## CS 263: Counting and Sampling

Nima Anari

5 ssanard
slides for
Zeros of Polynomials

Review
D Linear tilts:

$$
v(x)=\underbrace{(1+\langle w, x-\operatorname{mean}(\mu)\rangle)}_{\text {linear tilt }} \mu(x)
$$

## Review

- Linear tilts:

$$
v(x)=\underbrace{(1+\langle w, x-\operatorname{mean}(\mu)\rangle)}_{\text {linear tilt }} \mu(x)
$$

D Covariance evolution: $\operatorname{cov}(\mu)=$ $\mathbb{E}[\operatorname{cov}(v)]+\operatorname{cov}(\mu) \operatorname{cov}(w) \operatorname{cov}(\mu)$

## Review

- Linear tilts:

$$
\nu(x)=\underbrace{(1+\langle w, x-\operatorname{mean}(\mu)\rangle)}_{\text {linear tilt }} \mu(x)
$$

$D$ Covariance evolution: $\operatorname{cov}(\mu)=$ $\mathbb{E}[\operatorname{cov}(v)]+\operatorname{cov}(\mu) \operatorname{cov}(w) \operatorname{cov}(\mu)$
$\bigcirc$ Trickle down: C-SI for links means either $\mu$ is disconnected or $\mathrm{C}^{\prime}-\mathrm{Sl}$ :


## Review

- Linear tilts:

$$
\nu(x)=\underbrace{(1+\langle w, x-\operatorname{mean}(\mu)\rangle)}_{\text {linear tilt }} \mu(x)
$$

$D$ Covariance evolution: $\operatorname{cov}(\mu)=$ $\mathbb{E}[\operatorname{cov}(v)]+\operatorname{cov}(\mu) \operatorname{cov}(w) \operatorname{cov}(\mu)$
$\bigcirc$ Trickle down: C-SI for links means either $\mu$ is disconnected or $\mathrm{C}^{\prime}-\mathrm{Sl}$ :


## Review

D Linear tilts:

$$
\nu(x)=\underbrace{(1+\langle w, x-\operatorname{mean}(\mu)\rangle)}_{\text {linear tilt }} \mu(x)
$$

$D$ Covariance evolution: $\operatorname{cov}(\mu)=$

$$
\mathbb{E}[\operatorname{cov}(v)]+\operatorname{cov}(\mu) \operatorname{cov}(w) \operatorname{cov}(\mu)
$$

$\bigcirc$ Trickle down: C-SI for links means either $\mu$ is disconnected or $\mathrm{C}^{\prime}-\mathrm{Sl}$ :

$\bigcirc$ Generating polynomial:

$$
g_{\mu}\left(z_{1}, \ldots, z_{n}\right)=\sum_{S} \mu(S) \prod_{i \in S} z_{i}
$$

## Review

- Linear tilts:

$$
v(x)=\underbrace{(1+\langle w, x-\operatorname{mean}(\mu)\rangle)}_{\text {linear tilt }} \mu(x)
$$

D Covariance evolution: $\operatorname{cov}(\mu)=$

$$
\mathbb{E}[\operatorname{cov}(v)]+\operatorname{cov}(\mu) \operatorname{cov}(w) \operatorname{cov}(\mu)
$$

$\bigcirc$ Trickle down: C-SI for links means either $\mu$ is disconnected or $\mathrm{C}^{\prime}-\mathrm{Sl}$ :


D Generating polynomial:

$$
g_{\mu}\left(z_{1}, \ldots, z_{n}\right)=\sum_{S} \mu(S) \prod_{i \in S} z_{i}
$$

1 spectral independence same as

$$
\lambda_{2}\left(\nabla^{2} g(\mathbb{1})\right) \leqslant 0 \leftrightarrow \nabla^{2} \log g(\mathbb{1}) \preceq 0
$$

## Review

- Linear tilts:

$$
v(x)=\underbrace{(1+\langle\omega, x-\operatorname{mean}(\mu)\rangle)}_{\text {linear tilt }} \mu(x)
$$

D Covariance evolution: $\operatorname{cov}(\mu)=$

$$
\mathbb{E}[\operatorname{cov}(v)]+\operatorname{cov}(\mu) \operatorname{cov}(w) \operatorname{cov}(\mu)
$$

$\bigcirc$ Trickle down: C-SI for links means either $\mu$ is disconnected or $\mathrm{C}^{\prime}-\mathrm{SI}$ :


D Generating polynomial:

$$
g_{\mu}\left(z_{1}, \ldots, z_{n}\right)=\sum_{S} \mu(S) \prod_{i \in S} z_{i}
$$

1 spectral independence same as

$$
\lambda_{2}\left(\nabla^{2} g(\mathbb{1})\right) \leqslant 0 \leftrightarrow \nabla^{2} \log g(\mathbb{1}) \preceq 0
$$

$\checkmark$ Exponential tilts/external fields:

$$
v(x) \propto \underbrace{\exp (\langle w, x\rangle)}_{\text {exponential tilt }} \mu(x)
$$



