CS 263: Counting and Sampling

Nima Anari

slides for

Stochastic Localization
Skipped ...
Stochastic Calculus
- Localization schemes
- Itô calculus
- Stochastic localization

Conservation
- Sherrington-Kirkpatrick model
- ϕ-entropies in localization scheme
- Approximate conservation
Stochastic Calculus

- Localization schemes
- Itô calculus
- Stochastic localization

Conservation

- Sherrington-Kirkpatrick model
- ϕ-entropies in localization scheme
- Approximate conservation
Imagine μ is on $\binom{[n]}{k} \hookrightarrow \{0, 1\}^n$. Let us choose $i \sim \mu_{D_k \to 1} = p/k$. Let ν a random measure be the conditional on $\{i\}$. For $w = 1/i - 1/k$: $\nu(x) = (1 + \langle w, x - \text{mean}(\mu) \rangle)$. Note that $\mu = E_i[\nu]$.

Continuing this we get a measure-valued random process martingale:

Simplicial localization

Let $S \sim \mu$, and let e_1, \ldots, e_k be a u.r. permutation of S. Define μ_i as conditional of μ on $\{e_1, \ldots, e_i\}$. Then $\mu = \mu_0 \to \mu_1 \to \mu_2 \to \cdots \to \mu_k$ is called simplicial localization used for local-to-global and trickle down.
Imagine μ is on $\binom{[n]}{k} \hookrightarrow \{0, 1\}^n$.

Denote $p_i = \mathbb{P}_{S \sim \mu}[i \in S]$. Let us choose $i \sim \mu D_{k \to 1} = p/k$.

Simplicial localization

Let $S \sim \mu$, and let e_1, \ldots, e_k be a u.r. permutation of S. Define μ_i as conditional of μ on $\{e_1, \ldots, e_i\}$. Then $\mu = \mu_0 \to \mu_1 \to \mu_2 \to \cdots \to \mu_k$ is called simplicial localization used for local-to-global and trickle down.
Imagine μ is on $\binom{[n]}{k} \hookrightarrow \{0, 1\}^n$.

Denote $p_i = \mathbb{P}_{S \sim \mu}[i \in S]$. Let us choose $i \sim \mu_{D_{k \to 1}} = p/k$.

Let ν be the conditional on $\{i\}$. For $w = 1_i/p_i - 1/k$:

\[\nu(x) = \left(1 + \langle w, x - \text{mean}(\mu)\rangle\right) \mu(x) \]

a random measure

linear tilt

Simplicial localization

Let $S \sim \mu$, and let e_1, \ldots, e_k be a u.r. permutation of S. Define μ_i as conditional of μ on $\{e_1, \ldots, e_i\}$. Then $\mu_0 \rightarrow \mu_1 \rightarrow \mu_2 \rightarrow \cdots \rightarrow \mu_k$ is called simplicial localization used for local-to-global and trickle down.
Imagine μ is on $\binom{[n]}{k} \hookrightarrow \{0,1\}^n$.

Denote $p_i = \mathbb{P}_{S \sim \mu}[i \in S]$. Let us choose $i \sim \mu D_{k \rightarrow 1} = p/k$.

Let ν be the conditional on $\{i\}$. For $w = 1_i/p_i - 1/k$:

\[\nu(x) = (1 + \langle w, x - \text{mean}(\mu) \rangle) \mu(x) \]

Note that $\mu = \mathbb{E}_i[\nu]$. This is a decomposition of measure.
Imagine μ is on $\binom{[n]}{k} \hookrightarrow \{0, 1\}^n$.

Denote $p_i = P_{S \sim \mu}[i \in S]$. Let us choose $i \sim \mu D_{k \rightarrow 1} = p/k$.

Let ν be the conditional on $\{i\}$. For $w = 1_i/p_i - 1/k$:

$$\nu(x) = (1 + \langle w, x - \text{mean}(\mu) \rangle) \mu(x)$$

Note that $\mu = E_i[\nu]$. This is a decomposition of measure.

Continuing this we get a measure-valued random process: martingale
Imagine μ is on $\binom{[n]}{k} \hookrightarrow \{0, 1\}^n$.

Denote $p_i = P_{S \sim \mu}[i \in S]$. Let us choose $i \sim \mu D_{k \to 1} = p/k$.

Let ν be the conditional on $\{i\}$. For $w = 1_i / p_i - 1/k$:

$$\nu(x) = (1 + \langle w, x - \text{mean}(\mu) \rangle) \mu(x)$$

Note that $\mu = \mathbb{E}_i[\nu]$. This is a decomposition of measure.

Continuing this we get a measure-valued random martingale:

Simplicial localization

Let $S \sim \mu$, and let e_1, \ldots, e_k be a u.r. permutation of S. Define μ_i as conditional of μ on $\{e_1, \ldots, e_i\}$. Then

$$\mu = \mu_0 \to \mu_1 \to \mu_2 \to \cdots \to \mu_k$$

is called simplicial localization. Used for local-to-global and trickle down.
Same idea applied in continuous time. For some measure \(\mu \) on \(\mathbb{R}^n \), we get measure-valued process \(\{ \mu_t \mid t \in \mathbb{R}_{\geq 0} \} \).
Stochastic localization

- Same idea applied in **continuous time**. For some measure μ on \mathbb{R}^n, we get measure-valued process $\{\mu_t \mid t \in \mathbb{R}_{\geq 0}\}$.

- Controlled by (stochastic) differential equation

$$d\mu_t(x) = \langle w_t, x - \text{mean}(\mu) \rangle \mu_t(x)$$

linear tilt

where now w_t is a mean zero **random infinitesimal vector**.

think of infinitesimal Gaussian
Stochastic localization

- Same idea applied in continuous time. For some measure μ on \mathbb{R}^n, we get measure-valued process $\{\mu_t \mid t \in \mathbb{R}_{\geq 0}\}$.

- Controlled by (stochastic) differential equation

$$d\mu_t(x) = \langle w_t, x - \text{mean}(\mu) \rangle \mu_t(x)$$

linear tilt

where now w_t is a mean zero random infinitesimal vector. Think of infinitesimal Gaussian.

