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C Imagine pis on ([2]) — {0, 1}™.

> Denote p; = Ps_,[i € S]. Let us choose i ~ uDy_,1 = p/k.
> Let \T/ be the conditional on {i}. Forw = 1;/p; — 1/k:
a random measure V(X) = (1 + <W’X T mean(u)>) M(X)

linear tilt
> Note that u = E;[v]. Thisis a decomposition of measure.

> Continuing this we get a measure-valued random process«— martingale

Simplicial localization

Let S ~ u, and let eq,...,ex be a u.r. permutation of
S. Define p; as conditional of pon{eq,...,ei}. Then

H=Ho = H1 = H2 = = Hk

is called simplicial localization«— used for local-to-global and trickle down
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> Same idea applied in continuous time. For some measure pon R™, we get
measure-valued process {pg |t € Rxo}

Controlled by (stochastic) differential equation
dpe(x) = (we, x — mean(p)) pe(x)

linear tilt
where now wy is a mean zero random imcini%esimql vector.

think of infinitesimal Gaussian
> Our goal will be to find analogs of local-to-global, etc. for more general,
e.g., continuous, distributions.

> To make sense of this equation, we need some basics of 1t6 calculus.
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Mntro to 116 calculus

(B

\VAVAV,

Brownian motion: in nD, the process {By | t € Rgo} such that
B¢ — Bs ~ N(0, (t —s)I)
and for disjoint [s1,t1],..., [sk, tk] we have By, — B, are independent.

po T

We think of dBy intuitively as B¢, gt — Bt: dBy ~ N(0,dt - 1)
Fact: dB¢ is not on the order of dt, but rather on the order of v/dt!

110 process: {X¢ | t € Ry} derived via stochastic differential equation (SDE):

dXt = utdt + CtdBt
for some “nice” vector and matrix valued processes {u},{C¢}.
u, C¢ can only depend on the past; technical term: adapted.
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(B

(B

Basic question: if we have 1D 1t6 process X defined by
dX¢ = uedt + c¢dBy
and define Yy = f(X¢), what is the equation defining Y;?
incorrect: if we apply chain rule of calculus, we get
dYy = f'(X¢)dX¢ = ' (X¢)uedt + /(X )cr dBy

> Thisis incorrect because dY; = f/(X)dXy is only first-order approximation

of f, and dX; has terms of order v/dt!

Correction: expand up to second-order Taylor series, and use dB? = dt,
also drop anything of lower order than dt.
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\Ité formula /
>

v ¢ ¢ v

if we have 1D Itd process X defined by
dX¢ =uidt 4 c¢dBy
and define Yy = f(X¢), what is the equation defining Y;?
if we apply chain rule of calculus, we get
dYy = f/(X¢)dX¢ = /(X uedt + /(X )ey dBy
This is incorrect because dY; = f/(X{)dX is only first-order approximation
of f, and dX; has terms of order v/dt!

expand up to second-order Taylor series, and use dB? = dt,
also drop anything of lower order than dt.

This gives us the

1
@Yy = (F/(Xoue + (X )e? ) dt+ (X JerdBy

~—_——
[t6 term
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Intuition: curvature creates drift!

Y €«--0O=--->
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Intuition: curvature creates drift!

Xt

Ité’s lemma (nD to 1D)

For dXi = uidt + C¢dB; if we have Y = f(Xy), then

dYt = (<Vf(xt),Ut> -+ %tr(CIVZf(Xt)Ct)) dt =F <Vf(Xt), CtdBt>.
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(x—mean(p), C¢dBy)+(1t0 term)dt
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Stochastic localization

For u on subset of R™, and adapted
matrix process C¢, we define Vx

dpe(x) = (x — mean(pe), CedBy)pe (x)

> For continuous p, we should think
of it as density. You can for

simplicity assume support is finite.

> ltisa , with filtration JF:
Elpe(x) | Fsl = ps(x) Vs <t
O If wis normalized, py remains so:

d(Zx Ht(x)) = <ZX Ht(x) (X -
mean(yue)), CedBy) = 0

o

o

o

o

Changes in u are proportional to
itself. Log-scale? Let’s use

for f = log.
I Xt = Ht(X), Ond Yt = IOg(Xt),
then dY; =

(x—mean(p), C¢dBy)+(1t0 term)dt

where [t6 termis
—(x—mean(p))TC(CT (x—mean(p)) - X2
2X?