## Review

- Linear tilts:

$$
v(x)=\underbrace{(1+\langle\omega, x-\operatorname{mean}(\mu)\rangle)}_{\text {linear tilt }} \mu(x)
$$

$D$ Covariance evolution: $\operatorname{cov}(\mu)=$

$$
\mathbb{E}[\operatorname{cov}(v)]+\operatorname{cov}(\mu) \operatorname{cov}(w) \operatorname{cov}(\mu)
$$

© Trickle down: C-SI for links means either $\mu$ is disconnected or $\mathrm{C}^{\prime}-\mathrm{SI}$ :


D Generating polynomial:

$$
g_{\mu}\left(z_{1}, \ldots, z_{n}\right)=\sum_{S} \mu(S) \prod_{i \in S} z_{i}
$$

1 spectral independence same as

$$
\lambda_{2}\left(\nabla^{2} g(\mathbb{1})\right) \leqslant 0 \leftrightarrow \nabla^{2} \log g(\mathbb{1}) \preceq 0
$$

$\checkmark$ Exponential tilts/external fields:

$$
v(x) \propto \underbrace{\exp (\langle w, x\rangle)}_{\text {exponential tilt }} \mu(x)
$$


$D$ Exp tilts of matroids are 1-SI:


## Entropic Independence

$D$ Fractional log-concavity

## Polynomial Interpolation

D Matching polynomial

- Taylor approximation

D Riemann mappings

## Entropic Independence

$\bigcirc$ Fractional log-concavity

## Polynomial Interpolation

- Matching polynomial
- Taylor approximation

D Riemann mappings

## Entropic Independence

For all distributions $v$,

$$
\mathcal{D}_{\mathrm{KL}}\left(\nu \mathrm{D}_{\mathrm{k} \rightarrow 1} \| \mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right) \leqslant \frac{\mathrm{C}}{\mathrm{k}} \cdot \mathcal{D}_{\mathrm{KL}}(v \| \mu) .
$$

## Entropic Independence

For all distributions $v$,

$$
\mathcal{D}_{\mathrm{KL}}\left(\nu \mathrm{D}_{\mathrm{k} \rightarrow 1} \| \mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right) \leqslant \frac{\mathrm{C}}{\mathrm{k}} \cdot \mathcal{D}_{\mathrm{KL}}(\nu \| \mu) .
$$

$\bigcirc$ The greatest aspect of entropic independence: no need to consider all $\nu$. Enough to look at

$$
v(x) \propto \exp (\langle w, x\rangle) \mu(x)
$$

for $w \in \mathbb{R}^{n}$. This is an external field applied to $\mu$.

## Entropic Independence

For all distributions $v$,

$$
\mathcal{D}_{\mathrm{KL}}\left(\nu \mathrm{D}_{\mathrm{k} \rightarrow 1} \| \mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right) \leqslant \frac{\mathrm{C}}{\mathrm{k}} \cdot \mathcal{D}_{\mathrm{KL}}(v \| \mu) .
$$

$\checkmark$ The greatest aspect of entropic independence: no need to consider all $\nu$. Enough to look at

$$
v(x) \propto \exp (\langle w, x\rangle) \mu(x)
$$

for $w \in \mathbb{R}^{n}$. This is an external field applied to $\mu$.
$D$ If $q=\left(q_{1}, \ldots, q_{n}\right)$ is some distribution on $[n]=\binom{[n]}{1}$, then

$$
\inf \left\{\mathcal{D}_{\mathrm{KL}}(v \| \mu) \mid v \mathrm{D}_{\mathrm{k} \rightarrow 1}=\mathrm{q}\right\}=-\log \left(\inf _{z_{1}, \ldots, z_{n}>0} \frac{\sum_{S} \mu(S) \prod_{i \in S} z_{i}}{z_{1}^{k q_{1}} \cdots z_{n}^{k q_{n}}}\right)
$$

$\bigcirc$ Let $v / \mu=\mathrm{f}$, and $\mathrm{q} /\left(\mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right)=\mathrm{g}$. Then convex program is ${\inf \left\{\text { Ent }_{\mu}[\mathrm{f}] \mid \mathrm{U}_{1 \rightarrow \mathrm{k}} \mathrm{f}=\mathrm{g}\right\}}$
$\bigcirc$ Let $v / \mu=\mathrm{f}$, and $\mathrm{q} /\left(\mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right)=\mathrm{g}$. Then convex program is

$$
{\inf \left\{\operatorname{Ent}_{\mu}[f] \mid U_{1 \rightarrow k} f=g\right\}}
$$

D The Lagrangian is

$$
\operatorname{Ent}_{\mu}[f]-\left\langle\lambda, U_{1 \rightarrow k} f-g\right\rangle
$$

$\bigcirc$ Let $v / \mu=\mathrm{f}$, and $\mathrm{q} /\left(\mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right)=\mathrm{g}$. Then convex program is

$$
{\inf \left\{\operatorname{Ent}_{\mu}[f] \mid U_{1 \rightarrow k} f=g\right\}}
$$

