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Simplicial localization

Imagine µ is on
([n]

k

)
↪→ {0, 1}n.

Denote pi = PS∼µ[i ∈ S]. Let us choose i ∼ µDk→1 = p/k.

Let ν

a random measure

be the conditional on {i}. For w = 1i/pi − 1/k:

ν(x) = (1+ 〈w, x− mean(µ)〉)︸ ︷︷ ︸
linear tilt

µ(x)

Note that µ = Ei[ν]. This is a decomposition of measure.

Continuing this we get a measure-valued random process martingale:

Simplicial localization

Let S ∼ µ, and let e1, . . . , ek be a u.r. permutation of

S. Define µi as conditional of µ on {e1, . . . , ei}. Then

µ = µ0 → µ1 → µ2 → · · · → µk

is called simplicial localization used for local-to-global and trickle down.
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Stochastic localization

Same idea applied in continuous time. For some measure µ on Rn, we get

measure-valued process {µt | t ∈ R>0}.

Controlled by (stochastic) differential equation

dµt(x) = 〈wt, x− mean(µ)〉︸ ︷︷ ︸
linear tilt

µt(x)

where now wt is a mean zero random infinitesimal vector

think of infinitesimal Gaussian

.

Our goal will be to find analogs of local-to-global, etc. for more general,

e.g., continuous, distributions.

To make sense of this equation, we need some basics of Itô calculus.
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Intro to Itô calculus

Brownian motion: in nD, the process {Bt | t ∈ Rn
>0} such that

Bt − Bs ∼ N(0, (t− s)I)

and for disjoint [s1, t1], . . . , [sk, tk] we have Bti − Bsi are independent.

t

Bt

We think of dBt intuitively as Bt+dt − Bt: dBt ∼ N(0, dt · I)
Fact: dBt is not on the order of dt, but rather on the order of

√
dt!

Itô process: {Xt | t ∈ R>0} derived via stochastic differential equation (SDE):

dXt = utdt+ CtdBt

for some “nice” vector and matrix valued processes {ut}, {Ct}.

ut, Ct can only depend on the past; technical term: adapted.
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Itô formula

Basic question: if we have 1D Itô process Xt defined by

dXt = utdt+ ctdBt

and define Yt = f(Xt), what is the equation defining Yt?

Incorrect: if we apply chain rule of calculus, we get

dYt = f ′(Xt)dXt = f ′(Xt)utdt+ f ′(Xt)ctdBt

This is incorrect because dYt = f ′(Xt)dXt is only first-order approximation

of f, and dXt has terms of order
√
dt!

Correction: expand up to second-order Taylor series, and use dB2
t = dt,

also drop anything of lower order than dt.

This gives us the Itô formula:

dYt =
(
f ′(Xt)ut +

1

2
f ′′(Xt)c

2
t︸ ︷︷ ︸

Itô term

)
dt+ f ′(Xt)ctdBt
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Intuition: curvature creates drift!

Xt

Yt

Itô’s lemma (nD to 1D)

For dXt = utdt+ CtdBt if we have Yt = f(Xt), then

dYt =

(
〈∇f(Xt), ut〉+

1

2
tr(Cᵀ

t∇
2f(Xt)Ct)

)
dt+ 〈∇f(Xt), CtdBt〉.
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Stochastic localization

For µ on subset of Rn, and adapted

matrix process Ct, we define ∀x

dµt(x) = 〈x− mean(µt), CtdBt〉µt(x)

For continuous µ, we should think

of it as density. You can for

simplicity assume support is finite.

