CS 263: Counting and Sampling

Nima Anari

slides for

Stochastic Localization

Review

Skipped ...

Stochastic Calculus

- ▷ Localization schemes
- 🕞 Itô calculus
- \triangleright Stochastic localization

Conservation

- Sherrington-Kirkpatrick model
- $\triangleright \ \varphi$ -entropies in localization scheme
- ▷ Approximate conservation

Stochastic Calculus

- \triangleright Localization schemes
- ▷ Itô calculus
- \triangleright Stochastic localization

Conservation

- Sherrington-Kirkpatrick model
- $\triangleright \ \varphi$ -entropies in localization scheme
- \triangleright Approximate conservation

 $\triangleright \text{ Imagine } \mu \text{ is on } \binom{[n]}{k} \hookrightarrow \{0, 1\}^n.$

 $\square \text{ Imagine } \mu \text{ is on } \binom{[n]}{k} \hookrightarrow \{0,1\}^n.$

 $\label{eq:product} \fbox{D} \text{ Denote } p_i = \mathbb{P}_{S \sim \mu}[i \in S]. \text{ Let us choose } i \sim \mu D_{k \rightarrow 1} = p/k.$

Imagine μ is on $\binom{[n]}{k} \hookrightarrow \{0, 1\}^n$. \triangleright

 \triangleright Denote $p_i = \mathbb{P}_{S \sim \mu}[i \in S]$. Let us choose $i \sim \mu D_{k \to 1} = p/k$.

 \triangleright Let γ be the conditional on {i}. For $w = \mathbb{1}_i/p_i - \mathbb{1}/k$: $\nu(x) = (1 + \langle w, x - \mathsf{mean}(\mu) \rangle) \mu(x)$

a random measure

linear tilt

a random measure

 $\label{eq:product} \fbox{Denote } p_i = \mathbb{P}_{S \sim \mu}[i \in S]. \text{ Let us choose } i \sim \mu D_{k \rightarrow 1} = p/k.$

 \triangleright Let γ be the conditional on {i}. For $w = \mathbb{1}_i/p_i - \mathbb{1}/k$:

$$\nu(x) = \underbrace{(1 + \langle w, x - \text{mean}(\mu) \rangle)}_{\text{linear tilt}} \mu(x)$$

linear

 \triangleright Note that $\mu = \mathbb{E}_i[\nu]$. This is a decomposition of measure.

 $\label{eq:product} \fbox{Denote } p_i = \mathbb{P}_{S \sim \mu}[i \in S]. \text{ Let us choose } i \sim \mu D_{k \rightarrow 1} = p/k.$

 \triangleright Let γ be the conditional on {i}. For $w = \mathbb{1}_i/p_i - \mathbb{1}/k$:

$$\mathbf{v}(\mathbf{x}) = \underbrace{(\mathbf{1} + \langle w, \mathbf{x} - \mathsf{mean}(\boldsymbol{\mu}) \rangle)}_{\text{linear tilt}} \boldsymbol{\mu}(\mathbf{x})$$

a random measure

 \triangleright Note that $\mu = \mathbb{E}_{i}[\nu]$. This is a decomposition of measure.

Continuing this we get a measure-valued random process martingale

 $\label{eq:constraint} \begin{tabular}{ll} $$ Denote $p_i = \mathbb{P}_{S \sim \mu}[i \in S]$. Let us choose $i \sim \mu D_{k \rightarrow 1} = p/k$. } \end{tabular}$

 \triangleright Let γ be the conditional on {i}. For $w = \mathbb{1}_i/p_i - \mathbb{1}/k$:

$$\mathbf{v}(\mathbf{x}) = \underbrace{(1 + \langle w, \mathbf{x} - \mathsf{mean}(\boldsymbol{\mu}) \rangle)}_{\text{linear tilt}} \boldsymbol{\mu}(\mathbf{x})$$

a random measure

 \triangleright Note that $\mu = \mathbb{E}_{i}[\nu]$. This is a decomposition of measure.

Continuing this we get a measure-valued random process martingale

Simplicial localization

Let $S \sim \mu$, and let e_1, \ldots, e_k be a u.r. permutation of S. Define us as conditional of u on $[a_1, \ldots, a_k]$. Then

S. Define μ_i as conditional of μ on $\{e_1,\ldots,e_i\}$. Then

 $\mu = \mu_0 \rightarrow \mu_1 \rightarrow \mu_2 \rightarrow \cdots \rightarrow \mu_k$

is called simplicial localization. used for local-to-global and trickle down

Same idea applied in continuous time. For some measure μ on \mathbb{R}^n , we get measure-valued process { $\mu_t \mid t \in \mathbb{R}_{\geq 0}$ }.

- Same idea applied in continuous time. For some measure μ on \mathbb{R}^n , we get measure-valued process { $\mu_t \mid t \in \mathbb{R}_{\geq 0}$ }.
- Controlled by (stochastic) differential equation

$$d\mu_{t}(x) = \underbrace{\langle w_{t}, x - \mathsf{mean}(\mu) \rangle}_{\mu_{t}(x)} \mu_{t}(x)$$

linear tilt

where now w_t is a mean zero random infinitesimal vector.

think of infinitesimal Gaussian

- Same idea applied in continuous time. For some measure μ on \mathbb{R}^n , we get measure-valued process { $\mu_t \mid t \in \mathbb{R}_{\geq 0}$ }.
- Controlled by (stochastic) differential equation

$$d\mu_{t}(x) = \underbrace{\langle w_{t}, x - \mathsf{mean}(\mu) \rangle}_{\mu_{t}(x)} \mu_{t}(x)$$

linear tilt

where now w_t is a mean zero random infinitesimal vector.

think of infinitesimal Gaussian

Our goal will be to find analogs of local-to-global, etc. for more general, e.g., continuous, distributions.

