CS 263: Counting and Sampling

Nima Anari

1. Stanford
slides for
Universality of HDX

Review

Review

D Root marginals are the same.

Review

D Root marginals are the same.
\bigcirc Weak spatial mixing:

$$
\mathrm{d}_{\mathrm{TV}}\left(\text { root } \mid \sigma, \text { root } \mid \sigma^{\prime}\right) \rightarrow 0
$$

as the following goes to ∞ :

$$
\min \{d(r o o t, u) \mid u \in S\} .
$$

Review

\bigcirc Strong spatial mixing:

$$
\mathrm{d}_{\mathrm{TV}}\left(\operatorname{root} \mid \sigma, \text { root } \mid \sigma^{\prime}\right) \rightarrow 0
$$

as the following goes to ∞ : $\min \left\{d(\right.$ root,$\left.u) \mid \sigma(u) \neq \sigma^{\prime}(u)\right\}$.

D Root marginals are the same.

- Weak spatial mixing:

$$
\mathrm{d}_{\mathrm{TV}}\left(\operatorname{root} \mid \sigma, \text { root } \mid \sigma^{\prime}\right) \rightarrow 0
$$

as the following goes to ∞ :

$$
\min \{d(r o o t, u) \mid u \in S\} .
$$

Review

D Root marginals are the same.
© Weak spatial mixing:

$$
\mathrm{d}_{\mathrm{TV}}\left(\text { root } \mid \sigma, \text { root } \mid \sigma^{\prime}\right) \rightarrow 0
$$

as the following goes to ∞ :

$$
\min \{d(r o o t, u) \mid u \in S\} .
$$

\bigcirc Strong spatial mixing:

$$
\mathrm{d}_{\mathrm{TV}}\left(\operatorname{root} \mid \sigma, \text { root } \mid \sigma^{\prime}\right) \rightarrow 0
$$

as the following goes to ∞ :

$$
\min \left\{\mathrm{d}(\text { root }, u) \mid \sigma(u) \neq \sigma^{\prime}(u)\right\}
$$

D [Weitz]'s alg forms truncated saw tree and uses recursion:

$$
f\left(p_{1}, \ldots, p_{d}\right)=\frac{1}{1+\lambda p_{1} \cdots p_{d}}
$$

Review

D Root marginals are the same.
© Weak spatial mixing:

$$
\mathrm{d}_{\mathrm{TV}}\left(\operatorname{root} \mid \sigma, \text { root } \mid \sigma^{\prime}\right) \rightarrow 0
$$

as the following goes to ∞ :

$$
\min \{d(r o o t, u) \mid u \in S\} .
$$

D Strong spatial mixing:

$$
\mathrm{d}_{\mathrm{TV}}\left(\operatorname{root} \mid \sigma, \text { root } \mid \sigma^{\prime}\right) \rightarrow 0
$$

as the following goes to ∞ :

$$
\min \left\{\mathrm{d}(\text { root }, u) \mid \sigma(u) \neq \sigma^{\prime}(u)\right\}
$$

D [Weitz]'s alg forms truncated saw tree and uses recursion:

$$
f\left(p_{1}, \ldots, p_{d}\right)=\frac{1}{1+\lambda p_{1} \cdots p_{d}}
$$

D Attractive exactly when $\lambda<\lambda_{c}(\Delta)$

Remarks

\bigcirc The tree equivalence works on any 2 -spin systems.

Remarks

- The tree equivalence works on any 2 -spin systems.
D Correlation decay predicts efficient sampling threshold for anti-ferromagnetic 2-spin systems.

Remarks

- The tree equivalence works on any 2 -spin systems.
D Correlation decay predicts efficient sampling threshold for anti-ferromagnetic 2-spin systems.
- In some ferromagnetic systems, efficient sampling [Jerrum-Sinclair] beyond correlation decay.

Remarks

- The tree equivalence works on any 2 -spin systems.
D Correlation decay predicts efficient sampling threshold for anti-ferromagnetic 2-spin systems.
- In some ferromagnetic systems, efficient sampling [Jerrum-Sinclair] beyond correlation decay.
$\bigcirc \ln$ tree recursion $p \mapsto f(p)$, originally proof of convergence involved multiple iterations of f. The change of variable trick ($\psi \circ \mathrm{f} \circ \psi^{-1}$) is due to [Li-Lu-Yin].

Remarks

- The tree equivalence works on any 2 -spin systems.
D Correlation decay predicts efficient sampling threshold for anti-ferromagnetic 2-spin systems.
D In some ferromagnetic systems, efficient sampling [Jerrum-Sinclair] beyond correlation decay.
$D \ln$ tree recursion $p \mapsto f(p)$, originally proof of convergence involved multiple iterations of f. The change of variable trick $\left(\psi \circ f \circ \psi^{-1}\right)$ is due to [Li-Lu-Yin].

D Open: extend to beyond binary domains. There are some notions (more complicated) of saw tree, but we no longer have things like SSM on trees \Longrightarrow SSM on graphs.

Remarks

- The tree equivalence works on any 2 -spin systems.
D Correlation decay predicts efficient sampling threshold for anti-ferromagnetic 2-spin systems.
D In some ferromagnetic systems, efficient sampling [Jerrum-Sinclair] beyond correlation decay.
\bigcirc In tree recursion $p \mapsto f(p)$, originally proof of convergence involved multiple iterations of f. The change of variable trick $\left(\psi \circ f \circ \psi^{-1}\right)$ is due to [Li-Lu-Yin].
D Open: extend to beyond binary domains. There are some notions (more complicated) of saw tree, but we no longer have things like SSM on trees \Longrightarrow SSM on graphs.
- Conjecture: for q-colorings, we have SSM as soon as $q \geqslant \Delta+2$.

Remarks

- The tree equivalence works on any 2 -spin systems.
D Correlation decay predicts efficient sampling threshold for anti-ferromagnetic 2-spin systems.
D In some ferromagnetic systems, efficient sampling [Jerrum-Sinclair] beyond correlation decay.
\bigcirc In tree recursion $p \mapsto f(p)$, originally proof of convergence involved multiple iterations of f. The change of variable trick $\left(\psi \circ f \circ \psi^{-1}\right)$ is due to [Li-Lu-Yin].
D Open: extend to beyond binary domains. There are some notions (more complicated) of saw tree, but we no longer have things like SSM on trees \Longrightarrow SSM on graphs.
- Conjecture: for q-colorings, we have SSM as soon as $q \geqslant \Delta+2$.
\checkmark SSM for colorings was open even on trees. [Chen-Liu-Mani-Moitra'23] proved it for $q \geqslant \Delta+3$.

