F
PT
AS

arrows are poly-time reductions
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Deterministic counting
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Determinant-based counting

u v w

x y

a b

c

d

e

f

g



a b c d e f g

u +1 0 0 0 +1 0 0

v 0 −1 +1 0 −1 −1 0

w 0 0 −1 +1 0 0 0

x −1 +1 0 0 0 0 −1

y 0 0 0 −1 0 +1 +1


#spanning trees = det(matrix)

Laplacian, drop one row+col

[Pólya]’s scheme:

det
([

+1 −1

+1 +1

])
= per

([
1 1

1 1

])
Good signing exists for planar

graphs [Fisher-Kasteleyn-Temperley].

root
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Correlation decay

graph

v

x y

z

7→

saw tree

v

x

y

v z

y

x

v

z

Root marginals are the same.

Weak spatial mixing:

dTV(root | σ, root | σ
′) → 0

as the following goes to ∞:

min{d(root, u) | u ∈ S}.

Strong spatial mixing:

dTV(root | σ, root | σ
′) → 0

as the following goes to ∞:

min{d(root, u) | σ(u) 6= σ ′(u)}.

[Weitz]’s alg forms truncated saw

tree and uses recursion:

f(p1, . . . , pd) =
1

1+λp1···pd

p

f

Attractive exactly when λ < λc(∆)
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[Barvinok]’s method

C

1

zero-free region

[Barvinok]: approx p(1) via p(i)(0) for i = 0, . . . , O(log deg(p))
Idea 1: Riemann map from disk

Idea 2: trunc Taylor series of log p
Matchings via [Heilmann-Lieb]:

0

Ω∆(1)
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Markov chains
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Transport

Influence: X,X ′ differing in coord j:

dTV
(
dist(Xi | X−i), dist(X ′

i | X
′
−i)

)
Call maximum value I[j → i].

Dobrushin’s condition

If columns of I sum to 6 1− δ, then

W(νP, ν ′P) 6 (1− δ/n)W(ν, ν ′)

tmix(ε) = O
(
1
δn log(n/ε)

)
Example: coloring

Ω = [q]n

I 6 1
q−∆ · adj

Example: hardcore

Ω = {0, 1}n

I 6 λ
1+λ · adj

Example: Ising

Ω = {±1}n

I[j → i] 6 |βij| + −

−+

Dobrushin++: if c I < (1− δ)c

tmix(ε) = O
(
n
δ log

(
n·cmax
ε·cmin

))
Existence: λmax(I) < 1
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Comparison

P, P ′ reversible with same

stationary distribution

Comparison: route Q ′ through Q

with low congestion and length.

π(path | X0 = s, X` = t)

s t

Congestion

Suppose π is dist over paths and Q is

ergodic flow. Congestion is

max
{

Ppath∼π[(x→y)∈path]
Q(x,y)

∣∣∣ x 6= y
}

Lemma: comparison

Suppose ρ, ρ ′ are χ2 contraction rates:

ρ > ρ ′

(congestion)·(max length)

If len 6 1, can use any Dφ.

Canonical paths: a few-to-one

mapping enc from (s, t)-pairs
whose path passes x → y to Ω:

µ(s)µ(t) 6 C · µ(enc(s, t))Q(x, y)

If M-to-one, then cong 6 CM.

Matching walks mix in poly(n).
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high-dimensional expansion

trickle downsta
bil
ity

co
rre

lat
ion

de
ca
y

transport
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localization schemes

trickle downsta
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ity
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