- Same idea applied in continuous time. For some measure μ on \mathbb{R}^n , we get measure-valued process { $\mu_t \mid t \in \mathbb{R}_{\geq 0}$ }.
- Controlled by (stochastic) differential equation

$$d\mu_{t}(x) = \underbrace{\langle w_{t}, x - \mathsf{mean}(\mu) \rangle}_{\mu_{t}(x)} \mu_{t}(x)$$

linear tilt

where now w_t is a mean zero random infinitesimal vector.

think of infinitesimal Gaussian

- Our goal will be to find analogs of local-to-global, etc. for more general, e.g., continuous, distributions.
- \triangleright To make sense of this equation, we need some basics of Itô calculus.

 \triangleright Brownian motion: in nD, the process $\{B_t \mid t \in \mathbb{R}^n_{\geqslant 0}\}$ such that $B_t - B_s \sim \mathcal{N}(0, (t-s)I)$

and for disjoint $[s_1, t_1], \ldots, [s_k, t_k]$ we have $B_{t_i} - B_{s_i}$ are independent.

 \triangleright Brownian motion: in nD, the process $\{B_t \mid t \in \mathbb{R}^n_{\geqslant 0}\}$ such that $B_t - B_s \sim \mathcal{N}(0, (t-s)I)$

and for disjoint $[s_1, t_1], \ldots, [s_k, t_k]$ we have $B_{t_i} - B_{s_i}$ are independent.

 $\,\triangleright\,$ We think of dB_t intuitively as $B_{t+dt}-B_t :\, dB_t \sim \mathcal{N}(0,dt \cdot I)$

 \triangleright Brownian motion: in nD, the process $\{B_t \mid t \in \mathbb{R}^n_{\geqslant 0}\}$ such that $B_t - B_s \sim \mathcal{N}(0, (t-s)I)$

and for disjoint $[s_1, t_1], \ldots, [s_k, t_k]$ we have $B_{t_i} - B_{s_i}$ are independent.

 \triangleright We think of dB_t intuitively as $B_{t+dt} - B_t$: $dB_t \sim \mathcal{N}(0, dt \cdot I)$

 \triangleright Fact: dB_t is not on the order of dt, but rather on the order of $\sqrt{dt!}$

 \triangleright Brownian motion: in nD, the process $\{B_t \mid t \in \mathbb{R}^n_{\geqslant 0}\}$ such that $B_t - B_s \sim \mathcal{N}(0, (t-s)I)$

and for disjoint $[s_1, t_1], \ldots, [s_k, t_k]$ we have $B_{t_i} - B_{s_i}$ are independent.

 $\,\triangleright\,$ We think of dB_t intuitively as $B_{t+dt}-B_t \!\!:\, dB_t \sim \mathcal{N}(0, dt \cdot I)$

 \triangleright Fact: dB_t is not on the order of dt, but rather on the order of $\sqrt{dt!}$

 $\triangleright~$ Itô process: {X_t | t \in \mathbb{R}_{\geqslant 0}} derived via stochastic differential equation (SDE): $dX_t = u_t dt + C_t dB_t$

for some "nice" vector and matrix valued processes $\{u_t\}, \{C_t\}$.

 \triangleright Brownian motion: in nD, the process $\{B_t \mid t \in \mathbb{R}^n_{\geqslant 0}\}$ such that $B_t - B_s \sim \mathcal{N}(0, (t-s)I)$

and for disjoint $[s_1, t_1], \ldots, [s_k, t_k]$ we have $B_{t_i} - B_{s_i}$ are independent.

 $\,\triangleright\,$ We think of dB_t intuitively as $B_{t+dt}-B_t \!\!:\, dB_t \sim \mathcal{N}(0, dt \cdot I)$

 \triangleright Fact: dB_t is not on the order of dt, but rather on the order of $\sqrt{dt!}$

 $\begin{array}{l|l} \hline & \mbox{Itô process:} \ \{X_t \mid t \in \mathbb{R}_{\geqslant 0}\} \mbox{ derived via stochastic differential equation (SDE):} \\ & \mbox{ } dX_t = u_t dt + C_t dB_t \end{array}$

for some "nice" vector and matrix valued processes $\{u_t\}, \{C_t\}$.

 \triangleright u_t, C_t can only depend on the past; technical term: adapted.

 $\,\triangleright\,$ Basic question: if we have 1D Itô process X_t defined by

 $dX_t = u_t dt + c_t dB_t$

and define $Y_t = f(\boldsymbol{X}_t),$ what is the equation defining $Y_t?$

▷ Basic question: if we have 1D Itô process X_t defined by $dX_t = u_t dt + c_t dB_t$ and define $Y_t = f(X_t)$, what is the equation defining Y_t ? ▷ Incorrect: if we apply chain rule of calculus, we get $dY_t = f'(X_t) dX_t = f'(X_t) u_t dt + f'(X_t) c_t dB_t$

 $\,\triangleright\,$ Basic question: if we have 1D Itô process X_t defined by

 $dX_t = u_t dt + c_t dB_t$

and define $Y_t = f(X_t)$, what is the equation defining Y_t ?

 \triangleright Incorrect: if we apply chain rule of calculus, we get

 $dY_t = f'(X_t)dX_t = f'(X_t)u_tdt + f'(X_t)c_tdB_t$

▷ This is incorrect because $dY_t = f'(X_t)dX_t$ is only first-order approximation of f, and dX_t has terms of order $\sqrt{dt!}$

 $\,\triangleright\,$ Basic question: if we have 1D Itô process X_t defined by

 $dX_t = u_t dt + c_t dB_t$

and define $Y_t = f(X_t)$, what is the equation defining Y_t ?

▷ Incorrect: if we apply chain rule of calculus, we get

 $dY_t = f'(X_t)dX_t = f'(X_t)u_tdt + f'(X_t)c_tdB_t$

- ▷ This is incorrect because $dY_t = f'(X_t)dX_t$ is only first-order approximation of f, and dX_t has terms of order $\sqrt{dt!}$
- \triangleright Correction: expand up to second-order Taylor series, and use $dB_t^2=dt,$ also drop anything of lower order than dt.