So if we name Ly = C¢C], then
dlog pe(x) = —%XTZtht + affine(x)
At any time t, we have p¢(x) o

w(x) - exp(—%xTAtx + (he, X))
where A; = f(t) Y.ds.
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Multiplying by Gaussian density:

\

Remark: this process, up to scale/time, same as how diffusion models sample.
1/18



> Localization schemes
> 1té calculus
(> Stochastic localization

Conservation

> Sherrington-Kirkpatrick model

> ¢-entropies in localization scheme
> Approximate conservation

\ 12/18



Stochastic Calculus
> Localization schemes

O 1t6 calculus

(> Stochastic localization

> Sherrington-Kirkpatrick model
> ¢-entropies in localization scheme
> Approximate conservation




Msing models /
O—@
eb.e
n(x) o exp(% Ty + 3, hxy)

symmetric matrix

13/18



Msing models /
O—@
a.eb
n(x) o exp(% Ty + 3, hxy)

symmetric matrix

> Dobrushin: when J has row/col ¢4
norms < 1, we get fast mixing.

13/18



Msing models /
O—@
a.eb
n(x) o exp(% Ty + 3, hxy)

symmetric matrix

> Dobrushin: when J has row/col ¢4
norms < 1, we get fast mixing.

> Sherrington-Kirkpatrick model:
random Gaussian matrix J with
Juv ~ N(O, B/n).

13/18



Msing models /
O—@
a.e
R(X) 0 exp(3 Xy JuXuky + 2y o)

symmetric matrix

> Dobrushin: when J has row/col ¢4
norms < 1, we get fast mixing.

> Sherrington-Kirkpatrick model:
random Gaussian matrix | with

Juv ~ N(O, B/n).
> Open: find the exact threshold B
where Glauber mixes fast w.h.p.

13/18



Msing models /

> Dobrushin gives weak bound:

O—®
. B <O(1/n) = fast mixing
D—

n(x) o eXp(% Zu,\;]LTLvXuXv + Zv hyXxy)
symmetric matrix
> Dobrushin: when J has row/col ¢4
norms < 1, we get fast mixing.

> Sherrington-Kirkpatrick model:
random Gaussian matrix | with
Juv ~ N(O, B/n).

> Open: find the exact threshold B
where Glauber mixes fast w.h.p.

13/18



Msing models /

O—0O > Dobrushin gives weak bound:
. B <O(1/n) = fast mixing
H— > [Eldan-Koehler-Zeitouni] got

B <O(1) = fast mixing

n(x) o eXp(% Zu,\;]LTLvXuXv + Zv hyXxy)
symmetric matrix
> Dobrushin: when J has row/col ¢4
norms < 1, we get fast mixing.

Sherrington-Kirkpatrick model:
random Gaussian matrix | with

Juv ~ N(O, B/n).
> Open: find the exact threshold B
where Glauber mixes fast w.h.p.

13/18



Msing models /

O—0O > Dobrushin gives weak bound:
. B <O(1/n) = fast mixing
> > > [Eldan-Koehler-Zeitouni] got

B <O(1) = fast mixing
k(x) o exp(5 Zu,vILTLVxU—XV +2 X)) > within O(1) of optimal. ©

symmetric matrix

> Dobrushin: when J has row/col ¢4
norms < 1, we get fast mixing.

Sherrington-Kirkpatrick model:
random Gaussian matrix | with

Juv ~ N(O, B/n).
> Open: find the exact threshold B
where Glauber mixes fast w.h.p.

13/18



\Ising models /

O—0O > Dobrushin gives weak bound:
. B <O(1/n) = fast mixing
> > > [Eldan-Koehler-Zeitouni] got
B <O(1) = fast mixing
k(x) o exp(5 Zu,vILTLVxUXV +2 X)) > within O(1) of optimal. ©
symmetric matrix > They only used bounds on

> Dobrushin: when ] has row/col ¢ spectrum of random matrices:
norms < 1, we get fast mixing.

Sherrington-Kirkpatrick model:
random Gaussian matrix | with
Juv ~ N(O, B/n).