Remarks

- The tree equivalence works on any 2 -spin systems.
D Correlation decay predicts efficient sampling threshold for anti-ferromagnetic 2-spin systems.
D In some ferromagnetic systems, efficient sampling [Jerrum-Sinclair] beyond correlation decay.
\bigcirc In tree recursion $p \mapsto f(p)$, originally proof of convergence involved multiple iterations of f. The change of variable trick $\left(\psi \circ f \circ \psi^{-1}\right)$ is due to [Li-Lu-Yin].
D Open: extend to beyond binary domains. There are some notions (more complicated) of saw tree, but we no longer have things like SSM on trees \Longrightarrow SSM on graphs.
- Conjecture: for q-colorings, we have SSM as soon as $q \geqslant \Delta+2$.
\checkmark SSM for colorings was open even on trees. [Chen-Liu-Mani-Moitra'23] proved it for $q \geqslant \Delta+3$.
D Corollary: large girth graphs.

Remarks

- The tree equivalence works on any 2 -spin systems.
D Correlation decay predicts efficient sampling threshold for anti-ferromagnetic 2-spin systems.
D In some ferromagnetic systems, efficient sampling [Jerrum-Sinclair] beyond correlation decay.
\bigcirc In tree recursion $p \mapsto f(p)$, originally proof of convergence involved multiple iterations of f. The change of variable trick $\left(\psi \circ f \circ \psi^{-1}\right)$ is due to [Li-Lu-Yin].
D Open: extend to beyond binary domains. There are some notions (more complicated) of saw tree, but we no longer have things like SSM on trees \Longrightarrow SSM on graphs.
- Conjecture: for q-colorings, we have SSM as soon as $q \geqslant \Delta+2$.
\bigcirc SSM for colorings was open even on trees. [Chen-Liu-Mani-Moitra'23] proved it for $q \geqslant \Delta+3$.
D Corollary: large girth graphs.
\checkmark Open: runtime of deterministic algs seem to be $n^{0(\log \Delta)}$, can we remove bad dependency on Δ ?

HDX via Correlation Decay

D Influences
D Fast sampling
HDX via Transport
\bigcirc Universality

HDX via Correlation Decay

D Influences
D Fast sampling
HDX via Transport
D Universality

Influences

- We now derive spectral independence from SSM.

Influences

- We now derive spectral independence from SSM.
different from Dobrushin's
D Idea: bound influence matrix

$$
\begin{gathered}
\mathcal{J}[i \rightarrow j]=\mathbb{P}\left[X_{j}=1 \mid X_{i}=\right. \\
1]-\mathbb{P}\left[X_{j}=1 \mid X_{i}=0\right]
\end{gathered}
$$

Influences

D We now derive spectral independence from SSM.
different from Dobrushin's

- Idea: bound influence matrix

$$
\begin{gathered}
\mathcal{J}[i \rightarrow j]=\mathbb{P}\left[X_{j}=1 \mid X_{i}=\right. \\
1]-\mathbb{P}\left[X_{j}=1 \mid X_{i}=0\right]
\end{gathered}
$$

D [A-Liu-OveisGharan] showed how to bound ℓ_{1} of columns for hardcore.
We follow [Chen-Liu-Vigoda]'s approach and bound ℓ_{1} of rows.

Influences

- We now derive spectral independence from SSM.
different from Dobrushin's
- Idea: bound influence matrix

$$
\begin{gathered}
\mathcal{J}[i \rightarrow j]=\mathbb{P}\left[X_{j}=1 \mid X_{i}=\right. \\
1]-\mathbb{P}\left[X_{j}=1 \mid X_{i}=0\right]
\end{gathered}
$$

D [A-Liu-OveisGharan] showed how to bound ℓ_{1} of columns for hardcore.
We follow [Chen-Liu-Vigoda]'s approach and bound ℓ_{1} of rows.
D If Ψ is correlation matrix:
$\ell_{1}($ rows of $\Psi) \leqslant \mathrm{O}(1) \cdot \ell_{1}($ rows of $\mathcal{J})$

Influences

D We now derive spectral independence from SSM. different from Dobrushin's
\bigcirc Idea: bound influence matrix

Lemma

If we form saw tree rooted at i, then

$$
\mathcal{J}_{\text {graph }}[\mathfrak{i} \rightarrow \mathfrak{j}]=\sum_{\mathfrak{u} \text { copy of } \mathfrak{j}} \mathcal{J}_{\text {tree }}[\mathfrak{i} \rightarrow \mathfrak{u}]
$$

$$
\begin{gathered}
\mathcal{J}[i \rightarrow j]=\mathbb{P}\left[X_{j}=1 \mid X_{i}=\right. \\
1]-\mathbb{P}\left[X_{j}=1 \mid X_{i}=0\right]
\end{gathered}
$$

D [A-Liu-OveisGharan] showed how to bound ℓ_{1} of columns for hardcore. We follow [Chen-Liu-Vigoda]'s approach and bound ℓ_{1} of rows.
D If Ψ is correlation matrix:
$\ell_{1}($ rows of $\Psi) \leqslant \mathrm{O}(1) \cdot \ell_{1}($ rows of $\mathcal{J})$

Influences

D We now derive spectral independence from SSM. different from Dobrushin's
\bigcirc Idea: bound influence matrix

$$
\begin{gathered}
\mathcal{J}[i \rightarrow j]=\mathbb{P}\left[X_{j}=1 \mid X_{i}=\right. \\
1]-\mathbb{P}\left[X_{j}=1 \mid X_{i}=0\right]
\end{gathered}
$$

Lemma

If we form saw tree rooted at i, then

$$
\mathcal{J}_{\text {graph }}[\mathfrak{i} \rightarrow \mathfrak{j}]=\sum_{\mathfrak{u} \text { copy of } \mathfrak{j}} \mathcal{J}_{\text {tree }}[\mathfrak{i} \rightarrow \mathfrak{u}]
$$

Proof:
D [A-Liu-OveisGharan] showed how to bound ℓ_{1} of columns for hardcore. We follow [Chen-Liu-Vigoda]'s approach and bound ℓ_{1} of rows.
D If Ψ is correlation matrix:
$\ell_{1}($ rows of $\Psi) \leqslant \mathrm{O}(1) \cdot \ell_{1}($ rows of $\mathcal{J})$

Influences

D We now derive spectral independence from SSM.
different from Dobrushin's
© Idea: bound influence matrix

$$
\begin{gathered}
\mathcal{J}[i \rightarrow j]=\mathbb{P}\left[X_{j}=1 \mid X_{i}=\right. \\
1]-\mathbb{P}\left[X_{j}=1 \mid X_{i}=0\right]
\end{gathered}
$$

D [A-Liu-OveisGharan] showed how to bound ℓ_{1} of columns for hardcore. We follow [Chen-Liu-Vigoda]'s approach and bound ℓ_{1} of rows.
\bigcirc If Ψ is correlation matrix:
$\ell_{1}($ rows of $\Psi) \leqslant \mathrm{O}(1) \cdot \ell_{1}($ rows of $\mathcal{J})$

Lemma

If we form saw tree rooted at i, then

$$
\mathcal{J}_{\text {graph }}[\mathfrak{i} \rightarrow \mathfrak{j}]=\sum_{u \text { copy of } j} \mathcal{J}_{\text {tree }}[\mathfrak{i} \rightarrow \mathbf{u}]
$$

Proof:
\bigcirc We know $\mathrm{h} \cdot \mathrm{g}_{\text {graph }}=\mathrm{g}_{\text {tree }}$, expanding on z_{i} we get

$$
h\left(z_{\mathfrak{i}} \mathrm{r}+s\right)=z_{\mathfrak{i}} \mathrm{r}^{\prime}+\mathrm{s}^{\prime}
$$

where $r, s, r^{\prime}, s^{\prime}$ are free from z_{i}.