© The Lagrangian is

$$
\operatorname{Ent}_{\mu}[f]-\left\langle\lambda, U_{1 \rightarrow k} f-g\right\rangle
$$

$D$ Fixing $\lambda$, optimality cond for f is

$$
\nabla_{\mathrm{f}} \mathrm{Ent}_{\mu}[\mathrm{f}]=\lambda^{\top} \mathrm{U}_{1 \rightarrow \mathrm{k}}
$$

$\bigcirc$ Let $v / \mu=\mathrm{f}$, and $\mathrm{q} /\left(\mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right)=\mathrm{g}$. Then convex program is

$$
{\inf \left\{\operatorname{Ent}_{\mu}[f] \mid U_{1 \rightarrow k} f=g\right\}}
$$

D The Lagrangian is

$$
\operatorname{Ent}_{\mu}[f]-\left\langle\lambda, U_{1 \rightarrow k} f-g\right\rangle
$$

$\bigcirc$ Fixing $\lambda$, optimality cond for $f$ is

$$
\nabla_{\mathrm{f}} \mathrm{Ent}_{\mu}[\mathrm{f}]=\lambda^{\top} \mathrm{U}_{1 \rightarrow \mathrm{k}}
$$

- But we have

$$
\frac{\mathrm{d}}{\mathrm{df}(\mathrm{~S})} \operatorname{Ent}_{\mu}[\mathrm{f}]=\mu(\mathrm{S}) \log \frac{\mathrm{f}(\mathrm{~S})}{\mathbb{E}_{\mu}[\mathrm{f}]}
$$

$\bigcirc$ Let $v / \mu=\mathrm{f}$, and $\mathrm{q} /\left(\mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right)=\mathrm{g}$.
Then convex program is

$$
{\inf \left\{E^{2} t_{\mu}[f] \mid U_{1 \rightarrow k} f=g\right\}}
$$

$\checkmark$ The Lagrangian is

$$
\operatorname{Ent}_{\mu}[f]-\left\langle\lambda, \mathrm{U}_{1 \rightarrow \mathrm{k}} \mathrm{f}-\mathrm{g}\right\rangle
$$

$\bigcirc$ Fixing $\lambda$, optimality cond for $f$ is

$$
\nabla_{\mathrm{f}} \mathrm{Ent}_{\mu}[\mathrm{f}]=\lambda^{\top} \mathrm{U}_{1 \rightarrow \mathrm{k}}
$$

- But we have

$$
\frac{d}{d f(S)} \operatorname{Ent}_{\mu}[f]=\mu(S) \log \frac{f(S)}{\mathbb{E}_{\mu}[f]}
$$

$D$ If we let $w_{i}=\lambda_{i} / \mathbb{P}_{S \sim \mu}[i \in S]$, then

$$
\left(\lambda^{\top} U_{1 \rightarrow k}\right)_{S}=\mu(S) \sum_{i \in S} w_{i}
$$

$\bigcirc$ Let $v / \mu=\mathrm{f}$, and $\mathrm{q} /\left(\mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right)=\mathrm{g}$.
Then convex program is

$$
{\inf \left\{E^{2} t_{\mu}[f] \mid U_{1 \rightarrow k} f=g\right\}}
$$

$\checkmark$ The Lagrangian is

$$
\operatorname{Ent}_{\mu}[f]-\left\langle\lambda, \mathrm{U}_{1 \rightarrow \mathrm{k}} \mathrm{f}-\mathrm{g}\right\rangle
$$

$\bigcirc$ Fixing $\lambda$, optimality cond for $f$ is

$$
\nabla_{\mathrm{f}} \mathrm{Ent}_{\mu}[\mathrm{f}]=\lambda^{\top} \mathrm{U}_{1 \rightarrow \mathrm{k}}
$$

- But we have

$$
\frac{d}{d f(S)} \operatorname{Ent}_{\mu}[f]=\mu(S) \log \frac{f(S)}{\mathbb{E}_{\mu}[f]}
$$

$D$ If we let $w_{i}=\lambda_{i} / \mathbb{P}_{S \sim \mu}[i \in S]$, then

$$
\left(\lambda^{\top} U_{1 \rightarrow k}\right)_{S}=\mu(S) \sum_{i \in S} w_{i}
$$

$\bigcirc$ Thus, the optimality condition is

$$
f(S) \propto \exp \left(\left\langle w, 1_{S}\right\rangle\right)
$$

$\bigcirc$ Let $v / \mu=\mathrm{f}$, and $\mathrm{q} /\left(\mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right)=\mathrm{g}$. Then convex program is

$$
{\inf \left\{\operatorname{Ent}_{\mu}[f] \mid \mathrm{U}_{1 \rightarrow \mathrm{k}} \mathrm{f}=\mathrm{g}\right\}}
$$

© The Lagrangian is

$$
\operatorname{Ent}_{\mu}[f]-\left\langle\lambda, U_{1 \rightarrow k} f-g\right\rangle
$$

