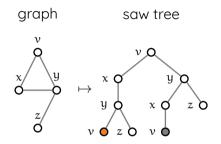
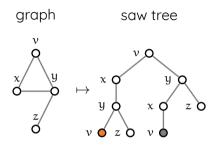
CS 263: Counting and Sampling

Nima Anari

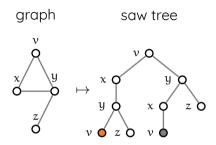
slides for

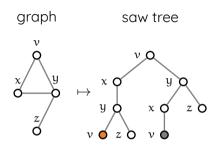
Universality of HDX





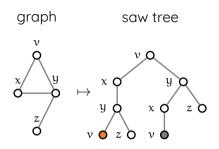
 \triangleright Root marginals are the same.



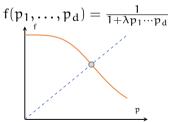


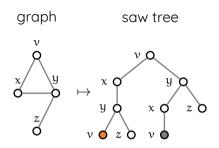
- \triangleright Root marginals are the same.
- ▷ Weak spatial mixing:

$$\begin{split} & d_{\mathsf{TV}}(\mathsf{root} \mid \sigma, \mathsf{root} \mid \sigma') \to \mathfrak{0} \\ & \text{as the following goes to ∞:} \\ & \mathsf{min}\{d(\mathsf{root}, \mathfrak{u}) \mid \mathfrak{u} \in S\}. \end{split}$$

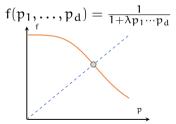


- [Weitz]'s alg forms truncated saw tree and uses recursion:





- - [Weitz]'s alg forms truncated saw tree and uses recursion:



 $\,\triangleright\,$ Attractive exactly when $\lambda < \lambda_c(\Delta)$

The tree equivalence works on any 2-spin systems.

- The tree equivalence works on any 2-spin systems.
- Correlation decay predicts efficient sampling threshold for anti-ferromagnetic 2-spin systems.

- The tree equivalence works on any 2-spin systems.
- Correlation decay predicts efficient sampling threshold for anti-ferromagnetic 2-spin systems.
- In some ferromagnetic systems, efficient sampling [Jerrum-Sinclair] beyond correlation decay.

- The tree equivalence works on any 2-spin systems.
- Correlation decay predicts efficient sampling threshold for anti-ferromagnetic 2-spin systems.
- In some ferromagnetic systems, efficient sampling [Jerrum-Sinclair] beyond correlation decay.

- The tree equivalence works on any 2-spin systems.
- Correlation decay predicts efficient sampling threshold for anti-ferromagnetic 2-spin systems.
- In some ferromagnetic systems, efficient sampling [Jerrum-Sinclair] beyond correlation decay.

- The tree equivalence works on any 2-spin systems.
- Correlation decay predicts efficient sampling threshold for anti-ferromagnetic 2-spin systems.
- In some ferromagnetic systems, efficient sampling [Jerrum-Sinclair] beyond correlation decay.

- Open: extend to beyond binary domains. There are some notions (more complicated) of saw tree, but we no longer have things like SSM on trees => SSM on graphs.
- \bigcirc Conjecture: for q-colorings, we have SSM as soon as $q \ge \Delta + 2$.

- The tree equivalence works on any 2-spin systems.
- Correlation decay predicts efficient sampling threshold for anti-ferromagnetic 2-spin systems.
- In some ferromagnetic systems, efficient sampling [Jerrum-Sinclair] beyond correlation decay.

- Open: extend to beyond binary domains. There are some notions (more complicated) of saw tree, but we no longer have things like SSM on trees => SSM on graphs.
- Conjecture: for q-colorings, we have SSM as soon as $q \ge \Delta + 2$.
- SSM for colorings was open even on trees. [Chen-Liu-Mani-Moitra'23] proved it for $q \ge \Delta + 3$.

- The tree equivalence works on any 2-spin systems.
- Correlation decay predicts efficient sampling threshold for anti-ferromagnetic 2-spin systems.
- In some ferromagnetic systems, efficient sampling [Jerrum-Sinclair] beyond correlation decay.

- Open: extend to beyond binary domains. There are some notions (more complicated) of saw tree, but we no longer have things like SSM on trees => SSM on graphs.
- Conjecture: for q-colorings, we have SSM as soon as $q \ge \Delta + 2$.
- SSM for colorings was open even on trees. [Chen-Liu-Mani-Moitra'23] proved it for $q \ge \Delta + 3$.
- \triangleright Corollary: large girth graphs.

- The tree equivalence works on any 2-spin systems.
- Correlation decay predicts efficient sampling threshold for anti-ferromagnetic 2-spin systems.
- In some ferromagnetic systems, efficient sampling [Jerrum-Sinclair] beyond correlation decay.

- Open: extend to beyond binary domains. There are some notions (more complicated) of saw tree, but we no longer have things like SSM on trees => SSM on graphs.
- Conjecture: for q-colorings, we have SSM as soon as $q \ge \Delta + 2$.
- SSM for colorings was open even on trees. [Chen-Liu-Mani-Moitra'23] proved it for $q \ge \Delta + 3$.
- Corollary: large girth graphs.
- ▷ Open: runtime of deterministic algs seem to be $n^{O(\log \Delta)}$, can we remove bad dependency on Δ ?

HDX via Correlation Decay

- ▷ Influences
- ▷ Fast sampling

HDX via Transport

▷ Universality

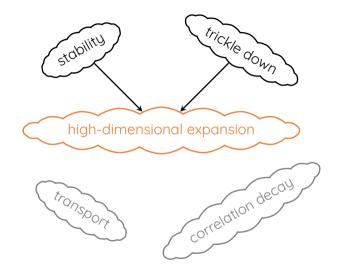
5/16

HDX via Correlation Decay

- ▷ Influences
- ▷ Fast sampling

HDX via Transport

▷ Universality



We now derive spectral independence from SSM.

