
1/16

CS 263: Counting and Sampling

Nima Anari

slides for

Universality of HDX

2/16

Review

graph

v

x y

z

7→

saw tree

v

x

y

v z

y

x

v

z

Root marginals are the same.

Weak spatial mixing:

dTV(root | σ, root | σ
′) → 0

as the following goes to ∞:

min{d(root, u) | u ∈ S}.

Strong spatial mixing:

dTV(root | σ, root | σ
′) → 0

as the following goes to ∞:

min{d(root, u) | σ(u) 6= σ ′(u)}.

[Weitz]’s alg forms truncated saw

tree and uses recursion:

f(p1, . . . , pd) =
1

1+λp1···pd

p

f

Attractive exactly when λ < λc(∆)

2/16

Review

graph

v

x y

z

7→

saw tree

v

x

y

v z

y

x

v

z

Root marginals are the same.

Weak spatial mixing:

dTV(root | σ, root | σ
′) → 0

as the following goes to ∞:

min{d(root, u) | u ∈ S}.

Strong spatial mixing:

dTV(root | σ, root | σ
′) → 0

as the following goes to ∞:

min{d(root, u) | σ(u) 6= σ ′(u)}.

[Weitz]’s alg forms truncated saw

tree and uses recursion:

f(p1, . . . , pd) =
1

1+λp1···pd

p

f

Attractive exactly when λ < λc(∆)

2/16

Review

graph

v

x y

z

7→

saw tree

v

x

y

v z

y

x

v

z

Root marginals are the same.

Weak spatial mixing:

dTV(root | σ, root | σ
′) → 0

as the following goes to ∞:

min{d(root, u) | u ∈ S}.

Strong spatial mixing:

dTV(root | σ, root | σ
′) → 0

as the following goes to ∞:

min{d(root, u) | σ(u) 6= σ ′(u)}.

[Weitz]’s alg forms truncated saw

tree and uses recursion:

f(p1, . . . , pd) =
1

1+λp1···pd

p

f

Attractive exactly when λ < λc(∆)

2/16

Review

graph

v

x y

z

7→

saw tree

v

x

y

v z

y

x

v

z

Root marginals are the same.

Weak spatial mixing:

dTV(root | σ, root | σ
′) → 0

as the following goes to ∞:

min{d(root, u) | u ∈ S}.

Strong spatial mixing:

dTV(root | σ, root | σ
′) → 0

as the following goes to ∞:

min{d(root, u) | σ(u) 6= σ ′(u)}.

[Weitz]’s alg forms truncated saw

tree and uses recursion:

f(p1, . . . , pd) =
1

1+λp1···pd

p

f

Attractive exactly when λ < λc(∆)

2/16

Review

graph

v

x y

z

7→

saw tree

v

x

y

v z

y

x

v

z

Root marginals are the same.

Weak spatial mixing:

dTV(root | σ, root | σ
′) → 0

as the following goes to ∞:

min{d(root, u) | u ∈ S}.

Strong spatial mixing:

dTV(root | σ, root | σ
′) → 0

as the following goes to ∞:

min{d(root, u) | σ(u) 6= σ ′(u)}.

[Weitz]’s alg forms truncated saw

tree and uses recursion:

f(p1, . . . , pd) =
1

1+λp1···pd

p

f

Attractive exactly when λ < λc(∆)

2/16

Review

graph

v

x y

z

7→

saw tree

v

x

y

v z

y

x

v

z

Root marginals are the same.

Weak spatial mixing:

dTV(root | σ, root | σ
′) → 0

as the following goes to ∞:

min{d(root, u) | u ∈ S}.

Strong spatial mixing:

dTV(root | σ, root | σ
′) → 0

as the following goes to ∞:

min{d(root, u) | σ(u) 6= σ ′(u)}.

[Weitz]’s alg forms truncated saw

tree and uses recursion:

f(p1, . . . , pd) =
1

1+λp1···pd

p

f

Attractive exactly when λ < λc(∆)

3/16

Remarks

The tree equivalence works on

any 2-spin systems.

Correlation decay predicts

efficient sampling threshold for

anti-ferromagnetic 2-spin systems.

In some ferromagnetic systems,

efficient sampling [Jerrum-Sinclair]

beyond correlation decay.

In tree recursion p 7→ f(p),
originally proof of convergence

involved multiple iterations of f.

The change of variable trick

(ψ ◦ f ◦ψ−1) is due to [Li-Lu-Yin].

Open: extend to beyond binary

domains. There are some notions

(more complicated) of saw tree,

but we no longer have things like

SSM on trees =⇒ SSM on graphs.

Conjecture: for q-colorings, we

have SSM as soon as q > ∆+ 2.

SSM for colorings was open even

on trees. [Chen-Liu-Mani-Moitra’23]

proved it for q > ∆+ 3.

Corollary: large girth graphs.

Open: runtime of deterministic

algs seem to be nO(log∆), can we

remove bad dependency on ∆?

3/16

Remarks

The tree equivalence works on

any 2-spin systems.

Correlation decay predicts

efficient sampling threshold for

anti-ferromagnetic 2-spin systems.

In some ferromagnetic systems,

efficient sampling [Jerrum-Sinclair]

beyond correlation decay.

In tree recursion p 7→ f(p),
originally proof of convergence

involved multiple iterations of f.

The change of variable trick

(ψ ◦ f ◦ψ−1) is due to [Li-Lu-Yin].

Open: extend to beyond binary

domains. There are some notions

(more complicated) of saw tree,

but we no longer have things like

SSM on trees =⇒ SSM on graphs.

Conjecture: for q-colorings, we

have SSM as soon as q > ∆+ 2.

SSM for colorings was open even

on trees. [Chen-Liu-Mani-Moitra’23]

proved it for q > ∆+ 3.

Corollary: large girth graphs.

Open: runtime of deterministic

algs seem to be nO(log∆), can we

remove bad dependency on ∆?

3/16

Remarks

The tree equivalence works on

any 2-spin systems.

Correlation decay predicts

efficient sampling threshold for

anti-ferromagnetic 2-spin systems.

In some ferromagnetic systems,

efficient sampling [Jerrum-Sinclair]

beyond correlation decay.

In tree recursion p 7→ f(p),
originally proof of convergence

involved multiple iterations of f.

The change of variable trick

(ψ ◦ f ◦ψ−1) is due to [Li-Lu-Yin].

Open: extend to beyond binary

domains. There are some notions

(more complicated) of saw tree,

but we no longer have things like

SSM on trees =⇒ SSM on graphs.

Conjecture: for q-colorings, we

have SSM as soon as q > ∆+ 2.

SSM for colorings was open even

on trees. [Chen-Liu-Mani-Moitra’23]

proved it for q > ∆+ 3.

Corollary: large girth graphs.

Open: runtime of deterministic

algs seem to be nO(log∆), can we

remove bad dependency on ∆?

3/16

Remarks

The tree equivalence works on

any 2-spin systems.

Correlation decay predicts

efficient sampling threshold for

anti-ferromagnetic 2-spin systems.

In some ferromagnetic systems,

efficient sampling [Jerrum-Sinclair]

beyond correlation decay.

In tree recursion p 7→ f(p),
originally proof of convergence

involved multiple iterations of f.

The change of variable trick

(ψ ◦ f ◦ψ−1) is due to [Li-Lu-Yin].

Open: extend to beyond binary

domains. There are some notions

(more complicated) of saw tree,

but we no longer have things like

SSM on trees =⇒ SSM on graphs.

Conjecture: for q-colorings, we

have SSM as soon as q > ∆+ 2.

SSM for colorings was open even

on trees. [Chen-Liu-Mani-Moitra’23]

proved it for q > ∆+ 3.

Corollary: large girth graphs.

Open: runtime of deterministic

algs seem to be nO(log∆), can we

remove bad dependency on ∆?

3/16

Remarks

The tree equivalence works on

any 2-spin systems.