- Our goal will be to find analogs of local-to-global, etc. for more general, e.g., continuous, distributions.
Stochastic localization

- Same idea applied in continuous time. For some measure μ on \mathbb{R}^n, we get measure-valued process $\{\mu_t \mid t \in \mathbb{R}_{\geq 0}\}$.
- Controlled by (stochastic) differential equation
 \[
d\mu_t(x) = \left\langle w_t, x - \text{mean}(\mu) \right\rangle \mu_t(x)
 \]
 where now w_t is a mean zero random infinitesimal vector. Think of infinitesimal Gaussian.
- Our goal will be to find analogs of local-to-global, etc. for more general, e.g., continuous, distributions.
- To make sense of this equation, we need some basics of Itô calculus.
Intro to Itô calculus

Brownian motion: in nD, the process $\{B_t | t \in \mathbb{R}_{\geq 0}\}$ such that

$$B_t - B_s \sim \mathcal{N}(0, (t - s)I)$$

and for disjoint $[s_1, t_1], \ldots, [s_k, t_k]$ we have $B_{t_i} - B_{s_i}$ are independent.
Brownian motion: in \mathbb{R}^n, the process $\{B_t \mid t \in \mathbb{R}_{\geq 0}\}$ such that

$$B_t - B_s \sim \mathcal{N}(0, (t - s)\mathbf{I})$$

and for disjoint $[s_1, t_1], \ldots, [s_k, t_k]$ we have $B_{t_i} - B_{s_i}$ are independent.

We think of dB_t intuitively as $B_{t+dt} - B_t$: $dB_t \sim \mathcal{N}(0, dt \cdot \mathbf{I})$
Brownian motion: in \(\mathbb{R}^n \), the process \(\{ B_t \mid t \in \mathbb{R}_{\geq 0} \} \) such that

\[
B_t - B_s \sim \mathcal{N}(0, (t - s)I)
\]

and for disjoint \([s_1, t_1], \ldots, [s_k, t_k]\) we have \(B_{t_i} - B_{s_i} \) are independent.

We think of \(dB_t \) intuitively as \(B_{t+dt} - B_t: dB_t \sim \mathcal{N}(0, dt \cdot I) \)

Fact: \(dB_t \) is not on the order of \(dt \), but rather on the order of \(\sqrt{dt} \)!
Brownian motion: in \mathbb{R}^n, the process $\{B_t \mid t \in \mathbb{R}_{\geq 0}\}$ such that

$$B_t - B_s \sim \mathcal{N}(0, (t-s)I)$$

and for disjoint $[s_1, t_1], \ldots, [s_k, t_k]$ we have $B_{t_i} - B_{s_i}$ are independent.

We think of dB_t intuitively as $B_{t+dt} - B_t$: $dB_t \sim \mathcal{N}(0, dt \cdot I)$

Fact: dB_t is not on the order of dt, but rather on the order of \sqrt{dt}!

Itô process: $\{X_t \mid t \in \mathbb{R}_{\geq 0}\}$ derived via stochastic differential equation (SDE):

$$dX_t = u_t \, dt + C_t \, dB_t$$

for some “nice” vector and matrix valued processes $\{u_t\}, \{C_t\}$.
Brownian motion: in \(n \)D, the process \(\{B_t \mid t \in \mathbb{R}_{\geq 0}\} \) such that
\[
B_t - B_s \sim \mathcal{N}(0, (t - s)I)
\]
and for disjoint \([s_1, t_1], \ldots, [s_k, t_k]\) we have \(B_{t_i} - B_{s_i} \) are independent.

We think of \(dB_t \) intuitively as \(B_{t+dt} - B_t \): \(dB_t \sim \mathcal{N}(0, dt \cdot I) \)

Fact: \(dB_t \) is not on the order of \(dt \), but rather on the order of \(\sqrt{dt} \)!

Ito process: \(\{X_t \mid t \in \mathbb{R}_{\geq 0}\} \) derived via stochastic differential equation (SDE):
\[
dX_t = u_t \, dt + C_t \, dB_t
\]
for some “nice” vector and matrix valued processes \(\{u_t\}, \{C_t\} \).

\(u_t, C_t \) can only depend on the past; technical term: adapted.
Basic question: if we have 1D Itô process X_t defined by

$$dX_t = u_t \, dt + c_t \, dB_t$$

and define $Y_t = f(X_t)$, what is the equation defining Y_t?

Incorrect: if we apply chain rule of calculus, we get

$$dY_t = f'(X_t) \, dX_t = f'(X_t) \, u_t \, dt + f'(X_t) \, c_t \, dB_t$$

This is incorrect because $dY_t = f'(X_t) \, dX_t$ is only first-order approximation of f, and dX_t has terms of order \sqrt{dt}.

Correction: expand up to second-order Taylor series, and use $dB_t^2 = dt$, also drop anything of lower order than dt.

This gives us the Itô formula:

$$dY_t = \left(f'(X_t) \, u_t + \frac{1}{2} f''(X_t) \, c_t^2 \right) \, dt + f'(X_t) \, c_t \, dB_t$$

Itô term
Basic question: if we have 1D Itô process X_t defined by
\[dX_t = u_t \, dt + c_t \, dB_t \]
and define $Y_t = f(X_t)$, what is the equation defining Y_t?

Incorrect: if we apply chain rule of calculus, we get
\[dY_t = f'(X_t) \, dX_t = f'(X_t) \, u_t \, dt + f'(X_t) \, c_t \, dB_t \]

Correction: expand up to second-order Taylor series, and use $dB_t^2 = dt$, also drop anything of lower order than dt.

This gives us the Itô formula:
\[dY_t = \left(f'(X_t) \, u_t + \frac{1}{2} f''(X_t) \, c_t^2 \right) \, dt + f'(X_t) \, c_t \, dB_t \]
Basic question: if we have 1D Itô process X_t defined by
\[dX_t = u_t \, dt + c_t \, dB_t \]
and define $Y_t = f(X_t)$, what is the equation defining Y_t?