It is a martingale, with filtration Ft:

E[µt(x) | Fs] = µs(x) ∀s 6 t

If µ is normalized, µt remains so:

d(
∑

x µt(x)) = 〈
∑

x µt(x)(x−
mean(µt)), CtdBt〉 = 0

Changes in µt are proportional to

itself. Log-scale? Let’s use Itô’s

lemma for f = log.
If Xt = µt(x), and Yt = log(Xt),
then dYt =

〈x−mean(µt), CtdBt〉+(Itô term)dt

where Itô term is
−(x−mean(µt))

ᵀCtC
ᵀ
t (x−mean(µt))·X2

t

2X2
t

So if we name Σt = CtC
ᵀ
t , then

d logµt(x) = −1
2x

ᵀΣtxdt+ affine(x)
At any time t, we have µt(x) ∝

µ(x) · exp
(
−1

2x
ᵀAtx+ 〈ht, x〉

)
where At =

∫t
0 Σsds.
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Multiplying by Gaussian density:

µ µt

Remark: this process, up to scale/time, same as how diffusion models sample.
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Ising models

+ +

+−

µ(x) ∝ exp(12
∑

u,vJuv

symmetric matrix

xuxv +
∑

v hvxv)

Dobrushin: when J has row/col `1
norms < 1, we get fast mixing.

Sherrington-Kirkpatrick model:

random Gaussian matrix J with

Juv ∼ N(0, β/n).

Open: find the exact threshold β

where Glauber mixes fast w.h.p.

Dobrushin gives weak bound:

β 6 Θ(1/n) =⇒ fast mixing

[Eldan-Koehler-Zeitouni] got

β 6 Θ(1) =⇒ fast mixing

Within O(1) of optimal.

They only used bounds on

spectrum of random matrices:

Theorem [Eldan-Koehler-Zeitouni]

If λmax(J) − λmin(J) < 1, then Glauber

mixes fast.

We now know O(n logn) mixing

[A-Jain-Koehler-Pham-Vuong].
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Strategy

We may assume 0 � J � (1− δ)I, since
diagonals of J do not matter.

Via stochastic localization we can kill parts of J:

µt(x) ∝ exp
(
1
2x

ᵀJtx+ 〈ht, x〉
)

where Jt = J−
∫t
0 Σsds.

We will keep Jt � 0, and try to get it as close to 0

as possible.

0 would be a product distribution

ideal

.
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φ-entropies

Suppose we have a Markov kernel

N, and would like to show ∀ν:
Dφ(νN ‖ µN) 6 (1− ρ)Dφ(ν ‖ µ)

Same as proving ∀f:
EntφµN[N◦f] 6 (1− ρ) · Entφµ [f]

This is equivalent to

Entφµ [f] − EntφµN[N◦f] > ρEntφµ [f]
Lhs is deficit in data processing:

Ey∼µN

[
Entφ

N◦(y,·)[f]
]

Exercise: concave in µ.

Now suppose µ ′ is a random

measure with E[µ ′] = µ.

µ µ ′

µN µ ′N

decomposed

decomposed

ρ
c
o
n
tr
a
c
ti
o
n

ρ
′
c
o
n
tr
a
c
ti
o
n

If we know each µ ′ contracts
φ-divergence by 1− ρ ′, we get

Entφµ [f]−EntφµN[N◦f] > ρ ′ E[Entφµ ′ [f]]

If we prove

E[Entφµ ′ [f]] > γ · Entφµ [f]
we get to conclude ρ > γ · ρ ′.
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Approximate conservation [Chen-Eldan]

Suppose we have a discrete/continuous time localization scheme {µt}.

Approximate conservation: at every step Entφµt
[f] does not shrink by much

on average.

In discrete time

E
[
Entφµt+1

[f]
∣∣∣ Ft

]
> (1− αt)Entφµt

[f]

In continuous time

E
[
dEntφµt

[f]
∣∣ Ft

]
> −αt Entφµt

[f]dt

Then we get to transfer contraction rates on µt to contraction rates on µ

with loss:

γ > (1− α0)(1− α1) · · · (1− αt−1) or γ > exp
(
−
∫t
0 αsds

)



16/18

Approximate conservation [Chen-Eldan]

Suppose we have a discrete/continuous time localization scheme {µt}.