Correlation decay predicts

efficient sampling threshold for

anti-ferromagnetic 2-spin systems.

In some ferromagnetic systems,

efficient sampling [Jerrum-Sinclair]

beyond correlation decay.

In tree recursion p 7→ f(p),
originally proof of convergence

involved multiple iterations of f.

The change of variable trick

(ψ ◦ f ◦ψ−1) is due to [Li-Lu-Yin].

Open: extend to beyond binary

domains. There are some notions

(more complicated) of saw tree,

but we no longer have things like

SSM on trees =⇒ SSM on graphs.

Conjecture: for q-colorings, we

have SSM as soon as q > ∆+ 2.

SSM for colorings was open even

on trees. [Chen-Liu-Mani-Moitra’23]

proved it for q > ∆+ 3.

Corollary: large girth graphs.

Open: runtime of deterministic

algs seem to be nO(log∆), can we

remove bad dependency on ∆?

3/16

Remarks

The tree equivalence works on

any 2-spin systems.

Correlation decay predicts

efficient sampling threshold for

anti-ferromagnetic 2-spin systems.

In some ferromagnetic systems,

efficient sampling [Jerrum-Sinclair]

beyond correlation decay.

In tree recursion p 7→ f(p),
originally proof of convergence

involved multiple iterations of f.

The change of variable trick

(ψ ◦ f ◦ψ−1) is due to [Li-Lu-Yin].

Open: extend to beyond binary

domains. There are some notions

(more complicated) of saw tree,

but we no longer have things like

SSM on trees =⇒ SSM on graphs.

Conjecture: for q-colorings, we

have SSM as soon as q > ∆+ 2.

SSM for colorings was open even

on trees. [Chen-Liu-Mani-Moitra’23]

proved it for q > ∆+ 3.

Corollary: large girth graphs.

Open: runtime of deterministic

algs seem to be nO(log∆), can we

remove bad dependency on ∆?

3/16

Remarks

The tree equivalence works on

any 2-spin systems.

Correlation decay predicts

efficient sampling threshold for

anti-ferromagnetic 2-spin systems.

In some ferromagnetic systems,

efficient sampling [Jerrum-Sinclair]

beyond correlation decay.

In tree recursion p 7→ f(p),
originally proof of convergence

involved multiple iterations of f.

The change of variable trick

(ψ ◦ f ◦ψ−1) is due to [Li-Lu-Yin].

Open: extend to beyond binary

domains. There are some notions

(more complicated) of saw tree,

but we no longer have things like

SSM on trees =⇒ SSM on graphs.

Conjecture: for q-colorings, we

have SSM as soon as q > ∆+ 2.

SSM for colorings was open even

on trees. [Chen-Liu-Mani-Moitra’23]

proved it for q > ∆+ 3.

Corollary: large girth graphs.

Open: runtime of deterministic

algs seem to be nO(log∆), can we

remove bad dependency on ∆?

3/16

Remarks

The tree equivalence works on

any 2-spin systems.

Correlation decay predicts

efficient sampling threshold for

anti-ferromagnetic 2-spin systems.

In some ferromagnetic systems,

efficient sampling [Jerrum-Sinclair]

beyond correlation decay.

In tree recursion p 7→ f(p),
originally proof of convergence

involved multiple iterations of f.

The change of variable trick

(ψ ◦ f ◦ψ−1) is due to [Li-Lu-Yin].

Open: extend to beyond binary

domains. There are some notions

(more complicated) of saw tree,

but we no longer have things like

SSM on trees =⇒ SSM on graphs.

Conjecture: for q-colorings, we

have SSM as soon as q > ∆+ 2.

SSM for colorings was open even

on trees. [Chen-Liu-Mani-Moitra’23]

proved it for q > ∆+ 3.

Corollary: large girth graphs.

Open: runtime of deterministic

algs seem to be nO(log∆), can we

remove bad dependency on ∆?

3/16

Remarks

The tree equivalence works on

any 2-spin systems.

Correlation decay predicts

efficient sampling threshold for

anti-ferromagnetic 2-spin systems.

In some ferromagnetic systems,

efficient sampling [Jerrum-Sinclair]

beyond correlation decay.

In tree recursion p 7→ f(p),
originally proof of convergence

involved multiple iterations of f.

The change of variable trick

(ψ ◦ f ◦ψ−1) is due to [Li-Lu-Yin].

Open: extend to beyond binary

domains. There are some notions

(more complicated) of saw tree,

but we no longer have things like

SSM on trees =⇒ SSM on graphs.

Conjecture: for q-colorings, we

have SSM as soon as q > ∆+ 2.

SSM for colorings was open even

on trees. [Chen-Liu-Mani-Moitra’23]

proved it for q > ∆+ 3.

Corollary: large girth graphs.

Open: runtime of deterministic

algs seem to be nO(log∆), can we

remove bad dependency on ∆?

5/16

HDX via Correlation Decay
Influences

Fast sampling

HDX via Transport
Universality

5/16

HDX via Correlation Decay
Influences

Fast sampling

HDX via Transport
Universality

6/16

high-dimensional expansion

trickle downsta
bil
ity

co
rre

lat
ion

de
ca
y

transport

7/16

Influences

We now derive spectral

independence from SSM.

Idea: bound influence matrix

different from Dobrushin’s

I[i→ j] = P[Xj = 1 | Xi =
1] − P[Xj = 1 | Xi = 0]

[A-Liu-OveisGharan] showed how to

bound `1 of columns for hardcore.

We follow [Chen-Liu-Vigoda]’s

approach and bound `1 of rows.

If Ψ is correlation matrix:

`1(rows of Ψ) 6 O(1) · `1(rows of I)

Lemma

If we form saw tree rooted at i, then

Igraph[i→ j] =
∑

u copy of j Itree[i→ u]

Proof:

We know h · ggraph = gtree,
expanding on zi we get

h(zir+ s) = zir
′ + s ′

where r, s, r ′, s ′ are free from zi.

The lhs of lemma is ∂j log(r/s)
∣∣
z=1

.

The rhs is ∂j log(r ′/s ′)
∣∣
z=1

.

Equal because r ′ = rh and s ′ = sh.

7/16

Influences

We now derive spectral

independence from SSM.

Idea: bound influence matrix

different from Dobrushin’s

I[i→ j] = P[Xj = 1 | Xi =
1] − P[Xj = 1 | Xi = 0]

[A-Liu-OveisGharan] showed how to

bound `1 of columns for hardcore.

We follow [Chen-Liu-Vigoda]’s

approach and bound `1 of rows.

If Ψ is correlation matrix:

`1(rows of Ψ) 6 O(1) · `1(rows of I)

Lemma

If we form saw tree rooted at i, then

Igraph[i→ j] =
∑

u copy of j Itree[i→ u]

Proof:

We know h · ggraph = gtree,
expanding on zi we get

h(zir+ s) = zir
′ + s ′

where r, s, r ′, s ′ are free from zi.

The lhs of lemma is ∂j log(r/s)
∣∣
z=1

.

The rhs is ∂j log(r ′/s ′)
∣∣
z=1

.

Equal because r ′ = rh and s ′ = sh.

7/16

Influences

We now derive spectral

independence from SSM.

Idea: bound influence matrix

different from Dobrushin’s

I[i→ j] = P[Xj = 1 | Xi =
1] − P[Xj = 1 | Xi = 0]

[A-Liu-OveisGharan] showed how to

bound `1 of columns for hardcore.

We follow [Chen-Liu-Vigoda]’s

approach and bound `1 of rows.

If Ψ is correlation matrix:

`1(rows of Ψ) 6 O(1) · `1(rows of I)

Lemma

If we form saw tree rooted at i, then

Igraph[i→ j] =
∑

u copy of j Itree[i→ u]

Proof:

We know h · ggraph = gtree,
expanding on zi we get

h(zir+ s) = zir
′ + s ′

where r, s, r ′, s ′ are free from zi.