▷ We now derive spectral independence from SSM. different from Dobrushin's
 ▷ Idea: bound influence matrix
 J[i→j] = P[X_j = 1 | X_i = 1] - P[X_j = 1 | X_i = 0]
 ▷ [A-Liu-OveisGharan] showed how to bound l₁ of columns for hardcore.

We follow [Chen-Liu-Vigoda]'s approach and bound ℓ_1 of rows.

 We now derive spectral independence from SSM. different from Dobrushin's
 Idea: bound influence matrix

$$\begin{split} \mathfrak{I}[\mathfrak{i} \to \mathfrak{j}] &= \mathbb{P}[X_{\mathfrak{j}} = 1 \mid X_{\mathfrak{i}} = \\ 1] - \mathbb{P}[X_{\mathfrak{j}} = 1 \mid X_{\mathfrak{i}} = 0] \end{split}$$

- [A-Liu-OveisGharan] showed how to bound l₁ of columns for hardcore.
 We follow [Chen-Liu-Vigoda]'s approach and bound l₁ of rows.
- \triangleright If Ψ is correlation matrix:

 $\ell_1(\text{rows of }\Psi) \leqslant O(1) \cdot \ell_1(\text{rows of } \mathfrak{I})$

We now derive spectral independence from SSM. different from Dobrushin's

Idea: bound influence matrix

$$\begin{split} \mathbb{I}[i \rightarrow j] &= \mathbb{P}[X_j = 1 \mid X_i = \\ 1] &- \mathbb{P}[X_j = 1 \mid X_i = 0] \end{split}$$

- [A-Liu-OveisGharan] showed how to bound l₁ of columns for hardcore.
 We follow [Chen-Liu-Vigoda]'s approach and bound l₁ of rows.
- \triangleright If Ψ is correlation matrix:

 $\ell_1(\text{rows of }\Psi) \leqslant O(1) \cdot \ell_1(\text{rows of } \mathfrak{I})$

Lemma

If we form saw tree rooted at i, then

$$\mathbb{J}_{\text{graph}}[i \rightarrow j] = \sum_{u \text{ copy of } j} \mathbb{J}_{\text{tree}}[i \rightarrow u]$$

We now derive spectral independence from SSM. different from Dobrushin's

Idea: bound influence matrix

$$\begin{split} \mathbb{I}[i \rightarrow j] &= \mathbb{P}[X_j = 1 \mid X_i = \\ 1] &- \mathbb{P}[X_j = 1 \mid X_i = 0] \end{split}$$

- [A-Liu-OveisGharan] showed how to bound l₁ of columns for hardcore.
 We follow [Chen-Liu-Vigoda]'s approach and bound l₁ of rows.
- \triangleright If Ψ is correlation matrix:

 $\ell_1(\text{rows of }\Psi) \leqslant O(1) \cdot \ell_1(\text{rows of } \mathfrak{I})$

Lemma

If we form saw tree rooted at i, then

$$\mathbb{I}_{\text{graph}}[i \rightarrow j] = \sum_{u \text{ copy of } j} \mathbb{I}_{\text{tree}}[i \rightarrow u]$$

Proof:

- We now derive spectral independence from SSM. different from Dobrushin's
- Idea: bound influence matrix

$$\begin{split} \mathbb{I}[i \rightarrow j] &= \mathbb{P}[X_j = 1 \mid X_i = \\ 1] - \mathbb{P}[X_j = 1 \mid X_i = 0] \end{split}$$

- [A-Liu-OveisGharan] showed how to bound l₁ of columns for hardcore.
 We follow [Chen-Liu-Vigoda]'s approach and bound l₁ of rows.
- \triangleright If Ψ is correlation matrix:

 $\ell_1(\text{rows of }\Psi) \leqslant O(1) \cdot \ell_1(\text{rows of } \mathfrak{I})$

Lemma

If we form saw tree rooted at i, then

$$\mathbb{J}_{\text{graph}}[i
ightarrow j] = \sum_{u \text{ copy of } j} \mathbb{J}_{\text{tree}}[i
ightarrow u]$$

Proof:

> We know $h \cdot g_{graph} = g_{tree}$, expanding on z_i we get $h(z_ir + s) = z_ir' + s'$ where r, s, r', s' are free from z_i .

- We now derive spectral independence from SSM. different from Dobrushin's
- Idea: bound influence matrix

$$\begin{split} \mathbb{I}[\mathfrak{i} \rightarrow j] &= \mathbb{P}[X_j = 1 \mid X_\mathfrak{i} = \\ 1] - \mathbb{P}[X_j = 1 \mid X_\mathfrak{i} = 0] \end{split}$$

- [A-Liu-OveisGharan] showed how to bound l₁ of columns for hardcore.
 We follow [Chen-Liu-Vigoda]'s approach and bound l₁ of rows.
- \triangleright If Ψ is correlation matrix:

 $\ell_1(\text{rows of }\Psi) \leqslant O(1) \cdot \ell_1(\text{rows of } \mathfrak{I})$

Lemma

If we form saw tree rooted at i, then

$$\textbf{I}_{\text{graph}}[i \rightarrow j] = \textstyle{\sum_{u \text{ copy of } j} \textbf{I}_{\text{tree}}[i \rightarrow u]}$$

Proof:

where r, s, r', s' are free from z_i .

 \triangleright The lhs of lemma is $\partial_j \log(r/s) |_{z=1}$.

