CS 263: Counting and Sampling

Stanford
S University

slides for

Correlation Decay



\ T[/C

Polynomial g(z1,...,zn) is C sector sta-
ble if for all zq, ...,z € sector

g9(z1y...,2zn) #0.

2/19



\Review /

[Garding]

Half-plane stable —-

C log g(z1,...,2zn) CONCave
\ 7T/C

Polynomial g(z1,...,zn) is C sector sta-
ble if for all zq, ...,z € sector

g9(z1y...,2zn) #0.

2/19



\Review /

[Garding]

Half-plane stable —-

C log g(z1,...,2zn) CONCOvVE
/€ [Alimohammadi-A-Shiragur-Vuong]
C sector stable —
log g( *¢/z71, ’C/zn ) concave
Polynomial g(z1,...,zn) is C sector sta-
ble if for all zq, ...,z € sector

g9(z1y...,2zn) #0.

2/19



\Review /

[Garding]

Half-plane stable —-

log g(z1,...,2zn) CONCOvVE

/€ [Alimohammadi-A-Shiragur-Vuong]

C sector stable =

log g( *¢/z71, ’C/zn ) concave

Polynomial g(z1,...,zn) is C sector sta- Sufficient region for Sl:

ble if for all zq, ...,z € sector c

g9(z1y...,2zn) #0. m*’

N

Ri>0 U DU,€)

2/19



Correlation Decay

> Marginals on trees

> Self-avoiding walk tree

> Weak and strong spatial mixing

HDX via Correlation Decay

> Tree vs graph polynomials




> Marginals on trees
> Self-avoiding walk tree
> Weak and strong spatial mixing

HDX via Correlation Decay

> Tree vs graph polynomials




\Hordcore model /
DPOPO!

u(ind set S) o AlS!

5/19



\Hordcore model /
DPOPO!

u(ind set S) o AlS!
O LargeAis h%rd. @

max ind set is NP-hard

5/19



\Hordcore model

DROR0

u(ind set S) o AlS!
O LargeAis h%rd. @

max ind set is NP-hard

> For what A is it easy to sample?

5/19



\Hordcore model /
0RO

u(ind set S) o AlS!
O LargeAis h%rd. @

max ind set is NP-hard

> For what A is it easy to sample?
B> [DobrushinT's condition: when A < X

5/19



\Hordcore model /
0RO

u(ind set S) o AlS!
O LargeAis hoTrd. @

max ind set is NP-hard

> For what A is it easy to sample?
B> [DobrushinT's condition: when A < X
> [weitz06]: easy when

_1\A-1
A< Ae(A) =200

~

2
A

5/19



\Hordcore model /
0RO

u(ind set S) o AlS!
O LargeAis hoTrd. @

max ind set is NP-hard

> For what A is it easy to sample?
B> [DobrushinT's condition: when A < X
> [weitz06]: easy when
_1\A-1
A<Ae(A) =275 ~ &
> [sly10]: NP-hard for A > A.(A)

~

5/19



\Hordcore mode] /
> Whereis \. coming from?
11

u(ind set S) o AlS!
O LargeAis hoTrd. @

max ind set is NP-hard

> For what A is it easy to sample?
B> [DobrushinT's condition: when A < X
> [weitz06]: easy when
_1\A-1
A<Ae(A) =275 ~ &
> [sly10]: NP-hard for A > A.(A)

~

5/19



\Hordcore mode] /
> Whereis \. coming from?
1 A > Correlation decay threshold on
(A — 1)-branching tree:

u(ind set S) o AlS!

O LargeAis hoTrd. @ o/i\)

max ind set is NP-hard

> For what A is it easy to sample?
B> [DobrushinT's condition: when A < X
> [weitz06]: easy when
_1\A-1
A<Ae(A) =275 ~ &
> [sly10]: NP-hard for A > A.(A)

~

5/19



\Hordcore mode] /
> Whereis A\. coming from?
1 A > Correlation decay threshold on
(A — 1)-branching tree:

u(ind set S) o AlS!

O LargeAis hoTrd. @ o/i\)

max ind set is NP-hard > Do leaves influence the root?
> For what A is it easy to sample?

B> [DobrushinT's condition: when A < X
> [weitz06]: easy when

A< Ac(a) = BEUE0 o~ e
> [sly10]: NP-hard for A > A.(A)

~

5/19



\Hordcore mode] /
> Whereis A\. coming from?
1 A > Correlation decay threshold on
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u(ind set S) o AlS!