The lhs of lemma is ∂j log(r/s)
∣∣
z=1

.

The rhs is ∂j log(r ′/s ′)
∣∣
z=1

.

Equal because r ′ = rh and s ′ = sh.

7/16

Influences

We now derive spectral

independence from SSM.

Idea: bound influence matrix

different from Dobrushin’s

I[i→ j] = P[Xj = 1 | Xi =
1] − P[Xj = 1 | Xi = 0]

[A-Liu-OveisGharan] showed how to

bound `1 of columns for hardcore.

We follow [Chen-Liu-Vigoda]’s

approach and bound `1 of rows.

If Ψ is correlation matrix:

`1(rows of Ψ) 6 O(1) · `1(rows of I)

Lemma

If we form saw tree rooted at i, then

Igraph[i→ j] =
∑

u copy of j Itree[i→ u]

Proof:

We know h · ggraph = gtree,
expanding on zi we get

h(zir+ s) = zir
′ + s ′

where r, s, r ′, s ′ are free from zi.

The lhs of lemma is ∂j log(r/s)
∣∣
z=1

.

The rhs is ∂j log(r ′/s ′)
∣∣
z=1

.

Equal because r ′ = rh and s ′ = sh.

7/16

Influences

We now derive spectral

independence from SSM.

Idea: bound influence matrix

different from Dobrushin’s

I[i→ j] = P[Xj = 1 | Xi =
1] − P[Xj = 1 | Xi = 0]

[A-Liu-OveisGharan] showed how to

bound `1 of columns for hardcore.

We follow [Chen-Liu-Vigoda]’s

approach and bound `1 of rows.

If Ψ is correlation matrix:

`1(rows of Ψ) 6 O(1) · `1(rows of I)

Lemma

If we form saw tree rooted at i, then

Igraph[i→ j] =
∑

u copy of j Itree[i→ u]

Proof:

We know h · ggraph = gtree,
expanding on zi we get

h(zir+ s) = zir
′ + s ′

where r, s, r ′, s ′ are free from zi.

The lhs of lemma is ∂j log(r/s)
∣∣
z=1

.

The rhs is ∂j log(r ′/s ′)
∣∣
z=1

.

Equal because r ′ = rh and s ′ = sh.

7/16

Influences

We now derive spectral

independence from SSM.

Idea: bound influence matrix

different from Dobrushin’s

I[i→ j] = P[Xj = 1 | Xi =
1] − P[Xj = 1 | Xi = 0]

[A-Liu-OveisGharan] showed how to

bound `1 of columns for hardcore.

We follow [Chen-Liu-Vigoda]’s

approach and bound `1 of rows.

If Ψ is correlation matrix:

`1(rows of Ψ) 6 O(1) · `1(rows of I)

Lemma

If we form saw tree rooted at i, then

Igraph[i→ j] =
∑

u copy of j Itree[i→ u]

Proof:

We know h · ggraph = gtree,
expanding on zi we get

h(zir+ s) = zir
′ + s ′

where r, s, r ′, s ′ are free from zi.

The lhs of lemma is ∂j log(r/s)
∣∣
z=1

.

The rhs is ∂j log(r ′/s ′)
∣∣
z=1

.

Equal because r ′ = rh and s ′ = sh.

7/16

Influences

We now derive spectral

independence from SSM.

Idea: bound influence matrix

different from Dobrushin’s

I[i→ j] = P[Xj = 1 | Xi =
1] − P[Xj = 1 | Xi = 0]

[A-Liu-OveisGharan] showed how to

bound `1 of columns for hardcore.

We follow [Chen-Liu-Vigoda]’s

approach and bound `1 of rows.

If Ψ is correlation matrix:

`1(rows of Ψ) 6 O(1) · `1(rows of I)

Lemma

If we form saw tree rooted at i, then

Igraph[i→ j] =
∑

u copy of j Itree[i→ u]

Proof:

We know h · ggraph = gtree,
expanding on zi we get

h(zir+ s) = zir
′ + s ′

where r, s, r ′, s ′ are free from zi.

The lhs of lemma is ∂j log(r/s)
∣∣
z=1

.

The rhs is ∂j log(r ′/s ′)
∣∣
z=1

.

Equal because r ′ = rh and s ′ = sh.

7/16

Influences

We now derive spectral

independence from SSM.

Idea: bound influence matrix

different from Dobrushin’s

I[i→ j] = P[Xj = 1 | Xi =
1] − P[Xj = 1 | Xi = 0]

[A-Liu-OveisGharan] showed how to

bound `1 of columns for hardcore.

We follow [Chen-Liu-Vigoda]’s

approach and bound `1 of rows.

If Ψ is correlation matrix:

`1(rows of Ψ) 6 O(1) · `1(rows of I)

Lemma

If we form saw tree rooted at i, then

Igraph[i→ j] =
∑

u copy of j Itree[i→ u]

Proof:

We know h · ggraph = gtree,
expanding on zi we get

h(zir+ s) = zir
′ + s ′

where r, s, r ′, s ′ are free from zi.

The lhs of lemma is ∂j log(r/s)
∣∣
z=1

.

The rhs is ∂j log(r ′/s ′)
∣∣
z=1

.

Equal because r ′ = rh and s ′ = sh.

7/16

Influences

We now derive spectral

independence from SSM.

Idea: bound influence matrix

different from Dobrushin’s

I[i→ j] = P[Xj = 1 | Xi =
1] − P[Xj = 1 | Xi = 0]

[A-Liu-OveisGharan] showed how to

bound `1 of columns for hardcore.

We follow [Chen-Liu-Vigoda]’s

approach and bound `1 of rows.

If Ψ is correlation matrix:

`1(rows of Ψ) 6 O(1) · `1(rows of I)

Lemma

If we form saw tree rooted at i, then

Igraph[i→ j] =
∑

u copy of j Itree[i→ u]

Proof:

We know h · ggraph = gtree,
expanding on zi we get

h(zir+ s) = zir
′ + s ′

where r, s, r ′, s ′ are free from zi.

The lhs of lemma is ∂j log(r/s)
∣∣
z=1

.

The rhs is ∂j log(r ′/s ′)
∣∣
z=1

.

Equal because r ′ = rh and s ′ = sh.

7/16

Influences

We now derive spectral

independence from SSM.

Idea: bound influence matrix

different from Dobrushin’s

I[i→ j] = P[Xj = 1 | Xi =
1] − P[Xj = 1 | Xi = 0]

[A-Liu-OveisGharan] showed how to

bound `1 of columns for hardcore.

We follow [Chen-Liu-Vigoda]’s

approach and bound `1 of rows.

If Ψ is correlation matrix:

`1(rows of Ψ) 6 O(1) · `1(rows of I)

Lemma

If we form saw tree rooted at i, then

Igraph[i→ j] =
∑

u copy of j Itree[i→ u]

Proof:

We know h · ggraph = gtree,
expanding on zi we get

h(zir+ s) = zir
′ + s ′

where r, s, r ′, s ′ are free from zi.

The lhs of lemma is ∂j log(r/s)
∣∣
z=1

.

The rhs is ∂j log(r ′/s ′)
∣∣
z=1

.

Equal because r ′ = rh and s ′ = sh.

8/16

Remains to show on v-rooted tree:∑
u|I[v→ u]| = O(1)

Influences multiply on the tree:

v

.

w

.

u

I[v→ u] = I[v→ w] I[w→ u]

If we track t` =
∑

u∈level `|I[v→ u]|,
and show for some ` = O(1), we
have t` 6 1− ε, we are done.

Let pu be P[Xu = 0] in u’s subtree.

Using qu = log((1− pu)/pu), we
have recursion

qv = f(qu1
, . . . , quk

)

where u1, . . . , uk are children of v.

