CS 263: Counting and Sampling

Nima Anari

TStanford
slides for

Stochastic Localization

Review

Skipped...

Stochastic Calculus

- Localization schemes
- Itô calculus

D Stochastic localization

Conservation

\checkmark Sherrington-Kirkpatrick model
D ϕ-entropies in localization scheme

- Approximate conservation

Stochastic Calculus

D Localization schemes

- Itô calculus

D Stochastic localization

Conservation

\checkmark Sherrington-Kirkpatrick model
D ϕ-entropies in localization scheme

- Approximate conservation

Simplicial localization

D Imagine μ is on $\left(\begin{array}{c}{\left[\begin{array}{c}n] \\ k\end{array}\right)} \\ \hline\end{array}\{0,1\}^{n}\right.$.

Simplicial localization

D Imagine μ is on $\binom{[\mathrm{n}]}{\mathrm{k}} \hookrightarrow\{0,1\}^{\mathrm{n}}$.
\bigcirc Denote $p_{i}=\mathbb{P}_{S \sim \mu}[i \in S]$. Let us choose $i \sim \mu D_{k \rightarrow 1}=p / k$.

Simplicial localization

D Imagine μ is on $\left(\begin{array}{c}{\left[\begin{array}{c}n] \\ k\end{array}\right) \hookrightarrow\{0,1\}^{n} \text {. } \text {. } \text {. }} \\ \text {. }\end{array}\right.$
\triangle Denote $p_{i}=\mathbb{P}_{S \sim \mu}[i \in S]$. Let us choose $i \sim \mu D_{k \rightarrow 1}=p / k$.
D Let y be the conditional on $\{i\}$. For $w=\mathbb{1}_{\mathfrak{i}} / \mathfrak{p}_{\boldsymbol{i}}-\mathbb{1} / \mathrm{k}$:
a random measure

$$
v(x)=\underbrace{(1+\langle w, x-\operatorname{mean}(\mu)\rangle)}_{\text {linear tilt }} \mu(x)
$$

Simplicial localization

\triangle Denote $p_{i}=\mathbb{P}_{S \sim \mu}[i \in S]$. Let us choose $i \sim \mu D_{k \rightarrow 1}=p / k$.
D Let y be the conditional on $\{i\}$. For $w=\mathbb{1}_{\mathfrak{i}} / \mathfrak{p}_{\boldsymbol{i}}-\mathbb{1} / \mathrm{k}$:
a random measure

$$
v(x)=\underbrace{(1+\langle w, x-\operatorname{mean}(\mu)\rangle)}_{\text {linear tilt }} \mu(x)
$$

\bigcirc Note that $\mu=\mathbb{E}_{i}[\imath]$. This is a decomposition of measure.

Simplicial localization

\triangle Denote $p_{i}=\mathbb{P}_{S \sim \mu}[i \in S]$. Let us choose $i \sim \mu D_{k \rightarrow 1}=p / k$.
\bigcirc Let γ be the conditional on $\{i\}$. For $w=\mathbb{1}_{\mathfrak{i}} / \mathfrak{p}_{\mathfrak{i}}-\mathbb{1} / \mathrm{k}$:
a random measure

$$
v(x)=\underbrace{(1+\langle w, x-\operatorname{mean}(\mu)\rangle)}_{\text {linear tilt }} \mu(x)
$$

\triangleright Note that $\mu=\mathbb{E}_{i}[v]$. This is a decomposition of measure.
\bigcirc Continuing this we get a measure-valued random process: \leftarrow martingale

Simplicial localization

\bigcirc Imagine μ is on $\left(\begin{array}{c}{\left[\begin{array}{c}n] \\ k\end{array}\right)} \\ \hline\end{array}\{0,1\}^{n}\right.$.
D Denote $p_{i}=\mathbb{P}_{S \sim \mu}[i \in S]$. Let us choose $i \sim \mu D_{k \rightarrow 1}=p / k$.
D Let γ be the conditional on $\{i\}$. For $w=\mathbb{1}_{\mathfrak{i}} / p_{i}-\mathbb{1} / \mathrm{k}$:
a random measure

$$
v(x)=\underbrace{(1+\langle w, x-\operatorname{mean}(\mu)\rangle)}_{\text {linear tilt }} \mu(x)
$$

\checkmark Note that $\mu=\mathbb{E}_{\mathfrak{i}}[v]$. This is a decomposition of measure.
D Continuing this we get a measure-valued random process: \leftarrow martingale

Simplicial localization

Let $S \sim \mu$, and let e_{1}, \ldots, e_{k} be a u.r. permutation of
S. Define μ_{i} as conditional of μ on $\left\{e_{1}, \ldots, e_{i}\right\}$. Then

$$
\mu=\mu_{0} \rightarrow \mu_{1} \rightarrow \mu_{2} \rightarrow \cdots \rightarrow \mu_{\mathrm{k}}
$$

is called simplicial localization \longleftarrow used for local-to-global and trickle down

Stochastic localization

- Same idea applied in continuous time. For some measure μ on \mathbb{R}^{n}, we get measure-valued process $\left\{\mu_{\mathrm{t}} \mid \mathrm{t} \in \mathbb{R} \geqslant 0\right\}$.

Stochastic localization

\bigcirc Same idea applied in continuous time. For some measure μ on \mathbb{R}^{n}, we get measure-valued process $\left\{\mu_{\mathrm{t}} \mid \mathrm{t} \in \mathbb{R} \geqslant 0\right\}$.
\bigcirc Controlled by (stochastic) differential equation

$$
\mathrm{d} \mu_{\mathrm{t}}(x)=\underbrace{\left\langle w_{\mathrm{t}}, x-\operatorname{mean}(\mu)\right\rangle}_{\text {linear tilt }} \mu_{\mathrm{t}}(x)
$$

where now w_{t} is a mean zero random infinitesimal vector.
think of infinitesimal Gaussian

Stochastic localization

\bigcirc Same idea applied in continuous time. For some measure μ on \mathbb{R}^{n}, we get measure-valued process $\left\{\mu_{\mathrm{t}} \mid \mathrm{t} \in \mathbb{R} \geqslant 0\right\}$.
\bigcirc Controlled by (stochastic) differential equation

$$
\mathrm{d} \mu_{\mathrm{t}}(x)=\underbrace{\left\langle w_{\mathrm{t}}, x-\operatorname{mean}(\mu)\right\rangle}_{\text {linear tilt }} \mu_{\mathrm{t}}(x)
$$

where now w_{t} is a mean zero random infinitesimal vector.
think of infinitesimal Gaussian
\bigcirc Our goal will be to find analogs of local-to-global, etc. for more general, e.g., continuous, distributions.

Stochastic localization

\bigcirc Same idea applied in continuous time. For some measure μ on \mathbb{R}^{n}, we get measure-valued process $\left\{\mu_{\mathrm{t}} \mid \mathrm{t} \in \mathbb{R} \geqslant 0\right\}$.
\checkmark Controlled by (stochastic) differential equation

$$
\mathrm{d} \mu_{\mathrm{t}}(x)=\underbrace{\left\langle w_{\mathrm{t}}, x-\operatorname{mean}(\mu)\right\rangle}_{\text {linear tilt }} \mu_{\mathrm{t}}(x)
$$

where now w_{t} is a mean zero random infinitesimal vector.
D Our goal will be to find analogs of local-to-global, etc. for more general, e.g., continuous, distributions.
D To make sense of this equation, we need some basics of Itô calculus.

Intro to Itô calculus

D Brownian motion: in $n D$, the process $\left\{\mathrm{B}_{\mathrm{t}} \mid \mathrm{t} \in \mathbb{R}_{\geqslant 0}^{n}\right\}$ such that

$$
\mathrm{B}_{\mathrm{t}}-\mathrm{B}_{\mathrm{s}} \sim \mathcal{N}(0,(\mathrm{t}-\mathrm{s}) \mathrm{I})
$$

and for disjoint $\left[s_{1}, t_{1}\right], \ldots,\left[s_{k}, t_{k}\right]$ we have $B_{t_{i}}-B_{s_{i}}$ are independent.