- We now derive spectral independence from SSM. different from Dobrushin's
- Idea: bound influence matrix

$$\begin{split} \mathbb{I}[i \rightarrow j] &= \mathbb{P}[X_j = 1 \mid X_i = \\ 1] &- \mathbb{P}[X_j = 1 \mid X_i = 0] \end{split}$$

- [A-Liu-OveisGharan] showed how to bound l₁ of columns for hardcore.
 We follow [Chen-Liu-Vigoda]'s approach and bound l₁ of rows.
- \triangleright If Ψ is correlation matrix:

 $\ell_1(\text{rows of }\Psi) \leqslant O(1) \cdot \ell_1(\text{rows of } \mathfrak{I})$

Lemma

If we form saw tree rooted at i, then

$$\textbf{I}_{\text{graph}}[i \rightarrow j] = \textstyle{\sum_{u \text{ copy of } j} \textbf{I}_{\text{tree}}[i \rightarrow u]}$$

Proof:

▷ We know $h \cdot g_{graph} = g_{tree}$, expanding on z_i we get h(z;r+s) = z;r'+s'

where r, s, r', s' are free from z_i .

> The rhs is
$$\partial_j \log(r'/s')|_{z=1}$$
.

- We now derive spectral independence from SSM. different from Dobrushin's
- Idea: bound influence matrix

$$\begin{split} \mathbb{I}[\mathfrak{i} \rightarrow j] &= \mathbb{P}[X_j = 1 \mid X_\mathfrak{i} = \\ 1] - \mathbb{P}[X_j = 1 \mid X_\mathfrak{i} = 0] \end{split}$$

- [A-Liu-OveisGharan] showed how to bound l₁ of columns for hardcore.
 We follow [Chen-Liu-Vigoda]'s approach and bound l₁ of rows.
- \triangleright If Ψ is correlation matrix:

 $\ell_1(\text{rows of }\Psi) \leqslant O(1) \cdot \ell_1(\text{rows of } \mathfrak{I})$

Lemma

If we form saw tree rooted at i, then

$$\textbf{I}_{\text{graph}}[i \rightarrow j] = \textstyle{\sum_{u \text{ copy of } j} \textbf{I}_{\text{tree}}[i \rightarrow u]}$$

Proof:

▷ We know $h \cdot g_{graph} = g_{tree}$, expanding on z_i we get h(z;r+s) = z;r'+s'

where r, s, r', s' are free from z_i .

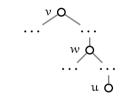
- \triangleright The lhs of lemma is $\partial_j \log(r/s) |_{z=1}$.
- \triangleright The rhs is $\partial_j \log(r'/s') \big|_{z=1}$.

 \triangleright Equal because r' = rh and s' = sh.

 $\sum_{u} |\mathfrak{I}[v \to u]| = O(1)$

$$\sum_{u} |\mathfrak{I}[v \to u]| = O(1)$$

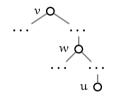
 \triangleright Influences multiply on the tree:



 $\mathbb{J}[\nu \to u] = \mathbb{J}[\nu \to w] \, \mathbb{J}[w \to u]$

$$\textstyle{\sum}_{\mathfrak{u}}|\mathfrak{I}[\nu \to \mathfrak{u}]| = O(1)$$

 \triangleright Influences multiply on the tree:

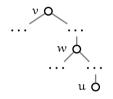


$$\mathfrak{I}[\mathbf{v} \to \mathbf{u}] = \mathfrak{I}[\mathbf{v} \to \mathbf{w}] \, \mathfrak{I}[\mathbf{w} \to \mathbf{u}]$$

 $\label{eq:linear_lin$

$${\textstyle\sum}_{\mathfrak{u}}|\mathfrak{I}[\nu\to\mathfrak{u}]|=O(1)$$

 \triangleright Influences multiply on the tree:

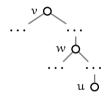


 $\mathfrak{I}[\mathbf{v} \to \mathbf{u}] = \mathfrak{I}[\mathbf{v} \to \mathbf{w}] \, \mathfrak{I}[\mathbf{w} \to \mathbf{u}]$

- $\label{eq:linear_lin$
- \triangleright Let p_u be $\mathbb{P}[X_u = 0]$ in u's subtree.

$$\sum_{\mathbf{u}} |\mathfrak{I}[\mathbf{v} \to \mathbf{u}]| = O(1)$$

 \triangleright Influences multiply on the tree:



 $\mathfrak{I}[\mathbf{v} \to \mathbf{u}] = \mathfrak{I}[\mathbf{v} \to \mathbf{w}] \, \mathfrak{I}[\mathbf{w} \to \mathbf{u}]$

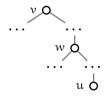
- $$\label{eq:linear_states} \begin{split} & \textstyle \triangleright \ \ \mbox{If we track } t_\ell = \sum_{u \in \mbox{level } \ell} | \mathbb{J}[\nu \to u] |, \\ & \mbox{and show for some } \ell = O(1), \mbox{we} \\ & \mbox{have } t_\ell \leqslant 1 \varepsilon, \mbox{ we are done.} \end{split}$$
- $\,\triangleright\,$ Let p_u be $\mathbb{P}[X_u=0]$ in u's subtree.

 $\bigcirc \$ Using $q_u = log((1-p_u)/p_u),$ we have recursion

$$q_\nu = f(q_{u_1},\ldots,q_{u_k})$$
 where u_1,\ldots,u_k are children of $\nu.$

$$\sum_{\mathbf{u}} |\mathfrak{I}[\mathbf{v} \to \mathbf{u}]| = \mathcal{O}(1)$$

 \triangleright Influences multiply on the tree:



 $\mathfrak{I}[\nu \to \mathfrak{u}] = \mathfrak{I}[\nu \to w] \, \mathfrak{I}[w \to \mathfrak{u}]$

- $\label{eq:linear_lin$
- $\,\triangleright\,$ Let p_u be $\mathbb{P}[X_u=0]$ in u's subtree.