Claim:

I[v→ ui] = ∂if(qu1
, . . . , quk

)

If ‖∇f‖1 6 1− ε, we’d be done.

Unfortunately, this is not the case.

But we can use previous trick

g = ψ ◦ f(ψ−1(·), . . . , ψ−1(·))
and g will have ‖∇g‖1 6 1− ε
everywhere for hardcore.

Derivatives of ψ are “nice”.

Contraction of f after O(1) levels.

8/16

Remains to show on v-rooted tree:∑
u|I[v→ u]| = O(1)

Influences multiply on the tree:

v

.

w

.

u

I[v→ u] = I[v→ w] I[w→ u]

If we track t` =
∑

u∈level `|I[v→ u]|,
and show for some ` = O(1), we
have t` 6 1− ε, we are done.

Let pu be P[Xu = 0] in u’s subtree.

Using qu = log((1− pu)/pu), we
have recursion

qv = f(qu1
, . . . , quk

)

where u1, . . . , uk are children of v.

Claim:

I[v→ ui] = ∂if(qu1
, . . . , quk

)

If ‖∇f‖1 6 1− ε, we’d be done.

Unfortunately, this is not the case.

But we can use previous trick

g = ψ ◦ f(ψ−1(·), . . . , ψ−1(·))
and g will have ‖∇g‖1 6 1− ε
everywhere for hardcore.

Derivatives of ψ are “nice”.

Contraction of f after O(1) levels.

8/16

Remains to show on v-rooted tree:∑
u|I[v→ u]| = O(1)

Influences multiply on the tree:

v

.

w

.

u

I[v→ u] = I[v→ w] I[w→ u]

If we track t` =
∑

u∈level `|I[v→ u]|,
and show for some ` = O(1), we
have t` 6 1− ε, we are done.

Let pu be P[Xu = 0] in u’s subtree.

Using qu = log((1− pu)/pu), we
have recursion

qv = f(qu1
, . . . , quk

)

where u1, . . . , uk are children of v.

Claim:

I[v→ ui] = ∂if(qu1
, . . . , quk

)

If ‖∇f‖1 6 1− ε, we’d be done.

Unfortunately, this is not the case.

But we can use previous trick

g = ψ ◦ f(ψ−1(·), . . . , ψ−1(·))
and g will have ‖∇g‖1 6 1− ε
everywhere for hardcore.

Derivatives of ψ are “nice”.

Contraction of f after O(1) levels.

8/16

Remains to show on v-rooted tree:∑
u|I[v→ u]| = O(1)

Influences multiply on the tree:

v

.

w

.

u

I[v→ u] = I[v→ w] I[w→ u]

If we track t` =
∑

u∈level `|I[v→ u]|,
and show for some ` = O(1), we
have t` 6 1− ε, we are done.

Let pu be P[Xu = 0] in u’s subtree.

Using qu = log((1− pu)/pu), we
have recursion

qv = f(qu1
, . . . , quk

)

where u1, . . . , uk are children of v.

Claim:

I[v→ ui] = ∂if(qu1
, . . . , quk

)

If ‖∇f‖1 6 1− ε, we’d be done.

Unfortunately, this is not the case.

But we can use previous trick

g = ψ ◦ f(ψ−1(·), . . . , ψ−1(·))
and g will have ‖∇g‖1 6 1− ε
everywhere for hardcore.

Derivatives of ψ are “nice”.

Contraction of f after O(1) levels.

8/16

Remains to show on v-rooted tree:∑
u|I[v→ u]| = O(1)

Influences multiply on the tree:

v

.

w

.

u

I[v→ u] = I[v→ w] I[w→ u]

If we track t` =
∑

u∈level `|I[v→ u]|,
and show for some ` = O(1), we
have t` 6 1− ε, we are done.

Let pu be P[Xu = 0] in u’s subtree.

Using qu = log((1− pu)/pu), we
have recursion

qv = f(qu1
, . . . , quk

)

where u1, . . . , uk are children of v.

Claim:

I[v→ ui] = ∂if(qu1
, . . . , quk

)

If ‖∇f‖1 6 1− ε, we’d be done.

Unfortunately, this is not the case.

But we can use previous trick

g = ψ ◦ f(ψ−1(·), . . . , ψ−1(·))
and g will have ‖∇g‖1 6 1− ε
everywhere for hardcore.

Derivatives of ψ are “nice”.

Contraction of f after O(1) levels.

8/16

Remains to show on v-rooted tree:∑
u|I[v→ u]| = O(1)

Influences multiply on the tree:

v

.

w

.

u

I[v→ u] = I[v→ w] I[w→ u]

If we track t` =
∑

u∈level `|I[v→ u]|,
and show for some ` = O(1), we
have t` 6 1− ε, we are done.

Let pu be P[Xu = 0] in u’s subtree.

Using qu = log((1− pu)/pu), we
have recursion

qv = f(qu1
, . . . , quk

)

where u1, . . . , uk are children of v.

Claim:

I[v→ ui] = ∂if(qu1
, . . . , quk

)

If ‖∇f‖1 6 1− ε, we’d be done.

Unfortunately, this is not the case.

But we can use previous trick

g = ψ ◦ f(ψ−1(·), . . . , ψ−1(·))
and g will have ‖∇g‖1 6 1− ε
everywhere for hardcore.

Derivatives of ψ are “nice”.

Contraction of f after O(1) levels.

8/16

Remains to show on v-rooted tree:∑
u|I[v→ u]| = O(1)

Influences multiply on the tree:

v

.

w

.

u

I[v→ u] = I[v→ w] I[w→ u]

If we track t` =
∑

u∈level `|I[v→ u]|,
and show for some ` = O(1), we
have t` 6 1− ε, we are done.

Let pu be P[Xu = 0] in u’s subtree.

Using qu = log((1− pu)/pu), we
have recursion

qv = f(qu1
, . . . , quk

)

where u1, . . . , uk are children of v.

Claim:

I[v→ ui] = ∂if(qu1
, . . . , quk

)

If ‖∇f‖1 6 1− ε, we’d be done.

Unfortunately, this is not the case.

But we can use previous trick

g = ψ ◦ f(ψ−1(·), . . . , ψ−1(·))
and g will have ‖∇g‖1 6 1− ε
everywhere for hardcore.

Derivatives of ψ are “nice”.

Contraction of f after O(1) levels.

8/16

Remains to show on v-rooted tree:∑
u|I[v→ u]| = O(1)

Influences multiply on the tree:

v

.

w

.

u

I[v→ u] = I[v→ w] I[w→ u]

If we track t` =
∑

u∈level `|I[v→ u]|,
and show for some ` = O(1), we
have t` 6 1− ε, we are done.

Let pu be P[Xu = 0] in u’s subtree.

Using qu = log((1− pu)/pu), we
have recursion

qv = f(qu1
, . . . , quk

)

where u1, . . . , uk are children of v.

Claim:

I[v→ ui] = ∂if(qu1
, . . . , quk

)

If ‖∇f‖1 6 1− ε, we’d be done.

Unfortunately, this is not the case.

But we can use previous trick

g = ψ ◦ f(ψ−1(·), . . . , ψ−1(·))
and g will have ‖∇g‖1 6 1− ε
everywhere for hardcore.

Derivatives of ψ are “nice”.

Contraction of f after O(1) levels.

8/16

Remains to show on v-rooted tree:∑
u|I[v→ u]| = O(1)

Influences multiply on the tree:

v

.

w

.

u

I[v→ u] = I[v→ w] I[w→ u]

If we track t` =
∑

u∈level `|I[v→ u]|,
and show for some ` = O(1), we
have t` 6 1− ε, we are done.

Let pu be P[Xu = 0] in u’s subtree.

Using qu = log((1− pu)/pu), we
have recursion

qv = f(qu1
, . . . , quk

)

where u1, . . . , uk are children of v.