Influences

D We now derive spectral independence from SSM.
different from Dobrushin's
\checkmark Idea: bound influence matrix

$$
\begin{gathered}
\mathcal{J}[i \rightarrow j]=\mathbb{P}\left[X_{j}=1 \mid X_{i}=\right. \\
1]-\mathbb{P}\left[X_{j}=1 \mid X_{i}=0\right]
\end{gathered}
$$

D [A-Liu-OveisGharan] showed how to bound ℓ_{1} of columns for hardcore. We follow [Chen-Liu-Vigoda]'s approach and bound ℓ_{1} of rows.
D If Ψ is correlation matrix:

Lemma

If we form saw tree rooted at i, then

$$
\mathcal{J}_{\text {graph }}[\mathfrak{i} \rightarrow \mathfrak{j}]=\sum_{\mathfrak{u} \text { copy of } \mathfrak{j}} \mathcal{J}_{\text {tree }}[\mathfrak{i} \rightarrow \mathfrak{u}]
$$

Proof:
D We know $h \cdot g_{\text {graph }}=g_{\text {tree }}$, expanding on z_{i} we get

$$
h\left(z_{\mathfrak{i}} \mathrm{r}+s\right)=z_{\mathfrak{i}} \mathrm{r}^{\prime}+\mathrm{s}^{\prime}
$$

where $r, s, r^{\prime}, s^{\prime}$ are free from z_{i}.
\bigcirc The Ihs of lemma is $\left.\partial_{j} \log (r / s)\right|_{z=1}$.

Influences

D We now derive spectral independence from SSM.
different from Dobrushin's
\checkmark Idea: bound influence matrix

$$
\begin{gathered}
\mathcal{J}[i \rightarrow j]=\mathbb{P}\left[X_{j}=1 \mid X_{i}=\right. \\
1]-\mathbb{P}\left[X_{j}=1 \mid X_{i}=0\right]
\end{gathered}
$$

D [A-Liu-OveisGharan] showed how to bound ℓ_{1} of columns for hardcore. We follow [Chen-Liu-Vigoda]'s approach and bound ℓ_{1} of rows.
\triangle If Ψ is correlation matrix:
$\ell_{1}($ rows of $\Psi) \leqslant \mathrm{O}(1) \cdot \ell_{1}($ rows of $\mathcal{J})$

Lemma

If we form saw tree rooted at i, then

$$
\mathcal{J}_{\text {graph }}[\mathfrak{i} \rightarrow \mathfrak{j}]=\sum_{\mathfrak{u} \text { copy of } \mathfrak{j}} \mathcal{J}_{\text {tree }}[\mathfrak{i} \rightarrow \mathfrak{u}]
$$

Proof:
D We know $h \cdot g_{\text {graph }}=g_{\text {tree }}$, expanding on z_{i} we get

$$
h\left(z_{\mathfrak{i}} \mathrm{r}+s\right)=z_{\mathfrak{i}} \mathrm{r}^{\prime}+\mathrm{s}^{\prime}
$$

where $r, s, r^{\prime}, s^{\prime}$ are free from z_{i}.
D The Ihs of lemma is $\left.\partial_{j} \log (r / s)\right|_{z=1}$.
\bigcirc The rhs is $\left.\partial_{j} \log \left(r^{\prime} / s^{\prime}\right)\right|_{z=1}$.

Influences

D We now derive spectral independence from SSM.
different from Dobrushin's

- Idea: bound influence matrix

$$
\begin{gathered}
\mathcal{J}[i \rightarrow j]=\mathbb{P}\left[X_{j}=1 \mid X_{i}=\right. \\
1]-\mathbb{P}\left[X_{j}=1 \mid X_{i}=0\right]
\end{gathered}
$$

D [A-Liu-OveisGharan] showed how to bound ℓ_{1} of columns for hardcore. We follow [Chen-Liu-Vigoda]'s approach and bound ℓ_{1} of rows.
D If Ψ is correlation matrix:
$\ell_{1}($ rows of $\Psi) \leqslant \mathrm{O}(1) \cdot \ell_{1}($ rows of $\mathcal{J})$

Lemma

If we form saw tree rooted at i, then

$$
\mathcal{J}_{\text {graph }}[\mathfrak{i} \rightarrow \mathfrak{j}]=\sum_{u \text { copy of } j} \mathcal{J}_{\text {tree }}[\mathfrak{i} \rightarrow \mathbf{u}]
$$

Proof:
D We know $h \cdot g_{\text {graph }}=g_{\text {tree }}$, expanding on z_{i} we get

$$
h\left(z_{\mathfrak{i}} r+s\right)=z_{\mathfrak{i}} r^{\prime}+s^{\prime}
$$

where $r, s, r^{\prime}, s^{\prime}$ are free from z_{i}.
D The Ihs of lemma is $\left.\partial_{j} \log (r / s)\right|_{z=1}$.
\bigcirc The rhs is $\left.\partial_{j} \log \left(\mathrm{r}^{\prime} / \mathrm{s}^{\prime}\right)\right|_{z=1}$.
D Equal because $r^{\prime}=r h$ and $s^{\prime}=s h$.
\bigcirc Remains to show on v-rooted tree:

$$
\sum_{u}|\mathcal{J}[v \rightarrow \mathfrak{u}]|=\mathrm{O}(1)
$$

D Remains to show on v-rooted tree:

$$
\sum_{u}|\mathcal{J}[v \rightarrow u]|=\mathrm{O}(1)
$$

\bigcirc Influences multiply on the tree:

$$
\mathfrak{J}[v \rightarrow u]=\mathfrak{J}[v \rightarrow w] \mathfrak{J}[w \rightarrow u]
$$

D Remains to show on v-rooted tree:

$$
\sum_{u}|\mathcal{J}[v \rightarrow u]|=\mathrm{O}(1)
$$

\bigcirc Influences multiply on the tree:

$$
\mathfrak{J}[v \rightarrow u]=\mathfrak{J}[v \rightarrow w] \mathfrak{J}[w \rightarrow u]
$$

\bigcirc If we track $\mathfrak{t}_{\ell}=\sum_{u \in \text { level } \ell}|\mathcal{J}[v \rightarrow u]|$, and show for some $\ell=O(1)$, we have $t_{\ell} \leqslant 1-\epsilon$, we are done. :)
\bigcirc Remains to show on v-rooted tree:

$$
\sum_{u}|\mathcal{J}[v \rightarrow \mathfrak{u}]|=\mathrm{O}(1)
$$

\bigcirc Influences multiply on the tree:

$$
\mathfrak{J}[v \rightarrow \mathfrak{u}]=\mathfrak{J}[v \rightarrow w] \mathfrak{J}[w \rightarrow \mathfrak{u}]
$$

