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Review

C

π/C

Polynomial g(z1, . . . , zn) is C sector sta-

ble if for all z1, . . . , zn ∈ sector

g(z1, . . . , zn) 6= 0.

[Gårding]

Half-plane stable =⇒

log g(z1, . . . , zn) concave

[Alimohammadi-A-Shiragur-Vuong]

C sector stable =⇒

log g( 2C
√
z1, . . . , 2C

√
zn) concave

Sufficient region for SI:

C

R>0 ∪D(1, ε)

1

ε
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Hardcore model

1 λ λ2

µ(ind set S) ∝ λ|S|

Large λ is hard

max ind set is NP-hard

.

For what λ is it easy to sample?

[Dobrushin]’s condition: when λ < 1
∆

[Weitz’06]: easy when

λ < λc(∆) =
(∆−1)∆−1

(∆−2)∆
' e

∆

[Sly’10]: NP-hard for λ > λc(∆)

Where is λc coming from?

Correlation decay threshold on

(∆− 1)-branching tree:

Do leaves influence the root?

Correlation decay

For any two configs σ, σ ′ for leaves

dTV(root | σ, root | σ
′) 6 f(height)

where f(height) → 0 as height → ∞.



5/19

Hardcore model

1 λ λ2

µ(ind set S) ∝ λ|S|

Large λ is hard

max ind set is NP-hard

.

For what λ is it easy to sample?

[Dobrushin]’s condition: when λ < 1
∆

[Weitz’06]: easy when

λ < λc(∆) =
(∆−1)∆−1

(∆−2)∆
' e

∆

[Sly’10]: NP-hard for λ > λc(∆)

Where is λc coming from?

Correlation decay threshold on

(∆− 1)-branching tree:

Do leaves influence the root?

Correlation decay

For any two configs σ, σ ′ for leaves

dTV(root | σ, root | σ
′) 6 f(height)

where f(height) → 0 as height → ∞.



5/19

Hardcore model

1 λ λ2

µ(ind set S) ∝ λ|S|

Large λ is hard

max ind set is NP-hard

.

For what λ is it easy to sample?

[Dobrushin]’s condition: when λ < 1
∆

[Weitz’06]: easy when

λ < λc(∆) =
(∆−1)∆−1

(∆−2)∆
' e

∆

[Sly’10]: NP-hard for λ > λc(∆)

Where is λc coming from?

Correlation decay threshold on

(∆− 1)-branching tree:

Do leaves influence the root?

Correlation decay

For any two configs σ, σ ′ for leaves

dTV(root | σ, root | σ
′) 6 f(height)

where f(height) → 0 as height → ∞.



5/19

Hardcore model

1 λ λ2

µ(ind set S) ∝ λ|S|

Large λ is hard

max ind set is NP-hard

.

For what λ is it easy to sample?

[Dobrushin]’s condition: when λ < 1
∆

[Weitz’06]: easy when

λ < λc(∆) =
(∆−1)∆−1

(∆−2)∆
' e

∆

[Sly’10]: NP-hard for λ > λc(∆)

Where is λc coming from?

Correlation decay threshold on

(∆− 1)-branching tree:

Do leaves influence the root?

Correlation decay

For any two configs σ, σ ′ for leaves

dTV(root | σ, root | σ
′) 6 f(height)

where f(height) → 0 as height → ∞.



5/19

Hardcore model

1 λ λ2

µ(ind set S) ∝ λ|S|

Large λ is hard

max ind set is NP-hard

.

For what λ is it easy to sample?

[Dobrushin]’s condition: when λ < 1
∆

[Weitz’06]: easy when

λ < λc(∆) =
(∆−1)∆−1

(∆−2)∆
' e

∆

[Sly’10]: NP-hard for λ > λc(∆)

Where is λc coming from?

Correlation decay threshold on

(∆− 1)-branching tree:

Do leaves influence the root?

Correlation decay

For any two configs σ, σ ′ for leaves

dTV(root | σ, root | σ
′) 6 f(height)

where f(height) → 0 as height → ∞.



5/19

Hardcore model

1 λ λ2

µ(ind set S) ∝ λ|S|

Large λ is hard

max ind set is NP-hard

.

For what λ is it easy to sample?

[Dobrushin]’s condition: when λ < 1
∆

[Weitz’06]: easy when

λ < λc(∆) =
(∆−1)∆−1

(∆−2)∆
' e

∆

[Sly’10]: NP-hard for λ > λc(∆)

Where is λc coming from?

Correlation decay threshold on

(∆− 1)-branching tree:

Do leaves influence the root?

Correlation decay

For any two configs σ, σ ′ for leaves

dTV(root | σ, root | σ
′) 6 f(height)

where f(height) → 0 as height → ∞.



5/19

Hardcore model

1 λ λ2

µ(ind set S) ∝ λ|S|

Large λ is hard

max ind set is NP-hard

.

For what λ is it easy to sample?