Claim:

I[v→ ui] = ∂if(qu1
, . . . , quk

)

If ‖∇f‖1 6 1− ε, we’d be done.

Unfortunately, this is not the case.

But we can use previous trick

g = ψ ◦ f(ψ−1(·), . . . , ψ−1(·))
and g will have ‖∇g‖1 6 1− ε
everywhere for hardcore.

Derivatives of ψ are “nice”.

Contraction of f after O(1) levels.

9/16

high-dimensional expansion

trickle downsta
bil
ity

co
rre

lat
ion

de
ca
y

transport

10/16

Fast sampling

Spectral independence shows

Glauber mixing in nOλ,∆(1).

Impractical polynomial.

[Chen-Liu-Vigoda] showed mixing in

O∆(n logn).
Now we know O(n logn)
[A-Jain-Koehler-Pham-Vuong,

Chen-Eldan, Chen-Feng-Yin-Zhang]

C-spectral independence implies

that n↔ ` block dynamics has

relaxation time(
n
C

)
/
(
n−`
C

)
Note that C = f(∆, λ)

Observation: if n− ` = Ω∆,λ(n),
relaxation time is O∆,λ(1)!

How to implement?

If n− ` = δn for sufficiently small

δ, cond on ` random verts, we get

islands of size ' O∆,λ(logn).

10/16

Fast sampling

Spectral independence shows

Glauber mixing in nOλ,∆(1).

Impractical polynomial.

[Chen-Liu-Vigoda] showed mixing in

O∆(n logn).

Now we know O(n logn)
[A-Jain-Koehler-Pham-Vuong,

Chen-Eldan, Chen-Feng-Yin-Zhang]

C-spectral independence implies

that n↔ ` block dynamics has

relaxation time(
n
C

)
/
(
n−`
C

)
Note that C = f(∆, λ)

Observation: if n− ` = Ω∆,λ(n),
relaxation time is O∆,λ(1)!

How to implement?

If n− ` = δn for sufficiently small

δ, cond on ` random verts, we get

islands of size ' O∆,λ(logn).

10/16

Fast sampling

Spectral independence shows

Glauber mixing in nOλ,∆(1).

Impractical polynomial.

[Chen-Liu-Vigoda] showed mixing in

O∆(n logn).
Now we know O(n logn)
[A-Jain-Koehler-Pham-Vuong,

Chen-Eldan, Chen-Feng-Yin-Zhang]

C-spectral independence implies

that n↔ ` block dynamics has

relaxation time(
n
C

)
/
(
n−`
C

)
Note that C = f(∆, λ)

Observation: if n− ` = Ω∆,λ(n),
relaxation time is O∆,λ(1)!

How to implement?

If n− ` = δn for sufficiently small

δ, cond on ` random verts, we get

islands of size ' O∆,λ(logn).

10/16

Fast sampling

Spectral independence shows

Glauber mixing in nOλ,∆(1).

Impractical polynomial.

[Chen-Liu-Vigoda] showed mixing in

O∆(n logn).
Now we know O(n logn)
[A-Jain-Koehler-Pham-Vuong,

Chen-Eldan, Chen-Feng-Yin-Zhang]

C-spectral independence implies

that n↔ ` block dynamics has

relaxation time(
n
C

)
/
(
n−`
C

)

Note that C = f(∆, λ)

Observation: if n− ` = Ω∆,λ(n),
relaxation time is O∆,λ(1)!

How to implement?

If n− ` = δn for sufficiently small

δ, cond on ` random verts, we get

islands of size ' O∆,λ(logn).

10/16

Fast sampling

Spectral independence shows

Glauber mixing in nOλ,∆(1).

Impractical polynomial.

[Chen-Liu-Vigoda] showed mixing in

O∆(n logn).
Now we know O(n logn)
[A-Jain-Koehler-Pham-Vuong,

Chen-Eldan, Chen-Feng-Yin-Zhang]

C-spectral independence implies

that n↔ ` block dynamics has

relaxation time(
n
C

)
/
(
n−`
C

)
Note that C = f(∆, λ)

Observation: if n− ` = Ω∆,λ(n),
relaxation time is O∆,λ(1)!

How to implement?

If n− ` = δn for sufficiently small

δ, cond on ` random verts, we get

islands of size ' O∆,λ(logn).

10/16

Fast sampling

Spectral independence shows

Glauber mixing in nOλ,∆(1).

Impractical polynomial.

[Chen-Liu-Vigoda] showed mixing in

O∆(n logn).
Now we know O(n logn)
[A-Jain-Koehler-Pham-Vuong,

Chen-Eldan, Chen-Feng-Yin-Zhang]

C-spectral independence implies

that n↔ ` block dynamics has

relaxation time(
n
C

)
/
(
n−`
C

)
Note that C = f(∆, λ)

Observation: if n− ` = Ω∆,λ(n),
relaxation time is O∆,λ(1)!

How to implement?

If n− ` = δn for sufficiently small

δ, cond on ` random verts, we get

islands of size ' O∆,λ(logn).

10/16

Fast sampling

Spectral independence shows

Glauber mixing in nOλ,∆(1).

Impractical polynomial.

[Chen-Liu-Vigoda] showed mixing in

O∆(n logn).
Now we know O(n logn)
[A-Jain-Koehler-Pham-Vuong,

Chen-Eldan, Chen-Feng-Yin-Zhang]

C-spectral independence implies

that n↔ ` block dynamics has

relaxation time(
n
C

)
/
(
n−`
C

)
Note that C = f(∆, λ)

Observation: if n− ` = Ω∆,λ(n),
relaxation time is O∆,λ(1)!

How to implement?

If n− ` = δn for sufficiently small

δ, cond on ` random verts, we get

islands of size ' O∆,λ(logn).

10/16

Fast sampling

Spectral independence shows

Glauber mixing in nOλ,∆(1).

Impractical polynomial.

[Chen-Liu-Vigoda] showed mixing in

O∆(n logn).
Now we know O(n logn)
[A-Jain-Koehler-Pham-Vuong,

Chen-Eldan, Chen-Feng-Yin-Zhang]

C-spectral independence implies

that n↔ ` block dynamics has

relaxation time(
n
C

)
/
(
n−`
C

)
Note that C = f(∆, λ)

Observation: if n− ` = Ω∆,λ(n),
relaxation time is O∆,λ(1)!

How to implement?

If n− ` = δn for sufficiently small

δ, cond on ` random verts, we get

islands of size ' O∆,λ(logn).

11/16

Proof:

There are at most n · ∆2(k−1)

loose bound

connected subgraphs of size k.

Covered by walks of len 2(k− 1).

7→

If random δ fraction of verts are

free, probability of a k-sized

subgraph being free is

' δk

Using union bound, prob of any

surviving will be

n · ∆2(k−1) · δk

Set δ small and k ' logn.

Since islands are small, we can

sample from them much faster, in

poly log(n) time.

Alternatively, you can use some

form of comparison to prove Õ(n)
relaxation time for Glauber

dynamics itself [Chen-Liu-Vigoda].

Note that spectral independence

itself only gives us Õ(n2) time

algs. We need entropy contraction

to get Õ(n). This was done for

∆ = O(1) by [Chen-Liu-Vigoda], and

for general ∆ by

[A-Jain-Koehler-Pham-Vuong].

11/16

Proof:

There are at most n · ∆2(k−1)

loose bound

connected subgraphs of size k.

Covered by walks of len 2(k− 1).

7→

If random δ fraction of verts are

free, probability of a k-sized

subgraph being free is

' δk

Using union bound, prob of any

surviving will be

n · ∆2(k−1) · δk

Set δ small and k ' logn.

Since islands are small, we can

sample from them much faster, in

poly log(n) time.

Alternatively, you can use some

form of comparison to prove Õ(n)
relaxation time for Glauber

dynamics itself [Chen-Liu-Vigoda].