 $\bigcirc \$ Using $q_{\mathfrak{u}} = log((1-p_{\mathfrak{u}})/p_{\mathfrak{u}}),$ we have recursion

$$q_{\nu} = f(q_{u_1}, \ldots, q_{u_k})$$

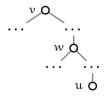
where u_1, \ldots, u_k are children of v.

🕞 Claim:

$$\mathfrak{I}[\nu \to \mathfrak{u}_i] = \mathfrak{d}_i f(q_{\mathfrak{u}_1}, \ldots, q_{\mathfrak{u}_k})$$

$$\sum_{\mathbf{u}} |\mathfrak{I}[\mathbf{v} \to \mathbf{u}]| = \mathrm{O}(1)$$

 \triangleright Influences multiply on the tree:



 $\mathbb{J}[\nu \to u] = \mathbb{J}[\nu \to w] \, \mathbb{J}[w \to u]$

- $\label{eq:linear_lin$
- $\,\triangleright\,$ Let p_u be $\mathbb{P}[X_u=0]$ in u's subtree.

 $\bigcirc \$ Using $q_{\mathfrak{u}} = log((1-p_{\mathfrak{u}})/p_{\mathfrak{u}}),$ we have recursion

$$q_{\nu} = f(q_{u_1}, \dots, q_{u_k})$$

where u_1, \ldots, u_k are children of v.

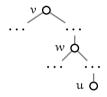
🕞 Claim:

$$\begin{split} \mathbb{J}[\nu \to u_i] &= \partial_i f(q_{u_1}, \dots, q_{u_k}) \\ & \ge \|f\| \|\nabla f\|_1 \leqslant 1 - \varepsilon, \text{ we'd be done.} \end{split}$$

 \triangleright Remains to show on ν -rooted tree:

$$\sum_{\mathfrak{u}} |\mathfrak{I}[\mathfrak{v} \to \mathfrak{u}]| = O(1)$$

 \triangleright Influences multiply on the tree:



 $\mathfrak{I}[\nu \to \mathfrak{u}] = \mathfrak{I}[\nu \to w] \, \mathfrak{I}[w \to \mathfrak{u}]$

- $\begin{tabular}{l} $$ If we track $t_\ell = \sum_{u \in \text{level } \ell} |J[v \to u]|$, $$ and show for some $\ell = O(1)$, we have $t_\ell \leqslant 1 \varepsilon$, we are done. $$ \end{tabular}$
- $\,\triangleright\,$ Let $p_{\mathfrak{u}}$ be $\mathbb{P}[X_{\mathfrak{u}}=\mathfrak{0}]$ in \mathfrak{u} 's subtree.

 $\,\triangleright\,$ Using $q_{\mathfrak{u}}=\text{log}((1-p_{\mathfrak{u}})/p_{\mathfrak{u}}),$ we have recursion

$$q_{\nu} = f(q_{u_1}, \ldots, q_{u_k})$$

where u_1, \ldots, u_k are children of v.

Claim:

 $\mathbb{J}[\nu \to u_i] = \vartheta_i f(q_{u_1}, \dots, q_{u_k})$

- $\ensuremath{\triangleright}$ If $\|\nabla f\|_1\leqslant 1-\varepsilon$, we'd be done.
- Unfortunately, this is not the case. But we can use previous trick

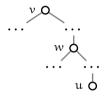
 $g=\psi\circ f(\psi^{-1}(\cdot),\ldots,\psi^{-1}(\cdot))$

and g will have $\|\nabla g\|_1 \leqslant 1-\varepsilon$ everywhere for hardcore.

 \triangleright Remains to show on ν -rooted tree:

$$\sum_{\mathfrak{u}} |\mathfrak{I}[\mathfrak{v} \to \mathfrak{u}]| = O(1)$$

 \triangleright Influences multiply on the tree:



 $\mathfrak{I}[\mathbf{v} \to \mathbf{u}] = \mathfrak{I}[\mathbf{v} \to \mathbf{w}]\,\mathfrak{I}[\mathbf{w} \to \mathbf{u}]$

- $\begin{tabular}{l} $$ If we track $t_\ell = \sum_{u \in \text{level } \ell} |J[v \to u]|$, $$ and show for some $\ell = O(1)$, we have $t_\ell \leqslant 1 \varepsilon$, we are done. $$ \end{tabular}$
- \triangleright Let p_u be $\mathbb{P}[X_u = 0]$ in u's subtree.

 $\,\triangleright\,$ Using $q_{\mathfrak{u}}=\text{log}((1-p_{\mathfrak{u}})/p_{\mathfrak{u}}),$ we have recursion

$$q_{\nu} = f(q_{u_1}, \ldots, q_{u_k})$$

where u_1, \ldots, u_k are children of v.

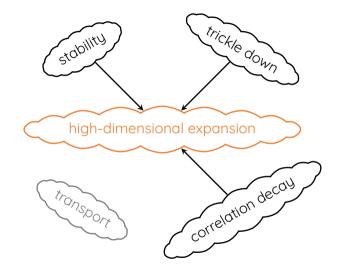
🕞 Claim:

 $\mathbb{J}[\nu \to u_i] = \vartheta_i f(q_{u_1}, \dots, q_{u_k})$

- Unfortunately, this is not the case. But we can use previous trick

 $g=\psi\circ f(\psi^{-1}(\cdot),\ldots,\psi^{-1}(\cdot))$

and g will have $\|\nabla g\|_1 \leqslant 1-\varepsilon$ everywhere for hardcore.