 $\,\triangleright\,$ Basic question: if we have 1D Itô process X_t defined by

 $dX_t = u_t dt + c_t dB_t$

and define $Y_t = f(X_t)$, what is the equation defining Y_t ?

 \triangleright Incorrect: if we apply chain rule of calculus, we get

 $dY_t = f'(X_t)dX_t = f'(X_t)u_tdt + f'(X_t)c_tdB_t$

- ▷ This is incorrect because $dY_t = f'(X_t)dX_t$ is only first-order approximation of f, and dX_t has terms of order $\sqrt{dt!}$
- \triangleright Correction: expand up to second-order Taylor series, and use $dB_t^2=dt,$ also drop anything of lower order than dt.
- > This gives us the Itô formula:

$$dY_{t} = \left(f'(X_{t})u_{t} + \underbrace{\frac{1}{2}f''(X_{t})c_{t}^{2}}_{|t\hat{o}|term}\right)dt + f'(X_{t})c_{t}dB_{t}$$

Intuition: curvature creates drift!

Intuition: curvature creates drift!

Itô's lemma (nD to 1D)

For $dX_t = u_t dt + C_t dB_t$ if we have $Y_t = f(X_t)$, then

$$dY_t = \left(\langle \nabla f(X_t), u_t \rangle + \frac{1}{2} \operatorname{tr}(C_t^{\mathsf{T}} \nabla^2 f(X_t) C_t) \right) dt + \langle \nabla f(X_t), C_t dB_t \rangle$$

For μ on subset of $\mathbb{R}^n,$ and adapted matrix process $C_t,$ we define $\forall x$

 $d\mu_t(x) = \langle x - \mathsf{mean}(\mu_t), C_t dB_t \rangle \mu_t(x)$

For μ on subset of $\mathbb{R}^n,$ and adapted matrix process $C_t,$ we define $\forall x$

 $d\mu_t(x) = \langle x - \mathsf{mean}(\mu_t), C_t dB_t \rangle \mu_t(x)$

For continuous μ, we should think of it as density. You can for simplicity assume support is finite.

For μ on subset of $\mathbb{R}^n,$ and adapted matrix process $C_t,$ we define $\forall x$

 $d\mu_t(x) = \langle x - \mathsf{mean}(\mu_t), C_t dB_t \rangle \mu_t(x)$

- For continuous μ, we should think of it as density. You can for simplicity assume support is finite.
- \triangleright It is a martingale, with filtration \mathcal{F}_t :

 $\mathbb{E}[\mu_t(x) \mid \mathcal{F}_s] = \mu_s(x) \quad \forall s \leqslant t$

For μ on subset of $\mathbb{R}^n,$ and adapted matrix process $C_t,$ we define $\forall x$

 $d\mu_t(x) = \langle x - \mathsf{mean}(\mu_t), C_t dB_t \rangle \mu_t(x)$

- For continuous μ, we should think of it as density. You can for simplicity assume support is finite.
- \triangleright It is a martingale, with filtration \mathcal{F}_t :

 $\mathbb{E}[\mu_t(x) \mid \mathfrak{F}_s] = \mu_s(x) \quad \forall s \leqslant t$

 \triangleright If μ is normalized, μ_t remains so:

$$\begin{split} d(\sum_{\mathbf{x}} \mu_{\mathbf{t}}(\mathbf{x})) &= \langle \sum_{\mathbf{x}} \mu_{\mathbf{t}}(\mathbf{x}) (\mathbf{x} - \\ \mathsf{mean}(\mu_{\mathbf{t}})), C_{\mathbf{t}} dB_{\mathbf{t}} \rangle = \mathbf{0} \end{split}$$

For μ on subset of $\mathbb{R}^n,$ and adapted matrix process $C_t,$ we define $\forall x$

 $d\mu_t(x) = \langle x - \mathsf{mean}(\mu_t), C_t dB_t \rangle \mu_t(x)$

- For continuous μ, we should think of it as density. You can for simplicity assume support is finite.
- $\,\triangleright\,\,$ It is a martingale, with filtration $\mathcal{F}_t:$

 $\mathbb{E}[\mu_t(x) \mid \mathcal{F}_s] = \mu_s(x) \quad \forall s \leqslant t$

 \triangleright If μ is normalized, μ_t remains so:

$$\begin{split} d(\sum_{x} \mu_t(x)) &= \langle \sum_{x} \mu_t(x) (x - \\ \mathsf{mean}(\mu_t)), C_t dB_t \rangle = 0 \end{split}$$

Changes in μt are proportional to itself. Log-scale? Let's use Itô's lemma for f = log.

For μ on subset of $\mathbb{R}^n,$ and adapted matrix process $C_t,$ we define $\forall x$

 $d\mu_t(x) = \langle x - \mathsf{mean}(\mu_t), C_t dB_t \rangle \mu_t(x)$

- For continuous μ, we should think of it as density. You can for simplicity assume support is finite.
- $\,\triangleright\,\,$ It is a martingale, with filtration $\mathcal{F}_t:$

 $\mathbb{E}[\mu_t(x) \mid \mathcal{F}_s] = \mu_s(x) \quad \forall s \leqslant t$

 \triangleright If μ is normalized, μ_t remains so:

$$\begin{split} d(\sum_{x} \mu_t(x)) &= \langle \sum_{x} \mu_t(x) (x - \\ \mathsf{mean}(\mu_t)), C_t dB_t \rangle = 0 \end{split}$$

- Changes in μ_t are proportional to itself. Log-scale? Let's use Itô's lemma for f = log.
- $\begin{tabular}{ll} & \mathbb{D} & If $X_t = \mu_t(x)$, and $Y_t = \log(X_t)$, $$ then $dY_t = $$ \end{tabular} \end{tabular} \end{tabular}$