Note that spectral independence

itself only gives us Õ(n2) time

algs. We need entropy contraction

to get Õ(n). This was done for

∆ = O(1) by [Chen-Liu-Vigoda], and

for general ∆ by

[A-Jain-Koehler-Pham-Vuong].

11/16

Proof:

There are at most n · ∆2(k−1)

loose bound

connected subgraphs of size k.

Covered by walks of len 2(k− 1).

7→

If random δ fraction of verts are

free, probability of a k-sized

subgraph being free is

' δk

Using union bound, prob of any

surviving will be

n · ∆2(k−1) · δk

Set δ small and k ' logn.

Since islands are small, we can

sample from them much faster, in

poly log(n) time.

Alternatively, you can use some

form of comparison to prove Õ(n)
relaxation time for Glauber

dynamics itself [Chen-Liu-Vigoda].

Note that spectral independence

itself only gives us Õ(n2) time

algs. We need entropy contraction

to get Õ(n). This was done for

∆ = O(1) by [Chen-Liu-Vigoda], and

for general ∆ by

[A-Jain-Koehler-Pham-Vuong].

11/16

Proof:

There are at most n · ∆2(k−1)

loose bound

connected subgraphs of size k.

Covered by walks of len 2(k− 1).

7→

If random δ fraction of verts are

free, probability of a k-sized

subgraph being free is

' δk

Using union bound, prob of any

surviving will be

n · ∆2(k−1) · δk

Set δ small and k ' logn.

Since islands are small, we can

sample from them much faster, in

poly log(n) time.

Alternatively, you can use some

form of comparison to prove Õ(n)
relaxation time for Glauber

dynamics itself [Chen-Liu-Vigoda].

Note that spectral independence

itself only gives us Õ(n2) time

algs. We need entropy contraction

to get Õ(n). This was done for

∆ = O(1) by [Chen-Liu-Vigoda], and

for general ∆ by

[A-Jain-Koehler-Pham-Vuong].

11/16

Proof:

There are at most n · ∆2(k−1)

loose bound

connected subgraphs of size k.

Covered by walks of len 2(k− 1).

7→

If random δ fraction of verts are

free, probability of a k-sized

subgraph being free is

' δk

Using union bound, prob of any

surviving will be

n · ∆2(k−1) · δk

Set δ small and k ' logn.

Since islands are small, we can

sample from them much faster, in

poly log(n) time.

Alternatively, you can use some

form of comparison to prove Õ(n)
relaxation time for Glauber

dynamics itself [Chen-Liu-Vigoda].

Note that spectral independence

itself only gives us Õ(n2) time

algs. We need entropy contraction

to get Õ(n). This was done for

∆ = O(1) by [Chen-Liu-Vigoda], and

for general ∆ by

[A-Jain-Koehler-Pham-Vuong].

11/16

Proof:

There are at most n · ∆2(k−1)

loose bound

connected subgraphs of size k.

Covered by walks of len 2(k− 1).

7→

If random δ fraction of verts are

free, probability of a k-sized

subgraph being free is

' δk

Using union bound, prob of any

surviving will be

n · ∆2(k−1) · δk

Set δ small and k ' logn.

Since islands are small, we can

sample from them much faster, in

poly log(n) time.

Alternatively, you can use some

form of comparison to prove Õ(n)
relaxation time for Glauber

dynamics itself [Chen-Liu-Vigoda].

Note that spectral independence

itself only gives us Õ(n2) time

algs. We need entropy contraction

to get Õ(n). This was done for

∆ = O(1) by [Chen-Liu-Vigoda], and

for general ∆ by

[A-Jain-Koehler-Pham-Vuong].

11/16

Proof:

There are at most n · ∆2(k−1)

loose bound

connected subgraphs of size k.

Covered by walks of len 2(k− 1).

7→

If random δ fraction of verts are

free, probability of a k-sized

subgraph being free is

' δk

Using union bound, prob of any

surviving will be

n · ∆2(k−1) · δk

Set δ small and k ' logn.

Since islands are small, we can

sample from them much faster, in

poly log(n) time.

Alternatively, you can use some

form of comparison to prove Õ(n)
relaxation time for Glauber

dynamics itself [Chen-Liu-Vigoda].

Note that spectral independence

itself only gives us Õ(n2) time

algs. We need entropy contraction

to get Õ(n). This was done for

∆ = O(1) by [Chen-Liu-Vigoda], and

for general ∆ by

[A-Jain-Koehler-Pham-Vuong].

11/16

Proof:

There are at most n · ∆2(k−1)

loose bound

connected subgraphs of size k.

Covered by walks of len 2(k− 1).

7→

If random δ fraction of verts are

free, probability of a k-sized

subgraph being free is

' δk

Using union bound, prob of any

surviving will be

n · ∆2(k−1) · δk

Set δ small and k ' logn.

Since islands are small, we can

sample from them much faster, in

poly log(n) time.

Alternatively, you can use some

form of comparison to prove Õ(n)
relaxation time for Glauber

dynamics itself [Chen-Liu-Vigoda].

Note that spectral independence

itself only gives us Õ(n2) time

algs. We need entropy contraction

to get Õ(n). This was done for

∆ = O(1) by [Chen-Liu-Vigoda], and

for general ∆ by

[A-Jain-Koehler-Pham-Vuong].

12/16

HDX via Correlation Decay
Influences

Fast sampling

HDX via Transport
Universality

12/16

HDX via Correlation Decay
Influences

Fast sampling

HDX via Transport
Universality

13/16

high-dimensional expansion

trickle downsta
bil
ity

co
rre

lat
ion

de
ca
y

transport

14/16

HDX from transport

We proved optimal mixing of

colorings for q > 2∆+ 1.

The proof was based on

contraction of transport distance.

Even the state-of-the-art bounds

of q ' 11
6 ∆− ε rely on transport

contraction, although on a

different chain. This resulted in

slow but polynomial mixing.

Does transport contraction imply

spectral independence?

This give us fast sampling.

Spectral independence from

transport contraction was first

dervied by [Liu, Blanca-Caputo-Chen-

Parisi-Štefankovič-Vigoda].

I will show a different argument

based on universality

[A-Jain-Koehler-Pham-Vuong].

Universality of SI

If down-up walk for dist µ on
([n]

k

)
has

relaxation time O(k), then µ is O(1)-SI.

So Dobrushin++ implies SI.

14/16

HDX from transport

We proved optimal mixing of

colorings for q > 2∆+ 1.

The proof was based on

contraction of transport distance.

Even the state-of-the-art bounds

of q ' 11
6 ∆− ε rely on transport

contraction, although on a

different chain. This resulted in

slow but polynomial mixing.

Does transport contraction imply

spectral independence?

This give us fast sampling.

Spectral independence from

transport contraction was first

dervied by [Liu, Blanca-Caputo-Chen-

Parisi-Štefankovič-Vigoda].

I will show a different argument

based on universality

[A-Jain-Koehler-Pham-Vuong].

Universality of SI

If down-up walk for dist µ on
([n]

k

)
has

relaxation time O(k), then µ is O(1)-SI.

So Dobrushin++ implies SI.

14/16

HDX from transport

We proved optimal mixing of

colorings for q > 2∆+ 1.

The proof was based on

contraction of transport distance.

Even the state-of-the-art bounds

of q ' 11
6 ∆− ε rely on transport

contraction, although on a

different chain. This resulted in

slow but polynomial mixing.

Does transport contraction imply

spectral independence?

This give us fast sampling.

Spectral independence from

transport contraction was first

dervied by [Liu, Blanca-Caputo-Chen-

Parisi-Štefankovič-Vigoda].

I will show a different argument

based on universality

[A-Jain-Koehler-Pham-Vuong].

Universality of SI

If down-up walk for dist µ on
([n]

k

)
has

relaxation time O(k), then µ is O(1)-SI.

So Dobrushin++ implies SI.

14/16

HDX from transport

We proved optimal mixing of

colorings for q > 2∆+ 1.