Incorrect: if we apply chain rule of calculus, we get
\[dY_t = f'(X_t) \, dX_t = f'(X_t) u_t \, dt + f'(X_t) c_t \, dB_t \]

This is incorrect because $dY_t = f'(X_t) \, dX_t$ is only first-order approximation of f, and dX_t has terms of order \sqrt{dt}!
Basic question: if we have 1D Itô process X_t defined by
\[dX_t = u_t \, dt + c_t \, dB_t\]
and define $Y_t = f(X_t)$, what is the equation defining Y_t?

Incorrect: if we apply chain rule of calculus, we get
\[dY_t = f'(X_t) \, dX_t = f'(X_t)u_t \, dt + f'(X_t)c_t \, dB_t\]

This is incorrect because $dY_t = f'(X_t) \, dX_t$ is only first-order approximation of f, and dX_t has terms of order \sqrt{dt}!

Correction: expand up to second-order Taylor series, and use $dB_t^2 = dt$, also drop anything of lower order than dt.
Basic question: if we have 1D Itô process X_t defined by

$$dX_t = u_t \, dt + c_t \, dB_t$$

and define $Y_t = f(X_t)$, what is the equation defining Y_t?

Incorrect: if we apply chain rule of calculus, we get

$$dY_t = f'(X_t) \, dX_t = f'(X_t)u_t \, dt + f'(X_t)c_t \, dB_t$$

This is incorrect because $dY_t = f'(X_t) \, dX_t$ is only first-order approximation of f, and dX_t has terms of order \sqrt{dt}!

Correction: expand up to second-order Taylor series, and use $dB_t^2 = dt$, also drop anything of lower order than dt.

This gives us the Itô formula:

$$dY_t = \left(f'(X_t)u_t + \frac{1}{2}f''(X_t)c_t^2 \right) dt + f'(X_t)c_t \, dB_t$$
Intuition: curvature creates drift!

\[dX_t = u_t \, dt + C_t \, dB_t \]

If we have \(Y_t = f(X_t) \), then
\[dY_t = \left(\langle \nabla f(X_t), u_t \rangle + \frac{1}{2} \text{tr} \left(C_t \, \nabla^2 f(X_t) \right) \right) \, dt + \langle \nabla f(X_t), C_t \, dB_t \rangle. \]
Intuition: curvature creates drift!

Itô’s lemma (nD to 1D)

For $dX_t = u_t \, dt + C_t \, dB_t$ if we have $Y_t = f(X_t)$, then

$$dY_t = \left(\langle \nabla f(X_t), u_t \rangle + \frac{1}{2} \text{tr}(C_t^T \nabla^2 f(X_t) C_t) \right) \, dt + \langle \nabla f(X_t), C_t \, dB_t \rangle.$$
For μ on subset of \mathbb{R}^n, and adapted matrix process C_t, we define $\forall x$

$$d\mu_t(x) = \langle x - \text{mean}(\mu_t), C_t dB_t \rangle \mu_t(x)$$
Stochastic localization

For μ on subset of \mathbb{R}^n, and adapted matrix process C_t, we define $\forall x$

$$d\mu_t(x) = \langle x - \text{mean}(\mu_t), C_t dB_t \rangle \mu_t(x)$$

For continuous μ, we should think of it as density. You can for simplicity assume support is finite.
Stochastic localization

For μ on subset of \mathbb{R}^n, and adapted matrix process C_t, we define $\forall x$

$$d\mu_t(x) = \langle x - \text{mean}(\mu_t), C_t dB_t \rangle \mu_t(x)$$

- For continuous μ, we should think of it as density. You can for simplicity assume support is finite.
- It is a martingale, with filtration \mathcal{F}_t:

$$E[\mu_t(x) \mid \mathcal{F}_s] = \mu_s(x) \quad \forall s \leq t$$
Stochastic localization

For μ on subset of \mathbb{R}^n, and adapted matrix process C_t, we define $\forall x$

$$d\mu_t(x) = \langle x - \text{mean}(\mu_t), C_t dB_t \rangle \mu_t(x)$$

- For continuous μ, we should think of it as density. You can for simplicity assume support is finite.
- It is a **martingale**, with filtration \mathcal{F}_t:
 $$\mathbb{E}[\mu_t(x) | \mathcal{F}_s] = \mu_s(x) \quad \forall s \leq t$$
- If μ is normalized, μ_t remains so:
 $$d(\sum_x \mu_t(x)) = \langle \sum_x \mu_t(x)(x - \text{mean}(\mu_t)), C_t dB_t \rangle = 0$$
For μ on subset of \mathbb{R}^n, and adapted matrix process C_t, we define $\forall x$

$$d\mu_t(x) = \langle x - \text{mean}(\mu_t), C_t dB_t \rangle \mu_t(x)$$

- For continuous μ, we should think of it as density. You can for simplicity assume support is finite.
- It is a martingale, with filtration \mathcal{F}_t:
 $$\mathbb{E}[\mu_t(x) \mid \mathcal{F}_s] = \mu_s(x) \quad \forall s \leq t$$
- If μ is normalized, μ_t remains so:
 $$d(\sum_x \mu_t(x)) = \langle \sum_x \mu_t(x)(x - \text{mean}(\mu_t)), C_t dB_t \rangle = 0$$

Changes in μ_t are proportional to itself. Log-scale? Let’s use Itô’s lemma for $f = \log$.
Stochastic localization

For μ on subset of \mathbb{R}^n, and adapted matrix process C_t, we define $\forall x$

$$d\mu_t(x) = \langle x - \text{mean}(\mu_t), C_t dB_t \rangle \mu_t(x)$$

For continuous μ, we should think of it as density. You can for simplicity assume support is finite.

It is a martingale, with filtration F_t:

$$\mathbb{E}[\mu_t(x) \mid F_s] = \mu_s(x) \quad \forall s \leq t$$

If μ is normalized, μ_t remains so:

$$d(\sum_x \mu_t(x)) = \langle \sum_x \mu_t(x)(x - \text{mean}(\mu_t)), C_t dB_t \rangle = 0$$

Changes in μ_t are proportional to itself. Log-scale? Let’s use Itô’s lemma for $f = \log$.