\bigcirc If we track $\boldsymbol{t}_{\ell}=\sum_{u \in \text { level } \ell} \mathfrak{I J}[v \rightarrow \mathfrak{u}]$, and show for some $\ell=O(1)$, we have $t_{l} \leqslant 1-\epsilon$, we are done. :
\triangleright Let p_{u} be $\mathbb{P}\left[X_{u}=0\right]$ in u 's subtree.
D Remains to show on v-rooted tree:

$$
\sum_{u}|\mathcal{J}[v \rightarrow u]|=\mathrm{O}(1)
$$

\bigcirc Influences multiply on the tree:

$$
\mathfrak{J}[v \rightarrow u]=\mathfrak{J}[v \rightarrow w] \mathfrak{J}[w \rightarrow u]
$$

D If we track $\mathrm{t}_{\ell}=\sum_{\mathbf{u} \in \text { level } \ell}|\mathcal{J}[v \rightarrow u]|$, and show for some $\ell=O(1)$, we have $t_{\ell} \leqslant 1-\epsilon$, we are done. :)
\bigcirc Let p_{u} be $\mathbb{P}\left[X_{u}=0\right]$ in u 's subtree.
D Using $q_{u}=\log \left(\left(1-p_{u}\right) / p_{u}\right)$, we have recursion

$$
q_{v}=f\left(q_{u_{1}}, \ldots, q_{\mathfrak{u}_{k}}\right)
$$

where u_{1}, \ldots, u_{k} are children of v.
D Remains to show on v-rooted tree:

$$
\sum_{u}|\mathcal{J}[v \rightarrow u]|=\mathrm{O}(1)
$$

- Influences multiply on the tree:

$$
\mathfrak{J}[v \rightarrow u]=\mathfrak{J}[v \rightarrow w] \mathfrak{J}[w \rightarrow u]
$$

\bigcirc If we track $\mathfrak{t}_{\ell}=\sum_{u \in \operatorname{level} \ell}|\mathcal{J}[v \rightarrow u]|$, and show for some $\ell=O(1)$, we have $\mathrm{t}_{\ell} \leqslant 1-\epsilon$, we are done. $;$
D Let p_{u} be $\mathbb{P}\left[X_{u}=0\right]$ in u 's subtree.
\checkmark Using $q_{u}=\log \left(\left(1-p_{u}\right) / p_{u}\right)$, we have recursion

$$
q_{v}=f\left(q_{u_{1}}, \ldots, q_{u_{k}}\right)
$$

where u_{1}, \ldots, u_{k} are children of v.

- Claim:

$$
\mathcal{J}\left[v \rightarrow u_{i}\right]=\partial_{i} f\left(q_{u_{1}}, \ldots, q_{u_{k}}\right)
$$

\checkmark Remains to show on v-rooted tree:

$$
\sum_{u}|\mathcal{J}[v \rightarrow u]|=\mathrm{O}(1)
$$

- Influences multiply on the tree:

$$
\mathfrak{J}[v \rightarrow u]=\mathfrak{J}[v \rightarrow w] \mathfrak{J}[w \rightarrow u]
$$

D If we track $\mathfrak{t}_{\ell}=\sum_{u \in \text { level } \ell}|\mathcal{J}[v \rightarrow u]|$, and show for some $\ell=O(1)$, we have $t_{\ell} \leqslant 1-\epsilon$, we are done. :)
D Let $p_{\mathfrak{u}}$ be $\mathbb{P}\left[X_{u}=0\right]$ in u 's subtree.
\checkmark Using $q_{u}=\log \left(\left(1-p_{u}\right) / p_{u}\right)$, we have recursion

$$
q_{v}=f\left(q_{u_{1}}, \ldots, q_{u_{k}}\right)
$$

where u_{1}, \ldots, u_{k} are children of v.

- Claim:

$$
\mathcal{J}\left[v \rightarrow u_{i}\right]=\partial_{i} f\left(q_{u_{1}}, \ldots, q_{u_{k}}\right)
$$

\bigcirc If $\|\nabla \mathrm{f}\|_{1} \leqslant 1-\epsilon$, we'd be done.
\checkmark Remains to show on v-rooted tree:

$$
\sum_{u}|\mathcal{J}[v \rightarrow u]|=\mathrm{O}(1)
$$

- Influences multiply on the tree:

$$
\mathfrak{J}[v \rightarrow u]=\mathfrak{J}[v \rightarrow w] \mathfrak{J}[w \rightarrow u]
$$

\bigcirc If we track $\mathrm{t}_{\ell}=\sum_{u \in \text { level } \ell}|\mathcal{J}[v \rightarrow u]|$, and show for some $\ell=O(1)$, we have $t_{\ell} \leqslant 1-\epsilon$, we are done. :)
D Let p_{u} be $\mathbb{P}\left[X_{u}=0\right]$ in u 's subtree.
\checkmark Using $q_{u}=\log \left(\left(1-p_{u}\right) / p_{u}\right)$, we have recursion

$$
q_{v}=f\left(q_{u_{1}}, \ldots, q_{u_{k}}\right)
$$

where u_{1}, \ldots, u_{k} are children of v.
\bigcirc Claim:

$$
\mathcal{J}\left[v \rightarrow u_{i}\right]=\partial_{i} f\left(q_{u_{1}}, \ldots, q_{u_{k}}\right)
$$

\bigcirc If $\|\nabla \mathrm{f}\|_{1} \leqslant 1-\epsilon$, we'd be done.
D Unfortunately, this is not the case. But we can use previous trick

$$
g=\psi \circ f\left(\psi^{-1}(\cdot), \ldots, \psi^{-1}(\cdot)\right)
$$

and g will have $\|\nabla \mathrm{g}\|_{1} \leqslant 1-\epsilon$ everywhere for hardcore.
\checkmark Remains to show on v-rooted tree:

$$
\sum_{u}|\mathcal{J}[v \rightarrow u]|=\mathrm{O}(1)
$$

- Influences multiply on the tree:

$$
\mathfrak{J}[v \rightarrow u]=\mathfrak{J}[v \rightarrow w] \mathfrak{J}[w \rightarrow u]
$$

\bigcirc If we track $\mathfrak{t}_{\ell}=\sum_{u \in \operatorname{level} \ell}|\mathcal{J}[v \rightarrow u]|$, and show for some $\ell=O(1)$, we have $\mathrm{t}_{\ell} \leqslant 1-\epsilon$, we are done. $;$
D Let p_{u} be $\mathbb{P}\left[X_{u}=0\right]$ in u 's subtree.
\checkmark Using $q_{u}=\log \left(\left(1-p_{u}\right) / p_{u}\right)$, we have recursion

$$
q_{v}=f\left(q_{u_{1}}, \ldots, q_{u_{k}}\right)
$$

where u_{1}, \ldots, u_{k} are children of v.
\bigcirc Claim:

$$
\mathcal{J}\left[v \rightarrow u_{i}\right]=\partial_{i} f\left(q_{u_{1}}, \ldots, q_{u_{k}}\right)
$$

\bigcirc If $\|\nabla f\|_{1} \leqslant 1-\epsilon$, we'd be done.
D Unfortunately, this is not the case. But we can use previous trick

$$
g=\psi \circ f\left(\psi^{-1}(\cdot), \ldots, \psi^{-1}(\cdot)\right)
$$

and g will have $\|\nabla \mathrm{g}\|_{1} \leqslant 1-\epsilon$ everywhere for hardcore.
\checkmark Derivatives of ψ are "nice". Contraction of f after $\mathrm{O}(1)$ levels.