$\bigcirc$ Fixing $\lambda$, optimality cond for $f$ is

$$
\nabla_{\mathrm{f}} \operatorname{Ent}_{\mu}[\mathrm{f}]=\lambda^{\top} \mathrm{U}_{1 \rightarrow \mathrm{k}}
$$

- But we have

$$
\frac{d}{d f(S)} \operatorname{Ent}_{\mu}[f]=\mu(S) \log \frac{f(S)}{\mathbb{E}_{\mu}[f]}
$$

$D$ If we let $w_{i}=\lambda_{i} / \mathbb{P}_{S \sim \mu}[i \in S]$, then

$$
\left(\lambda^{\top} U_{1 \rightarrow k}\right)_{S}=\mu(S) \sum_{i \in S} \mathcal{w}_{i}
$$

$\checkmark$ Thus, the optimality condition is

$$
f(S) \propto \exp \left(\left\langle w, \mathbb{1}_{S}\right\rangle\right)
$$

$D$ If we let $Z=\mathbb{E}_{\mu}\left[\exp \left(\left\langle w, \mathbb{1}_{s}\right\rangle\right)\right]$, then

$$
f(S)=\exp \left(\left\langle w, \mathbb{1}_{S}\right\rangle\right) / Z
$$

D Let $v / \mu=\mathrm{f}$, and $\mathrm{q} /\left(\mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right)=\mathrm{g}$. Then convex program is

$$
{\inf \left\{E^{\prime \prime} t_{\mu}[f] \mid U_{1 \rightarrow k} f=g\right\}}
$$

© The Lagrangian is

$$
\operatorname{Ent}_{\mu}[f]-\left\langle\lambda, U_{1 \rightarrow k} f-g\right\rangle
$$

$\bigcirc$ Fixing $\lambda$, optimality cond for $f$ is

$$
\nabla_{\mathrm{f}} \operatorname{Ent}_{\mu}[\mathrm{f}]=\lambda^{\top} \mathrm{U}_{1 \rightarrow \mathrm{k}}
$$

- But we have

$$
\frac{d}{d f(S)} \operatorname{Ent}_{\mu}[f]=\mu(S) \log \frac{f(S)}{\mathbb{E}_{\mu}[f]}
$$

$D$ If we let $w_{i}=\lambda_{i} / \mathbb{P}_{S \sim \mu}[i \in S]$, then

$$
\left(\lambda^{\top} U_{1 \rightarrow k}\right)_{S}=\mu(S) \sum_{i \in S} w_{i}
$$

$\checkmark$ Thus, the optimality condition is

$$
f(S) \propto \exp \left(\left\langle w, \mathbb{1}_{S}\right\rangle\right)
$$

$D$ If we let $Z=\mathbb{E}_{\mu}\left[\exp \left(\left\langle w, \mathbb{1}_{s}\right\rangle\right)\right]$, then

$$
f(S)=\exp \left(\left\langle w, \mathbb{1}_{S}\right\rangle\right) / Z
$$

$\checkmark$ Note Ent is 1 -homogeneous, so

$$
\operatorname{Ent}_{\mu}[\mathrm{f}]=\operatorname{Ent}_{\mu}\left[\exp \left(\left\langle w, \mathbb{1}_{\mathrm{S}}\right\rangle\right)\right] / \mathrm{Z}
$$

$\bigcirc$ Let $v / \mu=\mathrm{f}$, and $\mathrm{q} /\left(\mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right)=\mathrm{g}$. Then convex program is

$$
{\inf \left\{E^{2} t_{\mu}[f] \mid U_{1 \rightarrow k} f=g\right\}}
$$

© The Lagrangian is

$$
\operatorname{Ent}_{\mu}[f]-\left\langle\lambda, \mathrm{U}_{1 \rightarrow \mathrm{k}} \mathrm{f}-\mathrm{g}\right\rangle
$$

$D$ Fixing $\lambda$, optimality cond for f is

$$
\nabla_{\mathrm{f}} \operatorname{Ent}_{\mu}[\mathrm{f}]=\lambda^{\top} \mathrm{U}_{1 \rightarrow \mathrm{k}}
$$

- But we have

$$
\frac{d}{d f(S)} \operatorname{Ent}_{\mu}[f]=\mu(S) \log \frac{f(S)}{\mathbb{E}_{\mu}[f]}
$$

$D$ If we let $w_{i}=\lambda_{i} / \mathbb{P}_{S \sim \mu}[i \in S]$, then

$$
\left(\lambda^{\top} U_{1 \rightarrow k}\right)_{S}=\mu(S) \sum_{i \in S} w_{i}
$$

$\checkmark$ Thus, the optimality condition is

$$
f(S) \propto \exp \left(\left\langle w, \mathbb{1}_{S}\right\rangle\right)
$$

$D$ If we let $Z=\mathbb{E}_{\mu}\left[\exp \left(\left\langle w, \mathbb{1}_{s}\right\rangle\right)\right]$, then

$$
f(S)=\exp \left(\left\langle w, \mathbb{1}_{S}\right\rangle\right) / Z
$$

$\checkmark$ Note Ent is 1 -homogeneous, so

$$
\operatorname{Ent}_{\mu}[\mathrm{f}]=\operatorname{Ent}_{\mu}\left[\exp \left(\left\langle w, \mathbb{1}_{\mathrm{S}}\right\rangle\right)\right] / Z
$$