Intro to Itô calculus

D Brownian motion: in $n D$, the process $\left\{B_{t} \mid t \in \mathbb{R}_{\geqslant 0}^{n}\right\}$ such that

$$
\mathrm{B}_{\mathrm{t}}-\mathrm{B}_{\mathrm{s}} \sim \mathcal{N}(0,(\mathrm{t}-\mathrm{s}) \mathrm{I})
$$

and for disjoint $\left[s_{1}, t_{1}\right], \ldots,\left[s_{k}, t_{k}\right]$ we have $B_{t_{i}}-B_{s_{i}}$ are independent.

D We think of dB_{t} intuitively as $\mathrm{B}_{\mathrm{t}+\mathrm{dt}}-\mathrm{B}_{\mathrm{t}}: \mathrm{dB}_{\mathrm{t}} \sim \mathcal{N}(0, \mathrm{dt} \cdot \mathrm{I})$

Intro to Itô calculus

D Brownian motion: in $n D$, the process $\left\{B_{t} \mid t \in \mathbb{R}_{\geqslant 0}^{n}\right\}$ such that

$$
\mathrm{B}_{\mathrm{t}}-\mathrm{B}_{\mathrm{s}} \sim \mathcal{N}(0,(\mathrm{t}-\mathrm{s}) \mathrm{I})
$$

and for disjoint $\left[s_{1}, t_{1}\right], \ldots,\left[s_{k}, t_{k}\right]$ we have $B_{t_{i}}-B_{s_{i}}$ are independent.

D We think of $d B_{t}$ intuitively as $B_{t+d t}-B_{t}: \mathrm{dB}_{\mathrm{t}} \sim \mathcal{N}(0, d t \cdot I)$
D Fact: $d B_{t}$ is not on the order of $d t$, but rather on the order of $\sqrt{d t}$!

Intro to Itô calculus

D Brownian motion: in $n D$, the process $\left\{B_{t} \mid t \in \mathbb{R}_{\geqslant 0}^{n}\right\}$ such that

$$
\mathrm{B}_{\mathrm{t}}-\mathrm{B}_{\mathrm{s}} \sim \mathcal{N}(0,(\mathrm{t}-\mathrm{s}) \mathrm{I})
$$

and for disjoint $\left[s_{1}, t_{1}\right], \ldots,\left[s_{k}, t_{k}\right]$ we have $B_{t_{i}}-B_{s_{i}}$ are independent.

D We think of dB_{t} intuitively as $\mathrm{B}_{\mathrm{t}+\mathrm{dt}}-\mathrm{B}_{\mathrm{t}}: \mathrm{dB}_{\mathrm{t}} \sim \mathcal{N}(0, \mathrm{dt} \cdot \mathrm{I})$
D Fact: dB_{t} is not on the order of dt , but rather on the order of $\sqrt{\mathrm{dt}}$!
D Itô process: $\left\{X_{t} \mid t \in \mathbb{R} \geqslant 0\right\}$ derived via stochastic differential equation (SDE):

$$
\mathrm{d} \mathrm{X}_{\mathrm{t}}=\mathrm{u}_{\mathrm{t}} \mathrm{dt}+\mathrm{C}_{\mathrm{t}} \mathrm{~dB}_{\mathrm{t}}
$$

for some "nice" vector and matrix valued processes $\left\{u_{t}\right\},\left\{C_{t}\right\}$.

Intro to Itô calculus

D Brownian motion: in $n D$, the process $\left\{B_{t} \mid t \in \mathbb{R}_{\geqslant 0}^{n}\right\}$ such that

$$
\mathrm{B}_{\mathrm{t}}-\mathrm{B}_{\mathrm{s}} \sim \mathcal{N}(0,(\mathrm{t}-\mathrm{s}) \mathrm{I})
$$

and for disjoint $\left[s_{1}, t_{1}\right], \ldots,\left[s_{k}, t_{k}\right]$ we have $B_{t_{i}}-B_{s_{i}}$ are independent.

D We think of $d B_{t}$ intuitively as $B_{t+d t}-B_{t}: d B_{t} \sim \mathcal{N}(0, d t \cdot I)$
D Fact: $d B_{t}$ is not on the order of $d t$, but rather on the order of $\sqrt{d t}$!
D Itô process: $\left\{X_{t} \mid t \in \mathbb{R}_{\geqslant 0}\right\}$ derived via stochastic differential equation (SDE):

$$
\mathrm{d} X_{t}=u_{t} d t+C_{t} \mathrm{~dB}_{\mathrm{t}}
$$

for some "nice" vector and matrix valued processes $\left\{u_{t}\right\},\left\{C_{t}\right\}$.
$D u_{t}, C_{t}$ can only depend on the past; technical term: adapted.

Itô formula

D Basic question: if we have 1D Itô process X_{t} defined by

$$
d X_{t}=u_{t} d t+c_{t} d B_{t}
$$

and define $Y_{t}=f\left(X_{t}\right)$, what is the equation defining Y_{t} ?

Itô formula

D Basic question: if we have 1D Itô process X_{t} defined by

$$
d X_{t}=u_{t} d t+c_{t} d B_{t}
$$

and define $Y_{t}=f\left(X_{t}\right)$, what is the equation defining Y_{t} ?
D Incorrect: if we apply chain rule of calculus, we get

$$
d Y_{t}=f^{\prime}\left(X_{t}\right) d X_{t}=f^{\prime}\left(X_{t}\right) u_{t} d t+f^{\prime}\left(X_{t}\right) c_{t} d B_{t}
$$

Itô formula

D Basic question: if we have 1D Itô process X_{t} defined by

$$
d X_{t}=u_{t} d t+c_{t} d B_{t}
$$

and define $Y_{t}=f\left(X_{t}\right)$, what is the equation defining Y_{t} ?
D Incorrect: if we apply chain rule of calculus, we get

$$
d Y_{t}=f^{\prime}\left(X_{t}\right) d X_{t}=f^{\prime}\left(X_{t}\right) u_{t} d t+f^{\prime}\left(X_{t}\right) c_{t} d B_{t}
$$

\bigcirc This is incorrect because $d Y_{t}=f^{\prime}\left(X_{t}\right) d X_{t}$ is only first-order approximation of f, and $d X_{t}$ has terms of order $\sqrt{\mathrm{dt}}$!

Itô formula

D Basic question: if we have 1D Itô process X_{t} defined by

$$
d X_{t}=u_{t} d t+c_{t} d B_{t}
$$

and define $Y_{t}=f\left(X_{t}\right)$, what is the equation defining Y_{t} ?
D Incorrect: if we apply chain rule of calculus, we get

$$
d Y_{t}=f^{\prime}\left(X_{t}\right) d X_{t}=f^{\prime}\left(X_{t}\right) u_{t} d t+f^{\prime}\left(X_{t}\right) c_{t} d B_{t}
$$

\bigcirc This is incorrect because $d Y_{t}=f^{\prime}\left(X_{t}\right) d X_{t}$ is only first-order approximation of f, and $d X_{t}$ has terms of order $\sqrt{\mathrm{dt}}$!
D Correction: expand up to second-order Taylor series, and use $\mathrm{dB}_{\mathrm{t}}^{2}=\mathrm{dt}$, also drop anything of lower order than dt .