Fast sampling

\bigcirc Spectral independence shows Glauber mixing in $n^{\mathrm{O}_{\lambda, \Delta}(1)}$. Impractical polynomial.

Fast sampling

\bigcirc Spectral independence shows Glauber mixing in $n^{\mathrm{O}_{\lambda, \Delta}(1)}$. Impractical polynomial.
© [Chen-Liu-Vigoda] showed mixing in $\mathrm{O}_{\Delta}(n \log n)$.

Fast sampling

\checkmark Spectral independence shows Glauber mixing in $n^{\mathrm{O}_{\lambda, \Delta}(1)}$. Impractical polynomial.
© [Chen-Liu-Vigoda] showed mixing in $\mathrm{O}_{\Delta}(n \log n)$.;)

D Now we know $O(n \log n)$
[A-Jain-Koehler-Pham-Vuong, Chen-Eldan, Chen-Feng-Yin-Zhang] ;)

Fast sampling

\bigcirc Spectral independence shows Glauber mixing in $n^{\mathrm{O}_{\lambda, \Delta}(1)}$. Impractical polynomial.

- [Chen-Liu-Vigoda] showed mixing in $\mathrm{O}_{\Delta}(n \log n)$.;)

D Now we know $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
[A-Jain-Koehler-Pham-Vuong, Chen-Eldan, Chen-Feng-Yin-Zhang] ;)
© C-spectral independence implies that $\mathrm{n} \leftrightarrow \ell$ block dynamics has relaxation time

$$
\binom{n}{c} /\binom{n-\ell}{c}
$$

Fast sampling

\bigcirc Spectral independence shows Glauber mixing in $n^{\mathrm{O}_{\lambda, \Delta}(1)}$. Impractical polynomial.

- [Chen-Liu-Vigoda] showed mixing in $\mathrm{O}_{\Delta}(n \log n)$.;

D Now we know $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
[A-Jain-Koehler-Pham-Vuong, Chen-Eldan, Chen-Feng-Yin-Zhang] ;)
© C-spectral independence implies that $\mathrm{n} \leftrightarrow \ell$ block dynamics has relaxation time

$$
\binom{n}{c} /\binom{n-\ell}{c}
$$

\bigcirc Note that $\mathrm{C}=\mathrm{f}(\Delta, \lambda):$

Fast sampling

\checkmark Spectral independence shows Glauber mixing in $n^{\mathrm{O}_{\lambda, \Delta}(1)}$. Impractical polynomial.
\bigcirc [Chen-Liu-Vigoda] showed mixing in $O_{\Delta}(n \log n)$.-

- Now we know $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
[A-Jain-Koehler-Pham-Vuong, Chen-Eldan, Chen-Feng-Yin-Zhang] $)$
- C-spectral independence implies that $n \leftrightarrow \ell$ block dynamics has relaxation time

$$
\binom{n}{c} /\binom{n-\ell}{c}
$$

\checkmark Note that $\mathrm{C}=\mathrm{f}(\Delta, \lambda){ }^{\circ}$
D Observation: if $n-\ell=\Omega_{\Delta, \lambda}(n)$, relaxation time is $\mathrm{O}_{\Delta, \lambda}(1)$!

Fast sampling

\checkmark Spectral independence shows Glauber mixing in $n^{\mathrm{O}_{\lambda, \Delta}(1)}$. Impractical polynomial.
\bigcirc [Chen-Liu-Vigoda] showed mixing in $\mathrm{O}_{\Delta}(\mathrm{n} \log n)$.-

- Now we know $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
[A-Jain-Koehler-Pham-Vuong, Chen-Eldan, Chen-Feng-Yin-Zhang] $)$
\bigcirc C-spectral independence implies that $n \leftrightarrow \ell$ block dynamics has relaxation time

$$
\binom{n}{c} /\binom{n-\ell}{c}
$$

\bigcirc Note that $\mathrm{C}=\mathrm{f}(\Delta, \lambda) ;$
D Observation: if $n-\ell=\Omega_{\Delta, \lambda}(n)$, relaxation time is $\mathrm{O}_{\Delta, \lambda}(1)$!
\bigcirc How to implement?

Fast sampling

\checkmark Spectral independence shows Glauber mixing in $n^{\mathrm{O}_{\lambda, \Delta}(1)}$. Impractical polynomial.

- [Chen-Liu-Vigoda] showed mixing in $\mathrm{O}_{\Delta}(\mathrm{n} \log n)$.
D Now we know $\mathrm{O}(\mathrm{n} \log n)$
[A-Jain-Koehler-Pham-Vuong, Chen-Eldan, Chen-Feng-Yin-Zhang] :)
- C-spectral independence implies that $n \leftrightarrow \ell$ block dynamics has relaxation time

$$
\binom{n}{c} /\binom{n-\ell \ell}{c}
$$

D Note that $\mathrm{C}=\mathrm{f}(\Delta, \lambda):$
D Observation: if $n-\ell=\Omega_{\Delta, \lambda}(n)$, relaxation time is $\mathrm{O}_{\Delta, \lambda}(1)$!
\checkmark How to implement?
D If $n-\ell=\delta n$ for sufficiently small δ, cond on ℓ random verts, we get islands of size $\simeq \mathrm{O}_{\Delta, \lambda}(\log n)$.

Proof:

Proof:
D There are at most $n \cdot \Delta^{\frac{\downarrow}{2(k-1)}}$ connected subgraphs of size k. Covered by walks of len $2(k-1)$.

Proof:
D There are at most $n \cdot \Delta^{\frac{2}{2}(k-1)}$
connected subgraphs of size k.
Covered by walks of len $2(k-1)$.

\bigcirc If random δ fraction of verts are free, probability of a k-sized subgraph being free is

$$
\simeq \delta^{k}
$$

Proof:
D There are at most $n \cdot \Delta^{\frac{2}{2}(k-1)}$
connected subgraphs of size k.
Covered by walks of len $2(k-1)$.

\checkmark If random δ fraction of verts are free, probability of a k-sized subgraph being free is

$$
\simeq \delta^{k}
$$

D Using union bound, prob of any surviving will be

$$
n \cdot \Delta^{2(k-1)} \cdot \delta^{k}
$$

Proof:
D There are at most $n \cdot \Delta^{2(k-1)}$
connected subgraphs of size k.
Covered by walks of len $2(k-1)$.