 $\begin{array}{l} \langle x - \text{mean}(\mu_t), C_t dB_t \rangle + (\text{Itô term}) dt \\ \text{where Itô term is} \\ \frac{-(x - \text{mean}(\mu_t))^\intercal C_t C_t^\intercal (x - \text{mean}(\mu_t)) \cdot X_t^2}{2X_t^2} \end{array}$

For μ on subset of $\mathbb{R}^n,$ and adapted matrix process $C_t,$ we define $\forall x$

 $d\mu_t(x) = \langle x - \mathsf{mean}(\mu_t), C_t dB_t \rangle \mu_t(x)$

- For continuous μ, we should think of it as density. You can for simplicity assume support is finite.
- ▷ It is a martingale, with filtration \mathcal{F}_t : $\mathbb{E}[\mu_t(x) \mid \mathcal{F}_s] = \mu_s(x) \quad \forall s \leq t$

 \triangleright If μ is normalized, μ_t remains so:

$$\begin{split} d(\sum_{x} \mu_t(x)) &= \langle \sum_{x} \mu_t(x) (x - \\ \mathsf{mean}(\mu_t)), C_t dB_t \rangle = 0 \end{split}$$

- Changes in μ_t are proportional to itself. Log-scale? Let's use Itô's lemma for $f = \log$.
- $\begin{tabular}{ll} & $ \begin{tabular}{ll} $ \begin{tabular}{ll} $ If $X_t = \mu_t(x)$, and $Y_t = \log(X_t)$, \\ $ then $dY_t = $ \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular}$

$$\begin{split} &\langle x-\text{mean}(\mu_t), C_t dB_t\rangle + (\text{Itô term}) dt \\ &\text{where Itô term is} \\ & \frac{-(x-\text{mean}(\mu_t))^\intercal C_t C_t^\intercal (x-\text{mean}(\mu_t)) \cdot X_t^2}{2X_t^2} \end{split}$$

 $\triangleright~$ So if we name $\Sigma_t = C_t C_t^\intercal$, then $d\log\mu_t(x) = -\frac{1}{2}x^\intercal\Sigma_t x dt + \text{affine}(x)$

For μ on subset of $\mathbb{R}^n,$ and adapted matrix process $C_t,$ we define $\forall x$

 $d\mu_t(x) = \langle x - \mathsf{mean}(\mu_t), C_t dB_t \rangle \mu_t(x)$

- For continuous μ, we should think of it as density. You can for simplicity assume support is finite.
- $\label{eq:states} \begin{array}{l} \blacktriangleright \ \ \, \mbox{It is a martingale, with filtration \mathcal{F}_t:} \\ \mathbb{E}[\mu_t(x) \ | \ \ \, \mbox{\mathcal{F}_s}] = \mu_s(x) \quad \forall s \leqslant t \end{array}$

 $\triangleright~$ If μ is normalized, μ_t remains so:

$$\begin{split} d(\sum_{\mathbf{x}} \mu_{\mathbf{t}}(\mathbf{x})) &= \langle \sum_{\mathbf{x}} \mu_{\mathbf{t}}(\mathbf{x}) (\mathbf{x} - \\ \mathsf{mean}(\mu_{\mathbf{t}})), C_{\mathbf{t}} dB_{\mathbf{t}} \rangle = \mathbf{0} \end{split}$$

- Changes in μ_t are proportional to itself. Log-scale? Let's use Itô's lemma for f = log.
- $\begin{tabular}{ll} & $ \begin{tabular}{ll} $ \begin{tabular}{ll} $ If $X_t = \mu_t(x)$, and $Y_t = \log(X_t)$, \\ $ then $dY_t = $ \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular}$

$$\begin{split} &\langle x-\text{mean}(\mu_t), C_t dB_t \rangle + (\text{Itô term}) dt \\ &\text{where Itô term is} \\ & \frac{-(x-\text{mean}(\mu_t))^\intercal C_t C_t^\intercal (x-\text{mean}(\mu_t)) \cdot X_t^2}{2X_t^2} \end{split}$$

 $\triangleright~$ So if we name $\Sigma_t = C_t C_t^\intercal$, then $d\log\mu_t(x) = -\frac{1}{2}x^\intercal\Sigma_t x dt + \text{affine}(x)$

$$\begin{aligned} & > \text{ At any time t, we have } \mu_t(x) \propto \\ & \mu(x) \cdot \exp\left(-\frac{1}{2}x^\intercal A_t x + \langle h_t, x \rangle\right) \\ & \text{ where } A_t = \int_0^t \Sigma_s ds. \end{aligned}$$

Multiplying by Gaussian density:

Remark: this process, up to scale/time, same as how diffusion models sample.

Stochastic Calculus

- \triangleright Localization schemes
- ▷ Itô calculus
- \triangleright Stochastic localization

Conservation

- Sherrington-Kirkpatrick model
- $\triangleright \ \varphi$ -entropies in localization scheme
- \triangleright Approximate conservation
Stochastic Calculus

- \triangleright Localization schemes
- ▷ Itô calculus
- \triangleright Stochastic localization

Conservation

- Sherrington-Kirkpatrick model
- $\triangleright \ \varphi$ -entropies in localization scheme
- \triangleright Approximate conservation

(+

 $\mu(x) \propto \text{exp}(\tfrac{1}{2} \sum_{u,\nu} J_{\underbrace{u\nu}} x_u x_\nu + \sum_\nu h_\nu x_\nu)$ symmetric matrix

$$\mu(x) \propto \exp(\frac{1}{2} \sum_{u,\nu} J_{u\nu} x_u x_\nu + \sum_{\nu} h_{\nu} x_{\nu})$$
summetric matrix

 \bigcirc Dobrushin: when J has row/col ℓ_1 norms < 1, we get fast mixing.

$$\mu(x) \propto \exp(\frac{1}{2} \sum_{u,\nu} J_{u\nu} x_u x_\nu + \sum_{\nu} h_{\nu} x_{\nu})$$
summetric matrix