Itô formula

D Basic question: if we have 1D Itô process X_{t} defined by

$$
d X_{t}=u_{t} d t+c_{t} d B_{t}
$$

and define $Y_{t}=f\left(X_{t}\right)$, what is the equation defining Y_{t} ?
D Incorrect: if we apply chain rule of calculus, we get

$$
d Y_{t}=f^{\prime}\left(X_{t}\right) d X_{t}=f^{\prime}\left(X_{t}\right) u_{t} d t+f^{\prime}\left(X_{t}\right) c_{t} d B_{t}
$$

D This is incorrect because $d Y_{t}=f^{\prime}\left(X_{t}\right) d X_{t}$ is only first-order approximation of f, and $d X_{t}$ has terms of order $\sqrt{\mathrm{dt}}$!
D Correction: expand up to second-order Taylor series, and use $\mathrm{dB}_{\mathrm{t}}^{2}=\mathrm{dt}$, also drop anything of lower order than dt .
D This gives us the Itô formula:

$$
d Y_{t}=(f^{\prime}\left(X_{t}\right) u_{t}+\underbrace{\frac{1}{2} f^{\prime \prime}\left(X_{t}\right) c_{t}^{2}}_{\text {ltô term }}) d t+f^{\prime}\left(X_{t}\right) c_{t} d B_{t}
$$

Intuition: curvature creates drift!

Intuition: curvature creates drift!

Itô's lemma (nD to 1D)

For $d X_{t}=u_{t} d t+C_{t} d B_{t}$ if we have $Y_{t}=f\left(X_{t}\right)$, then

$$
d Y_{t}=\left(\left\langle\nabla f\left(X_{t}\right), u_{t}\right\rangle+\frac{1}{2} \operatorname{tr}\left(C_{t}^{\top} \nabla^{2} f\left(X_{t}\right) C_{t}\right)\right) d t+\left\langle\nabla f\left(X_{t}\right), C_{t} d B_{t}\right\rangle
$$

Stochastic localization

For μ on subset of \mathbb{R}^{n}, and adapted matrix process C_{t}, we define $\forall x$

$$
\mathrm{d} \mu_{\mathrm{t}}(x)=\left\langle x-\operatorname{mean}\left(\mu_{\mathrm{t}}\right), \mathrm{C}_{\mathrm{t}} \mathrm{~dB} \mathrm{~B}_{\mathrm{t}}\right\rangle \mu_{\mathrm{t}}(x)
$$

Stochastic localization

For μ on subset of \mathbb{R}^{n}, and adapted matrix process C_{t}, we define $\forall x$

$$
\mathrm{d} \mu_{\mathrm{t}}(x)=\left\langle x-\operatorname{mean}\left(\mu_{\mathrm{t}}\right), \mathrm{C}_{\mathrm{t}} \mathrm{~dB} \mathrm{~B}_{\mathrm{t}}\right\rangle \mu_{\mathrm{t}}(x)
$$

D For continuous μ, we should think of it as density. You can for simplicity assume support is finite.

Stochastic localization

For μ on subset of \mathbb{R}^{n}, and adapted matrix process C_{t}, we define $\forall x$

$$
\mathrm{d} \mu_{\mathrm{t}}(x)=\left\langle x-\operatorname{mean}\left(\mu_{\mathrm{t}}\right), \mathrm{C}_{\mathrm{t}} \mathrm{~dB} \mathrm{~B}_{\mathrm{t}}\right\rangle \mu_{\mathrm{t}}(\mathrm{x})
$$

D For continuous μ, we should think of it as density. You can for simplicity assume support is finite.
D It is a martingale, with filtration \mathcal{F}_{t} :

$$
\mathbb{E}\left[\mu_{\mathrm{t}}(x) \mid \mathcal{F}_{\mathrm{s}}\right]=\mu_{\mathrm{s}}(x) \quad \forall \mathrm{s} \leqslant \mathrm{t}
$$

Stochastic localization

For μ on subset of \mathbb{R}^{n}, and adapted matrix process C_{t}, we define $\forall x$

$$
\mathrm{d} \mu_{\mathrm{t}}(x)=\left\langle x-\operatorname{mean}\left(\mu_{\mathrm{t}}\right), \mathrm{C}_{\mathrm{t}} \mathrm{~dB} \mathrm{~B}_{\mathrm{t}}\right\rangle \mu_{\mathrm{t}}(x)
$$

D For continuous μ, we should think of it as density. You can for simplicity assume support is finite.
D It is a martingale, with filtration \mathcal{F}_{t} :

$$
\mathbb{E}\left[\mu_{\mathrm{t}}(\mathrm{x}) \mid \mathcal{F}_{\mathrm{s}}\right]=\mu_{\mathrm{s}}(\mathrm{x}) \quad \forall \mathrm{s} \leqslant \mathrm{t}
$$

\bigcirc If μ is normalized, μ_{t} remains so:

$$
\begin{aligned}
& \mathrm{d}\left(\sum_{x} \mu_{\mathrm{t}}(x)\right)=\left\langle\sum_{x} \mu_{\mathrm{t}}(x)(x-\right. \\
& \left.\left.\quad \operatorname{mean}\left(\mu_{\mathrm{t}}\right)\right), C_{\mathrm{t}} \mathrm{~d} B_{\mathrm{t}}\right\rangle=0
\end{aligned}
$$

Stochastic localization

For μ on subset of \mathbb{R}^{n}, and adapted matrix process C_{t}, we define $\forall x$

$$
\mathrm{d} \mu_{\mathrm{t}}(\mathrm{x})=\left\langle\mathrm{x}-\operatorname{mean}\left(\mu_{\mathrm{t}}\right), \mathrm{C}_{\mathrm{t}} \mathrm{~dB} B_{\mathrm{t}}\right\rangle \mu_{\mathrm{t}}(\mathrm{x})
$$

D For continuous μ, we should think of it as density. You can for simplicity assume support is finite.
\bigcirc It is a martingale, with filtration \mathcal{F}_{t} :

$$
\mathbb{E}\left[\mu_{\mathrm{t}}(x) \mid \mathcal{F}_{\mathrm{s}}\right]=\mu_{\mathrm{s}}(x) \quad \forall \mathrm{s} \leqslant \mathrm{t}
$$

D If μ is normalized, μ_{t} remains so:

$$
\begin{aligned}
& \mathrm{d}\left(\sum_{x} \mu_{\mathrm{t}}(x)\right)=\left\langle\sum_{x} \mu_{\mathrm{t}}(x)(x-\right. \\
& \left.\left.\quad \operatorname{mean}\left(\mu_{\mathrm{t}}\right)\right), C_{\mathrm{t}} \mathrm{~d} B_{\mathrm{t}}\right\rangle=0
\end{aligned}
$$

D Changes in μ_{t} are proportional to itself. Log-scale? Let's use Itô's lemma for $\mathrm{f}=\log$.

Stochastic localization

For μ on subset of \mathbb{R}^{n}, and adapted matrix process C_{t}, we define $\forall x$

$$
\mathrm{d} \mu_{\mathrm{t}}(x)=\left\langle x-\operatorname{mean}\left(\mu_{\mathrm{t}}\right), \mathrm{C}_{\mathrm{t}} \mathrm{~dB} B_{\mathrm{t}}\right\rangle \mu_{\mathrm{t}}(x)
$$

D For continuous μ, we should think of it as density. You can for simplicity assume support is finite.
D It is a martingale, with filtration \mathcal{F}_{t} :

$$
\mathbb{E}\left[\mu_{\mathrm{t}}(x) \mid \mathcal{F}_{s}\right]=\mu_{\mathrm{s}}(x) \quad \forall \mathrm{s} \leqslant \mathrm{t}
$$

\bigcirc If μ is normalized, μ_{t} remains so:

$$
\begin{aligned}
& \mathrm{d}\left(\sum_{x} \mu_{\mathrm{t}}(x)\right)=\left\langle\sum_{x} \mu_{\mathrm{t}}(x)(x-\right. \\
& \left.\left.\quad \operatorname{mean}\left(\mu_{\mathrm{t}}\right)\right), \mathrm{C}_{\mathrm{t}} \mathrm{~dB}_{\mathrm{t}}\right\rangle=0
\end{aligned}
$$