- Now we know O(n log n) [A-Jain-Koehler-Pham-Vuong, Chen-Eldan, Chen-Feng-Yin-Zhang] ⁽²⁾

- Now we know O(n log n) [A-Jain-Koehler-Pham-Vuong, Chen-Eldan, Chen-Feng-Yin-Zhang] ^(C)
- $\bigcirc C\text{-spectral independence implies} \\ \text{that } n \leftrightarrow \ell \text{ block dynamics has} \\ \text{relaxation time} \\ \end{gathered}$

 $\binom{n}{C} / \binom{n-\ell}{C}$

- Now we know O(n log n) [A-Jain-Koehler-Pham-Vuong, Chen-Eldan, Chen-Feng-Yin-Zhang] ^(C)
- $\bigcirc C\text{-spectral independence implies} \\ \text{that } n \leftrightarrow \ell \text{ block dynamics has} \\ \text{relaxation time} \\ \end{gathered}$

$$\binom{\binom{n}{C}}{\binom{n-\ell}{C}}$$
 Note that $C = f(\Delta, \lambda)$

- Spectral independence shows Glauber mixing in $n^{O_{\lambda,\Delta}(1)}$. Impractical polynomial.
- Now we know O(n log n) [A-Jain-Koehler-Pham-Vuong, Chen-Eldan, Chen-Feng-Yin-Zhang] C
- $\bigcirc C\text{-spectral independence implies} \\ \text{that } n \leftrightarrow \ell \text{ block dynamics has} \\ \text{relaxation time} \\ \end{gathered}$

$$\binom{n}{C} / \binom{n-\ell}{C}$$

$$\triangleright \text{ Note that } C = f(\Delta, \lambda) \Leftrightarrow$$

 $\bigcirc \quad \text{Observation: if } n - \ell = \Omega_{\Delta,\lambda}(n), \\ \text{relaxation time is } O_{\Delta,\lambda}(1)!$

- Spectral independence shows Glauber mixing in $n^{O_{\lambda,\Delta}(1)}$. Impractical polynomial.
- Now we know O(n log n)
 [A-Jain-Koehler-Pham-Vuong,
 Chen-Eldan, Chen-Feng-Yin-Zhang]
- $\bigcirc C\text{-spectral independence implies} \\ \text{that } n \leftrightarrow \ell \text{ block dynamics has} \\ \text{relaxation time} \\ \end{gathered}$

$$\binom{n}{C} / \binom{n-\ell}{C}$$

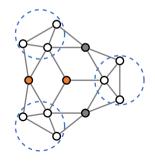
$$\triangleright \text{ Note that } C = f(\Delta, \lambda) \Leftrightarrow$$

- $\bigcirc \quad \text{Observation: if } n \ell = \Omega_{\Delta,\lambda}(n), \\ \text{relaxation time is } O_{\Delta,\lambda}(1)!$
- ▷ How to implement?

- Spectral independence shows Glauber mixing in $n^{O_{\lambda,\Delta}(1)}$. Impractical polynomial.
- Now we know O(n log n) [A-Jain-Koehler-Pham-Vuong, Chen-Eldan, Chen-Feng-Yin-Zhang]
- $\bigcirc C\text{-spectral independence implies} \\ \text{that } n \leftrightarrow \ell \text{ block dynamics has} \\ \text{relaxation time} \\ \end{gathered}$

$$\binom{\binom{n}{C}}{\binom{n-\ell}{C}}$$
 Note that $C = f(\Delta, \lambda)$

- $\bigcirc \quad \text{Observation: if } n \ell = \Omega_{\Delta,\lambda}(n), \\ \text{relaxation time is } O_{\Delta,\lambda}(1)!$
- \triangleright How to implement?



Proof:

There are at most $n \cdot \Delta^{2(k-1)}$ connected subgraphs of size k. Covered by walks of len 2(k-1).

Proof:

There are at most $n \cdot \Delta^{2(k-1)}$ connected subgraphs of size k. Covered by walks of len 2(k-1).

If random δ fraction of verts are free, probability of a k-sized subgraph being free is

$$\simeq \delta^k$$

Proof:

There are at most $n \cdot \Delta^{2(k-1)}$ connected subgraphs of size k. Covered by walks of len 2(k-1).

If random δ fraction of verts are free, probability of a k-sized subgraph being free is

$$\simeq \delta^k$$

Using union bound, prob of any surviving will be

$$n\cdot \Delta^{2(k-1)}\cdot \delta^k$$

There are at most $n \cdot \Delta^{2(k-1)}$ connected subgraphs of size k. Covered by walks of len 2(k-1).

Proof:

If random δ fraction of verts are free, probability of a k-sized subgraph being free is

$$\simeq \delta^k$$

Using union bound, prob of any surviving will be

$$\mathbf{n} \cdot \Delta^{2(k-1)} \cdot \delta^k$$

 $\,\triangleright\,$ Set δ small and $k\simeq \log n.$ ${\mbox{\ensuremath{\Theta}}}$

Proof:

There are at most $n \cdot \Delta^{2(k-1)}$ connected subgraphs of size k. Covered by walks of len 2(k-1).

If random δ fraction of verts are free, probability of a k-sized subgraph being free is

$$\simeq \delta^k$$

Using union bound, prob of any surviving will be

$$\mathbf{n} \cdot \Delta^{2(k-1)} \cdot \delta^k$$

 $\,\triangleright\,$ Set δ small and $k\simeq \log n.$ ${\mbox{\ensuremath{\Theta}}}$

Since islands are small, we can sample from them much faster, in poly log(n) time. ^(C)

Proof:

There are at most $n \cdot \Delta^{2(k-1)}$ connected subgraphs of size k. Covered by walks of len 2(k-1).