If $X_t = \mu_t(x)$, and $Y_t = \log(X_t)$, then $dY_t = \langle x - \text{mean}(\mu_t), C_t dB_t \rangle + (\text{Itô term}) dt$

where Itô term is

$$-\frac{(x - \text{mean}(\mu_t))^T C_t C_t^T (x - \text{mean}(\mu_t)) \cdot X_t^2}{2X_t^2}$$

At any time t, we have $\mu_t(x) \propto \mu(x) \cdot \exp(-\frac{1}{2}x^TA_t x + \langle h_t, x \rangle)$

where $A_t = \int_0^t \Sigma_s^2 ds$.
Stochastic localization

For μ on subset of \mathbb{R}^n, and adapted matrix process C_t, we define $\forall x$

$$d\mu_t(x) = \langle x - \text{mean}(\mu_t), C_t dB_t \rangle \mu_t(x)$$

- For continuous μ, we should think of it as density. You can for simplicity assume support is finite.
- It is a martingale, with filtration \mathcal{F}_t:
 $$\mathbb{E}[\mu_t(x) | \mathcal{F}_s] = \mu_s(x) \quad \forall s \leq t$$
- If μ is normalized, μ_t remains so:
 $$d(\sum_x \mu_t(x)) = \langle \sum_x \mu_t(x) (x - \text{mean}(\mu_t)), C_t dB_t \rangle = 0$$

- Changes in μ_t are proportional to itself. Log-scale? Let’s use Itô’s lemma for $f = \log$.

- If $X_t = \mu_t(x)$, and $Y_t = \log(X_t)$, then $dY_t =$
 $$\langle x - \text{mean}(\mu_t), C_t dB_t \rangle + (\text{Itô term}) dt$$
 where Itô term is
 $$-(x - \text{mean}(\mu_t))^T C_t C_t^T (x - \text{mean}(\mu_t)) \cdot X_t^2 \quad \frac{1}{2X_t^2}$$

- So if we name $\Sigma_t = C_t C_t^T$, then
 $$d \log \mu_t(x) = -\frac{1}{2} x^T \Sigma_t x \, dt + \text{affine}(x)$$
For μ on subset of \mathbb{R}^n, and adapted matrix process C_t, we define $\forall x$

$$d\mu_t(x) = \langle x - \text{mean}(\mu_t), C_t dB_t \rangle \mu_t(x)$$

For continuous μ, we should think of it as density. You can for simplicity assume support is finite.

It is a martingale, with filtration \mathcal{F}_t:

$$\mathbb{E}[\mu_t(x) | \mathcal{F}_s] = \mu_s(x) \quad \forall s \leq t$$

If μ is normalized, μ_t remains so:

$$d(\sum_x \mu_t(x)) = \langle \sum_x \mu_t(x)(x - \text{mean}(\mu_t)), C_t dB_t \rangle = 0$$

Changes in μ_t are proportional to itself. Log-scale? Let’s use Itô’s lemma for $f = \log$.

If $X_t = \mu_t(x)$, and $Y_t = \log(X_t)$, then $dY_t =$

$$\langle x - \text{mean}(\mu_t), C_t dB_t \rangle + (\text{Itô term}) dt$$

where Itô term is

$$-\frac{1}{2}(x - \text{mean}(\mu_t))^T C_t C_t^T (x - \text{mean}(\mu_t)) \cdot X_t^2$$

So if we name $\Sigma_t = C_t C_t^T$, then

$$d \log \mu_t(x) = -\frac{1}{2} x^T \Sigma_t x dt + \text{affine}(x)$$

At any time t, we have $\mu_t(x) \propto \mu(x) \cdot \exp(-\frac{1}{2} x^T A_t x + \langle h_t, x \rangle)$

where $A_t = \int_0^t \Sigma_s ds$.

Multiplying by Gaussian density:

Remark: this process, up to scale/time, same as how diffusion models sample.
Stochastic Calculus

- Localization schemes
- Itô calculus
- Stochastic localization

Conservation

- Sherrington-Kirkpatrick model
- ϕ-entropies in localization scheme
- Approximate conservation
Stochastic Calculus

- Localization schemes
- Itô calculus
- Stochastic localization

Conservation

- Sherrington-Kirkpatrick model
- ϕ-entropies in localization scheme
- Approximate conservation
Ising models

\[\mu(x) \propto \exp\left(\frac{1}{2} \sum_{u,v} J_{uv} x_u x_v + \sum_v h_v x_v \right) \]

symmetric matrix
Ising models

\[\mu(x) \propto \exp\left(\frac{1}{2} \sum_{u,v} J_{uv} x_u x_v + \sum_v h_v x_v \right) \]

symmetric matrix

- Dobrushin: when \(J \) has row/col \(\ell_1 \) norms < 1, we get fast mixing.
Ising models

\[\mu(x) \propto \exp(\frac{1}{2} \sum_{u,v} J_{uv} x_u x_v + \sum_v h_v x_v) \]

- **Dobrushin**: when J has row/col ℓ_1 norms < 1, we get fast mixing.
- **Sherrington-Kirkpatrick model**: random Gaussian matrix J with $J_{uv} \sim \mathcal{N}(0, \beta/n)$.

Theorem [Eldan-Koehler-Zeitouni] If $\lambda_{\text{max}}(J) - \lambda_{\text{min}}(J) < 1$, then Glauber mixes fast.

We now know $O(n \log n)$ mixing [A-Jain-Koehler-Pham-Vuong].
Ising models

\[\mu(x) \propto \exp\left(\frac{1}{2} \sum_{u,v} J_{uv} x_u x_v + \sum_v h_v x_v \right) \]

symmetric matrix

- Dobrushin: when \(J \) has row/col \(\ell_1 \) norms < 1, we get fast mixing.
- Sherrington-Kirkpatrick model: random Gaussian matrix \(J \) with \(J_{uv} \sim \mathcal{N}(0, \beta/n) \).
- Open: find the exact threshold \(\beta \) where Glauber mixes fast w.h.p.
Ising models

\[\mu(x) \propto \exp\left(\frac{1}{2} \sum_{u,v} J_{uv} x_u x_v + \sum_v h_v x_v \right) \]

\textit{symmetric matrix}

- Dobrushin: when J has row/col \(\ell_1 \) norms < 1, we get fast mixing.