The proof was based on

contraction of transport distance.

Even the state-of-the-art bounds

of q ' 11
6 ∆− ε rely on transport

contraction, although on a

different chain. This resulted in

slow but polynomial mixing.

Does transport contraction imply

spectral independence?

This give us fast sampling.

Spectral independence from

transport contraction was first

dervied by [Liu, Blanca-Caputo-Chen-

Parisi-Štefankovič-Vigoda].

I will show a different argument

based on universality

[A-Jain-Koehler-Pham-Vuong].

Universality of SI

If down-up walk for dist µ on
([n]

k

)
has

relaxation time O(k), then µ is O(1)-SI.

So Dobrushin++ implies SI.

14/16

HDX from transport

We proved optimal mixing of

colorings for q > 2∆+ 1.

The proof was based on

contraction of transport distance.

Even the state-of-the-art bounds

of q ' 11
6 ∆− ε rely on transport

contraction, although on a

different chain. This resulted in

slow but polynomial mixing.

Does transport contraction imply

spectral independence?

This give us fast sampling.

Spectral independence from

transport contraction was first

dervied by [Liu, Blanca-Caputo-Chen-

Parisi-Štefankovič-Vigoda].

I will show a different argument

based on universality

[A-Jain-Koehler-Pham-Vuong].

Universality of SI

If down-up walk for dist µ on
([n]

k

)
has

relaxation time O(k), then µ is O(1)-SI.

So Dobrushin++ implies SI.

14/16

HDX from transport

We proved optimal mixing of

colorings for q > 2∆+ 1.

The proof was based on

contraction of transport distance.

Even the state-of-the-art bounds

of q ' 11
6 ∆− ε rely on transport

contraction, although on a

different chain. This resulted in

slow but polynomial mixing.

Does transport contraction imply

spectral independence?

This give us fast sampling.

Spectral independence from

transport contraction was first

dervied by [Liu, Blanca-Caputo-Chen-

Parisi-Štefankovič-Vigoda].

I will show a different argument

based on universality

[A-Jain-Koehler-Pham-Vuong].

Universality of SI

If down-up walk for dist µ on
([n]

k

)
has

relaxation time O(k), then µ is O(1)-SI.

So Dobrushin++ implies SI.

14/16

HDX from transport

We proved optimal mixing of

colorings for q > 2∆+ 1.

The proof was based on

contraction of transport distance.

Even the state-of-the-art bounds

of q ' 11
6 ∆− ε rely on transport

contraction, although on a

different chain. This resulted in

slow but polynomial mixing.

Does transport contraction imply

spectral independence?

This give us fast sampling.

Spectral independence from

transport contraction was first

dervied by [Liu, Blanca-Caputo-Chen-

Parisi-Štefankovič-Vigoda].

I will show a different argument

based on universality

[A-Jain-Koehler-Pham-Vuong].

Universality of SI

If down-up walk for dist µ on
([n]

k

)
has

relaxation time O(k), then µ is O(1)-SI.

So Dobrushin++ implies SI.

14/16

HDX from transport

We proved optimal mixing of

colorings for q > 2∆+ 1.

The proof was based on

contraction of transport distance.

Even the state-of-the-art bounds

of q ' 11
6 ∆− ε rely on transport

contraction, although on a

different chain. This resulted in

slow but polynomial mixing.

Does transport contraction imply

spectral independence?

This give us fast sampling.

Spectral independence from

transport contraction was first

dervied by [Liu, Blanca-Caputo-Chen-

Parisi-Štefankovič-Vigoda].

I will show a different argument

based on universality

[A-Jain-Koehler-Pham-Vuong].

Universality of SI

If down-up walk for dist µ on
([n]

k

)
has

relaxation time O(k), then µ is O(1)-SI.

So Dobrushin++ implies SI.

14/16

HDX from transport

We proved optimal mixing of

colorings for q > 2∆+ 1.

The proof was based on

contraction of transport distance.

Even the state-of-the-art bounds

of q ' 11
6 ∆− ε rely on transport

contraction, although on a

different chain. This resulted in

slow but polynomial mixing.

Does transport contraction imply

spectral independence?

This give us fast sampling.

Spectral independence from

transport contraction was first

dervied by [Liu, Blanca-Caputo-Chen-

Parisi-Štefankovič-Vigoda].

I will show a different argument

based on universality

[A-Jain-Koehler-Pham-Vuong].

Universality of SI

If down-up walk for dist µ on
([n]

k

)
has

relaxation time O(k), then µ is O(1)-SI.

So Dobrushin++ implies SI.

15/16

Proof:

Embedding
([n]

k

)
↪→ {0, 1}n, we

need to prove

cov(µ) � O(1) · diag(mean(µ))
So for vector u, we need to show

uᵀ cov(µ)u 6
O(1) · uᵀdiag(mean(µ))u

Now define function f on {0, 1}n as

f(x) = 〈u, x〉
and let ν = fµ.

We have χ2(ν ‖ µ) = Varµ[f] =
Ex∼µ[(u

ᵀx)2] − Ex∼µ[u
ᵀx]2 =

uᵀ cov(µ)u

Because of relaxation time of

O(k), we have
Varµ[f]
Ω(k) 6

Ey∼µDk→k−1

[
VarUk−1→k(y,·)[f]

]
But VarUk−1→k(y,·)[f] 6

Ex∼Uk−1→k(y,·)[(f(x) − f(y))
2]

The inside is simply

uᵀ(x− y)(x− y)ᵀu. Note that

x− y = 1i for some index i.

Taking expectations we get
Varµ[f]
Ω(k) 6 uᵀdiag(mean(µ))u

k

This finishes the proof.

15/16

Proof:

Embedding
([n]

k

)
↪→ {0, 1}n, we

need to prove

cov(µ) � O(1) · diag(mean(µ))

So for vector u, we need to show

uᵀ cov(µ)u 6
O(1) · uᵀdiag(mean(µ))u

Now define function f on {0, 1}n as

f(x) = 〈u, x〉
and let ν = fµ.

We have χ2(ν ‖ µ) = Varµ[f] =
Ex∼µ[(u

ᵀx)2] − Ex∼µ[u
ᵀx]2 =

uᵀ cov(µ)u

Because of relaxation time of

O(k), we have
Varµ[f]
Ω(k) 6

Ey∼µDk→k−1

[
VarUk−1→k(y,·)[f]

]
But VarUk−1→k(y,·)[f] 6

Ex∼Uk−1→k(y,·)[(f(x) − f(y))
2]

The inside is simply

uᵀ(x− y)(x− y)ᵀu. Note that

x− y = 1i for some index i.

Taking expectations we get
Varµ[f]
Ω(k) 6 uᵀdiag(mean(µ))u

k

This finishes the proof.

15/16

Proof:

Embedding
([n]

k

)
↪→ {0, 1}n, we

need to prove

cov(µ) � O(1) · diag(mean(µ))
So for vector u, we need to show

uᵀ cov(µ)u 6
O(1) · uᵀdiag(mean(µ))u

Now define function f on {0, 1}n as

f(x) = 〈u, x〉
and let ν = fµ.

We have χ2(ν ‖ µ) = Varµ[f] =
Ex∼µ[(u

ᵀx)2] − Ex∼µ[u
ᵀx]2 =

uᵀ cov(µ)u

Because of relaxation time of

O(k), we have
Varµ[f]
Ω(k) 6

Ey∼µDk→k−1

[
VarUk−1→k(y,·)[f]

]
But VarUk−1→k(y,·)[f] 6

Ex∼Uk−1→k(y,·)[(f(x) − f(y))
2]

The inside is simply

uᵀ(x− y)(x− y)ᵀu. Note that

x− y = 1i for some index i.

Taking expectations we get
Varµ[f]
Ω(k) 6 uᵀdiag(mean(µ))u

k

This finishes the proof.