If random δ fraction of verts are free, probability of a k-sized subgraph being free is

$$\simeq \delta^k$$

Using union bound, prob of any surviving will be

$$\mathbf{n} \cdot \Delta^{2(k-1)} \cdot \delta^k$$

 $\,\triangleright\,$ Set δ small and $k\simeq \log n.$ ${\mbox{\ensuremath{\Theta}}}$

- Since islands are small, we can sample from them much faster, in poly log(n) time. ^(C)
- Alternatively, you can use some form of comparison to prove Õ(n) relaxation time for Glauber dynamics itself [Chen-Liu-Vigoda].

Proof:

There are at most $n \cdot \Delta^{2(k-1)}$ connected subgraphs of size k. Covered by walks of len 2(k-1).

If random δ fraction of verts are free, probability of a k-sized subgraph being free is

$$\simeq \delta^k$$

Using union bound, prob of any surviving will be

$$\mathbf{n} \cdot \Delta^{2(k-1)} \cdot \delta^k$$

 \triangleright Set δ small and $k \simeq \log n$.

- Since islands are small, we can sample from them much faster, in poly log(n) time. ^(C)
- Alternatively, you can use some form of comparison to prove O(n) relaxation time for Glauber dynamics itself [Chen-Liu-Vigoda].
- Note that spectral independence itself only gives us $\widetilde{O}(n^2)$ time algs. We need entropy contraction to get $\widetilde{O}(n)$. This was done for $\Delta = O(1)$ by [Chen-Liu-Vigoda], and for general Δ by [A-Jain-Koehler-Pham-Vuong].

HDX via Correlation Decay

- ▷ Influences
- ▷ Fast sampling

HDX via Transport

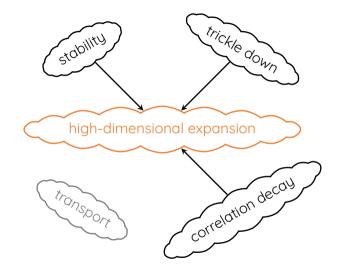
▷ Universality

HDX via Correlation Decay

- ▷ Influences
- ▷ Fast sampling

HDX via Transport

▷ Universality



- \triangleright We proved optimal mixing of colorings for $q \ge 2\Delta + 1$.
- The proof was based on contraction of transport distance.

- \triangleright We proved optimal mixing of colorings for $q \ge 2\Delta + 1$.
- The proof was based on contraction of transport distance.
- Even the state-of-the-art bounds of $q \simeq \frac{11}{6}\Delta - \epsilon$ rely on transport contraction, although on a different chain. This resulted in slow but polynomial mixing.

- \triangleright We proved optimal mixing of colorings for $q \ge 2\Delta + 1$.
- The proof was based on contraction of transport distance.
- Even the state-of-the-art bounds of $q \simeq \frac{11}{6}\Delta - \epsilon$ rely on transport contraction, although on a different chain. This resulted in slow but polynomial mixing.
- Does transport contraction imply spectral independence?

- \triangleright We proved optimal mixing of colorings for $q \ge 2\Delta + 1$.
- The proof was based on contraction of transport distance.
- Even the state-of-the-art bounds of $q \simeq \frac{11}{6}\Delta - \epsilon$ rely on transport contraction, although on a different chain. This resulted in slow but polynomial mixing.
- Does transport contraction imply spectral independence?
- ▷ This give us fast sampling. 😅

- \triangleright We proved optimal mixing of colorings for $q \ge 2\Delta + 1$.
- The proof was based on contraction of transport distance.
- Even the state-of-the-art bounds of $q \simeq \frac{11}{6}\Delta - \epsilon$ rely on transport contraction, although on a different chain. This resulted in slow but polynomial mixing.
- Does transport contraction imply spectral independence?
- ▷ This give us fast sampling. 😅

Spectral independence from transport contraction was first dervied by [Liu, Blanca-Caputo-Chen-Parisi-Štefankovič-Vigoda].

- \triangleright We proved optimal mixing of colorings for $q \ge 2\Delta + 1$.
- The proof was based on contraction of transport distance.
- Even the state-of-the-art bounds of $q \simeq \frac{11}{6}\Delta - \epsilon$ rely on transport contraction, although on a different chain. This resulted in slow but polynomial mixing.
- Does transport contraction imply spectral independence?
- ▷ This give us fast sampling. 😅

- Spectral independence from transport contraction was first dervied by [Liu, Blanca-Caputo-Chen-Parisi-Štefankovič-Vigoda].
- I will show a different argument based on universality [A-Jain-Koehler-Pham-Vuong].

- \triangleright We proved optimal mixing of colorings for $q \ge 2\Delta + 1$.
- The proof was based on contraction of transport distance.
- Even the state-of-the-art bounds of $q \simeq \frac{11}{6}\Delta - \epsilon$ rely on transport contraction, although on a different chain. This resulted in slow but polynomial mixing.
- Does transport contraction imply spectral independence?
- ▷ This give us fast sampling. 😅

- Spectral independence from transport contraction was first dervied by [Liu, Blanca-Caputo-Chen-Parisi-Štefankovič-Vigoda].
- I will show a different argument based on universality [A-Jain-Koehler-Pham-Vuong].

Universality of SI

If down-up walk for dist μ on $\binom{[n]}{k}$ has relaxation time O(k), then μ is O(1)-SI.

- \triangleright We proved optimal mixing of colorings for $q \ge 2\Delta + 1$.
- The proof was based on contraction of transport distance.
- Even the state-of-the-art bounds of $q \simeq \frac{11}{6}\Delta - \epsilon$ rely on transport contraction, although on a different chain. This resulted in slow but polynomial mixing.
- Does transport contraction imply spectral independence?
- ▷ This give us fast sampling. 😅

- Spectral independence from transport contraction was first dervied by [Liu, Blanca-Caputo-Chen-Parisi-Štefankovič-Vigoda].
- I will show a different argument based on universality [A-Jain-Koehler-Pham-Vuong].