> Open: find the exact threshold B
where Glauber mixes fast w.h.p.
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J
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D—
(x) oc eXp(% Zu,vILTLvXuXv + Zv hyxy)
symmetric matrix
> Dobrushin: when J has row/col ¢4

norms < 1, we get fast mixing.
> Sherrington-Kirkpatrick model:
random Gaussian matrix | with
Juv ~ N(O, B/n).
> Open: find the exact threshold B
where Glauber mixes fast w.h.p.

> Dobrushin gives weak bound:
B <O(1/n) = fast mixing
> [Eldan-Koehler-Zeitouni] got
B <O(1) = fast mixing
& Within O(1) of optimal. ©

> They only used bounds on
spectrum of random matrices:

Theorem [Eldan-Koehler-Zeitouni]

If Amax(J) — Amin(J) < 1, then Glauber
mixes fast.

> We now know O(nlogn) mixing
[A-Jain-Koehler-Pham-Vuong].
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> Wemay assume 0 < J < (1—298)1, since
of J do not matter.

> Via stochastic localization we can kill parts of J:
e (x) o< exp(%xT]tx + <ht,x>)
where Jy = ] — [ Zsds.

> We will keep J¢ = 0, and try to get it as close to 0
as possible.

> 0wouldbea

ideal
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\VAV,
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> Suppose we have a Markov kernel m decomposed "
N, and would like to show Vv:

Dp(VN [ uN) < (1 =p) Dy (v || 1)
> Same as proving Vf:
Ent?IN°f] < (1—p) - Ent[f]
> This is equivalent to decomposed
& UN ———— > u/N
Ent? [f] — Ent [N°f] > p Ent?[f]

> Lhsis deficitin doto processing:

p contraction
p’ contraction

> If we know each u’ contracts
¢d-divergence by 1 — p’, we get
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J

> Suppose we have a Markov kernel
N, and would like to show Vv:

Dy(VN[[uN) < (1 =p) D (v || 1)
> Same as proving Vf:
Ent?IN°f] < (1—p) - Ent[f]
> This is equivalent to
Ent? [f] — Ent? [N°f] > p Ent®[f]
O Lhsis in data processing:
Ey N [Entﬁo[y‘.)[f]]
Exercise: in .
Now suppose p’ is a random
measure with E[u'] = .

\VAV,

decomposed
W—>npu

decomposed
uN ——— u/N

> If we know each u’ contracts
¢d-divergence by 1 — p’, we get
Ent?[fl—Ent?\ [N°f] > p’ E[Ent ) [f]]
> If we prove
E[Ent® [f] >y - Ent [f]

we get to conclude p > v - p’.
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\Approximate conservation [Chen-Eldan] /

o

Suppose we have a discrete/continuous time localization scheme {pt}.

at every step Ent? [f] does not shrink by much
on average.

> In discrete time

E[Entd,, [l | 5] > (01— o) Ent, [f

Ht+1
In continuous time
E[dEnt® [f] | F¢| > —o Ent® [fldt

Then we get to transfer contraction rates on p; to contraction rates on p
with loss:

Y= (1—ox)(1—o1) - (1—a¢1) or v>eXP(—Lt)ocst)
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> Let us specialize to Ent® = Var and stochastic localization< works for discrete too
dpe(x) = (CedB, x — mean(pue)) e (x).
> We have E,, [f?] and E,, [f] are both martingales. Evolution:
dE, [fl =3 (CidBg,x — mean(pe))pe (x)f(x) = (CidBy, vy)
for the vector vy = Exy [f(x)(x — mean(p))].

> This means that

d Vary, [f] = (martingale term) — v] Zyvedt
> Aslong as £; and vy are orthogonal, we get that Var,, [f] is a martingale! @
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> Going back to Ising models
we(x) o< exp(3xTTex + (he, x))
> Aslong asJ¢ = 0 and rank(J¢) > 2, we can choose nonzero ¢ = 0 such that
span(Z¢) C span(]i)
and Zivy = 0.
> The process stops when J; becomes rank 1, not quite J; =0 @
> However, note that for rank 1 matrices Jy = uuT we have Dobrushin++:
Ii =] < lupyl
and Amax(9) < 3 hwil? = |Juf)%
> This shows contraction of x2 under Glauber. ©
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