- Sherrington-Kirkpatrick model: random Gaussian matrix \(J \) with \(J_{uv} \sim \mathcal{N}(0, \beta/n) \).

- Open: find the exact threshold \(\beta \) where Glauber mixes fast w.h.p.
Ising models

\[\mu(x) \propto \exp\left(\frac{1}{2} \sum_{u,v} J_{uv} x_u x_v + \sum_v h_v x_v \right) \]

Dobrushin: when \(J \) has row/col \(\ell_1 \) norms < 1, we get fast mixing.

Sherrington-Kirkpatrick model: random Gaussian matrix \(J \) with \(J_{uv} \sim \mathcal{N}(0, \beta/n) \).

Open: find the exact threshold \(\beta \) where Glauber mixes fast w.h.p.

- Dobrushin gives weak bound:
 \[\beta \leq \Theta(1/n) \implies \text{fast mixing} \]

- [Eldan-Koehler-Zeitouni] got
 \[\beta \leq \Theta(1) \implies \text{fast mixing} \]
Ising models

\[\mu(x) \propto \exp \left(\frac{1}{2} \sum_{u,v} J_{uv} x_u x_v + \sum_v h_v x_v \right) \]

symmetric matrix

- Dobrushin: when J has row/col \(\ell_1 \) norms < 1, we get fast mixing.

- Sherrington-Kirkpatrick model: random Gaussian matrix J with \(J_{uv} \sim \mathcal{N}(0, \beta/n) \).

- Open: find the exact threshold \(\beta \) where Glauber mixes fast w.h.p.

- Dobrushin gives weak bound:
 \[\beta \leq \Theta(1/n) \implies \text{fast mixing} \]

- [Eldan-Koehler-Zeitouni] got
 \[\beta \leq \Theta(1) \implies \text{fast mixing} \]

- Within \(O(1) \) of optimal. 😊
Ising models

\[\mu(x) \propto \exp(\frac{1}{2} \sum_{u,v} J_{uv} x_u x_v + \sum_v h_v x_v) \]

\[\text{symmetric matrix} \]

- Dobrushin: when \(J \) has row/col \(\ell_1 \) norms < 1, we get fast mixing.

- Sherrington-Kirkpatrick model: random Gaussian matrix \(J \) with \(J_{uv} \sim \mathcal{N}(0, \beta/n) \).

- Open: find the exact threshold \(\beta \) where Glauber mixes fast w.h.p.

- Dobrushin gives weak bound:
 \[\beta \leq \Theta(1/n) \implies \text{fast mixing} \]

- [Eldan-Koehler-Zeitouni] got
 \[\beta \leq \Theta(1) \implies \text{fast mixing} \]

- Within \(O(1) \) of optimal. 😊

- They only used bounds on spectrum of random matrices:

\[\text{Theorem [Eldan-Koehler-Zeitouni]} \]

\[\lambda_{\text{max}}(J) - \lambda_{\text{min}}(J) < 1, \text{ then Glauber mixes fast.} \]

\[\text{We now know } O(n \log n) \text{ mixing [A-Jain-Koehler-Pham-Vuong].} \]
Ising models

\[\mu(x) \propto \exp\left(\frac{1}{2} \sum_{u,v} J_{uv} x_u x_v + \sum_{v} h_v x_v \right) \]

symmetric matrix

- Dobrushin: when \(J \) has row/col \(\ell_1 \) norms < 1, we get fast mixing.

- Sherrington-Kirkpatrick model: random Gaussian matrix \(J \) with \(J_{uv} \sim \mathcal{N}(0, \beta/n) \).

- Open: find the exact threshold \(\beta \) where Glauber mixes fast w.h.p.

- Dobrushin gives weak bound:
 \[\beta \leq \Theta(1/n) \implies \text{fast mixing} \]

- [Eldan-Koehler-Zeitouni] got
 \[\beta \leq \Theta(1) \implies \text{fast mixing} \]

- Within \(O(1) \) of optimal.

- They only used bounds on spectrum of random matrices:

 Theorem [Eldan-Koehler-Zeitouni]

 If \(\lambda_{\max}(J) - \lambda_{\min}(J) < 1 \), then Glauber mixes fast.

[A-Jain-Koehler-Pham-Vuong]
Ising models

\[\mu(x) \propto \exp\left(\frac{1}{2} \sum_{u,v} J_{uv} x_u x_v + \sum_v h_v x_v \right) \]

symmetric matrix

- Dobrushin: when J has row/col \(\ell_1 \) norms < 1, we get fast mixing.

- Sherrington-Kirkpatrick model: random Gaussian matrix J with \(J_{uv} \sim \mathcal{N}(0, \beta/n) \).

- Open: find the exact threshold \(\beta \) where Glauber mixes fast w.h.p.

- Dobrushin gives weak bound:
 \[\beta \leq \Theta(1/n) \implies \text{fast mixing} \]

- [Eldan-Koehler-Zeitouni] got
 \[\beta \leq \Theta(1) \implies \text{fast mixing} \]

- Within \(O(1) \) of optimal.

- They only used bounds on spectrum of random matrices:

 Theorem [Eldan-Koehler-Zeitouni]

 If \(\lambda_{\text{max}}(J) - \lambda_{\text{min}}(J) < 1 \), then Glauber mixes fast.

- We now know \(O(n \log n) \) mixing

 [A-Jain-Koehler-Pham-Vuong].
We may assume $0 \preceq J \preceq (1 - \delta) I$, since diagonals of J do not matter. Via stochastic localization we can kill parts of J:

$$
\mu_t(x) \propto \exp\left(\frac{1}{2} x^\top J_t x + \langle h_t, x \rangle\right)
$$

where $J_t = J - \int_0^t \Sigma_s ds$. We will keep $J_t \succeq 0$, and try to get it as close to 0 as possible. 0 would be a product distribution ideal.
Strategy

We may assume $0 \leq J \leq (1 - \delta)I$, since diagonals of J do not matter.
Strategy

- We may assume $0 \leq J \leq (1 - \delta)I$, since diagonals of J do not matter.