© We get that

$$
\left\langle\lambda, U_{1 \rightarrow k} f\right\rangle=\sum_{s} \mu(s) f(s)\left\langle w, 1_{s}\right\rangle
$$

$D$ Let $v / \mu=\mathrm{f}$, and $\mathrm{q} /\left(\mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right)=\mathrm{g}$.
Then convex program is

$$
{\inf \left\{\operatorname{Ent}_{\mu}[f] \mid \mathrm{U}_{1 \rightarrow \mathrm{k}} \mathrm{f}=\mathrm{g}\right\}}
$$

D The Lagrangian is

$$
\operatorname{Ent}_{\mu}[f]-\left\langle\lambda, U_{1 \rightarrow k} f-g\right\rangle
$$

$D$ Fixing $\lambda$, optimality cond for $f$ is

$$
\nabla_{\mathrm{f}} \operatorname{Ent}_{\mu}[\mathrm{f}]=\lambda^{\top} \mathrm{U}_{1 \rightarrow \mathrm{k}}
$$

- But we have

$$
\frac{d}{d f(S)} \operatorname{Ent}_{\mu}[f]=\mu(S) \log \frac{f(S)}{\mathbb{E}_{\mu}[f]}
$$

$D$ If we let $w_{i}=\lambda_{i} / \mathbb{P}_{S \sim \mu}[i \in S]$, then

$$
\left(\lambda^{\top} U_{1 \rightarrow k}\right)_{S}=\mu(S) \sum_{i \in S} w_{i}
$$

$\checkmark$ Thus, the optimality condition is

$$
f(S) \propto \exp \left(\left\langle w, \mathbb{1}_{S}\right\rangle\right)
$$

$D$ If we let $Z=\mathbb{E}_{\mu}\left[\exp \left(\left\langle w, 1_{s}\right\rangle\right)\right]$, then

$$
f(S)=\exp \left(\left\langle w, \mathbb{1}_{S}\right\rangle\right) / Z
$$

$\checkmark$ Note Ent is 1 -homogeneous, so

$$
\operatorname{Ent}_{\mu}[\mathrm{f}]=\operatorname{Ent}_{\mu}\left[\exp \left(\left\langle w, \mathbb{1}_{\mathrm{S}}\right\rangle\right)\right] / Z
$$

© We get that

$$
\left\langle\lambda, U_{1 \rightarrow k} f\right\rangle=\sum_{s} \mu(s) f(s)\left\langle w, \mathbb{1}_{s}\right\rangle
$$

$\bigcirc$ The Lagrangian simplifies to

$$
-\log (Z)+\langle\lambda, g\rangle=k\langle w, q\rangle-\log (Z)
$$

$D$ Let $v / \mu=\mathrm{f}$, and $\mathrm{q} /\left(\mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right)=\mathrm{g}$.
Then convex program is

$$
{\inf \left\{\operatorname{Ent}_{\mu}[f] \mid \mathrm{U}_{1 \rightarrow \mathrm{k}} \mathrm{f}=\mathrm{g}\right\}}
$$

D The Lagrangian is

$$
\operatorname{Ent}_{\mu}[f]-\left\langle\lambda, \mathrm{U}_{1 \rightarrow \mathrm{k}} \mathrm{f}-\mathrm{g}\right\rangle
$$

$D$ Fixing $\lambda$, optimality cond for f is

$$
\nabla_{\mathrm{f}} \operatorname{Ent}_{\mu}[\mathrm{f}]=\lambda^{\top} \mathrm{U}_{1 \rightarrow \mathrm{k}}
$$

- But we have

$$
\frac{d}{d f(S)} \operatorname{Ent}_{\mu}[f]=\mu(S) \log \frac{f(S)}{\mathbb{E}_{\mu}[f]}
$$

$D$ If we let $w_{i}=\lambda_{i} / \mathbb{P}_{S \sim \mu}[i \in S]$, then

$$
\left(\lambda^{\top} U_{1 \rightarrow k}\right)_{S}=\mu(S) \sum_{i \in S} w_{i}
$$

$\checkmark$ Thus, the optimality condition is

$$
f(S) \propto \exp \left(\left\langle w, \mathbb{1}_{S}\right\rangle\right)
$$

$D$ If we let $Z=\mathbb{E}_{\mu}\left[\exp \left(\left\langle w, 1_{s}\right\rangle\right)\right]$, then

$$
f(S)=\exp \left(\left\langle w, \mathbb{1}_{S}\right\rangle\right) / Z
$$

$\checkmark$ Note Ent is 1 -homogeneous, so

$$
\operatorname{Ent}_{\mu}[\mathrm{f}]=\operatorname{Ent}_{\mu}\left[\exp \left(\left\langle w, 1_{\mathrm{S}}\right\rangle\right)\right] / Z
$$