D Changes in μ_{t} are proportional to itself. Log-scale? Let's use Itô's lemma for $\mathrm{f}=\log$.
\checkmark If $X_{t}=\mu_{t}(x)$, and $Y_{t}=\log \left(X_{t}\right)$, then $d Y_{t}=$ $\left\langle x-\operatorname{mean}\left(\mu_{t}\right), C_{t} \mathrm{~dB}_{\mathrm{t}}\right\rangle+($ Itô term $) \mathrm{dt}$ where Itô term is

$$
\frac{-\left(x-\operatorname{mean}\left(\mu_{t}\right)\right)^{\top} C_{t} C_{t}^{\top}\left(x-\operatorname{mean}\left(\mu_{t}\right)\right) \cdot X_{t}^{2}}{2 X_{t}^{2}}
$$

Stochastic localization

For μ on subset of \mathbb{R}^{n}, and adapted matrix process C_{t}, we define $\forall x$

$$
\mathrm{d} \mu_{\mathrm{t}}(\mathrm{x})=\left\langle\mathrm{x}-\operatorname{mean}\left(\mu_{\mathrm{t}}\right), \mathrm{C}_{\mathrm{t}} \mathrm{~dB} B_{\mathrm{t}}\right\rangle \mu_{\mathrm{t}}(\mathrm{x})
$$

D For continuous μ, we should think of it as density. You can for simplicity assume support is finite.
D It is a martingale, with filtration \mathcal{F}_{t} :

$$
\mathbb{E}\left[\mu_{\mathrm{t}}(\mathrm{x}) \mid \mathcal{F}_{\mathrm{s}}\right]=\mu_{\mathrm{s}}(\mathrm{x}) \quad \forall \mathrm{s} \leqslant \mathrm{t}
$$

D If μ is normalized, μ_{t} remains so:

$$
\begin{aligned}
& \mathrm{d}\left(\sum_{x} \mu_{\mathrm{t}}(x)\right)=\left\langle\sum_{x} \mu_{\mathrm{t}}(x)(x-\right. \\
& \left.\left.\quad \operatorname{mean}\left(\mu_{\mathrm{t}}\right)\right), \mathrm{C}_{\mathrm{t}} \mathrm{~dB}_{\mathrm{t}}\right\rangle=0
\end{aligned}
$$

D Changes in μ_{t} are proportional to itself. Log-scale? Let's use Itô's lemma for $\mathrm{f}=\log$.
D If $X_{t}=\mu_{t}(x)$, and $Y_{t}=\log \left(X_{t}\right)$, then $d Y_{t}=$ $\left\langle x-\operatorname{mean}\left(\mu_{t}\right), C_{t} \mathrm{~dB}_{\mathrm{t}}\right\rangle+($ Itô term $) \mathrm{dt}$ where Itô term is

$$
\frac{-\left(x-\operatorname{mean}\left(\mu_{t}\right)\right)^{\top} C_{t} C_{t}^{\top}\left(x-\operatorname{mean}\left(\mu_{t}\right)\right) \cdot X_{t}^{2}}{2 X_{t}^{2}}
$$

D So if we name $\Sigma_{t}=C_{t} C_{t}^{\top}$, then $d \log \mu_{t}(x)=-\frac{1}{2} x^{\top} \Sigma_{t} x d t+\operatorname{affine}(x)$

Stochastic localization

For μ on subset of \mathbb{R}^{n}, and adapted matrix process C_{t}, we define $\forall x$

$$
\mathrm{d} \mu_{\mathrm{t}}(x)=\left\langle x-\operatorname{mean}\left(\mu_{\mathrm{t}}\right), \mathrm{C}_{\mathrm{t}} \mathrm{~dB} B_{\mathrm{t}}\right\rangle \mu_{\mathrm{t}}(x)
$$

D For continuous μ, we should think of it as density. You can for simplicity assume support is finite.
D It is a martingale, with filtration \mathcal{F}_{t} :

$$
\mathbb{E}\left[\mu_{\mathrm{t}}(x) \mid \mathcal{F}_{s}\right]=\mu_{s}(x) \quad \forall s \leqslant t
$$

D If μ is normalized, μ_{t} remains so:

$$
\begin{aligned}
& \mathrm{d}\left(\sum_{x} \mu_{\mathrm{t}}(x)\right)=\left\langle\sum_{x} \mu_{\mathrm{t}}(x)(x-\right. \\
& \left.\left.\quad \operatorname{mean}\left(\mu_{\mathrm{t}}\right)\right), \mathrm{C}_{\mathrm{t}} \mathrm{~d} \mathrm{~B}_{\mathrm{t}}\right\rangle=0
\end{aligned}
$$

D Changes in μ_{t} are proportional to itself. Log-scale? Let's use Itô's lemma for $\mathrm{f}=\log$.
D If $X_{t}=\mu_{t}(x)$, and $Y_{t}=\log \left(X_{t}\right)$, then $d Y_{t}=$ $\left\langle x-\operatorname{mean}\left(\mu_{t}\right), C_{t} \mathrm{~dB}_{\mathrm{t}}\right\rangle+($ Itô term $) \mathrm{dt}$ where Itô term is

$$
\frac{-\left(x-\operatorname{mean}\left(\mu_{t}\right)\right)^{\top} C_{t} C_{t}^{\top}\left(x-\operatorname{mean}\left(\mu_{t}\right)\right) \cdot X_{t}^{2}}{2 X_{t}^{2}}
$$

D So if we name $\Sigma_{t}=C_{t} C_{t}^{\top}$, then $d \log \mu_{t}(x)=-\frac{1}{2} x^{\top} \Sigma_{t} x d t+\operatorname{affine}(x)$
\bigcirc At any time t, we have $\mu_{t}(x) \propto$

$$
\mu(x) \cdot \exp \left(-\frac{1}{2} x^{\top} A_{t} x+\left\langle h_{t}, x\right\rangle\right)
$$

where $A_{t}=\int_{0}^{t} \Sigma_{s} d s$.

Multiplying by Gaussian density:

Remark: this process, up to scale/time, same as how diffusion models sample.

Stochastic Calculus

D Localization schemes

- Itô calculus

D Stochastic localization

Conservation

\checkmark Sherrington-Kirkpatrick model
D ϕ-entropies in localization scheme

- Approximate conservation

Stochastic Calculus

- Localization schemes
- Itô calculus

D Stochastic localization
Conservation
D Sherrington-Kirkpatrick model
D ϕ-entropies in localization scheme

- Approximate conservation

Ising models

$$
\mu(x) \propto \exp \left(\frac{1}{2} \sum_{u, v} J_{u_{v}} x_{u} x_{v}+\sum_{v} h_{v} x_{v}\right)
$$

symmetric matrix

Ising models

$$
\mu(x) \propto \exp \left(\frac{1}{2} \sum_{u, v} J_{u_{v}} x_{u} x_{v}+\sum_{v} h_{v} x_{v}\right)
$$

symmetric matrix
D Dobrushin: when J has row/col ℓ_{1} norms <1, we get fast mixing.

Ising models

$\mu(x) \propto \exp \left(\frac{1}{2} \sum_{u, v} J_{\underset{\sim}{u}} x_{u} x_{v}+\sum_{v} h_{v} x_{v}\right)$

symmetric matrix

D Dobrushin: when J has row/col ℓ_{1} norms <1, we get fast mixing.
\bigcirc Sherrington-Kirkpatrick model: random Gaussian matrix J with $\mathrm{J}_{\mathrm{u} v} \sim \mathcal{N}(0, \beta / n)$.

Ising models

$\mu(x) \propto \exp \left(\frac{1}{2} \sum_{u, v} J_{u v} x_{u} x_{v}+\sum_{v} h_{v} x_{v}\right)$

symmetric matrix

D Dobrushin: when J has row/col ℓ_{1} norms <1, we get fast mixing.
\bigcirc Sherrington-Kirkpatrick model: random Gaussian matrix J with $\mathrm{J}_{\mathrm{u} v} \sim \mathcal{N}(0, \beta / n)$.
\bigcirc Open: find the exact threshold β where Glauber mixes fast w.h.p.