[Dobrushin]’s condition: when λ < 1
∆

[Weitz’06]: easy when

λ < λc(∆) =
(∆−1)∆−1

(∆−2)∆
' e

∆

[Sly’10]: NP-hard for λ > λc(∆)

Where is λc coming from?

Correlation decay threshold on

(∆− 1)-branching tree:

Do leaves influence the root?

Correlation decay

For any two configs σ, σ ′ for leaves

dTV(root | σ, root | σ
′) 6 f(height)

where f(height) → 0 as height → ∞.



5/19

Hardcore model

1 λ λ2

µ(ind set S) ∝ λ|S|

Large λ is hard

max ind set is NP-hard

.

For what λ is it easy to sample?

[Dobrushin]’s condition: when λ < 1
∆

[Weitz’06]: easy when

λ < λc(∆) =
(∆−1)∆−1

(∆−2)∆
' e

∆

[Sly’10]: NP-hard for λ > λc(∆)

Where is λc coming from?

Correlation decay threshold on

(∆− 1)-branching tree:

Do leaves influence the root?

Correlation decay

For any two configs σ, σ ′ for leaves

dTV(root | σ, root | σ
′) 6 f(height)

where f(height) → 0 as height → ∞.



5/19

Hardcore model

1 λ λ2

µ(ind set S) ∝ λ|S|

Large λ is hard

max ind set is NP-hard

.

For what λ is it easy to sample?

[Dobrushin]’s condition: when λ < 1
∆

[Weitz’06]: easy when

λ < λc(∆) =
(∆−1)∆−1

(∆−2)∆
' e

∆

[Sly’10]: NP-hard for λ > λc(∆)

Where is λc coming from?

Correlation decay threshold on

(∆− 1)-branching tree:

Do leaves influence the root?

Correlation decay

For any two configs σ, σ ′ for leaves

dTV(root | σ, root | σ
′) 6 f(height)

where f(height) → 0 as height → ∞.



5/19

Hardcore model

1 λ λ2

µ(ind set S) ∝ λ|S|

Large λ is hard

max ind set is NP-hard

.

For what λ is it easy to sample?

[Dobrushin]’s condition: when λ < 1
∆

[Weitz’06]: easy when

λ < λc(∆) =
(∆−1)∆−1

(∆−2)∆
' e

∆

[Sly’10]: NP-hard for λ > λc(∆)

Where is λc coming from?

Correlation decay threshold on

(∆− 1)-branching tree:

Do leaves influence the root?

Correlation decay

For any two configs σ, σ ′ for leaves

dTV(root | σ, root | σ
′) 6 f(height)

where f(height) → 0 as height → ∞.



6/19

[Weitz]

Strong form of correlation decay on trees =⇒
there is an FPTAS for ∆-bounded degree graphs.

Note: this generalizes to other “repulsive”

two-spin systems.

[Weitz]’s algorithm estimates marginals P[Xv] via
local computation.

Multiplying estimated marginals approximates

partition function
∑

ind S λ
S '

1

P[Xv1
= 0] · P[Xv2

= 0 | Xv1
= 0] · · ·P[Xvn = 0 | Xv1

= · · · = Xvn−1
= 0]
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Marginals on trees

On trees, (conditional) marginals

can be computed recursively.

r

v0 v1 v2

Recursive computation

If pv = P[Xv = 0] in v’s subtree

with conditioned leaves

, and

d = ∆− 1:

pr = 1
1+λpv1

···pvd

Proof:

We have

P[Xvi
= 0 | Xr = 0] = pvi

Once we condition on root,

children become independent, so

P[Xchildren = 0 | Xr = 0] =
∏

i pvi

On the other hand

P[Xchildren = 0 | Xr = 1] = 1

We also have
P[Xr=1|Xchildren=0]
P[Xr=0|Xchildren=0] = λ

Combining all gives
P[Xr=1]
P[Xr=0] = λpv1

· · ·pvd
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What happens in the symmetric case

where all leaves conditioned the same?

p 7→ f(p) = 1
1+λpd

p

f

There is fixed point p∗.

λc: when |derivative| = 1 at p∗

Exercise: = promised value.

When λ < λc we have |f ′(p∗)| < 1.
In this case, p∗ is attractive.

When λ > λc we have |f ′(p∗)| > 1.
In this case, p∗ is repulsive.

When attractive, for

p0 ∈ basin of attraction:

fheight(p0) → p∗

Luckily for this f, basin of

attraction is all of [0, 1].

When repulsive, oscillating:

p

f
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When repulsive, there is no hope

of correlation decay.

When attractive, although

|f ′(p∗)| < 1, |f ′(·)| is not globally
bounded by 1.

Luckily, there is transformation ψ

a bit magical

,

such that

g = ψ ◦ f ◦ψ−1

has |g ′| 6 1− ε everywhere.