- Via stochastic localization we can kill parts of J:
 $$\mu_t(x) \propto \exp\left(\frac{1}{2}x^T J_t x + \langle h_t, x \rangle\right)$$
 where $J_t = J - \int_0^t \Sigma_s ds$.
Strategy

- We may assume $0 \preceq J \preceq (1 - \delta)I$, since diagonals of J do not matter.
- Via stochastic localization we can kill parts of J:
 \[
 \mu_t(x) \propto \exp\left(\frac{1}{2}x^T J_t x + \langle h_t, x \rangle\right)
 \]
 where $J_t = J - \int_0^t \Sigma_s ds$.
- We will keep $J_t \succeq 0$, and try to get it as close to 0 as possible.
Strategy

- We may assume $0 \preceq J \preceq (1 - \delta)I$, since diagonals of J do not matter.
- Via stochastic localization we can kill parts of J:
 $$\mu_t(x) \propto \exp\left(\frac{1}{2}x^\top J_t x + \langle h_t, x \rangle\right)$$
 where $J_t = J - \int_0^t \Sigma_s ds$.
- We will keep $J_t \succeq 0$, and try to get it as close to 0 as possible.
- 0 would be a product distribution.

↑

ideal
Suppose we have a Markov kernel N, and would like to show $\forall \nu$:

$$D_\phi(\nu N \parallel \mu N) \leq (1 - \rho) D_\phi(\nu \parallel \mu)$$
Suppose we have a Markov kernel N, and would like to show $\forall \nu$:

$$D_\phi(\nu N \parallel \mu N) \leq (1 - \rho) \cdot D_\phi(\nu \parallel \mu)$$

Same as proving $\forall f$:

$$\text{Ent}_{\mu N}^\phi [N \circ f] \leq (1 - \rho) \cdot \text{Ent}_{\mu}^\phi [f]$$
Suppose we have a Markov kernel N, and would like to show $\forall \nu$:

$$D_\phi(\nu N \parallel \mu N) \leq (1 - \rho) D_\phi(\nu \parallel \mu)$$

Same as proving $\forall f$:

$$\text{Ent}_\mu^\phi[f] \leq (1 - \rho) \cdot \text{Ent}_\mu^\phi[f]$$

This is equivalent to

$$\text{Ent}_\mu^\phi[f] - \text{Ent}_\mu^\phi[N \circ f] \geq \rho \text{Ent}_\mu^\phi[f]$$
φ-entropies

Suppose we have a Markov kernel N, and would like to show $\forall \nu$:

$$D_\phi(\nu N \parallel \mu N) \leq (1 - \rho) D_\phi(\nu \parallel \mu)$$

Same as proving $\forall f$:

$$\text{Ent}_\mu^\phi[N \circ f] \leq (1 - \rho) \cdot \text{Ent}_\mu^\phi[f]$$

This is equivalent to

$$\text{Ent}_\mu^\phi[f] - \text{Ent}_\mu^\phi[N \circ f] \geq \rho \text{Ent}_\mu^\phi[f]$$

Lhs is deficit in data processing:

$$\mathbb{E}_{y \sim \mu N} \left[\text{Ent}_{N \circ (y, \cdot)}^\phi[f] \right]$$
φ-entropies

- Suppose we have a Markov kernel N, and would like to show $\forall \nu$:
 $D_\phi(\nu N \parallel \mu N) \leq (1 - \rho) D_\phi(\nu \parallel \mu)$

- Same as proving $\forall f$:
 $\text{Ent}_{\mu N}^\phi[N^\circ f] \leq (1 - \rho) \cdot \text{Ent}_\mu^\phi[f]$

- This is equivalent to
 $\text{Ent}_\mu^\phi[f] - \text{Ent}_{\mu N}^\phi[N^\circ f] \geq \rho \text{Ent}_\mu^\phi[f]$

- Lhs is **deficit** in data processing:
 $\mathbb{E}_{y \sim \mu N} \left[\text{Ent}_{N^\circ(y, \cdot)}^\phi[f] \right]$

- Exercise: **concave** in μ.

- If we know each μ' contracts ϕ-divergence by $1 - \rho'$, we get
 $\text{Ent}_\mu^\phi[f] - \text{Ent}_{\mu N}^\phi[N^\circ f] \geq \rho' \text{Ent}_\mu^\phi[f]$

- If we prove $\mathbb{E}_{y \sim \mu'} \left[\text{Ent}_{\mu}^\phi[f] \right] \geq \gamma \cdot \text{Ent}_\mu^\phi[f]$
 we get to conclude $\rho \geq \gamma \cdot \rho'$.
Suppose we have a Markov kernel N, and would like to show $\forall \nu$:

$$D_\phi(\nu N \parallel \mu N) \leq (1 - \rho) D_\phi(\nu \parallel \mu)$$

Same as proving $\forall f$:

$$\text{Ent}_{\mu N}^\phi[N^\circ f] \leq (1 - \rho) \cdot \text{Ent}_\mu^\phi[f]$$

This is equivalent to

$$\text{Ent}_\mu^\phi[f] - \text{Ent}_{\mu N}^\phi[N^\circ f] \geq \rho \text{Ent}_\mu^\phi[f]$$

Lhs is **deficit** in data processing:

$$\mathbb{E}_{y \sim \mu N} \left[\text{Ent}_{N^\circ(y, \cdot)}^\phi[f] \right]$$

Exercise: **concave** in μ.

Now suppose μ' is a random measure with $\mathbb{E}[\mu'] = \mu$.

φ-entropies
φ-entropies

- Suppose we have a Markov kernel N, and would like to show $\forall \nu$:

 $$
 D_\phi(\nu N \parallel \mu N) \leq (1 - \rho) D_\phi(\nu \parallel \mu)
 $$

- Same as proving $\forall f$:

 $$
 \Ent_{\mu N}^\phi [N \circ f] \leq (1 - \rho) \cdot \Ent_\mu^\phi [f]
 $$

- This is equivalent to

 $$
 \Ent_\mu^\phi [f] - \Ent_{\mu N}^\phi [N \circ f] \geq \rho \Ent_\mu^\phi [f]
 $$

- Lhs is **deficit** in data processing:

 $$
 \mathbb{E}_{y \sim \mu N} \left[\Ent_{N \circ (y, \cdot)}^\phi [f] \right]
 $$

- Exercise: **concave** in μ.