\mapsto

- If random δ fraction of verts are free, probability of a k-sized subgraph being free is

$$
\simeq \delta^{k}
$$

D Using union bound, prob of any surviving will be

$$
n \cdot \Delta^{2(k-1)} \cdot \delta^{k}
$$

\bigcirc Set δ small and $\mathrm{k} \simeq \log n$. $;$

Proof:
D There are at most $n \cdot \Delta^{\frac{2}{2}(k-1)}$ connected subgraphs of size k. Covered by walks of len $2(k-1)$.

\mapsto

\bigcirc If random δ fraction of verts are free, probability of a k-sized subgraph being free is

$$
\simeq \delta^{k}
$$

\bigcirc Using union bound, prob of any surviving will be

$$
n \cdot \Delta^{2(k-1)} \cdot \delta^{k}
$$

\bigcirc Set δ small and $k \simeq \log n$. $;$

D Since islands are small, we can sample from them much faster, in poly $\log (n)$ time.

Proof:
D There are at most $n \cdot \Delta^{2(k-1)}$ connected subgraphs of size k. Covered by walks of len $2(k-1)$.

- If random δ fraction of verts are free, probability of a k-sized subgraph being free is

$$
\simeq \delta^{k}
$$

\bigcirc Using union bound, prob of any surviving will be

$$
n \cdot \Delta^{2(k-1)} \cdot \delta^{k}
$$

\bigcirc Set δ small and $\mathrm{k} \simeq \log \mathrm{n}$. \cdot
D Since islands are small, we can sample from them much faster, in poly $\log (n)$ time. ;)

- Alternatively, you can use some form of comparison to prove $\widetilde{O}(n)$ relaxation time for Glauber dynamics itself [Chen-Liu-Vigoda]. :)

Proof:
D There are at most $n \cdot \Delta^{2(k-1)}$ connected subgraphs of size k. Covered by walks of len $2(k-1)$.
 \mapsto

\checkmark If random δ fraction of verts are free, probability of a k-sized subgraph being free is

$$
\simeq \delta^{k}
$$

\bigcirc Using union bound, prob of any surviving will be

$$
n \cdot \Delta^{2(k-1)} \cdot \delta^{k}
$$

\bigcirc Set δ small and $\mathrm{k} \simeq \log \mathrm{n}$. $\cdot ;$
D Since islands are small, we can sample from them much faster, in poly $\log (n)$ time. $;$

- Alternatively, you can use some form of comparison to prove $\widetilde{O}(n)$ relaxation time for Glauber dynamics itself [Chen-Liu-Vigoda]. :)
- Note that spectral independence itself only gives us $\widetilde{\mathrm{O}}\left(\mathrm{n}^{2}\right)$ time algs. We need entropy contraction to get $\widetilde{O}(n)$. This was done for $\Delta=\mathrm{O}(1)$ by [Chen-Liu-Vigoda], and for general Δ by
[A-Jain-Koehler-Pham-Vuong].

HDX via Correlation Decay

D Influences
D Fast sampling
HDX via Transport
D Universality

HDX via Correlation Decay

D Influences
D Fast sampling
HDX via Transport
D Universality

HDX from transport

\bigcirc We proved optimal mixing of colorings for $q \geqslant 2 \Delta+1$.

HDX from transport

\bigcirc We proved optimal mixing of colorings for $q \geqslant 2 \Delta+1$.
\bigcirc The proof was based on contraction of transport distance.

HDX from transport

\bigcirc We proved optimal mixing of colorings for $q \geqslant 2 \Delta+1$.
\bigcirc The proof was based on contraction of transport distance.
\checkmark Even the state-of-the-art bounds of $q \simeq \frac{11}{6} \Delta-\epsilon$ rely on transport contraction, although on a different chain. This resulted in slow but polynomial mixing.

HDX from transport

\bigcirc We proved optimal mixing of colorings for $q \geqslant 2 \Delta+1$.
\bigcirc The proof was based on contraction of transport distance.
\checkmark Even the state-of-the-art bounds of $q \simeq \frac{11}{6} \Delta-\epsilon$ rely on transport contraction, although on a different chain. This resulted in slow but polynomial mixing.
\bigcirc Does transport contraction imply spectral independence?

HDX from transport

\bigcirc We proved optimal mixing of colorings for $q \geqslant 2 \Delta+1$.
\bigcirc The proof was based on contraction of transport distance.
\checkmark Even the state-of-the-art bounds of $q \simeq \frac{11}{6} \Delta-\epsilon$ rely on transport contraction, although on a different chain. This resulted in slow but polynomial mixing.
\bigcirc Does transport contraction imply spectral independence?
\bigcirc This give us fast sampling. ©

HDX from transport

\bigcirc We proved optimal mixing of colorings for $q \geqslant 2 \Delta+1$.

- The proof was based on contraction of transport distance.
\checkmark Even the state-of-the-art bounds of $q \simeq \frac{11}{6} \Delta-\epsilon$ rely on transport contraction, although on a different chain. This resulted in slow but polynomial mixing.
\bigcirc Does transport contraction imply spectral independence?
\bigcirc This give us fast sampling. ©

D Spectral independence from transport contraction was first dervied by [Liu, Blanca-Caputo-Chen-Parisi-Štefankovič-Vigoda].

HDX from transport

© We proved optimal mixing of colorings for $q \geqslant 2 \Delta+1$.
\bigcirc The proof was based on contraction of transport distance.
D Even the state-of-the-art bounds of $q \simeq \frac{11}{6} \Delta-\epsilon$ rely on transport contraction, although on a different chain. This resulted in slow but polynomial mixing.
D Does transport contraction imply spectral independence?
D This give us fast sampling. :)

- Spectral independence from transport contraction was first dervied by [Liu, Blanca-Caputo-Chen-Parisi-Štefankovič-Vigoda].
D I will show a different argument based on universality
[A-Jain-Koehler-Pham-Vuong].

HDX from transport

- We proved optimal mixing of colorings for $q \geqslant 2 \Delta+1$.
\bigcirc The proof was based on contraction of transport distance.
D Even the state-of-the-art bounds of $q \simeq \frac{11}{6} \Delta-\epsilon$ rely on transport contraction, although on a different chain. This resulted in slow but polynomial mixing.
D Does transport contraction imply spectral independence?
D This give us fast sampling. :)
- Spectral independence from transport contraction was first dervied by [Liu, Blanca-Caputo-Chen-Parisi-Štefankovič-Vigoda].
D I will show a different argument based on universality
[A-Jain-Koehler-Pham-Vuong].

Universality of SI

If down-up walk for dist μ on $\binom{[n]}{k}$ has relaxation time $\mathrm{O}(\mathrm{k})$, then μ is $\mathrm{O}(1)-\mathrm{SI}$.