Approximate conservation: at every step Entφµt
[f] does not shrink by much

on average.

In discrete time

E
[
Entφµt+1

[f]
∣∣∣ Ft

]
> (1− αt)Entφµt

[f]

In continuous time

E
[
dEntφµt

[f]
∣∣ Ft

]
> −αt Entφµt

[f]dt

Then we get to transfer contraction rates on µt to contraction rates on µ

with loss:

γ > (1− α0)(1− α1) · · · (1− αt−1) or γ > exp
(
−
∫t
0 αsds

)



16/18

Approximate conservation [Chen-Eldan]

Suppose we have a discrete/continuous time localization scheme {µt}.

Approximate conservation: at every step Entφµt
[f] does not shrink by much

on average.

In discrete time

E
[
Entφµt+1

[f]
∣∣∣ Ft

]
> (1− αt)Entφµt

[f]

In continuous time

E
[
dEntφµt

[f]
∣∣ Ft

]
> −αt Entφµt

[f]dt

Then we get to transfer contraction rates on µt to contraction rates on µ

with loss:

γ > (1− α0)(1− α1) · · · (1− αt−1) or γ > exp
(
−
∫t
0 αsds

)



16/18

Approximate conservation [Chen-Eldan]

Suppose we have a discrete/continuous time localization scheme {µt}.

Approximate conservation: at every step Entφµt
[f] does not shrink by much

on average.

In discrete time

E
[
Entφµt+1

[f]
∣∣∣ Ft

]
> (1− αt)Entφµt

[f]

In continuous time

E
[
dEntφµt

[f]
∣∣ Ft

]
> −αt Entφµt

[f]dt

Then we get to transfer contraction rates on µt to contraction rates on µ

with loss:

γ > (1− α0)(1− α1) · · · (1− αt−1) or γ > exp
(
−
∫t
0 αsds

)



16/18

Approximate conservation [Chen-Eldan]

Suppose we have a discrete/continuous time localization scheme {µt}.

Approximate conservation: at every step Entφµt
[f] does not shrink by much

on average.

In discrete time

E
[
Entφµt+1

[f]
∣∣∣ Ft

]
> (1− αt)Entφµt

[f]

In continuous time

E
[
dEntφµt

[f]
∣∣ Ft

]
> −αt Entφµt

[f]dt

Then we get to transfer contraction rates on µt to contraction rates on µ

with loss:

γ > (1− α0)(1− α1) · · · (1− αt−1) or γ > exp
(
−
∫t
0 αsds

)



17/18

Approximate conservation of variance

Let us specialize to Entφ = Var and stochastic localization works for discrete too:

dµt(x) = 〈CtdBt, x− mean(µt)〉µt(x).

We have Eµt [f
2] and Eµt [f] are both martingales. Evolution:

dEµt [f] =
∑

x〈CtdBt, x− mean(µt)〉µt(x)f(x) = 〈CtdBt, vt〉
for the vector vt = Ex∼µt [f(x)(x− mean(µt))].

This means that

dVarµt [f] = (martingale term) − v
ᵀ
tΣtvtdt

As long as Σt and vt are orthogonal, we get that Varµt [f] is a martingale!
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Application to Sherrington-Kirkpatrick

Going back to Ising models

µt(x) ∝ exp
(
1
2x

ᵀJtx+ 〈ht, x〉
)

As long as Jt � 0 and rank(Jt) > 2, we can choose nonzero Σt � 0 such that

span(Σt) ⊆ span(Jt)
and Σtvt = 0.

The process stops when Jt becomes rank 1, not quite Jt = 0

However, note that for rank 1 matrices Jt = uuᵀ we have Dobrushin++:

I[i → j] 6 |uiuj|

and λmax(I) 6
∑

i|ui|
2 = ‖u‖2.

This shows contraction of χ2 under Glauber.
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