- \bigcirc Dobrushin: when J has row/col ℓ_1 norms < 1, we get fast mixing.

$$\mu(x) \propto \exp(\frac{1}{2} \sum_{u,\nu} J_{u\nu} x_u x_\nu + \sum_{\nu} h_{\nu} x_{\nu})$$
summetric matrix

- Dobrushin: when J has row/col l₁ norms < 1, we get fast mixing.</p>
- Sherrington-Kirkpatrick model: random Gaussian matrix J with $J_{uv} \sim \mathcal{N}(0, \beta/n)$.
- \triangleright Open: find the exact threshold β where Glauber mixes fast w.h.p.

$$ightarrow$$
 Dobrushin gives weak bound: $\beta \leqslant \Theta(1/n) \implies$ fast mixing

- \triangleright Dobrushin: when J has row/col ℓ_1 norms < 1, we get fast mixing.
- Sherrington-Kirkpatrick model: random Gaussian matrix J with $J_{uv} \sim \mathcal{N}(0, \beta/n)$.
- \triangleright Open: find the exact threshold β where Glauber mixes fast w.h.p.

$$\mu(x) \propto \exp(\frac{1}{2} \sum_{u,v} J_{uv} x_u x_v + \sum_{v} h_v x_v)$$
summetric matrix

- Dobrushin: when J has row/col l₁ norms < 1, we get fast mixing.</p>
- Sherrington-Kirkpatrick model: random Gaussian matrix J with $J_{uv} \sim \mathcal{N}(0, \beta/n)$.
- \triangleright Open: find the exact threshold β where Glauber mixes fast w.h.p.

- Dobrushin gives weak bound: $\beta \leqslant \Theta(1/n) \implies$ fast mixing
 - [Eldan-Koehler-Zeitouni] got $\beta \leqslant \Theta(1) \implies \text{fast mixing}$

$$\triangleright$$
 Dobrushin gives weak bound:
 $\beta \leqslant \Theta(1/n) \implies$ fast mixing

🜔 [Eldan-Koehler-Zeitouni] got

 $\beta \leqslant \Theta(1) \implies$ fast mixing

 \triangleright Within O(1) of optimal.

$$\mu(x) \propto \exp(\frac{1}{2} \sum_{u,\nu} J_{u\nu} x_u x_\nu + \sum_{\nu} h_{\nu} x_{\nu})$$
summetric matrix

- Sherrington-Kirkpatrick model: random Gaussian matrix J with $J_{uv} \sim \mathcal{N}(0, \beta/n)$.
- \triangleright Open: find the exact threshold β where Glauber mixes fast w.h.p.

$$\mu(x) \propto \exp(\frac{1}{2} \sum_{u,v} J_{uv} x_u x_v + \sum_v h_v x_v)$$
summetric matrix

- Sherrington-Kirkpatrick model: random Gaussian matrix J with $J_{uv} \sim \mathcal{N}(0, \beta/n)$.
- \triangleright Open: find the exact threshold β where Glauber mixes fast w.h.p.

Dobrushin gives weak bound:

 $\beta \leqslant \Theta(1/n) \implies$ fast mixing

🔎 [Eldan-Koehler-Zeitouni] got

 $\beta \leqslant \Theta(1) \implies \text{fast mixing}$

- \triangleright Within O(1) of optimal.
- They only used bounds on spectrum of random matrices:

$$\mu(\mathbf{x}) \propto \exp(\frac{1}{2} \sum_{u,v} J_{uv} \mathbf{x}_u \mathbf{x}_v + \sum_v \mathbf{h}_v \mathbf{x}_v)$$
symmetric matrix

- Dobrushin: when J has row/col l₁ norms < 1, we get fast mixing.</p>
- Sherrington-Kirkpatrick model: random Gaussian matrix J with $J_{uv} \sim \mathcal{N}(0, \beta/n)$.
- \triangleright Open: find the exact threshold β where Glauber mixes fast w.h.p.

 \triangleright Dobrushin gives weak bound:

 $\beta \leqslant \Theta(1/n) \implies$ fast mixing

🔎 [Eldan-Koehler-Zeitouni] got

 $\beta \leqslant \Theta(1) \implies \text{fast mixing}$

- \triangleright Within O(1) of optimal.
- They only used bounds on spectrum of random matrices:

Theorem [Eldan-Koehler-Zeitouni]

If $\lambda_{\text{max}}(J) - \lambda_{\text{min}}(J) <$ 1, then Glauber mixes fast.

$$\mu(\mathbf{x}) \propto \exp(\frac{1}{2} \sum_{u,v} J_{uv} \mathbf{x}_u \mathbf{x}_v + \sum_v \mathbf{h}_v \mathbf{x}_v)$$
symmetric matrix

- Sherrington-Kirkpatrick model: random Gaussian matrix J with $J_{uv} \sim \mathcal{N}(0, \beta/n)$.
- \triangleright Open: find the exact threshold β where Glauber mixes fast w.h.p.

Dobrushin gives weak bound:

 $\beta \leqslant \Theta(1/n) \implies$ fast mixing

🔎 [Eldan-Koehler-Zeitouni] got

 $\beta \leqslant \Theta(1) \implies \text{fast mixing}$

- \triangleright Within O(1) of optimal.
- They only used bounds on spectrum of random matrices:

Theorem [Eldan-Koehler-Zeitouni]

If $\lambda_{\text{max}}(J) - \lambda_{\text{min}}(J) <$ 1, then Glauber mixes fast.

We now know O(n log n) mixing [A-Jain-Koehler-Pham-Vuong].

▷ We may assume $0 \leq J \leq (1 - \delta)I$, since diagonals of J do not matter.

