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Review

C-SI: log gµ( C
√
z) locally convex at 1

C-EI: log gµ( C
√
z) 6 tangent at 1

zC1

zC2
gµ > 1

zC1

zC2
gµ > 1

C-FLC: log gµ( C
√
z) concave on Rn

>0

C-SI under all exp tilts =⇒ C-EI

Down-up on matroids:

tmix 6 O(k log k+ k log logn)

C

1

zero-free region

[Barvinok]: approx p(1) via p(i)(0)
for i = 0, . . . , O(log deg(p))
Idea 1: Riemann map from disk

Idea 2: trunc Taylor series of log p
Matchings via [Heilmann-Lieb]:

0

Ω∆(1)
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Multivariate stability

Stability

Poly g is U-stable for U ⊆ C when

z1, . . . , zn ∈ U =⇒ g(z1, . . . , zn) 6= 0

Example: det point process

For vectors v1, . . . , vn ∈ Rk, let

µ(S) ∝ det
(
[vi]i∈S

)2
.

Then gµ is half-plane-stable

e.g., {z | Re(z) > 0}

.

Proof:

For Ai = viv
ᵀ
i � 0, we have

gµ = det(z1A1 + · · ·+ znAn)

If we let

B =
∑

i Re(zi)Ai, C =
∑

i Im(zi)Ai

then B � 0 and C is sym. Roots of

det(B+ xC) are real and 6=
√
−1.

Example: monomers [Heilmann-Lieb]∑
matchings

( ∏
i matched

zi

)
is {z | Re(z) > 0}-stable.

Exercise: prove this via induction

similar to univariate case.
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Sector stability

C

π/C

Polynomial g(z1, . . . , zn) is C sector sta-

ble if for all z1, . . . , zn ∈ sector

g(z1, . . . , zn) 6= 0.

gDPP is hom and 1 sector stable.

The matching poly is NOT hom.

Homogenization:

g(z1, . . . , zn) 7→
y1 · · ·yng

(
z1
y1

, . . . , zn
yn

)
The homogenized matching poly

is 2 sector stable.

We will show certain forms of

stability imply HDX and thus

mixing of random walks.
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HDX via stability

g is generating poly of µ on
([n]

k

)
:

[Gårding]

Half-plane stable =⇒

log g(z1, . . . , zn) concave

[Alimohammadi-A-Shiragur-Vuong]

C sector stable =⇒

log g( 2C
√
z1, . . . , 2C

√
zn) concave

The extra 2 can be dropped for

homogenized matchings.

We get (2C)-SI, (2C)-EI, and
poly(k) mixing when C = O(1).

To just get SI, entire sector is not

needed. Sufficient region:

C

R>0 ∪D(1, ε)

1

ε

[Chen-Liu-Vigoda]

If µ originates from product space,

handles can be removed with ex-

tra assumptions (lower and/or upper

bounds) on marginals.
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Half-plane-stability to log-concavity

Sketch of [Gårding’51] (1 sector stable):

1 To show g is log-concave on Rn
>0, enough to consider restriction to 2-dim

subspaces. For u, v ∈ Rn
>0: h(s, t) = g(su+ tv).

2 h(s, 1) must have roots ∈ R60.

t = 1

s

C

3 h(s, t) =
∏

i(ais+ bit) for ai, bi ∈ R>0. This implies log-concavity.
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Sketch of [Alimohammadi-A-Shiragur-Vuong] (C sector stable):

1 Let us bound the `1 norm of i-th row of correlation matrix Ψ. Fact:

λmax(Ψ) 6 max{`1(row i) | i}.

2 Let 1S be the indicator of S sampled from µ. Then, there is a vector

w ∈ {±1}n for which

`1(row i) = E[〈w, 1S〉 | i ∈ S] − E[〈w, 1S〉].

3 We show that conditioning on i ∈ S changes E[〈w, 1S〉] by at most 2C.

4 The following “polynomial” is still sector-stable

E[z〈w,1S〉] ∝ g(z, z−1, . . . ).

5 By scaling zi with positive reals, any positive combination (α,β > 0) below

remains sector-stable:

α · E[z〈w,1S〉 | i ∈ S] + β · E[z〈w,1S〉 | i /∈ S]
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6 The ratio avoids negative reals when z ∈ sector:

E[z〈w,1S〉 | i ∈ S]

E[z〈w,1S〉 | i /∈ S]

7 There is a complex-analytic branch of log defined.

f(z) := log
(
E[z〈w,1S〉 | i ∈ S]

E[z〈w,1S〉 | i /∈ S]

)
h(y) = f(ey/2C) − f(1).

C C

h

8 Derivative of h at y = 0 is bounded by 1 (by Shwarz’s lemma):

d

dy
h

∣∣∣∣
y=0

=
E[〈w, 1S〉 | i ∈ S] − E[〈w, 1S〉 | i /∈ S]

2C
.
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Schwarz lemma

Schwarz lemma

Ifφ is a holomorphicmap fromD(0, 1)
to D(0, 1) and φ(0) = 0, then

|φ ′(0)| 6 1.

Sketch of proof:

Maximum principle: any

holomorphic map achieves

maximum of |·| on boundary.

Apply this to φ(z)/z.

On the boundary |φ(z)/z| 6 1. The

value at 0 is φ ′(0).

Consider f(z) = ez/2−1
ez/2+1

:

C C

C C

h

f−1 f

Apply Schwarz to φ = f ◦ h ◦ f−1:∣∣∣f ′(0) · h ′(0) · 1
f ′(0)

∣∣∣ 6 1.
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Monomer walks

µ(S× {•} ∪ S× {•}) =
∑

{momomer-dimer weights | monomers = S}

µ :

(
vertices× {•, •}

|vertices|

)
→ R>0

By [Heilmann-Lieb], gµ is 2 sector stable.

Down-up walk/block dynamics:

Corollary

Mixing in Õ(|vertices|2).

Application: planar graphs

Sample from monomer-dimer sys-

tems on planar graphs in poly(n) time.
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