Ising models

D Dobrushin gives weak bound:

$$
\beta \leqslant \Theta(1 / n) \Longrightarrow \text { fast mixing }
$$

$\mu(x) \propto \exp \left(\frac{1}{2} \sum_{u, v} J_{u_{v}} x_{u} x_{v}+\sum_{v} h_{v} x_{v}\right)$ symmetric matrix
D Dobrushin: when J has row/col ℓ_{1} norms <1, we get fast mixing.
\bigcirc Sherrington-Kirkpatrick model: random Gaussian matrix J with $\mathrm{J}_{u v} \sim \mathcal{N}(0, \beta / n)$.
\bigcirc Open: find the exact threshold β where Glauber mixes fast w.h.p.

Ising models

$\mu(x) \propto \exp \left(\frac{1}{2} \sum_{u, v} J_{\substack{ }} \chi_{u} x_{v}+\sum_{v} h_{v} x_{v}\right)$

symmetric matrix

D Dobrushin: when J has row/col ℓ_{1} norms <1, we get fast mixing.
\bigcirc Sherrington-Kirkpatrick model: random Gaussian matrix J with $\mathrm{J}_{\mathrm{u} v} \sim \mathcal{N}(0, \beta / n)$.
\bigcirc Open: find the exact threshold β where Glauber mixes fast w.h.p.

D Dobrushin gives weak bound:

$$
\beta \leqslant \Theta(1 / n) \Longrightarrow \text { fast mixing }
$$

D [Eldan-Koehler-Zeitouni] got

$$
\beta \leqslant \Theta(1) \Longrightarrow \text { fast mixing }
$$

Ising models

$\mu(x) \propto \exp \left(\frac{1}{2} \sum_{u, v} J_{u v} x_{u} x_{v}+\sum_{v} h_{v} x_{v}\right)$

symmetric matrix

D Dobrushin: when J has row/col ℓ_{1} norms <1, we get fast mixing.
\bigcirc Sherrington-Kirkpatrick model: random Gaussian matrix J with $J_{u v} \sim \mathcal{N}(0, \beta / n)$.
\bigcirc Open: find the exact threshold β where Glauber mixes fast w.h.p.
\checkmark Dobrushin gives weak bound:

$$
\beta \leqslant \Theta(1 / n) \Longrightarrow \text { fast mixing }
$$

D [Eldan-Koehler-Zeitouni] got

$$
\beta \leqslant \Theta(1) \Longrightarrow \text { fast mixing }
$$

\checkmark Within $\mathrm{O}(1)$ of optimal. -

Ising models

$\mu(x) \propto \exp \left(\frac{1}{2} \sum_{u, v} J_{\substack{ }} \chi_{u} x_{v}+\sum_{v} h_{v} x_{v}\right)$

symmetric matrix

D Dobrushin: when J has row/col ℓ_{1} norms <1, we get fast mixing.
\checkmark Sherrington-Kirkpatrick model: random Gaussian matrix J with $\mathrm{J}_{\mathrm{u} v} \sim \mathcal{N}(0, \beta / n)$.
\bigcirc Open: find the exact threshold β where Glauber mixes fast w.h.p.
D Dobrushin gives weak bound:

$$
\beta \leqslant \Theta(1 / n) \Longrightarrow \text { fast mixing }
$$

D [Eldan-Koehler-Zeitouni] got

$$
\beta \leqslant \Theta(1) \Longrightarrow \text { fast mixing }
$$

\bigcirc Within $\mathrm{O}(1)$ of optimal. -
D They only used bounds on spectrum of random matrices:

Ising models

$\mu(x) \propto \exp \left(\frac{1}{2} \sum_{u, v} J_{\substack{ }} \chi_{u} x_{v}+\sum_{v} h_{v} x_{v}\right)$

symmetric matrix

D Dobrushin: when J has row/col ℓ_{1} norms <1, we get fast mixing.
\checkmark Sherrington-Kirkpatrick model: random Gaussian matrix J with $\mathrm{J}_{\mathrm{u} v} \sim \mathcal{N}(0, \beta / n)$.
\bigcirc Open: find the exact threshold β where Glauber mixes fast w.h.p.

D Dobrushin gives weak bound:

$$
\beta \leqslant \Theta(1 / n) \Longrightarrow \text { fast mixing }
$$

D [Eldan-Koehler-Zeitouni] got

$$
\beta \leqslant \Theta(1) \Longrightarrow \text { fast mixing }
$$

\bigcirc Within $\mathrm{O}(1)$ of optimal. $;$
D They only used bounds on spectrum of random matrices:

Theorem [Eldan-Koehler-Zeitouni]
If $\lambda_{\max }(\mathrm{J})-\lambda_{\min }(\mathrm{J})<1$, then Glauber mixes fast.

Ising models

$\mu(x) \propto \exp \left(\frac{1}{2} \sum_{u, v} J_{\underset{\sim}{u}} x_{u} x_{v}+\sum_{v} h_{v} x_{v}\right)$

symmetric matrix

D Dobrushin: when J has row/col ℓ_{1} norms <1, we get fast mixing.
\checkmark Sherrington-Kirkpatrick model: random Gaussian matrix J with $\mathrm{J}_{u v} \sim \mathcal{N}(0, \beta / n)$.
\bigcirc Open: find the exact threshold β where Glauber mixes fast w.h.p.
D Dobrushin gives weak bound:

$$
\beta \leqslant \Theta(1 / n) \Longrightarrow \text { fast mixing }
$$

D [Eldan-Koehler-Zeitouni] got

$$
\beta \leqslant \Theta(1) \Longrightarrow \text { fast mixing }
$$

\bigcirc Within $\mathrm{O}(1)$ of optimal. ©
D They only used bounds on spectrum of random matrices:

Theorem [Eldan-Koehler-Zeitouni]
If $\lambda_{\max }(\mathrm{J})-\lambda_{\min }(\mathrm{J})<1$, then Glauber mixes fast.

D We now know $\mathrm{O}(\mathrm{n} \log n)$ mixing [A-Jain-Koehler-Pham-Vuong].

Strategy

Strategy

\bigcirc We may assume $0 \preceq \mathrm{~J} \preceq(1-\delta) \mathrm{I}$, since diagonals of J do not matter.

Strategy

© We may assume $0 \preceq \mathrm{~J} \preceq(1-\delta) \mathrm{I}$, since diagonals of J do not matter.

- Via stochastic localization we can kill parts of J :

$$
\mu_{t}(x) \propto \exp \left(\frac{1}{2} x^{\top} J_{t} x+\left\langle h_{t}, x\right\rangle\right)
$$

where $\mathrm{J}_{\mathrm{t}}=\mathrm{J}-\int_{0}^{\mathrm{t}} \Sigma_{\mathrm{s}} \mathrm{d}$.

Strategy

\bigcirc We may assume $0 \preceq \mathrm{~J} \preceq(1-\delta) \mathrm{I}$, since diagonals of J do not matter.

- Via stochastic localization we can kill parts of J :

$$
\mu_{t}(x) \propto \exp \left(\frac{1}{2} x^{\top} J_{t} x+\left\langle h_{t}, x\right\rangle\right)
$$

where $\mathrm{J}_{\mathrm{t}}=\mathrm{J}-\int_{0}^{\mathrm{t}} \Sigma_{\mathrm{s}} \mathrm{d}$.
\bigcirc We will keep $\mathrm{J}_{\mathrm{t}} \succeq 0$, and try to get it as close to 0 as possible.

Strategy

\bigcirc We may assume $0 \preceq \mathrm{~J} \preceq(1-\delta) \mathrm{I}$, since diagonals of J do not matter.