Universality of SI

If down-up walk for dist μ on $\binom{[n]}{k}$ has relaxation time O(k), then μ is O(1)-SI.

▷ So Dobrushin++ implies SI.

$\begin{array}{l} \textcircled{\mbox{Embedding } {[n] \atop k} \hookrightarrow \{0,1\}^n, \mbox{we} \\ \mbox{need to prove} \\ \mbox{cov}(\mu) \preceq O(1) \cdot \mbox{diag}(\mbox{mean}(\mu)) \end{array}$

```
\begin{array}{ll} \displaystyle \triangleright & \mbox{Embedding } {[n] \atop k} \hookrightarrow \{0,1\}^n, \mbox{we} \\ & \mbox{need to prove} \\ & \mbox{cov}(\mu) \preceq O(1) \cdot \mbox{diag}(\mbox{mean}(\mu)) \\ \displaystyle \boxdot & \mbox{So for vector } u, \mbox{we need to show} \\ & \mbox{u}^{\intercal} \mbox{cov}(\mu) u \leqslant \\ & O(1) \cdot u^{\intercal} \mbox{diag}(\mbox{mean}(\mu)) u \end{array}
```

 \triangleright Embedding $\binom{[n]}{k} \hookrightarrow \{0,1\}^n$, we need to prove $cov(\mu) \prec O(1) \cdot diag(mean(\mu))$ \triangleright So for vector u, we need to show $\mathfrak{u}^{\mathsf{T}} \operatorname{cov}(\mathfrak{\mu})\mathfrak{u} \leq$ $O(1) \cdot u^{\mathsf{T}} diag(mean(\mu))u$ \triangleright Now define function f on $\{0,1\}^n$ as $f(x) = \langle u, x \rangle$ and let v = fu.

\triangleright	Embedding ${[n] \choose k} \hookrightarrow \{0,1\}^n$, we need to prove
	$cov(\mu) \preceq O(1) \cdot diag(mean(\mu))$
\triangleright	So for vector \mathfrak{u} , we need to show
	$\mathfrak{u}^{\intercal} \operatorname{cov}(\mu)\mathfrak{u} \leqslant O(1) \cdot \mathfrak{u}^{\intercal} \operatorname{diag}(mean(\mu))\mathfrak{u}$
\triangleright	Now define function f on $\{0,1\}^n$ as
	$f(x) = \langle u, x \rangle$
	and let $\mathbf{v} = \mathbf{f} \mathbf{\mu}$.
\triangleright	We have $\chi^2(u \parallel \mu) = Var_\mu[f] =$
	$\mathbb{E}_{x\sim \mu}[(u^\intercal x)^2] - \mathbb{E}_{x\sim \mu}[u^\intercal x]^2 =$
	$\mathfrak{u}^{\intercal} \operatorname{cov}(\mu)\mathfrak{u}$

- \triangleright Embedding $\binom{[n]}{k} \hookrightarrow \{0, 1\}^n$, we need to prove $cov(\mu) \prec O(1) \cdot diag(mean(\mu))$ \triangleright So for vector u, we need to show $u^{\mathsf{T}} \operatorname{cov}(u) u \leq$ $O(1) \cdot u^{\mathsf{T}} diag(mean(\mu))u$ \triangleright Now define function f on $\{0,1\}^n$ as $f(x) = \langle u, x \rangle$ and let $\nu = f\mu$. \triangleright We have $\chi^2(\nu \parallel \mu) = Var_{\mu}[f] =$ $\mathbb{E}_{\mathbf{x} \sim \mathbf{u}}[(\mathbf{u}^{\mathsf{T}}\mathbf{x})^2] - \mathbb{E}_{\mathbf{x} \sim \mathbf{u}}[\mathbf{u}^{\mathsf{T}}\mathbf{x}]^2 =$ $u^{\mathsf{T}} \operatorname{cov}(\mu) u$

- \triangleright Embedding $\binom{[n]}{k} \hookrightarrow \{0, 1\}^n$, we need to prove $cov(\mu) \prec O(1) \cdot diag(mean(\mu))$ \triangleright So for vector u, we need to show $u^{\mathsf{T}} \operatorname{cov}(u) u \leq$ $O(1) \cdot u^{\mathsf{T}} diag(mean(\mu))u$ \triangleright Now define function f on $\{0,1\}^n$ as $f(x) = \langle u, x \rangle$ and let v = fu. \triangleright We have $\chi^2(\nu \parallel \mu) = Var_{\mu}[f] =$ $\mathbb{E}_{\mathbf{x}\sim \mathbf{\mu}}[(\mathbf{u}^{\mathsf{T}}\mathbf{x})^2] - \mathbb{E}_{\mathbf{x}\sim \mathbf{\mu}}[\mathbf{u}^{\mathsf{T}}\mathbf{x}]^2 =$ $u^{\mathsf{T}} \operatorname{cov}(\mu) u$
- $\begin{array}{l} \textcircled{black} & \mbox{Because of relaxation time of} \\ & O(k), \mbox{ we have } \frac{Var_{\mu}[f]}{\Omega(k)} \leqslant \\ & \mathbb{E}_{y \sim \mu D_{k \rightarrow k-1}} \Big[Var_{U_{k-1 \rightarrow k}(y, \cdot)}[f] \Big] \\ & \mbox{ But } Var_{U_{k-1 \rightarrow k}(y, \cdot)}[f] \leqslant \end{array}$
 - $\mathbb{E}_{\mathbf{x} \sim \mathbf{U}_{k-1 \to k}(\mathbf{y}, \cdot)}[(\mathbf{f}(\mathbf{x}) \mathbf{f}(\mathbf{y}))^2]$