15/16

Proof:

Embedding
([n]

k

)
↪→ {0, 1}n, we

need to prove

cov(µ) � O(1) · diag(mean(µ))
So for vector u, we need to show

uᵀ cov(µ)u 6
O(1) · uᵀdiag(mean(µ))u

Now define function f on {0, 1}n as

f(x) = 〈u, x〉
and let ν = fµ.

We have χ2(ν ‖ µ) = Varµ[f] =
Ex∼µ[(u

ᵀx)2] − Ex∼µ[u
ᵀx]2 =

uᵀ cov(µ)u

Because of relaxation time of

O(k), we have
Varµ[f]
Ω(k) 6

Ey∼µDk→k−1

[
VarUk−1→k(y,·)[f]

]
But VarUk−1→k(y,·)[f] 6

Ex∼Uk−1→k(y,·)[(f(x) − f(y))
2]

The inside is simply

uᵀ(x− y)(x− y)ᵀu. Note that

x− y = 1i for some index i.

Taking expectations we get
Varµ[f]
Ω(k) 6 uᵀdiag(mean(µ))u

k

This finishes the proof.

15/16

Proof:

Embedding
([n]

k

)
↪→ {0, 1}n, we

need to prove

cov(µ) � O(1) · diag(mean(µ))
So for vector u, we need to show

uᵀ cov(µ)u 6
O(1) · uᵀdiag(mean(µ))u

Now define function f on {0, 1}n as

f(x) = 〈u, x〉
and let ν = fµ.

We have χ2(ν ‖ µ) = Varµ[f] =
Ex∼µ[(u

ᵀx)2] − Ex∼µ[u
ᵀx]2 =

uᵀ cov(µ)u

Because of relaxation time of

O(k), we have
Varµ[f]
Ω(k) 6

Ey∼µDk→k−1

[
VarUk−1→k(y,·)[f]

]
But VarUk−1→k(y,·)[f] 6

Ex∼Uk−1→k(y,·)[(f(x) − f(y))
2]

The inside is simply

uᵀ(x− y)(x− y)ᵀu. Note that

x− y = 1i for some index i.

Taking expectations we get
Varµ[f]
Ω(k) 6 uᵀdiag(mean(µ))u

k

This finishes the proof.

15/16

Proof:

Embedding
([n]

k

)
↪→ {0, 1}n, we

need to prove

cov(µ) � O(1) · diag(mean(µ))
So for vector u, we need to show

uᵀ cov(µ)u 6
O(1) · uᵀdiag(mean(µ))u

Now define function f on {0, 1}n as

f(x) = 〈u, x〉
and let ν = fµ.

We have χ2(ν ‖ µ) = Varµ[f] =
Ex∼µ[(u

ᵀx)2] − Ex∼µ[u
ᵀx]2 =

uᵀ cov(µ)u

Because of relaxation time of

O(k), we have
Varµ[f]
Ω(k) 6

Ey∼µDk→k−1

[
VarUk−1→k(y,·)[f]

]

But VarUk−1→k(y,·)[f] 6

Ex∼Uk−1→k(y,·)[(f(x) − f(y))
2]

The inside is simply

uᵀ(x− y)(x− y)ᵀu. Note that

x− y = 1i for some index i.

Taking expectations we get
Varµ[f]
Ω(k) 6 uᵀdiag(mean(µ))u

k

This finishes the proof.

15/16

Proof:

Embedding
([n]

k

)
↪→ {0, 1}n, we

need to prove

cov(µ) � O(1) · diag(mean(µ))
So for vector u, we need to show

uᵀ cov(µ)u 6
O(1) · uᵀdiag(mean(µ))u

Now define function f on {0, 1}n as

f(x) = 〈u, x〉
and let ν = fµ.

We have χ2(ν ‖ µ) = Varµ[f] =
Ex∼µ[(u

ᵀx)2] − Ex∼µ[u
ᵀx]2 =

uᵀ cov(µ)u

Because of relaxation time of

O(k), we have
Varµ[f]
Ω(k) 6

Ey∼µDk→k−1

[
VarUk−1→k(y,·)[f]

]
But VarUk−1→k(y,·)[f] 6

Ex∼Uk−1→k(y,·)[(f(x) − f(y))
2]

The inside is simply

uᵀ(x− y)(x− y)ᵀu. Note that

x− y = 1i for some index i.

Taking expectations we get
Varµ[f]
Ω(k) 6 uᵀdiag(mean(µ))u

k

This finishes the proof.

15/16

Proof:

Embedding
([n]

k

)
↪→ {0, 1}n, we

need to prove

cov(µ) � O(1) · diag(mean(µ))
So for vector u, we need to show

uᵀ cov(µ)u 6
O(1) · uᵀdiag(mean(µ))u

Now define function f on {0, 1}n as

f(x) = 〈u, x〉
and let ν = fµ.

We have χ2(ν ‖ µ) = Varµ[f] =
Ex∼µ[(u

ᵀx)2] − Ex∼µ[u
ᵀx]2 =

uᵀ cov(µ)u

Because of relaxation time of

O(k), we have
Varµ[f]
Ω(k) 6

Ey∼µDk→k−1

[
VarUk−1→k(y,·)[f]

]
But VarUk−1→k(y,·)[f] 6

Ex∼Uk−1→k(y,·)[(f(x) − f(y))
2]

The inside is simply

uᵀ(x− y)(x− y)ᵀu. Note that

x− y = 1i for some index i.

Taking expectations we get
Varµ[f]
Ω(k) 6 uᵀdiag(mean(µ))u

k

This finishes the proof.

15/16

Proof:

Embedding
([n]

k

)
↪→ {0, 1}n, we

need to prove

cov(µ) � O(1) · diag(mean(µ))
So for vector u, we need to show

uᵀ cov(µ)u 6
O(1) · uᵀdiag(mean(µ))u

Now define function f on {0, 1}n as

f(x) = 〈u, x〉
and let ν = fµ.

We have χ2(ν ‖ µ) = Varµ[f] =
Ex∼µ[(u

ᵀx)2] − Ex∼µ[u
ᵀx]2 =

uᵀ cov(µ)u

Because of relaxation time of

O(k), we have
Varµ[f]
Ω(k) 6

Ey∼µDk→k−1

[
VarUk−1→k(y,·)[f]

]
But VarUk−1→k(y,·)[f] 6

Ex∼Uk−1→k(y,·)[(f(x) − f(y))
2]

The inside is simply

uᵀ(x− y)(x− y)ᵀu. Note that

x− y = 1i for some index i.

Taking expectations we get
Varµ[f]
Ω(k) 6 uᵀdiag(mean(µ))u

k

This finishes the proof.

15/16

Proof:

Embedding
([n]

k

)
↪→ {0, 1}n, we

need to prove

cov(µ) � O(1) · diag(mean(µ))
So for vector u, we need to show

uᵀ cov(µ)u 6
O(1) · uᵀdiag(mean(µ))u

Now define function f on {0, 1}n as

f(x) = 〈u, x〉
and let ν = fµ.

We have χ2(ν ‖ µ) = Varµ[f] =
Ex∼µ[(u

ᵀx)2] − Ex∼µ[u
ᵀx]2 =

uᵀ cov(µ)u

Because of relaxation time of

O(k), we have
Varµ[f]
Ω(k) 6

Ey∼µDk→k−1

[
VarUk−1→k(y,·)[f]

]
But VarUk−1→k(y,·)[f] 6

Ex∼Uk−1→k(y,·)[(f(x) − f(y))
2]

The inside is simply

uᵀ(x− y)(x− y)ᵀu. Note that

x− y = 1i for some index i.

Taking expectations we get
Varµ[f]
Ω(k) 6 uᵀdiag(mean(µ))u

k

This finishes the proof.

16/16

high-dimensional expansion

trickle downsta
bil
ity

co
rre

lat
ion

de
ca
y

transport