Since g is globally contracting, and

f ◦ f ◦ · · · ◦ f = ψ−1 ◦g ◦g ◦ · · · ◦g ◦ψ,
for any two starting p0, p

′
0:∣∣fh(p0) − fh(p ′

0)
∣∣ 6 C(1− ε)h
exponential decay

What happens for asymmetric

conditionings?

r

v1 v2 v3

Now f is multivariate:

pr = f(pv1
, . . . , pvd

)

Luckily, the same univariate

transformation works:

g = ψ ◦ f(ψ−1(x1), . . . , ψ
−1(xd))

will have ‖∇g‖1 6 1− ε
everywhere.
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What about general graphs?
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Self-avoiding walk tree

graph

v

x y

z

7→

saw tree

v

x

y

v z

y

x

v

z

Tree = paths from root in graph. If

cycle formed, end and condition.

Fix arb ordering on edges. When

cycle formed, condition to 0/1

based on order of incoming vs.

outgoing edge.

Lemma [Godsil, Weitz, . . . ]

Root marginal same on self-avoiding

walk tree and graph.

This means we can compute

marginals on tree

exponentially large though

.

Correlation decay allows us to cut

the tree height by conditioning

nodes at level ' logn arbitrarily.
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Spatial mixing

Let us fix root, and condition subset S ⊆
V of verts two ways: σ, σ ′ ⊆ {0, 1}S.

Weak spatial mixing

For some f(h) → 0 with h→ ∞:

dTV(root | σ, root | σ
′) 6 f(h)

for h = min{d(root, u) | u ∈ S}.

Strong spatial mixing

For some f(h) → 0 with h→ ∞:

dTV(root | σ, root | σ
′) 6 f(h)

for h = min{d(root, u) | σ(u) 6= σ ′(u)}.

SSM allows conditioning nearby

verts, as long as we do it

consistently.

Usually we want exponentially

decaying f(·).

Corollary of saw trees

SSM for trees =⇒ SSM for graphs

The same analysis we had for

trees actually shows strong spatial

mixing for λ < λc.

For any fixed ∆, under SSM, we get

an FPTAS.
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Reduce counting to marginal estimation.

Form saw tree rooted at v, but truncate it at

level h = O(logn).
Assign arbitrary conditioning to last level.

Compute root marginal on truncated tree via

recursion.

Size of tree

6 ∆O(logn) = poly(n)
when ∆ is constant.

Marginals are

exp(−Ω(height)) = 1/poly(n)
accurate.
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Need to show tree ≡ graph . . .
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Correlation Decay
Marginals on trees

Self-avoiding walk tree

Weak and strong spatial mixing

HDX via Correlation Decay
Tree vs graph polynomials
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Polynomials

Assume we have a 2-spin system

with labels on vertices:
v a

b a v

graph G, labels `

Ω = {0, 1}n

µ(x) =
∏

vφv(xv) ·
∏

u∼vφuv(xu, xv)

Define a (non-hom) polynomial

g =
∑

x µ(x)z
x1

`(1) · · · z
xn

`(n)

If pinned vertices, we exclude

them from monomial.

Lemma [Godsil, . . . ]

Form the saw tree (inherit labels).

There is a polynomial h such that

gtree = ggraph · h

Example

Hardcore model with λ = 1:

v

x y 7→

v

x

y

v

y

x

v

ggraph = 1+ zv + zx + zy

gtree = (1+ zv + zx + zy)(1+ zx)
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Assume we have a 2-spin system

with labels on vertices:
v a

b a v

graph G, labels `

Ω = {0, 1}n

µ(x) =
∏

vφv(xv) ·
∏

u∼vφuv(xu, xv)

Define a (non-hom) polynomial

g =
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x µ(x)z
x1

`(1) · · · z
xn

`(n)
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Corollary

Root marginals same on tree/graph.

Proof:

Use distinct labels for graph.

If v is root, then zv appears with

deg 6 1 in ggraph and gtree. So h
has no zv.

We have for g ∈ {ggraph, gtree}:

Pgraph/tree[xv = 1] = ∂zv log g|z=1

But observe that ∂zv log gtree =

∂zv log ggraph+∂zv logh

this is 0

It remains to prove the lemma:

gtree = ggraph · h
Assume no univariate/vertex

factors in µ for simplicity (e.g.,

λ = 1). They can be added later

by change of variable zv 7→ λzv:

v a

b c d

graph G = ([n], E)

Ω = {0, 1}n

µ(x) =
∏

u∼vφuv(xu, xv)

We will prove via induction . . .
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Split root v:

v

u1 u2 uk

. . .

rest of graph

v1 v2 vk

u1 u2 uk

. . .

. . .

rest of graph

7→

Pinnings: pin v1, . . . , vi to 0 and

vi+1, . . . , vk to 1. Let poly be gi.

v1 v2 v3 vk

u1 u2 u3 uk

. . .

. . .

rest of graph

We have

ggraph = zvg0 + gk

Now looking at tree

v

t1 t2 . . . tk

gtree = zv
∏

i ri +
∏

i si

By induction we have for each i

zvri + si = hi · (zvgi−1 + gi)

i.e., ri = higi−1 and si = higi.

Now let h = g1 · · ·gk−1 · h1 · · ·hk:
hggraph = zv

∏
i ri +

∏
i si
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This finishes proof of [Weitz].