O LargeAis hoTrd. @ o/i\)

max ind set is NP-hard > Do leaves influence the root?
> For what A is it easy to sample?

Correlation decay
B> [DobrushinT's condition: when A < X

> [weitz06]: easy when
A<Acla) =110~ e
c (A—2)A — A
O [Sly10]: NP-hard for A > A (A) where f(height) — 0 as height — oo.

For any two configs o, o’ for leaves

drv(root | o,root | 0’) < f(height)

~
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Strong form of correlation decay on trees —
there is an FPTAS for A-bounded degree graphs.

> Note: this generalizes to other “repulsive”
two-spin systems.

> [Wweitz]’s algorithm estimates marginals P[X,] via
local computation.
> Multiplying estimated marginals approximates
partition function Y4 s AS =~
1
PXy, =01 PXy, =0 Xy, =0+ PXy,, =0 Xy; =+ =Xy, =0
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Vo vy v children become independent, so
J) J) J) PXchilgren =0 [ Xy =0] = Hi Pv;
> On the other hand
Recursive computation PXerigren = 0 | Xy = 1] = 1

If py = P[Xy, = 0] inVv's sub%ree, and > We also have
d=A-1 . o P Xy =1]Xchidgren =0
WI’E1|’1 conditioned leaves P[Xr:O\Xz:i::rznZO] =A
Pr = 1555, 75, > Combining all gives

PX,=1] _
P[X,=0] =A Vi

*Pva

7/19



What happens in the case
where all leaves conditioned the same?

8/19



What happens in the symmetric case
where all leaves conditioned the same?

PHf(P):H]W

8/19



What happens in the symmetric case
where all leaves conditioned the same?

PHf(P):H]W

> Thereis fixed point p*.

8/19



What happens in the case
where all leaves conditioned the same?

P’—HC(P):H]W

> Thereis P*.
> Ac when [derivative| = 1 at p*

8/19



What happens in the case
where all leaves conditioned the same?

PHf(P):H]W

> Thereis P*.
> Ac when [derivative| = 1 at p*
> Exercise: = promised value.

8/19



What happens in the case (> When A < A we have [f/(p*)] < 1.
where all leaves conditioned the same? In this case, p* is

PHf(P):H]W

> Thereis P*.
> Ac when [derivative| = 1 at p*
> Exercise: = promised value.

8/19



What happens in the case (> When A < A we have [f/(p*)] < 1.
where all leaves conditioned the same? In this case, p* is

s flp) = -] > When A > A. we have [f/(p*)] > 1.
P fP) = e In this case, p* is :

> Thereis P*.
> Ac when [derivative| = 1 at p*
> Exercise: = promised value.



What happens in the case (> When A < A we have [f/(p*)] < 1.

where all leaves conditioned the same? In this case, p* is )
s flp) = -] > When A > A. we have [f/(p*)] > 1.
P fP) = e In this case, p* is
f > When , for
Po € basin of attraction:
O// fheight(po) — p*
Luckily for this f, basin of
attraction is all of [0, 1].
p
> Thereis P*.

> Ac when [derivative| = 1 at p*
> Exercise: = promised value.

8/19



What happens in the case (> When A < A we have [f/(p*)] < 1.

where all leaves conditioned the same? In this case, p* is

 14Apd

/ *
s f(p) = 1 > When A > A. we have [f/(p*)] > 1.

In this case, p* is

f > When , for
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> When , although
It'(p*)| < 1, |f'(-)] is not globally
bounded by 1. ®

> Luckily, there is transformation 1,

such that 7 > Now fis multivariate:
f bit magical
g=vofop™ Pr = f(Pviy s Pva)
has |g’| < 1— e everywhere. > Luckily, the same
> Since g is globally contracting, and tronsformonor: works: ]
fOfO-"OfZIp_1 ogogo...ogow, 9 :11)01:(11)_ (X1))"')1|)_ (Xd))
will have [|[Vg|1 <1—e€

for any two starting po, p}:

everywhere.
[t (po) — ™ (pd)] < C(1 —f)h

> Thus g contracts |||l Py 1T — €.

ial .
exponential decay > Correlation decay on trees exactly
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graph saw tree

Lemma [Godsil, Weitz, ...]

x y Root marginal same on self-avoiding
walk tree and graph.
z
> This means we can compute
marginals on tr?e.
> Tree = paths from root in graph. If exponentially large though
cycle formed, end and condition. > Correlation decay allows us to cut
> Fix arb ordering on edges. When the tree height by conditioning
cycle formed, condition to 0/1 nodes at level ~ logn arbitrarily.

based on order of incoming vs.
outgoing edge.
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decaying f(-).