- \triangleright Embedding $\binom{[n]}{k} \hookrightarrow \{0, 1\}^n$, we need to prove $cov(\mu) \prec O(1) \cdot diag(mean(\mu))$ \triangleright So for vector u, we need to show $u^{\mathsf{T}} \operatorname{cov}(u) u \leq$ $O(1) \cdot u^{\mathsf{T}} diag(mean(\mu))u$ \triangleright Now define function f on $\{0,1\}^n$ as $f(x) = \langle u, x \rangle$ and let v = fu. \triangleright We have $\chi^2(\nu \parallel \mu) = Var_{\mu}[f] =$ $\mathbb{E}_{\mathbf{x} \sim \mathbf{u}}[(\mathbf{u}^{\mathsf{T}}\mathbf{x})^2] - \mathbb{E}_{\mathbf{x} \sim \mathbf{u}}[\mathbf{u}^{\mathsf{T}}\mathbf{x}]^2 =$ $u^{\mathsf{T}} \operatorname{cov}(\mu) u$
- $\begin{array}{l} \textcircled{\mathbb{D}} & \text{Because of relaxation time of} \\ & O(k) \text{, we have } \frac{\text{Var}_{\mu}[f]}{\Omega(k)} \leqslant \\ & \mathbb{E}_{y \sim \mu D_{k \rightarrow k-1}} \left[\text{Var}_{U_{k-1 \rightarrow k}(y, \cdot)}[f] \right] \end{array}$
- The inside is simply $u^{\intercal}(x-y)(x-y)^{\intercal}u$. Note that $x-y = \mathbb{1}_i$ for some index i.

- \triangleright Embedding $\binom{[n]}{k} \hookrightarrow \{0, 1\}^n$, we need to prove $cov(\mu) \prec O(1) \cdot diag(mean(\mu))$ \triangleright So for vector u, we need to show $u^{\mathsf{T}} \operatorname{cov}(u) u \leq$ $O(1) \cdot u^{\mathsf{T}} diag(mean(\mu))u$ \triangleright Now define function f on $\{0,1\}^n$ as $f(x) = \langle u, x \rangle$ and let v = fu. \triangleright We have $\chi^2(\nu \parallel \mu) = Var_{\mu}[f] =$ $\mathbb{E}_{\mathbf{x} \sim \mathbf{u}}[(\mathbf{u}^{\mathsf{T}}\mathbf{x})^2] - \mathbb{E}_{\mathbf{x} \sim \mathbf{u}}[\mathbf{u}^{\mathsf{T}}\mathbf{x}]^2 =$ $u^{\mathsf{T}} \operatorname{cov}(\mu) u$
- $\begin{array}{l} \textcircled{\mathbb{D}} & \text{Because of relaxation time of} \\ & O(k) \text{, we have } \frac{\text{Var}_{\mu}[f]}{\Omega(k)} \leqslant \\ & \mathbb{E}_{y \sim \mu D_{k \rightarrow k-1}} \left[\text{Var}_{U_{k-1 \rightarrow k}(y, \cdot)}[f] \right] \end{array}$
- The inside is simply $u^{\intercal}(x-y)(x-y)^{\intercal}u$. Note that $x-y = \mathbb{1}_i$ for some index i.
- $\begin{array}{l} \textcircled{} \quad \text{Taking expectations we get} \\ \frac{\mathsf{Var}_{\mu}[f]}{\Omega(k)} \leqslant \frac{u^{\intercal}\mathsf{diag}(\mathsf{mean}(\mu))u}{k} \end{array}$

- \triangleright Embedding $\binom{[n]}{k} \hookrightarrow \{0, 1\}^n$, we need to prove $cov(\mu) \prec O(1) \cdot diag(mean(\mu))$ \triangleright So for vector u, we need to show $u^{\mathsf{T}} \operatorname{cov}(u) u \leq$ $O(1) \cdot u^{\mathsf{T}} diag(mean(\mu))u$ \triangleright Now define function f on $\{0,1\}^n$ as $f(x) = \langle u, x \rangle$ and let $\nu = f\mu$. \triangleright We have $\chi^2(\nu \parallel \mu) = Var_{\mu}[f] =$ $\mathbb{E}_{\mathbf{x} \sim \mathbf{u}}[(\mathbf{u}^{\mathsf{T}}\mathbf{x})^2] - \mathbb{E}_{\mathbf{x} \sim \mathbf{u}}[\mathbf{u}^{\mathsf{T}}\mathbf{x}]^2 =$ $u^{\mathsf{T}} \operatorname{cov}(\mu) u$
- $\begin{array}{l} \textcircled{\mathbb{D}} & \text{Because of relaxation time of} \\ & O(k) \text{, we have } \frac{\text{Var}_{\mu}[f]}{\Omega(k)} \leqslant \\ & \mathbb{E}_{y \sim \mu D_{k \rightarrow k-1}} \left[\text{Var}_{U_{k-1 \rightarrow k}(y, \cdot)}[f] \right] \end{array}$
- The inside is simply $u^{\intercal}(x-y)(x-y)^{\intercal}u$. Note that $x-y = \mathbb{1}_i$ for some index i.
- $\begin{array}{l} \textcircled{} \begin{tabular}{ll} \hline \begin{tabular}{ll} Taking expectations we get \\ \hline & \frac{\mathsf{Var}_{\mu}[f]}{\Omega(k)} \leqslant \frac{u^\intercal\mathsf{diag}(\mathsf{mean}(\mu))u}{k} \end{tabular} \end{tabular}$
- \triangleright This finishes the proof. igodot