- Via stochastic localization we can kill parts of J :

$$
\mu_{t}(x) \propto \exp \left(\frac{1}{2} x^{\top} J_{t} x+\left\langle h_{t}, x\right\rangle\right)
$$

where $\mathrm{J}_{\mathrm{t}}=\mathrm{J}-\int_{0}^{\mathrm{t}} \Sigma_{\mathrm{s}} \mathrm{d}$.
\bigcirc We will keep $\mathrm{J}_{\mathrm{t}} \succeq 0$, and try to get it as close to 0 as possible.

- 0 would be a product distribution.

ϕ-entropies

- Suppose we have a Markov kernel N , and would like to show $\forall v$:

$$
\mathcal{D}_{\phi}(v \mathrm{~N} \| \mu \mathrm{N}) \leqslant(1-\rho) \mathcal{D}_{\phi}(v \| \mu)
$$

ϕ-entropies

- Suppose we have a Markov kernel

N , and would like to show $\forall v$:

$$
\mathcal{D}_{\phi}(\nu N \| \mu N) \leqslant(1-\rho) \mathcal{D}_{\phi}(v \| \mu)
$$

\bigcirc Same as proving \forall f:

$$
\operatorname{Ent}_{\mu N}^{\phi}\left[N^{\circ} f\right] \leqslant(1-\rho) \cdot \operatorname{Ent}_{\mu}^{\phi}[f]
$$

ϕ-entropies

- Suppose we have a Markov kernel

N , and would like to show $\forall v$:

$$
\mathcal{D}_{\phi}(\nu N \| \mu N) \leqslant(1-\rho) \mathcal{D}_{\phi}(v \| \mu)
$$

\bigcirc Same as proving $\forall \mathrm{f}$:

$$
\operatorname{Ent}_{\mu N}^{\phi}\left[N^{\circ} f\right] \leqslant(1-\rho) \cdot \operatorname{Ent}_{\mu}^{\phi}[f]
$$

D This is equivalent to

$$
\operatorname{Ent}_{\mu}^{\phi}[f]-\operatorname{Ent}_{\mu N}^{\phi}\left[N^{\circ} f\right] \geqslant \rho \operatorname{Ent}_{\mu}^{\phi}[f]
$$

ϕ-entropies

- Suppose we have a Markov kernel

N , and would like to show $\forall v$:

$$
\mathcal{D}_{\phi}(\nu N \| \mu N) \leqslant(1-\rho) \mathcal{D}_{\phi}(v \| \mu)
$$

\bigcirc Same as proving $\forall f$:

$$
\operatorname{Ent}_{\mu N}^{\phi}\left[N^{\circ} f\right] \leqslant(1-\rho) \cdot \operatorname{Ent}_{\mu}^{\phi}[f]
$$

D This is equivalent to

$$
\operatorname{Ent}_{\mu}^{\phi}[f]-\operatorname{Ent}_{\mu N}^{\phi}\left[N^{\circ} f\right] \geqslant \rho \operatorname{Ent}_{\mu}^{\phi}[f]
$$

\bigcirc Lhs is deficit in data processing:

$$
\mathbb{E}_{\mathbf{y} \sim \mu \mathrm{N}}\left[\operatorname{Ent}_{\mathrm{N}^{\circ}(\mathrm{y}, \cdot)}^{\phi}[f]\right]
$$

ϕ-entropies

- Suppose we have a Markov kernel

N , and would like to show $\forall v$:

$$
\mathcal{D}_{\phi}(\nu N \| \mu N) \leqslant(1-\rho) \mathcal{D}_{\phi}(v \| \mu)
$$

\bigcirc Same as proving $\forall f$:

$$
\operatorname{Ent}_{\mu N}^{\phi}\left[N^{\circ} f\right] \leqslant(1-\rho) \cdot \operatorname{Ent}_{\mu}^{\phi}[f]
$$

\triangle This is equivalent to

$$
\operatorname{Ent}_{\mu}^{\phi}[f]-\operatorname{Ent}_{\mu N}^{\phi}\left[N^{\circ} f\right] \geqslant \rho \operatorname{Ent}_{\mu}^{\phi}[f]
$$

\bigcirc Lhs is deficit in data processing:

$$
\mathbb{E}_{\mathbf{y} \sim \mu \mathrm{N}}\left[\operatorname{Ent}_{\mathrm{N}^{\circ}(\mathrm{y}, \cdot)}^{\phi}[f]\right]
$$

\bigcirc Exercise: concave in μ.

ϕ-entropies

- Suppose we have a Markov kernel

N , and would like to show $\forall v$:

$$
\mathcal{D}_{\phi}(\nu N \| \mu N) \leqslant(1-\rho) \mathcal{D}_{\phi}(v \| \mu)
$$

\bigcirc Same as proving $\forall f$:

$$
\operatorname{Ent}_{\mu N}^{\phi}\left[N^{\circ} f\right] \leqslant(1-\rho) \cdot \operatorname{Ent}_{\mu}^{\phi}[f]
$$

\bigcirc This is equivalent to

$$
\operatorname{Ent}_{\mu}^{\phi}[f]-\operatorname{Ent}_{\mu N}^{\phi}\left[N^{\circ} f\right] \geqslant \rho \operatorname{Ent}_{\mu}^{\phi}[f]
$$

\bigcirc Lhs is deficit in data processing:

$$
\mathbb{E}_{\mathbf{y} \sim \mu \mathrm{N}}\left[\operatorname{Ent}_{\mathrm{N}^{\circ}(\mathrm{y}, \cdot)}^{\phi}[f]\right]
$$

\bigcirc Exercise: concave in μ.
D Now suppose μ^{\prime} is a random measure with $\mathbb{E}\left[\mu^{\prime}\right]=\mu$.

ϕ-entropies

- Suppose we have a Markov kernel N , and would like to show $\forall v$:

$$
\mathcal{D}_{\phi}(\nu \mathrm{N} \| \mu \mathrm{N}) \leqslant(1-\rho) \mathcal{D}_{\phi}(v \| \mu)
$$

\bigcirc Same as proving $\forall \mathrm{f}$:

$$
\operatorname{Ent}_{\mu N}^{\phi}\left[N^{\circ} f\right] \leqslant(1-\rho) \cdot \operatorname{Ent}_{\mu}^{\phi}[f]
$$

D This is equivalent to

$$
\operatorname{Ent}_{\mu}^{\phi}[f]-\operatorname{Ent}_{\mu N}^{\phi}\left[N^{\circ} f\right] \geqslant \rho \operatorname{Ent}_{\mu}^{\phi}[f]
$$

\bigcirc Lhs is deficit in data processing:

$$
\mathbb{E}_{\mathbf{y} \sim \mu \mathrm{N}}\left[\operatorname{Ent}_{\mathrm{N}^{\circ}(\mathrm{y}, \cdot)}^{\phi}[f]\right]
$$

D Exercise: concave in μ.
D Now suppose μ^{\prime} is a random measure with $\mathbb{E}\left[\mu^{\prime}\right]=\mu$.

ϕ-entropies

- Suppose we have a Markov kernel N , and would like to show $\forall v$:

$$
\mathcal{D}_{\phi}(\nu N \| \mu N) \leqslant(1-\rho) \mathcal{D}_{\phi}(\nu \| \mu)
$$

\bigcirc Same as proving $\forall \mathrm{f}$:

$$
\operatorname{Ent}_{\mu N}^{\phi}\left[N^{\circ} f\right] \leqslant(1-\rho) \cdot \operatorname{Ent}_{\mu}^{\phi}[f]
$$

D This is equivalent to

$$
\operatorname{Ent}_{\mu}^{\phi}[f]-\operatorname{Ent}_{\mu N}^{\phi}\left[N^{\circ} f\right] \geqslant \rho \operatorname{Ent}_{\mu}^{\phi}[f]
$$

\bigcirc Lhs is deficit in data processing:

$$
\mathbb{E}_{\mathbf{y} \sim \mu \mathrm{N}}\left[\operatorname{Ent}_{\mathrm{N}^{\circ}(\mathrm{y}, \cdot)}^{\phi}[f]\right]
$$

D Exercise: concave in μ.
D Now suppose μ^{\prime} is a random measure with $\mathbb{E}\left[\mu^{\prime}\right]=\mu$.