© We get that

$$
\left\langle\lambda, U_{1 \rightarrow k} f\right\rangle=\sum_{s} \mu(s) f(s)\left\langle w, \mathbb{1}_{s}\right\rangle
$$

$\checkmark$ The Lagrangian simplifies to

$$
-\log (Z)+\langle\lambda, g\rangle=k\langle w, \mathrm{q}\rangle-\log (Z)
$$

$D$ If we reparameterize $z_{i}=e^{w_{i}}$, then this is

$$
\log \left(\frac{\prod_{i \in[n]} z_{i}^{k q_{i}}}{g_{\mu}(z)}\right)
$$

$D$ Let $v / \mu=\mathrm{f}$, and $\mathrm{q} /\left(\mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right)=\mathrm{g}$.
Then convex program is

$$
{\inf \left\{E^{2} t_{\mu}[f] \mid U_{1 \rightarrow k} f=g\right\}}
$$

D The Lagrangian is

$$
\operatorname{Ent}_{\mu}[f]-\left\langle\lambda, U_{1 \rightarrow k} f-g\right\rangle
$$

$D$ Fixing $\lambda$, optimality cond for f is

$$
\nabla_{\mathrm{f}} \operatorname{Ent}_{\mu}[\mathrm{f}]=\lambda^{\top} \mathrm{U}_{1 \rightarrow \mathrm{k}}
$$

- But we have

$$
\frac{d}{d f(S)} \operatorname{Ent}_{\mu}[f]=\mu(S) \log \frac{f(S)}{\mathbb{E}_{\mu}[f]}
$$

$D$ If we let $w_{i}=\lambda_{i} / \mathbb{P}_{S \sim \mu}[i \in S]$, then

$$
\left(\lambda^{\top} U_{1 \rightarrow k}\right)_{S}=\mu(S) \sum_{i \in S} w_{i}
$$

$\checkmark$ Thus, the optimality condition is

$$
f(S) \propto \exp \left(\left\langle w, \mathbb{1}_{S}\right\rangle\right)
$$

$D$ If we let $Z=\mathbb{E}_{\mu}\left[\exp \left(\left\langle w, 1_{s}\right\rangle\right)\right]$, then

$$
f(S)=\exp \left(\left\langle w, \mathbb{1}_{S}\right\rangle\right) / Z
$$

$\checkmark$ Note Ent is 1 -homogeneous, so

$$
\operatorname{Ent}_{\mu}[\mathrm{f}]=\operatorname{Ent}_{\mu}\left[\exp \left(\left\langle w, 1_{\mathrm{S}}\right\rangle\right)\right] / Z
$$

© We get that

$$
\left\langle\lambda, \mathrm{U}_{1 \rightarrow \mathrm{k}} \mathrm{f}\right\rangle=\sum_{\mathrm{s}} \mu(\mathrm{~s}) \mathrm{f}(\mathrm{~s})\left\langle w, \mathbb{1}_{\mathrm{s}}\right\rangle
$$

$\checkmark$ The Lagrangian simplifies to

$$
-\log (Z)+\langle\lambda, g\rangle=k\langle w, q\rangle-\log (Z)
$$

$D$ If we reparameterize $z_{i}=e^{w_{i}}$, then this is

$$
\log \left(\frac{\prod_{i \in[n]} z_{i}^{k q_{i}}}{g_{\mu}(z)}\right)
$$

$\bigcirc$ This finishes the proof. :)

D For entropic independence we
want $\frac{\mathrm{k}}{\mathrm{C}} \mathcal{D}_{\mathrm{KL}}\left(\mathrm{q} \| \mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right) \leqslant$

$$
\sup \left\{\left.\log \left(\frac{\prod_{i \in[n]} z_{i}^{k q_{i}}}{g_{\mu}(z)}\right) \right\rvert\, z \in \mathbb{R}_{>0}^{n}\right\}
$$

$\bigcirc$ For entropic independence we want $\frac{k}{C} \mathcal{D}_{\mathrm{KL}}\left(\mathrm{q} \| \mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right) \leqslant$

$$
\sup \left\{\left.\log \left(\frac{\prod_{i \in[n]} z_{i}^{k q_{i}}}{g_{\mu}(z)}\right) \right\rvert\, z \in \mathbb{R}_{>0}^{n}\right\}
$$

$D$ Let $h(z)=\mathbb{E}_{i \sim \mu D_{k \rightarrow 1}}\left[z_{i}^{C}\right]^{k / C}$. Then

$$
\sup \left\{\left.\log \left(\frac{\prod_{i \in[n]} z_{\mathrm{i}}^{k q_{i}}}{\mathrm{~h}(z)}\right) \right\rvert\, z \in \mathbb{R}_{>0}^{n}\right\}
$$

is achieved at $z_{i}=\sqrt[c]{q_{i} /\left(\mu D_{k \rightarrow 1}\right)_{i}}$ and has value $\frac{k}{C} \mathcal{D}_{\mathrm{KL}}\left(\mathrm{q} \| \mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right)$.
$\bigcirc$ For entropic independence we
want $\frac{k}{C} \mathcal{D}_{\mathrm{KL}}\left(\mathrm{q} \| \mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right) \leqslant$

$$
\sup \left\{\left.\log \left(\frac{\prod_{i \in[n]} z_{i}^{k q_{i}}}{g_{\mu}(z)}\right) \right\rvert\, z \in \mathbb{R}_{>0}^{n}\right\}
$$