▷ We may assume $0 \leq J \leq (1 - \delta)$ I, since diagonals of J do not matter.

$$\begin{split} & \triangleright \quad \text{Via stochastic localization we can kill parts of J:} \\ & \mu_t(x) \propto \text{exp}\big(\frac{1}{2} x^\intercal J_t x + \langle h_t, x \rangle \big) \\ & \text{where } J_t = J - \int_0^t \Sigma_s ds. \end{split}$$

▷ We may assume $0 \leq J \leq (1 - \delta)I$, since diagonals of J do not matter.

$$\begin{split} \vartriangleright & \text{Via stochastic localization we can kill parts of J:} \\ & \mu_t(x) \propto \text{exp}\big(\frac{1}{2} x^\intercal J_t x + \langle h_t, x \rangle \big) \\ & \text{where } J_t = J - \int_0^t \Sigma_s ds. \end{split}$$

 $\,\triangleright\,$ We will keep $J_t \succeq$ 0, and try to get it as close to 0 as possible.

▷ We may assume $0 \leq J \leq (1 - \delta)I$, since diagonals of J do not matter.

- $\,\triangleright\,$ We will keep $J_t \succeq 0,$ and try to get it as close to 0 as possible.
- \triangleright 0 would be a product distribution.

ideal

 \bigcirc Suppose we have a Markov kernel N, and would like to show $\forall \nu :$

 $\mathfrak{D}_{\varphi}(\nu N \parallel \mu N) \leqslant (1-\rho) \, \mathfrak{D}_{\varphi}(\nu \parallel \mu)$

▷ Suppose we have a Markov kernel N, and would like to show ∀v:

 $\mathfrak{D}_{\varphi}(\nu N \parallel \mu N) \leqslant (1-\rho)\, \mathfrak{D}_{\varphi}(\nu \parallel \mu)$

 \triangleright Same as proving $\forall f$:

 $\mathsf{Ent}^{\varphi}_{\mu \mathsf{N}}[\mathsf{N}^{\circ} f] \leqslant (1-\rho) \cdot \mathsf{Ent}^{\varphi}_{\mu}[f]$

▷ Suppose we have a Markov kernel N, and would like to show ∀v:

 $\mathfrak{D}_{\varphi}(\nu N \parallel \mu N) \leqslant (1-\rho)\, \mathfrak{D}_{\varphi}(\nu \parallel \mu)$

 \triangleright Same as proving $\forall f$:

 $\mathsf{Ent}^{\varphi}_{\mu N}[N^{\circ}f] \leqslant (1-\rho) \cdot \mathsf{Ent}^{\varphi}_{\mu}[f]$

 \triangleright This is equivalent to

 $\mathsf{Ent}^{\varphi}_{\mu}[f] - \mathsf{Ent}^{\varphi}_{\mu N}[N^{\circ}f] \geqslant \rho \, \mathsf{Ent}^{\varphi}_{\mu}[f]$

▷ Suppose we have a Markov kernel N, and would like to show ∀v:

 $\mathfrak{D}_{\varphi}(\nu N \parallel \mu N) \leqslant (1-\rho)\, \mathfrak{D}_{\varphi}(\nu \parallel \mu)$

 \triangleright Same as proving $\forall f$:

 $\mathsf{Ent}_{\mu N}^{\varphi}[N^{\circ}f] \leqslant (1-\rho) \cdot \mathsf{Ent}_{\mu}^{\varphi}[f]$

- \triangleright This is equivalent to $\mathsf{Ent}^\varphi_\mu[f] \mathsf{Ent}^\varphi_{\mu N}[N^\circ f] \geqslant \rho \, \mathsf{Ent}^\varphi_\mu[f]$

▷ Suppose we have a Markov kernel N, and would like to show ∀v:

 $\mathfrak{D}_{\varphi}(\nu N \parallel \mu N) \leqslant (1-\rho)\, \mathfrak{D}_{\varphi}(\nu \parallel \mu)$

 \triangleright Same as proving $\forall f$:

 $\mathsf{Ent}^{\varphi}_{\mu N}[N^\circ f] \leqslant (1-\rho) \cdot \mathsf{Ent}^{\varphi}_{\mu}[f]$

- \triangleright This is equivalent to $\mathsf{Ent}^\varphi_\mu[f] \mathsf{Ent}^\varphi_{\mu N}[N^\circ f] \geqslant \rho \, \mathsf{Ent}^\varphi_\mu[f]$
- Lhs is deficit in data processing: $\mathbb{E}_{y \sim \mu N} \left[\text{Ent}_{N^{\circ}(y, \cdot)}^{\Phi}[f] \right]$
- \triangleright Exercise: concave in μ .

▷ Suppose we have a Markov kernel N, and would like to show ∀v:

 $\mathfrak{D}_{\varphi}(\nu N \parallel \mu N) \leqslant (1-\rho)\, \mathfrak{D}_{\varphi}(\nu \parallel \mu)$

 \triangleright Same as proving $\forall f$:

 $\mathsf{Ent}^{\varphi}_{\mu N}[N^\circ f] \leqslant (1-\rho) \cdot \mathsf{Ent}^{\varphi}_{\mu}[f]$

- $\begin{array}{l} \blacktriangleright \quad \text{Lhs is deficit in data processing:} \\ \mathbb{E}_{y\sim\mu N}\left[\mathsf{Ent}^{\varphi}_{N^{\circ}(y,\cdot)}[f]\right] \end{array}$
- \triangleright Exercise: concave in μ .
- $\label{eq:linear} \begin{array}{l} \triangleright \ \mbox{Now suppose } \mu' \mbox{ is a random} \\ \mbox{measure with } \mathbb{E}[\mu'] = \mu. \end{array}$

 \bigcirc Suppose we have a Markov kernel N, and would like to show $\forall \nu :$

 $\mathfrak{D}_{\varphi}(\nu N \parallel \mu N) \leqslant (1-\rho)\, \mathfrak{D}_{\varphi}(\nu \parallel \mu)$

 \triangleright Same as proving $\forall f$:

 $\mathsf{Ent}^{\varphi}_{\mu N}[N^{\circ}f] \leqslant (1-\rho) \cdot \mathsf{Ent}^{\varphi}_{\mu}[f]$