Corollary of saw trees

SSM for trees = SSM for graphs

Strong spatial mixing > The same analysis we had for

For some f(h) — 0 with h — oc:

dtv(root | o,root | 0’) < f(h)

for h = min{d(root,u) | u € S}.

trees actually shows strong spatial

dtv(root | o,root | 0/) < f(h) mixing for A < Ac.
> For any fixed A, under SSM, we get
for h = min{d(root,u) | o(u) # o’ (u)}. an FPTAS.
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> Form saw tree rooted at v, but it at
level h = O(logn).

> Assign arbitrary conditioning to last level.

Compute root marginal on via
recursion.

()
> Size of tree
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Reduce counting to marginal estimation.

Form saw tree rooted at v, but it at
level h = O(logn).
Assign arbitrary conditioning to last level.

Compute root marginal on via
recursion.

Size of tree
< AC(le™) = poly(n)
when A is constant. ©
Marginals are
exp(—Q(height)) = 1/poly(n)
accurate. ©
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> Assume we have a 2-spin system  Form the saw tree (inherit labels).

with labels on vertices: There is a polynomial h such that
v a
graph G, labels ¢ Jtree = Jgraph *
b a v Q={0,1" Example

Hardcore model with A = 1:

u(x) = Hv by (xy) - Huwv P (Xuy Xv)
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> Assume we have a 2-spin system  Form the saw tree (inherit labels).

with labels on vertices: There is a polynomial h such that
v a
graph G, labels ¢ Jtree = Jgraph *
b a v Q={0,1" Example

Hardcore model with A = 1:

n(x) = Hv by (xy) - Huwv Dy (X Xv) v

> Define a (non-hom) polynomial x Y
_ X1 .. Xn =y X
g9=2x H(X)Zg(” Ze(n) X Y v o v e

D ggrqph:]+2v+zx+2ry
(D Jtree = (1 +Zv+lx+zy)“ + zx)

O If pinned vertices, we exclude
them from monomial.
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O If vis root, then z,, appears with

deg < 11N ggrgph ANd Giree. SO
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Corollary > It remains to prove the lemma:

Root marginals same on tree/graph.

Proof:
> Use distinct labels for graph.

O If vis root, then z,, appears with
deg < 11N ggrgph ANd Giree. SO
has no z,,.

> We have for g € {ggraph, Giree
Pgraph/treelXv = 11 = 02, log gl,_4
> But observe that 9, log giree =
0z, 10g 9graph+0z, Logh

thisis 0

Jtree = Ygraph -h
(> Assume no univariate/vertex
factors in u for simplicity (e.g.,
A =1). They can be added later
by change of variable z, +— Az,:

graph G = ([n], E)
b c d O = {O, ]}n
nix) = Hu~v P (Xay X))

> We will prove via induction ...
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> Split root v

v Vi V2 Vk

uq uy Uy Uy u, U

rest of graph rest of graph
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> Split root v > We have
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> Split root v > We have
dgraph = Zv9o + gk

v Vi V2 Vk ;
> Now looking at tree
— v
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rest of graph rest of graph A A A
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> Split root v

v Vi V2 Vk
|_>
g uy Uy ug u U
rest of graph rest of graph

> Pinnings: pinvy,...,v;i to 0 and
Viil,...,Vk O 1. Let poly be g;.
Vi

w1 V2 V3
o) (o) Qo ---
‘(*L‘\ig : b

rest of graph

> We have

dgraph = Zv9o + gk
> Now looking at tree

v

AVARIA

Jtree = Zv Hi T + Hi Si
> By induction we have for each 1
zyTi +si = hi - (zvgi1 + gi)

e, i = higi-] and Si = higi-

[> NOW|eTh:g]-~-gk,] -h1--~hki

hggraph =2zv [ [ 11 + I [i si
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This finishes proof of [weitz].