$\bigcirc$ Let $h(z)=\mathbb{E}_{i \sim \mu D_{k \rightarrow 1}}\left[z_{i}^{C}\right]^{k / C}$. Then

$$
\sup \left\{\left.\log \left(\frac{\prod_{i \in[n]} z_{i}^{k q_{i}}}{\mathrm{~h}(z)}\right) \right\rvert\, z \in \mathbb{R}_{>0}^{n}\right\}
$$

is achieved at $z_{i}=\sqrt[c]{q_{i} /\left(\mu D_{k \rightarrow 1}\right)_{i}}$ and has value $\frac{k}{C} \mathcal{D}_{\mathrm{KL}}\left(\mathrm{q} \| \mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right)$.
$\bigcirc$ Thus C - El is same as

$$
g_{\mu}(z) \leqslant h(z)
$$

D For entropic independence we
want $\frac{\mathrm{k}}{\mathrm{C}} \mathcal{D}_{\mathrm{KL}}\left(\mathrm{q} \| \mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right) \leqslant$

$$
\sup \left\{\left.\log \left(\frac{\prod_{i \in[n]} z_{i}^{k q_{i}}}{g_{\mu}(z)}\right) \right\rvert\, z \in \mathbb{R}_{>0}^{n}\right\}
$$

$D$ Let $h(z)=\mathbb{E}_{i \sim \mu D_{k \rightarrow 1}}\left[z_{i}^{C}\right]^{k / C}$. Then

$$
\sup \left\{\left.\log \left(\frac{\prod_{i \in[n]} z_{i}^{k q_{i}}}{h(z)}\right) \right\rvert\, z \in \mathbb{R}_{>0}^{n}\right\}
$$

is achieved at $z_{i}=\sqrt[c]{q_{i} /\left(\mu D_{k \rightarrow 1}\right)_{i}}$ and has value $\frac{k}{C} \mathcal{D}_{\mathrm{KL}}\left(\mathrm{q} \| \mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right)$.

- Thus C-El is same as

$$
g_{\mu}(z) \leqslant h(z)
$$

$D$ If $y_{i}=z_{i}^{C}$, this is the same as

$$
g_{\mu}\left(\sqrt[c]{y_{i}}\right)^{c / k} \leqslant \underbrace{\left\langle\mu D_{k \rightarrow 1}, y\right\rangle}_{\text {linear tangent at } \mathbb{1}}
$$

$\triangle$ For entropic independence we
want $\frac{k}{C} \mathcal{D}_{\mathrm{KL}}\left(\mathrm{q} \| \mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right) \leqslant$

$$
\sup \left\{\left.\log \left(\frac{\prod_{i \in[n]} z_{i}^{k q_{i}}}{g_{\mu}(z)}\right) \right\rvert\, z \in \mathbb{R}_{>0}^{n}\right\}
$$

$D$ Let $h(z)=\mathbb{E}_{i \sim \mu D_{k \rightarrow 1}}\left[z_{i}^{C}\right]^{k / C}$. Then

$$
\sup \left\{\left.\log \left(\frac{\prod_{\mathrm{i} \in[n]} z_{\mathrm{i}}^{\mathrm{kq}}}{\mathrm{~h}(z)}\right) \right\rvert\, z \in \mathbb{R}_{>0}^{n}\right\}
$$

is achieved at $z_{i}=\sqrt[c]{q_{i} /\left(\mu D_{k \rightarrow 1}\right)_{i}}$ and has value $\frac{\mathrm{k}}{\mathrm{C}} \mathcal{D}_{\mathrm{KL}}\left(\mathrm{q} \| \mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right)$.

- Thus C-El is same as

$$
g_{\mu}(z) \leqslant h(z)
$$

$D$ If $y_{i}=z_{i}^{C}$, this is the same as

$$
g_{\mu}\left(\sqrt[c]{y_{i}}\right)^{c / k} \leqslant \underbrace{\left\langle\mu D_{k \rightarrow 1}, y\right\rangle}_{\text {linear tangent at } 1}
$$

$D$ For $f(z)=g(\sqrt[C]{z})^{C / k}$, we have $\nabla f(\mathbb{1})=\mu D_{k \rightarrow 1}$ and $\nabla^{2} f(\mathbb{1}) \propto$

$$
\operatorname{cov}-C \cdot\left(\operatorname{diag}(\text { mean })-\frac{\text { mean mean }^{T}}{k}\right)
$$

## Folklore lemma

For a d-homogeneous function f , tfae:
(1) $\{z \mid f(z) \geqslant 1\}$ convex
(2) $\sqrt[d]{f}$ is concave
(3) $\log f$ is concave

Similarly tfae:
(1) $\{z \mid f(z) \geqslant 1\} \subseteq\left\{z \left\lvert\,\left\langle\frac{\nabla f(\mathbb{1})}{\mathrm{df}(\mathbb{1})}, z\right\rangle \geqslant 1\right.\right\}$
(2) $\sqrt[d]{f}$ bounded by tangent at $\mathbb{1}$
(3) $\log f$ bounded by tangent at 1

## Polynomial view of HDX

## Spectral Independence <br> Entropic Independence

Level sets of $g_{\mu}(\sqrt[C]{z})$ locally convex at Level sets of $g_{\mu}(\sqrt[c]{z})$ bounded by tan1. gent at $\mathbb{1}$.