- Now suppose μ' is a random measure with $\mathbb{E}[\mu'] = \mu$.

Diagram:

- **μ** to **μ'** with **decomposed**
- **μN** to **μ'N** with **decomposed**
- **ρ' contraction** from **μ'N**
- **ρ contraction** from **μN**
- **Exercise:** concave in μ.

15/18
Suppose we have a Markov kernel N, and would like to show $\forall \nu$:

$$D_\phi(\nu N \parallel \mu N) \leq (1 - \rho) D_\phi(\nu \parallel \mu)$$

Same as proving $\forall f$:

$$\text{Ent}_{\mu N}[N \circ f] \leq (1 - \rho) \cdot \text{Ent}_\mu[f]$$

This is equivalent to

$$\text{Ent}_\mu[f] - \text{Ent}_{\mu N}[N \circ f] \geq \rho \text{Ent}_\mu[f]$$

Lhs is deficit in data processing:

$$\mathbb{E}_{y \sim \mu N}\left[\text{Ent}_{N \circ (y, \cdot)}^{\phi}[f]\right]$$

Exercise: concave in μ.

Now suppose μ' is a random measure with $\mathbb{E}[\mu'] = \mu$.

If we know each μ' contracts ϕ-divergence by $1 - \rho'$, we get

$$\text{Ent}_\mu[f] - \text{Ent}_{\mu N}[N \circ f] \geq \rho' \mathbb{E}[\text{Ent}_\mu'[f]]$$
\(\phi\)-entropies

- Suppose we have a Markov kernel \(N\), and would like to show \(\forall \nu:\)
 \[D_\phi(\nu N \parallel \mu N) \leq (1 - \rho) D_\phi(\nu \parallel \mu)\]
- Same as proving \(\forall f:\)
 \[\text{Ent}_{\mu N}^\phi[N \circ f] \leq (1 - \rho) \cdot \text{Ent}_{\mu}^\phi[f]\]
- This is equivalent to
 \[\text{Ent}_{\mu}^\phi[f] - \text{Ent}_{\mu N}^\phi[N \circ f] \geq \rho \cdot \text{Ent}_{\mu}^\phi[f]\]
- Lhs is deficit in data processing:
 \[\mathbb{E}_{y \sim \mu N} \left[\text{Ent}_{N \circ (y, \cdot)}^\phi[f] \right]\]
- Exercise: concave in \(\mu\).
- Now suppose \(\mu'\) is a random measure with \(\mathbb{E}[\mu'] = \mu\).

\[
\begin{aligned}
\mu &\quad \xrightarrow{\text{decomposed}} & \quad \mu' \\
\mu N &\quad \xrightarrow{\rho \text{ contraction}} & \quad \mu' N \\
\mu N &\quad \xrightarrow{\rho' \text{ contraction}} & \quad \mu' N
\end{aligned}
\]

- If we know each \(\mu'\) contracts \(\phi\)-divergence by \(1 - \rho'\), we get
 \[\text{Ent}_{\mu}^\phi[f] - \text{Ent}_{\mu N}^\phi[N \circ f] \geq \rho' \mathbb{E}[\text{Ent}_{\mu'}^\phi[f]]\]
- If we prove
 \[\mathbb{E}[\text{Ent}_{\mu'}^\phi[f]] \geq \gamma \cdot \text{Ent}_{\mu}^\phi[f]\]
 we get to conclude \(\rho \geq \gamma \cdot \rho'\).
Approximate conservation [Chen-Eldan]

Suppose we have a discrete/continuous time localization scheme \(\{\mu_t\} \).
Suppose we have a discrete/continuous time localization scheme \(\{\mu_t\}\).

Approximate conservation: at every step \(\operatorname{Ent}_{\mu_t}[f]\) does not shrink by much on average.
Approximate conservation [Chen-Eldan]

- Suppose we have a discrete/continuous time localization scheme \(\{ \mu_t \} \).
- **Approximate conservation:** at every step \(\text{Ent}_{\mu_t}^\phi [f] \) does not shrink by much on average.
- In discrete time

\[
\mathbb{E} \left[\text{Ent}_{\mu_{t+1}}^\phi [f] \ \bigg| \ F_t \right] \geq (1 - \alpha_t) \text{Ent}_{\mu_t}^\phi [f]
\]
Suppose we have a discrete/continuous time localization scheme \(\{ \mu_t \} \).

Approximate conservation: at every step \(\text{Ent}^\phi_{\mu_t} [f] \) does not shrink by much on average.

In discrete time

\[
\mathbb{E} \left[\text{Ent}^\phi_{\mu_{t+1}} [f] \mid \mathcal{F}_t \right] \geq (1 - \alpha_t) \text{Ent}^\phi_{\mu_t} [f]
\]

In continuous time

\[
\mathbb{E} \left[d \text{Ent}^\phi_{\mu_t} [f] \mid \mathcal{F}_t \right] \geq -\alpha_t \text{Ent}^\phi_{\mu_t} [f] dt
\]
Approximate conservation [Chen-Eldan]

- Suppose we have a discrete/continuous time localization scheme \(\{\mu_t\} \).
- **Approximate conservation:** at every step \(\text{Ent}^{\phi}_{\mu_t}[f] \) does not shrink by much on average.
- In discrete time
 \[
 \mathbb{E}\left[\text{Ent}^{\phi}_{\mu_{t+1}}[f] \mid \mathcal{F}_t\right] \geq (1 - \alpha_t) \text{Ent}^{\phi}_{\mu_t}[f]
 \]
- In continuous time
 \[
 \mathbb{E}\left[d\text{Ent}^{\phi}_{\mu_t}[f] \mid \mathcal{F}_t\right] \geq -\alpha_t \text{Ent}^{\phi}_{\mu_t}[f]dt
 \]
- Then we get to transfer contraction rates on \(\mu_t \) to contraction rates on \(\mu \) with loss:
 \[
 \gamma \geq (1 - \alpha_0)(1 - \alpha_1) \cdots (1 - \alpha_{t-1}) \quad \text{or} \quad \gamma \geq \exp\left(-\int_0^t \alpha_s ds\right)
 \]
Let us specialize to $\text{Ent}^\Phi = \text{Var}$ and stochastic localization:

$$d\mu_t(x) = \langle C_t dB_t, x - \text{mean}(\mu_t) \rangle \mu_t(x).$$
Let us specialize to $\text{Ent}^\phi = \text{Var}$ and stochastic localization:

$$d\mu_t(x) = \langle C_t dB_t, x - \text{mean} (\mu_t) \rangle \mu_t(x).$$

We have $\mathbb{E}_{\mu_t}[f^2]$ and $\mathbb{E}_{\mu_t}[f]$ are both martingales. Evolution:

$$d \mathbb{E}_{\mu_t}[f] = \sum_x \langle C_t dB_t, x - \text{mean} (\mu_t) \rangle \mu_t(x) f(x) = \langle C_t dB_t, \nu_t \rangle$$

for the vector $\nu_t = \mathbb{E}_{x \sim \mu_t}[f(x)(x - \text{mean} (\mu_t))].$
Let us specialize to $\text{Ent}^\Phi = \text{Var}$ and stochastic localization: works for discrete too

$$d\mu_t(x) = \langle C_t dB_t, x - \text{mean}(\mu_t) \rangle \mu_t(x).$$

We have $E_{\mu_t}[f^2]$ and $E_{\mu_t}[f]$ are both martingales. Evolution:

$$dE_{\mu_t}[f] = \sum_x \langle C_t dB_t, x - \text{mean}(\mu_t) \rangle \mu_t(x) f(x) = \langle C_t dB_t, v_t \rangle$$

for the vector $v_t = E_{x \sim \mu_t}[f(x)(x - \text{mean}(\mu_t))]$.

This means that

$$d\text{Var}_{\mu_t}[f] = (\text{martingale term}) - v_t^T \Sigma_t v_t dt$$
Let us specialize to $\text{Ent}^\phi = \text{Var}$ and stochastic localization: works for discrete too

$$d\mu_t(x) = \langle C_t dB_t, x - \text{mean}(\mu_t) \rangle \mu_t(x).$$

We have $E_{\mu_t}[f^2]$ and $E_{\mu_t}[f]$ are both martingales. Evolution:

$$d E_{\mu_t}[f] = \sum_x \langle C_t dB_t, x - \text{mean}(\mu_t) \rangle \mu_t(x) f(x) = \langle C_t dB_t, \nu_t \rangle$$

for the vector $\nu_t = E_{x \sim \mu_t}[f(x)(x - \text{mean}(\mu_t))].$

This means that

$$d \text{Var}_{\mu_t}[f] = (\text{martingale term}) - \nu_t^T \Sigma_t \nu_t dt$$

As long as Σ_t and ν_t are orthogonal, we get that $\text{Var}_{\mu_t}[f]$ is a martingale! 😊
Application to Sherrington-Kirkpatrick

Going back to Ising models

\[\mu_t(x) \propto \exp\left(\frac{1}{2} x^T J_t x + \langle h_t, x \rangle \right) \]
Going back to Ising models

$$\mu_t(x) \propto \exp \left(\frac{1}{2} x^T J_t x + \langle h_t, x \rangle \right)$$

As long as $J_t \succeq 0$ and $\text{rank}(J_t) \geq 2$, we can choose nonzero $\Sigma_t \succeq 0$ such that

$$\text{span}(\Sigma_t) \subseteq \text{span}(J_t)$$

and $\Sigma_t v_t = 0$.

The process stops when J_t becomes rank 1, not quite $J_t = 0$.

However, note that for rank 1 matrices $J_t = uu^\top$ we have Dobrushin++:

$$I[i \rightarrow j] \leq |u_i u_j|$$

and

$$\lambda_{\text{max}}(I) \leq \sum_i |u_i|^2 = \|u\|^2.$$
Going back to Ising models

\[\mu_t(x) \propto \exp\left(\frac{1}{2} x^T J_t x + \langle h_t, x \rangle \right) \]

As long as \(J_t \succeq 0 \) and \(\text{rank}(J_t) \geq 2 \), we can choose nonzero \(\Sigma_t \succeq 0 \) such that

\[\text{span}(\Sigma_t) \subseteq \text{span}(J_t) \]

and \(\Sigma_t v_t = 0 \).

The process stops when \(J_t \) becomes rank 1, not quite \(J_t = 0 \).
Application to Sherrington-Kirkpatrick

- Going back to Ising models

\[\mu_t(x) \propto \exp\left(\frac{1}{2} x^T J_t x + \langle h_t, x \rangle \right) \]

- As long as \(J_t \succeq 0 \) and \(\text{rank}(J_t) \geq 2 \), we can choose nonzero \(\Sigma_t \succeq 0 \) such that \(\text{span}(\Sigma_t) \subseteq \text{span}(J_t) \)

and \(\Sigma_t v_t = 0 \).

- The process stops when \(J_t \) becomes rank 1, not quite \(J_t = 0 \)

- However, note that for rank 1 matrices \(J_t = uu^T \) we have Dobrushin++:

\[J[i \rightarrow j] \leq |u_i u_j| \]

and \(\lambda_{\text{max}}(J) \leq \sum_i |u_i|^2 = \|u\|^2 \).
Going back to Ising models

\[\mu_t(x) \propto \exp \left(\frac{1}{2} x^T J_t x + \langle h_t, x \rangle \right) \]

As long as \(J_t \succeq 0 \) and \(\text{rank}(J_t) \geq 2 \), we can choose nonzero \(\Sigma_t \succeq 0 \) such that

\[\text{span}(\Sigma_t) \subseteq \text{span}(J_t) \]

and \(\Sigma_t v_t = 0 \).

The process stops when \(J_t \) becomes rank 1, not quite \(J_t = 0 \)

However, note that for rank 1 matrices \(J_t = uu^T \) we have Dobrushin++:

\[J[i \rightarrow j] \leq |u_i u_j| \]

and \(\lambda_{\max}(J) \leq \sum_i |u_i|^2 = \|u\|^2 \).

This shows contraction of \(\chi^2 \) under Glauber.