- \triangleright This is equivalent to $\mathsf{Ent}^\varphi_\mu[f] \mathsf{Ent}^\varphi_{\mu N}[N^\circ f] \geqslant \rho \, \mathsf{Ent}^\varphi_\mu[f]$
- $\begin{array}{l} \blacktriangleright \quad \text{Lhs is } \frac{\text{deficit in data processing:}}{\mathbb{E}_{y\sim\mu N}\left[\text{Ent}_{N^{\circ}(y,\cdot)}^{\varphi}[f]\right]} \end{array}$
- \triangleright Exercise: concave in μ .
- $\label{eq:linear} \fboxspace{-1mu} \begin{tabular}{lll} \begin{tabular}{ll$

 \bigcirc Suppose we have a Markov kernel N, and would like to show $\forall \nu :$

 $\mathfrak{D}_{\varphi}(\nu N \parallel \mu N) \leqslant (1-\rho)\, \mathfrak{D}_{\varphi}(\nu \parallel \mu)$

 \triangleright Same as proving $\forall f$:

 $\mathsf{Ent}_{\mu N}^{\varphi}[N^{\circ}f] \leqslant (1-\rho) \cdot \mathsf{Ent}_{\mu}^{\varphi}[f]$

- \triangleright Exercise: concave in μ .
- \triangleright Now suppose μ' is a random measure with $\mathbb{E}[\mu']=\mu.$

 \bigcirc Suppose we have a Markov kernel N, and would like to show $\forall \nu :$

 $\mathfrak{D}_{\varphi}(\nu N \parallel \mu N) \leqslant (1-\rho)\, \mathfrak{D}_{\varphi}(\nu \parallel \mu)$

 \triangleright Same as proving $\forall f$:

 $\mathsf{Ent}_{\mu N}^{\varphi}[N^{\circ}f] \leqslant (1-\rho) \cdot \mathsf{Ent}_{\mu}^{\varphi}[f]$

- \triangleright This is equivalent to $\mathsf{Ent}^\varphi_\mu[f] \mathsf{Ent}^\varphi_{\mu N}[N^\circ f] \geqslant \rho \, \mathsf{Ent}^\varphi_\mu[f]$
- $\begin{array}{l} \blacktriangleright \quad \text{Lhs is } \frac{\text{deficit in data processing:}}{\mathbb{E}_{y\sim\mu N}\left[\text{Ent}_{N^{\circ}(y,\cdot)}^{\varphi}[f]\right]} \end{array}$
- \triangleright Exercise: concave in μ .
- $\, \triangleright \,$ Now suppose μ' is a random measure with $\mathbb{E}[\mu'] = \mu.$

 \triangleright Suppose we have a discrete/continuous time localization scheme { μ_t }.

- \triangleright Suppose we have a discrete/continuous time localization scheme { μ_t }.
- Approximate conservation: at every step $Ent^{\Phi}_{\mu_t}[f]$ does not shrink by much on average.

- \triangleright Suppose we have a discrete/continuous time localization scheme { μ_t }.
- Approximate conservation: at every step $Ent^{\Phi}_{\mu_t}[f]$ does not shrink by much on average.
- In discrete time

$$\mathbb{E}\Big[\mathsf{Ent}_{\mu_{t+1}}^{\varphi}[f] \ \Big| \ \mathcal{F}_t\Big] \geqslant (1-\alpha_t) \,\mathsf{Ent}_{\mu_t}^{\varphi}[f]$$

- \triangleright Suppose we have a discrete/continuous time localization scheme { μ_t }.
- Approximate conservation: at every step $Ent^{\Phi}_{\mu_t}[f]$ does not shrink by much on average.
- In discrete time

$$\mathbb{E}\Big[\mathsf{Ent}^{\varphi}_{\mu_{t+1}}[f] \ \Big| \ \mathcal{F}_t\Big] \geqslant (1-\alpha_t) \, \mathsf{Ent}^{\varphi}_{\mu_t}[f]$$

 \triangleright In continuous time

$$\mathbb{E} \big[d \operatorname{Ent}_{\mu_t}^{\varphi}[f] \ \big| \ \mathcal{F}_t \big] \geqslant - \alpha_t \operatorname{Ent}_{\mu_t}^{\varphi}[f] dt$$

- $\triangleright~$ Suppose we have a discrete/continuous time localization scheme { μ_t }.
- \triangleright Approximate conservation: at every step $\mathsf{Ent}_{\mu_t}^{\varphi}[f]$ does not shrink by much on average.
- In discrete time

$$\mathbb{E}\Big[\mathsf{Ent}_{\mu_{t+1}}^{\varphi}[f] \ \Big| \ \mathfrak{F}_t\Big] \geqslant (1-\alpha_t) \, \mathsf{Ent}_{\mu_t}^{\varphi}[f]$$

In continuous time

$$\mathbb{E} \big[d \operatorname{\mathsf{Ent}}_{\mu_t}^{\varphi} [f] \ \big| \ \mathfrak{F}_t \big] \geqslant - \alpha_t \operatorname{\mathsf{Ent}}_{\mu_t}^{\varphi} [f] dt$$

 $\triangleright\,$ Then we get to transfer contraction rates on μ_t to contraction rates on μ with loss:

$$\gamma \geqslant (1-\alpha_0)(1-\alpha_1)\cdots(1-\alpha_{t-1}) \quad \text{or} \quad \gamma \geqslant \exp\Bigl(-\int_0^t \alpha_s \, ds \Bigr)$$

Approximate conservation of variance

 \triangleright Let us specialize to $Ent^{\Phi} = Var$ and stochastic localization. works for discrete too $d\mu_t(x) = \langle C_t dB_t, x - mean(\mu_t) \rangle \mu_t(x).$ ▷ Let us specialize to $Ent^{\Phi} = Var$ and stochastic localization. works for discrete too $d\mu_t(x) = \langle C_t dB_t, x - mean(\mu_t) \rangle \mu_t(x).$ ▷ We have $\mathbb{E}_{\mu_t}[f^2]$ and $\mathbb{E}_{\mu_t}[f]$ are both martingales. Evolution:

 $d \mathbb{E}_{\mu_t}[f] = \sum_x \langle C_t dB_t, x - \mathsf{mean}(\mu_t) \rangle \mu_t(x) f(x) = \langle C_t dB_t, \nu_t \rangle$

for the vector $\nu_t = \mathbb{E}_{x \sim \mu_t}[f(x)(x - \text{mean}(\mu_t))].$

 \triangleright This means that

 $d \operatorname{Var}_{\mu_t}[f] = (\text{martingale term}) - \nu_t^{\mathsf{T}} \Sigma_t \nu_t dt$

 $\begin{array}{l} \blacktriangleright \quad \text{Let us specialize to } \mathsf{Ent}^{\varphi} = \mathsf{Var} \text{ and stochastic localization} \\ \\ d\mu_t(x) = \langle C_t dB_t, x - \mathsf{mean}(\mu_t) \rangle \mu_t(x). \end{array}$

 \triangleright We have $\mathbb{E}_{\mu_t}[f^2]$ and $\mathbb{E}_{\mu_t}[f]$ are both martingales. Evolution:

 $d \mathbb{E}_{\mu_t}[f] = \sum_x \langle C_t dB_t, x - \mathsf{mean}(\mu_t) \rangle \mu_t(x) f(x) = \langle C_t dB_t, \nu_t \rangle$

for the vector $\nu_t = \mathbb{E}_{x \sim \mu_t}[f(x)(x - \text{mean}(\mu_t))].$

 \triangleright This means that

 $d \operatorname{Var}_{\mu_t}[f] = (\text{martingale term}) - \nu_t^{\mathsf{T}} \Sigma_t \nu_t dt$

 \triangleright As long as Σ_t and v_t are orthogonal, we get that $Var_{\mu_t}[f]$ is a martingale!

Application to Sherrington-Kirkpatrick

 \triangleright Going back to Ising models

$$\mu_t(x) \propto \text{exp}\big(\tfrac{1}{2} x^\intercal J_t x + \langle h_t, x \rangle \big)$$

Application to Sherrington-Kirkpatrick

 \triangleright Going back to Ising models

$$\mu_t(x) \propto \text{exp}\big(\tfrac{1}{2} x^\intercal J_t x + \langle h_t, x \rangle \big)$$

▷ As long as $J_t \succeq 0$ and $rank(J_t) \ge 2$, we can choose nonzero $\Sigma_t \succeq 0$ such that $span(\Sigma_t) \subseteq span(J_t)$

and $\Sigma_t v_t = 0$.
Application to Sherrington-Kirkpatrick

 \triangleright Going back to Ising models

$$\mu_t(x) \propto \text{exp}\big(\tfrac{1}{2} x^\intercal J_t x + \langle h_t, x \rangle \big)$$

$$\label{eq:span} \begin{split} & \triangleright \ \text{As long as } J_t \succeq 0 \text{ and } \mathsf{rank}(J_t) \geqslant 2 \text{, we can choose nonzero } \Sigma_t \succeq 0 \text{ such that} \\ & \quad \mathsf{span}(\Sigma_t) \subseteq \mathsf{span}(J_t) \end{split}$$

and $\Sigma_t v_t = 0$.

 \triangleright The process stops when J_t becomes rank 1, not quite J_t = 0 \oplus

Application to Sherrington-Kirkpatrick

 \triangleright Going back to Ising models

$$\mu_t(x) \propto \text{exp}\big(\tfrac{1}{2} x^\intercal J_t x + \langle h_t, x \rangle \big)$$

$$\label{eq:span} \begin{split} & \triangleright \ \text{As long as } J_t \succeq 0 \text{ and } \mathsf{rank}(J_t) \geqslant 2 \text{, we can choose nonzero } \Sigma_t \succeq 0 \text{ such that} \\ & \quad \mathsf{span}(\Sigma_t) \subseteq \mathsf{span}(J_t) \end{split}$$

and $\Sigma_t v_t = 0$.

- $\triangleright~$ The process stops when J_t becomes rank 1, not quite $J_t=$ 0 $\textcircled{\mbox{\footnotesize e}}$
- \triangleright However, note that for rank 1 matrices $J_t = uu^T$ we have Dobrushin++:

 $\mathbb{J}[i \to j] \leqslant |u_i u_j|$

and $\lambda_{\text{max}}(\textbf{I}) \leqslant \sum_{i} \lvert u_{i} \rvert^{2} = \lVert u \rVert^{2}.$

Application to Sherrington-Kirkpatrick

 \triangleright Going back to Ising models

$$\mu_t(x) \propto \text{exp}\big(\tfrac{1}{2} x^\intercal J_t x + \langle h_t, x \rangle \big)$$

$$\label{eq:span} \begin{split} & \triangleright \ \text{As long as } J_t \succeq 0 \text{ and } \mathsf{rank}(J_t) \geqslant 2 \text{, we can choose nonzero } \Sigma_t \succeq 0 \text{ such that} \\ & \quad \mathsf{span}(\Sigma_t) \subseteq \mathsf{span}(J_t) \end{split}$$

and $\Sigma_t v_t = 0$.

- \triangleright The process stops when J_t becomes rank 1, not quite J_t = 0 \cong
- \triangleright However, note that for rank 1 matrices $J_t = uu^T$ we have Dobrushin++:

 $\mathbb{J}[i \to j] \leqslant |u_i u_j|$

and $\lambda_{\text{max}}(\mathbb{J}) \leqslant \sum_i \lvert u_i \rvert^2 = \lVert u \rVert^2.$

 $\,\triangleright\,$ This shows contraction of χ^2 under Glauber. $\mbox{\textcircled{\sc 0}}$