HDX from transport

- We proved optimal mixing of colorings for $q \geqslant 2 \Delta+1$.
\bigcirc The proof was based on contraction of transport distance.
- Even the state-of-the-art bounds of $q \simeq \frac{11}{6} \Delta-\epsilon$ rely on transport contraction, although on a different chain. This resulted in slow but polynomial mixing.
D Does transport contraction imply spectral independence?
D This give us fast sampling. :)
- Spectral independence from transport contraction was first dervied by [Liu, Blanca-Caputo-Chen-Parisi-Štefankovič-Vigoda].
D I will show a different argument based on universality
[A-Jain-Koehler-Pham-Vuong].

Universality of SI

If down-up walk for dist μ on $\binom{[n]}{k}$ has relaxation time $\mathrm{O}(\mathrm{k})$, then μ is $\mathrm{O}(1)-\mathrm{SI}$.

D So Dobrushin++ implies SI.

Proof:

Proof:
D Embedding $\binom{[n]}{k} \hookrightarrow\{0,1\}^{n}$, we need to prove

$$
\operatorname{cov}(\mu) \preceq \mathrm{O}(1) \cdot \operatorname{diag}(\operatorname{mean}(\mu))
$$

Proof:
\triangleright Embedding $\binom{[n]}{k} \hookrightarrow\{0,1\}^{n}$, we need to prove

$$
\operatorname{cov}(\mu) \preceq O(1) \cdot \operatorname{diag}(\operatorname{mean}(\mu))
$$

\bigcirc So for vector u, we need to show
$u^{\top} \operatorname{cov}(\mu) u \leqslant$
$\mathrm{O}(1) \cdot \mathfrak{u}^{\top} \operatorname{diag}(\operatorname{mean}(\mu)) \mathfrak{u}$

Proof:

\bigcirc Embedding $\binom{[n]}{k} \hookrightarrow\{0,1\}^{n}$, we need to prove

$$
\operatorname{cov}(\mu) \preceq O(1) \cdot \operatorname{diag}(\operatorname{mean}(\mu))
$$

D So for vector u, we need to show

$$
\begin{gathered}
u^{\top} \operatorname{cov}(\mu) u \leqslant \\
\mathrm{O}(1) \cdot \mathbf{u}^{\top} \operatorname{diag}(\operatorname{mean}(\mu)) u
\end{gathered}
$$

D Now define function f on $\{0,1\}^{n}$ as

$$
f(x)=\langle u, x\rangle
$$

and let $v=f \mu$.

Proof:

\triangleright Embedding $\binom{[n]}{k} \hookrightarrow\{0,1\}^{n}$, we need to prove

$$
\operatorname{cov}(\mu) \preceq \mathrm{O}(1) \cdot \operatorname{diag}(\operatorname{mean}(\mu))
$$

\bigcirc So for vector u, we need to show

$$
\begin{gathered}
u^{\top} \operatorname{cov}(\mu) u \leqslant \\
\mathrm{O}(1) \cdot \mathbf{u}^{\top} \operatorname{diag}(\operatorname{mean}(\mu)) \mathbf{u}
\end{gathered}
$$

D Now define function f on $\{0,1\}^{n}$ as

$$
f(x)=\langle u, x\rangle
$$

and let $v=\mathrm{f} \mu$.
\bigcirc We have $\chi^{2}(v \| \mu)=\operatorname{Var}_{\mu}[f]=$

$$
\begin{gathered}
\mathbb{E}_{x \sim \mu}\left[\left(u^{\top} x\right)^{2}\right]-\mathbb{E}_{x \sim \mu}\left[u^{\top} x\right]^{2}= \\
u^{\top} \operatorname{cov}(\mu) u
\end{gathered}
$$

Proof:
\bigcirc Embedding $\binom{[n]}{k} \hookrightarrow\{0,1\}^{n}$, we need to prove

$$
\operatorname{cov}(\mu) \preceq \mathrm{O}(1) \cdot \operatorname{diag}(\operatorname{mean}(\mu))
$$

D So for vector u, we need to show

$$
\begin{gathered}
\mathbf{u}^{\top} \operatorname{cov}(\mu) u \leqslant \\
\mathrm{O}(1) \cdot \mathbf{u}^{\top} \operatorname{diag}(\operatorname{mean}(\mu)) \mathbf{u}
\end{gathered}
$$

D Now define function f on $\{0,1\}^{n}$ as

$$
f(x)=\langle u, x\rangle
$$

and let $v=f \mu$.
\bigcirc We have $\chi^{2}(v \| \mu)=\operatorname{Var}_{\mu}[f]=$

$$
\begin{gathered}
\mathbb{E}_{x \sim \mu}\left[\left(u^{\top} \chi\right)^{2}\right]-\mathbb{E}_{x \sim \mu}\left[u^{\top} \chi\right]^{2}= \\
u^{\top} \operatorname{cov}(\mu) u
\end{gathered}
$$

- Because of relaxation time of $\mathrm{O}(\mathrm{k})$, we have $\frac{\operatorname{Var}_{\mu}[f]}{\Omega(k)} \leqslant$

$$
\mathbb{E}_{y \sim \mu D_{k \rightarrow k-1}}\left[\operatorname{Var}_{\mathrm{U}_{k-1 \rightarrow k}(\mathrm{y}, \cdot)}[\mathrm{f}]\right]
$$

Proof:
\bigcirc Embedding $\binom{[n]}{k} \hookrightarrow\{0,1\}^{n}$, we need to prove

$$
\operatorname{cov}(\mu) \preceq \mathrm{O}(1) \cdot \operatorname{diag}(\operatorname{mean}(\mu))
$$

\bigcirc So for vector u, we need to show

$$
\begin{gathered}
u^{\top} \operatorname{cov}(\mu) u \leqslant \\
\mathrm{O}(1) \cdot \mathbf{u}^{\top} \operatorname{diag}(\operatorname{mean}(\mu)) \mathbf{u}
\end{gathered}
$$

D Now define function f on $\{0,1\}^{n}$ as

$$
f(x)=\langle u, x\rangle
$$

and let $v=f \mu$.
© We have $\chi^{2}(v \| \mu)=\operatorname{Var}_{\mu}[f]=$

$$
\begin{gathered}
\mathbb{E}_{x \sim \mu}\left[\left(u^{\top} x\right)^{2}\right]-\mathbb{E}_{x \sim \mu}\left[u^{\top} x\right]^{2}= \\
u^{\top} \operatorname{cov}(\mu) u
\end{gathered}
$$

\checkmark Because of relaxation time of $O(k)$, we have $\frac{\operatorname{Var}_{\mu}[f]}{\Omega(k)} \leqslant$

$$
\mathbb{E}_{y \sim \mu D_{k \rightarrow k-1}}\left[\operatorname{Var}_{\mathrm{U}_{k-1 \rightarrow k}(\mathrm{y}, \cdot)}[\mathrm{f}]\right]
$$

D But $\operatorname{Var}_{\mathrm{U}_{k-1 \rightarrow k}(\mathrm{y}, \cdot)}[f] \leqslant$

$$
\mathbb{E}_{x \sim U_{k-1 \rightarrow k}(y, \cdot)}\left[(f(x)-f(y))^{2}\right]
$$