D If we know each μ^{\prime} contracts ϕ-divergence by $1-\rho^{\prime}$, we get $\operatorname{Ent}_{\mu}^{\phi}[f]-\operatorname{Ent}_{\mu \mathrm{N}}^{\phi}\left[\mathrm{N}^{\circ} \mathrm{f}\right] \geqslant \rho^{\prime} \mathbb{E}\left[\mathrm{Ent}_{\mu^{\prime}}^{\phi}[\mathrm{f}]\right]$

ϕ-entropies

- Suppose we have a Markov kernel N , and would like to show $\forall v$:

$$
\mathcal{D}_{\phi}(\nu N \| \mu N) \leqslant(1-\rho) \mathcal{D}_{\phi}(\nu \| \mu)
$$

\bigcirc Same as proving $\forall \mathrm{f}$:

$$
\operatorname{Ent}_{\mu N}^{\phi}\left[N^{\circ} f\right] \leqslant(1-\rho) \cdot \operatorname{Ent}_{\mu}^{\phi}[f]
$$

D This is equivalent to

$$
\operatorname{Ent}_{\mu}^{\phi}[f]-\operatorname{Ent}_{\mu N}^{\phi}\left[N^{\circ} f\right] \geqslant \rho \operatorname{Ent}_{\mu}^{\phi}[f]
$$

\bigcirc Lhs is deficit in data processing:

$$
\mathbb{E}_{y \sim \mu \mathrm{~N}}\left[\operatorname{Ent}_{\mathrm{N}^{\circ}(\mathrm{y}, \cdot)}^{\phi}[f]\right]
$$

D Exercise: concave in μ.
D Now suppose μ^{\prime} is a random measure with $\mathbb{E}\left[\mu^{\prime}\right]=\mu$.

D If we know each μ^{\prime} contracts ϕ-divergence by $1-\rho^{\prime}$, we get $\operatorname{Ent}_{\mu}^{\phi}[f]-\operatorname{Ent}_{\mu \mathrm{N}}^{\phi}\left[\mathrm{N}^{\circ} \mathrm{f}\right] \geqslant \rho^{\prime} \mathbb{E}\left[\mathrm{Ent}_{\mu^{\prime}}^{\phi}[\mathrm{f}]\right]$

- If we prove

$$
\mathbb{E}\left[\operatorname{Ent}_{\mu^{\prime}}^{\phi}[\mathrm{f}]\right] \geqslant \gamma \cdot \operatorname{Ent}_{\mu}^{\phi}[\mathrm{f}]
$$

we get to conclude $\rho \geqslant \gamma \cdot \rho^{\prime}$.

Approximate conservation [Chen-Eldan]

D Suppose we have a discrete/continuous time localization scheme $\left\{\mu_{t}\right\}$.

Approximate conservation [Chen-Eldan]

\triangleright Suppose we have a discrete/continuous time localization scheme $\left\{\mu_{\mathrm{t}}\right\}$.
\triangleright Approximate conservation: at every step Ent ${ }_{\mu_{t}}^{\phi}[f]$ does not shrink by much on average.

Approximate conservation [Chen-Eldan]

\triangleright Suppose we have a discrete/continuous time localization scheme $\left\{\mu_{t}\right\}$.
D Approximate conservation: at every step Ent $\mu_{t}^{\phi}[f]$ does not shrink by much on average.

- In discrete time

$$
\mathbb{E}\left[\operatorname{Ent}_{\mu_{t+1}}^{\phi}[f] \mid \mathcal{F}_{t}\right] \geqslant\left(1-\alpha_{t}\right) \operatorname{Ent}_{\mu_{t}}^{\phi}[f]
$$

Approximate conservation [Chen-Eldan]

D Suppose we have a discrete/continuous time localization scheme $\left\{\mu_{t}\right\}$.
\triangleright Approximate conservation: at every step Ent ${ }_{\mu_{t}}^{\phi}[f]$ does not shrink by much on average.
\bigcirc In discrete time

$$
\mathbb{E}\left[\operatorname{Ent}_{\mu_{t+1}}^{\phi}[f] \mid \mathcal{F}_{t}\right] \geqslant\left(1-\alpha_{t}\right) \operatorname{Ent}_{\mu_{t}}^{\phi}[f]
$$

- In continuous time

$$
\mathbb{E}\left[\mathrm{d} \operatorname{Ent}_{\mu_{t}}^{\phi}[f] \mid \mathcal{F}_{t}\right] \geqslant-\alpha_{\mathrm{t}} \operatorname{Ent}_{\mu_{\mathrm{t}}}^{\phi}[f] \mathrm{dt}
$$

Approximate conservation [Chen-Eldan]

D Suppose we have a discrete/continuous time localization scheme $\left\{\mu_{t}\right\}$.
\triangleright Approximate conservation: at every step Ent $\mu_{\mu_{t}}^{\phi}[f]$ does not shrink by much on average.

- In discrete time

$$
\mathbb{E}\left[\operatorname{Ent}_{\mu_{t+1}}^{\phi}[f] \mid \mathcal{F}_{t}\right] \geqslant\left(1-\alpha_{t}\right) \operatorname{Ent}_{\mu_{t}}^{\phi}[f]
$$

- In continuous time

$$
\mathbb{E}\left[\mathrm{dEnt}_{\mu_{t}}^{\phi}[f] \mid \mathcal{F}_{t}\right] \geqslant-\alpha_{\mathrm{t}} \operatorname{Ent}_{\mu_{t}}^{\phi}[f] \mathrm{dt}
$$

D Then we get to transfer contraction rates on μ_{t} to contraction rates on μ with loss:

$$
\gamma \geqslant\left(1-\alpha_{0}\right)\left(1-\alpha_{1}\right) \cdots\left(1-\alpha_{t-1}\right) \quad \text { or } \quad \gamma \geqslant \exp \left(-\int_{0}^{t} \alpha_{s} d s\right)
$$

Approximate conservation of variance

D Let us specialize to $\mathrm{Ent}^{\Phi}=$ Var and stochastic localization \leftarrow works for discrete too

$$
\mathrm{d} \mu_{\mathrm{t}}(\mathrm{x})=\left\langle\mathrm{C}_{\mathrm{t}} \mathrm{~dB} \mathrm{~B}_{\mathrm{t}}, \mathrm{x}-\operatorname{mean}\left(\mu_{\mathrm{t}}\right)\right\rangle \mu_{\mathrm{t}}(\mathrm{x}) .
$$

Approximate conservation of variance

\checkmark Let us specialize to $\mathrm{Ent}^{\Phi}=$ Var and stochastic localization \leftarrow works for discrete too

$$
\mathrm{d} \mu_{\mathrm{t}}(\mathrm{x})=\left\langle\mathrm{C}_{\mathrm{t}} \mathrm{~dB}, \mathrm{t}, \mathrm{mean}\left(\mu_{\mathrm{t}}\right)\right\rangle \mu_{\mathrm{t}}(x)
$$

\bigcirc We have $\mathbb{E}_{\mu_{t}}\left[\mathrm{f}^{2}\right]$ and $\mathbb{E}_{\mu_{t}}[f]$ are both martingales. Evolution:

$$
d \mathbb{E}_{\mu_{t}}[f]=\sum_{x}\left\langle C_{t} d B_{t}, x-\operatorname{mean}\left(\mu_{t}\right)\right\rangle \mu_{t}(x) f(x)=\left\langle C_{t} d B_{t}, v_{t}\right\rangle
$$

for the vector $\nu_{t}=\mathbb{E}_{x \sim \mu_{t}}\left[f(x)\left(x-\operatorname{mean}\left(\mu_{t}\right)\right)\right]$.

