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- c c > [Barvinok]: approx p(1) via p)(0)
“ 2 fori=0,...,0(logdeg(p))

> Idea 1. Riemann map from disk
_ . C n
B C-FlLCloggu( Vz) concave o R=o > idea 2: trunc Taylor series of log p
® C-Slunder all exp tiits = C-El > Matchings via [Heilmann-Lieb:
> Down-up on matroids: A1)
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Zly..yzn €U = g(z1,...,2n) #0 then B = 0 and C is sym. Roots of

. det(B 4+ xC) are real and # v—1.
Example: det point process
For vectors vy, ..., vn € IRk, let Example: monomers [Heilmann-Lieb]

},L(S)O(det([vi]iES)z' Z ( H Zi)

tchi i matched
Then g, is half-plane-stable. neeings A matene
4 is{z | Re(z) > 0}-stable.
Proof: e.g.{z|Re(z) > 0}
> For A; = vivT = 0, we have > Exercise: prove this via induction
i =0,
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\Sector stability /

gopp is hom and 1 sector stable.

The matching poly is NOT hom.

9)
\VAVAV,

e Homogenization:
| g(z1,...,zn) =
Y1 ---yng(j%,---,jf)
> The homogenized matching poly

Polynomial g(z1,...,zn) is C sector sta- is 2 sector stable.
ble if for all z1,...,zn € sector > We will show certain forms of
stability imply HDX and thus
g(z1,...,zn) #0. mixing of random walks.
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[Gérding]

Half-plane stable —

log g(z1,...,2zn) CONCave

[Alimohammadi-A-Shiragur-Vuong]

C sector stable =

log g( *$/z71, ’Yzn) concave

> The extra 2 can be dropped for
homogenized matchings.

> We get (2C)-SI, (2C)-El, and
poly(k) mixing when C = O(1).

> To just get SI, entire sector is not
needed. Sufficient region:

C
— R;O U D(], 6)

e
BN
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\H DX via stability /

> We get (2C)-SI, (2C)-El, and
g is generating poly of won ([‘;]): poly(k) mixing when C = O(1).
> Tojust get . entre sector s o
Telalene s — needed. Sufficient region:
()

log g(z1,...,2zn) CONCave  R_oUD(1,¢)

[Alimohammadi-A-Shiragur-Vuong] | \\\1,/

C sector stable =

oggl s o) concave

If w originates from product space,
handles can be removed with ex-
tra assumptions (lower and/or upper
bounds) on marginals.

> The extra 2 can be dropped for
homogenized matchings.
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\Holf—plone—stobilitg to log-concavity /

Sketch of [Garding'51] (1 sector stable):

To show g is log-concave on R, enough to consider restriction to 2-dim
subspaces. Foru,v € RT: h(s,t) = g(su+ tv).
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Sketch of [Garding'51] (1 sector stable):

To show g is log-concave on R, enough to consider restriction to 2-dim
subspaces. Foru,v € R%y: h(s,t) = g(su+tv).

h(s, 1) must have roots € Ro.

S

C \o

h(s,t) = [1;(ais + bit) for ai, bi € Rso. This implies log-concavity.
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Sketch of [Alimohammadi-~-Shiragur-Vuong] (C sector stable):
Let us bound the £1 norm of i-th row of correlation matrix ¥. Fact:

Amax (W) < max{€; (row i) | i}.

Let 15 be the indicator of S sampled from . Then, there is a vector
w € {£1}™ for which

by (row i) = E[(w, Ts) | i € S] — E[(w, Ts)].

We show that conditioning on i € S changes E[{(w, 1s)] by at most 2C.
The following “polynomial” is still sector-stable

Elz™')] o g(z,277,...).

By scaling z; with positive reals, any positive combination («, 5 > 0) below
remains sector-stable:

CEEZMTS) |1 e ST+ B - EZMWS) i ¢S]



(6) The ratio avoids negative reals when z € sector:

E[zW1s) |1 e S
Elz(W\Is) [ i ¢ S]

There is a complex-analytic branch of log defined.

- E[z{W:Ts) \165
f(z) .= log EZ00Ts) \1§ZS

h(y) = f(e¥/2C) —£(1).
Derivative of h aty = 0 is bounded by 1 (by Shwarz’s lemma):

El(w,Ts) | i€ S] — E[(w, 1s) | i ¢ S]
2C

ay
dy

y=0
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\Schworz lemma /

ez/21

Consider f(z) = &5—:
> =

If ¢ is a holomorphic map from D(0, 1) c
to D(0,1) and ¢(0) = 0, then

)

h

—0— — —O0—>
(0 < 1. R
Sketch of proof: 11 I
> Maximum principle: any C C

holomorphic map achieves
maximum of |-| on boundary.

> Apply this to ¢(z)/z.

> Onthe boundary |¢p(z)/z| < 1. The
value at 0is ¢’(0).
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ez/21

Consider f(z) = &5—:
> =

If ¢ is a holomorphic map from D(0, 1) c
to D(0,1) and ¢(0) = 0, then

)

-
—0— — —O0—>

b’ (0) < 1.
Sketch of proof: 11 It

> Maximum principle: any C
holomorphic map achieves
maximum of |-| on boundary.
> Apply this to ¢(z)/z.

> On the boundary |$(z)/zl < 1. The > Apply Schwarzto ¢ =fohof

value at 0'is ¢’(0). /(0) - h(0) - #igy| < 1.
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\Monomer walks /

1W(S x {o}JUS x {o}) = Z{momomer—dimer weights | monomers = S}

vertices x {e, o
_ : {e, o} R
|vertices| z

By [Heilmann-Lieb], g,, is 2 sector stable.
Down-up walk/block dynamics:

Corollary
Mixing in O(|vertices|?).
Application: planar graphs
%gy ?D Sample from monomer-dimer sys-
tems on planar graphs in poly(n) time.
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high-dimensional expansion
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