Proof:
D Embedding $\binom{[n]}{k} \hookrightarrow\{0,1\}^{n}$, we need to prove

$$
\operatorname{cov}(\mu) \preceq \mathrm{O}(1) \cdot \operatorname{diag}(\operatorname{mean}(\mu))
$$

D So for vector u, we need to show

$$
\begin{gathered}
\mathbf{u}^{\top} \operatorname{cov}(\mu) u \leqslant \\
\mathrm{O}(1) \cdot \mathbf{u}^{\top} \operatorname{diag}(\operatorname{mean}(\mu)) \mathbf{u}
\end{gathered}
$$

D Now define function f on $\{0,1\}^{n}$ as

$$
f(x)=\langle u, x\rangle
$$

and let $v=f \mu$.
\checkmark We have $\chi^{2}(v \| \mu)=\operatorname{Var}_{\mu}[f]=$

$$
\begin{gathered}
\mathbb{E}_{x \sim \mu}\left[\left(u^{\top} x\right)^{2}\right]-\mathbb{E}_{x \sim \mu}\left[u^{\top} x\right]^{2}= \\
u^{\top} \operatorname{cov}(\mu) u
\end{gathered}
$$

D Because of relaxation time of $\mathrm{O}(\mathrm{k})$, we have $\frac{\mathrm{Var}_{\mu}[f]}{\Omega(\mathrm{k})} \leqslant$

$$
\mathbb{E}_{y \sim \mu D_{k \rightarrow k-1}}\left[\operatorname{Var}_{\mathrm{U}_{k-1 \rightarrow k}(y, \cdot)}[f]\right]
$$

D But $\operatorname{Var}_{\mathrm{U}_{k-1 \rightarrow k}(\mathrm{y}, \cdot)}[\mathrm{f}] \leqslant$

$$
\mathbb{E}_{x \sim U_{k-1 \rightarrow k}(y, \cdot)}\left[(f(x)-f(y))^{2}\right]
$$

\bigcirc The inside is simply $u^{\top}(x-y)(x-y)^{\top} u$. Note that $x-y=\mathbb{1}_{\mathfrak{i}}$ for some index \mathfrak{i}.

Proof:
D Embedding $\binom{[n]}{k} \hookrightarrow\{0,1\}^{\text {n }}$, we need to prove

$$
\operatorname{cov}(\mu) \preceq \mathrm{O}(1) \cdot \operatorname{diag}(\operatorname{mean}(\mu))
$$

D So for vector u, we need to show

$$
\begin{gathered}
u^{\top} \operatorname{cov}(\mu) u \leqslant \\
\mathrm{O}(1) \cdot \mathbf{u}^{\top} \operatorname{diag}(\operatorname{mean}(\mu)) \mathbf{u}
\end{gathered}
$$

D Now define function f on $\{0,1\}^{n}$ as

$$
f(x)=\langle u, x\rangle
$$

and let $v=f \mu$.
\bigcirc We have $\chi^{2}(v \| \mu)=\operatorname{Var}_{\mu}[f]=$

$$
\begin{gathered}
\mathbb{E}_{x \sim \mu}\left[\left(u^{\top} x\right)^{2}\right]-\mathbb{E}_{x \sim \mu}\left[u^{\top} \chi\right]^{2}= \\
u^{\top} \operatorname{cov}(\mu) u
\end{gathered}
$$

D Because of relaxation time of $\mathrm{O}(\mathrm{k})$, we have $\frac{\mathrm{Var}_{\mu}[f]}{\Omega(\mathrm{k})} \leqslant$

$$
\mathbb{E}_{y \sim \mu D_{k \rightarrow k-1}}\left[\operatorname{Var}_{\mathrm{U}_{k-1 \rightarrow k}(\mathrm{y}, \cdot)}[\mathrm{f}]\right]
$$

D But $\operatorname{Var}_{\mathrm{U}_{\mathrm{k}-1 \rightarrow \mathrm{k}}(\mathrm{y}, \cdot)}[\mathrm{f}] \leqslant$

$$
\mathbb{E}_{x \sim U_{k-1 \rightarrow k}(y, \cdot)}\left[(f(x)-f(y))^{2}\right]
$$

D The inside is simply $u^{\top}(x-y)(x-y)^{\top} u$. Note that $x-y=\mathbb{1}_{i}$ for some index i.
D Taking expectations we get

$$
\frac{\operatorname{Var}_{\mu}[f]}{\Omega(k)} \leqslant \frac{u^{\top} \operatorname{diag}(\operatorname{mean}(\mu)) u}{k}
$$

Proof:
D Embedding $\binom{[n]}{k} \hookrightarrow\{0,1\}^{n}$, we need to prove

$$
\operatorname{cov}(\mu) \preceq \mathrm{O}(1) \cdot \operatorname{diag}(\operatorname{mean}(\mu))
$$

D So for vector u, we need to show

$$
\begin{gathered}
u^{\top} \operatorname{cov}(\mu) u \leqslant \\
\mathrm{O}(1) \cdot \mathbf{u}^{\top} \operatorname{diag}(\operatorname{mean}(\mu)) \mathbf{u}
\end{gathered}
$$

D Now define function f on $\{0,1\}^{n}$ as

$$
f(x)=\langle u, x\rangle
$$

and let $v=f \mu$.
\bigcirc We have $\chi^{2}(v \| \mu)=\operatorname{Var}_{\mu}[f]=$

$$
\begin{gathered}
\mathbb{E}_{x \sim \mu}\left[\left(u^{\top} x\right)^{2}\right]-\mathbb{E}_{x \sim \mu}\left[u^{\top} x\right]^{2}= \\
u^{\top} \operatorname{cov}(\mu) u
\end{gathered}
$$

- Because of relaxation time of $\mathrm{O}(\mathrm{k})$, we have $\frac{\mathrm{Var}_{\mu}[f]}{\Omega(\mathrm{k})} \leqslant$

$$
\mathbb{E}_{y \sim \mu D_{k \rightarrow k-1}}\left[\operatorname{Var}_{\mathrm{U}_{k-1 \rightarrow k}(\mathrm{y}, \cdot)}[\mathrm{f}]\right]
$$

D But $\operatorname{Var}_{\mathrm{U}_{\mathrm{k}-1 \rightarrow \mathrm{k}}(\mathrm{y}, \cdot)}[\mathrm{f}] \leqslant$

$$
\mathbb{E}_{x \sim U_{k-1 \rightarrow k}(y, \cdot)}\left[(f(x)-f(y))^{2}\right]
$$

D The inside is simply $u^{\top}(x-y)(x-y)^{\top} u$. Note that $x-y=\mathbb{1}_{i}$ for some index i.
D Taking expectations we get

$$
\frac{\operatorname{Var}_{\mu}[f]}{\Omega(k)} \leqslant \frac{u^{\top} \operatorname{diag}(\operatorname{mean}(\mu)) u}{k}
$$

\bigcirc This finishes the proof. :)