Approximate conservation of variance

\checkmark Let us specialize to $\mathrm{Ent}^{\Phi}=$ Var and stochastic localization:- works for discrete too

$$
\mathrm{d} \mu_{\mathrm{t}}(\mathrm{x})=\left\langle\mathrm{C}_{\mathrm{t}} \mathrm{~dB}, \mathrm{t}, \operatorname{mean}\left(\mu_{\mathrm{t}}\right)\right\rangle \mu_{\mathrm{t}}(x)
$$

\bigcirc We have $\mathbb{E}_{\mu_{t}}\left[\mathrm{f}^{2}\right]$ and $\mathbb{E}_{\mu_{\mathrm{t}}}[\mathrm{f}]$ are both martingales. Evolution:

$$
d \mathbb{E}_{\mu_{t}}[f]=\sum_{x}\left\langle C_{t} d B_{t}, x-\operatorname{mean}\left(\mu_{t}\right)\right\rangle \mu_{t}(x) f(x)=\left\langle C_{t} d B_{t}, v_{t}\right\rangle
$$

for the vector $\nu_{t}=\mathbb{E}_{x \sim \mu_{t}}\left[f(x)\left(x-\operatorname{mean}\left(\mu_{t}\right)\right)\right]$.
\bigcirc This means that

$$
\mathrm{d} \operatorname{Var}_{\mu_{\mathrm{t}}}[\mathrm{f}]=(\text { martingale term })-v_{\mathrm{t}}^{\top} \Sigma_{\mathrm{t}} v_{\mathrm{t}} \mathrm{dt}
$$

Approximate conservation of variance

D Let us specialize to $\mathrm{Ent}^{\Phi}=$ Var and stochastic localization \leftarrow works for discrete too

$$
\mathrm{d} \mu_{\mathrm{t}}(\mathrm{x})=\left\langle\mathrm{C}_{\mathrm{t}} \mathrm{~dB}, \mathrm{t}, \operatorname{mean}\left(\mu_{\mathrm{t}}\right)\right\rangle \mu_{\mathrm{t}}(\mathrm{x})
$$

\bigcirc We have $\mathbb{E}_{\mu_{\mathrm{t}}}\left[\mathrm{f}^{2}\right]$ and $\mathbb{E}_{\mu_{\mathrm{t}}}[\mathrm{f}]$ are both martingales. Evolution:

$$
d \mathbb{E}_{\mu_{t}}[f]=\sum_{x}\left\langle C_{t} d B_{t}, x-\operatorname{mean}\left(\mu_{t}\right)\right\rangle \mu_{t}(x) f(x)=\left\langle C_{t} d B_{t}, v_{t}\right\rangle
$$

for the vector $\nu_{t}=\mathbb{E}_{x \sim \mu_{t}}\left[f(x)\left(x-\operatorname{mean}\left(\mu_{t}\right)\right)\right]$.
\checkmark This means that

$$
\mathrm{d} \operatorname{Var}_{\mu_{\mathrm{t}}}[\mathrm{f}]=(\text { martingale term })-v_{\mathrm{t}}^{\top} \Sigma_{\mathrm{t}} v_{\mathrm{t}} \mathrm{dt}
$$

D As long as Σ_{t} and v_{t} are orthogonal, we get that $\operatorname{Var}_{\mu_{t}}[f]$ is a martingale! $;$

Application to Sherrington-Kirkpatrick

D Going back to Ising models

$$
\mu_{\mathrm{t}}(x) \propto \exp \left(\frac{1}{2} x^{\top} \mathrm{J}_{\mathrm{t}} x+\left\langle h_{\mathrm{t}}, x\right\rangle\right)
$$

Application to Sherrington-Kirkpatrick

D Going back to Ising models

$$
\mu_{t}(x) \propto \exp \left(\frac{1}{2} x^{\top} J_{t} x+\left\langle h_{t}, x\right\rangle\right)
$$

0 As long as $\mathrm{J}_{\mathrm{t}} \succeq 0$ and $\operatorname{rank}\left(\mathrm{J}_{\mathrm{t}}\right) \geqslant 2$, we can choose nonzero $\Sigma_{\mathrm{t}} \succeq 0$ such that

$$
\operatorname{span}\left(\Sigma_{t}\right) \subseteq \operatorname{span}\left(J_{t}\right)
$$

and $\Sigma_{t} v_{t}=0$.

Application to Sherrington-Kirkpatrick

D Going back to Ising models

$$
\mu_{t}(x) \propto \exp \left(\frac{1}{2} x^{\top} J_{t} x+\left\langle h_{t}, x\right\rangle\right)
$$

D As long as $\mathrm{J}_{\mathrm{t}} \succeq 0$ and $\operatorname{rank}\left(\mathrm{J}_{\mathrm{t}}\right) \geqslant 2$, we can choose nonzero $\Sigma_{\mathrm{t}} \succeq 0$ such that

$$
\operatorname{span}\left(\Sigma_{t}\right) \subseteq \operatorname{span}\left(J_{t}\right)
$$

and $\Sigma_{t} v_{t}=0$.
\bigcirc The process stops when J_{t} becomes rank 1 , not quite $\mathrm{J}_{\mathrm{t}}=0$:

Application to Sherrington-Kirkpatrick

© Going back to Ising models

$$
\mu_{t}(x) \propto \exp \left(\frac{1}{2} x^{\top} J_{t} x+\left\langle h_{t}, x\right\rangle\right)
$$

- As long as $\mathrm{J}_{\mathrm{t}} \succeq 0$ and $\operatorname{rank}\left(\mathrm{J}_{\mathrm{t}}\right) \geqslant 2$, we can choose nonzero $\Sigma_{\mathrm{t}} \succeq 0$ such that

$$
\operatorname{span}\left(\Sigma_{t}\right) \subseteq \operatorname{span}\left(J_{t}\right)
$$

and $\Sigma_{t} v_{t}=0$.
D The process stops when J_{t} becomes rank 1 , not quite $\mathrm{J}_{\mathrm{t}}=0$:
D However, note that for rank 1 matrices $\mathrm{J}_{\mathrm{t}}=u^{\top}{ }^{\top}$ we have Dobrushin++:

$$
\mathcal{J}[i \rightarrow j] \leqslant\left|u_{i} u_{j}\right|
$$

and $\lambda_{\max }(\mathcal{J}) \leqslant \sum_{i}\left|u_{i}\right|^{2}=\|u\|^{2}$.

Application to Sherrington-Kirkpatrick

\bigcirc Going back to Ising models

$$
\mu_{\mathrm{t}}(x) \propto \exp \left(\frac{1}{2} x^{\top} J_{\mathrm{t}} x+\left\langle h_{\mathrm{t}}, x\right\rangle\right)
$$

D As long as $\mathrm{J}_{\mathrm{t}} \succeq 0$ and $\operatorname{rank}\left(\mathrm{J}_{\mathrm{t}}\right) \geqslant 2$, we can choose nonzero $\Sigma_{\mathrm{t}} \succeq 0$ such that

$$
\operatorname{span}\left(\Sigma_{t}\right) \subseteq \operatorname{span}\left(J_{t}\right)
$$

and $\Sigma_{t} v_{t}=0$.
\bigcirc The process stops when J_{t} becomes rank 1 , not quite $\mathrm{J}_{\mathrm{t}}=0$:
D However, note that for rank 1 matrices $\mathrm{J}_{\mathrm{t}}=u^{\top}{ }^{\top}$ we have Dobrushin++:

$$
\mathcal{J}[i \rightarrow j] \leqslant\left|u_{i} u_{j}\right|
$$

and $\lambda_{\max }(\mathcal{J}) \leqslant \sum_{i}\left|u_{i}\right|^{2}=\|u\|^{2}$.
D This shows contraction of χ^{2} under Glauber. ©