## Polynomial view of HDX

## Spectral Independence

## Entropic Independence

Level sets of $g_{\mu}(\sqrt[C]{z})$ locally convex at Level sets of $g_{\mu}(\sqrt[c]{z})$ bounded by tan1. gent at $\mathbb{1}$.



Theorem [A-Jain-Koehler-Pham-Vuong'21]
C-spectral independence for all exp tilts $\Longrightarrow$ C-entropic independence.

D When $g_{\mu}(\sqrt[c]{z})$ is log-concave, we call it C fractionally log-concave.

D When $g_{\mu}(\sqrt[c]{z})$ is log-concave, we call it C fractionally log-concave.
D Matroids are $\mathrm{C}=1 \mathrm{log}$-concave.

D When $\mathrm{g}_{\mu}(\sqrt[c]{z})$ is log-concave, we call it C fractionally log-concave.
$\checkmark$ Matroids are $\mathrm{C}=1 \mathrm{log}$-concave.
$D$ For $\mathrm{D}_{\mathrm{k} \rightarrow \mathrm{k}-\mathrm{c}} \mathrm{U}_{\mathrm{k}-\mathrm{C} \rightarrow \mathrm{k}}$ we have

$$
\mathrm{t}_{\text {mix }}=\mathrm{O}\left(\binom{\mathrm{k}}{\mathrm{c}} \cdot \log \mathcal{D}_{\mathrm{KL}}\left(v_{\mathrm{O}} \| \mu\right)\right)
$$

D When $g_{\mu}(\sqrt[c]{z})$ is log-concave, we call it C fractionally log-concave.
$D$ Matroids are $\mathrm{C}=1 \mathrm{log}$-concave.
$D$ For $\mathrm{D}_{\mathrm{k} \rightarrow \mathrm{k}-\mathrm{C}} \mathrm{U}_{\mathrm{k}-\mathrm{C} \rightarrow \mathrm{k}}$ we have

$$
\mathrm{t}_{\text {mix }}=\mathrm{O}\left(\binom{\mathrm{k}}{\mathrm{c}} \cdot \log \mathcal{D}_{\mathrm{KL}}\left(v_{\mathrm{O}} \| \mu\right)\right)
$$

D For matroids, this was proved before El by [Cryan-Guo-Mousa].

D When $g_{\mu}(\sqrt[c]{z})$ is log-concave, we call it C fractionally log-concave.
D Matroids are $\mathrm{C}=1$ log-concave.
$\bigcirc$ For $\mathrm{D}_{\mathrm{k} \rightarrow \mathrm{k}-\mathrm{c}} \mathrm{U}_{\mathrm{k}-\mathrm{C} \rightarrow \mathrm{k}}$ we have

$$
\mathrm{t}_{\text {mix }}=\mathrm{O}\left(\binom{\mathrm{k}}{\mathrm{c}} \cdot \log \mathcal{D}_{\mathrm{KL}}\left(v_{0} \| \mu\right)\right)
$$

$\bigcirc$ For matroids, this was proved before El by [Cryan-Guo-Mousa].

## Example: hypercube

$D\{0,1\}^{n} \hookrightarrow\binom{[2 n]}{n}$
$\bigcirc$ Glauber becomes $\mathrm{D}_{\mathrm{n} \rightarrow \mathrm{n}-1}$

$D \mathrm{t}_{\text {mix }}=\mathrm{O}(\mathrm{n} \log n)$

D When $g_{\mu}(\sqrt[c]{z})$ is log-concave, we call it C fractionally log-concave.
D Matroids are $\mathrm{C}=1 \mathrm{log}$-concave.
$D$ For $\mathrm{D}_{\mathrm{k} \rightarrow \mathrm{k}-\mathrm{C}} \mathrm{U}_{\mathrm{k}-\mathrm{C} \rightarrow \mathrm{k}}$ we have

$$
\mathrm{t}_{\text {mix }}=\mathrm{O}\left(\binom{\mathrm{k}}{\mathrm{C}} \cdot \log \mathcal{D}_{\mathrm{KL}}\left(v_{\mathrm{O}} \| \mu\right)\right)
$$

- For matroids, this was proved before El by [Cryan-Guo-Mousa].


## Example: hypercube

$D\{0,1\}^{n} \hookrightarrow\binom{[2 n]}{n}$
D Glauber becomes

$$
D_{n \rightarrow n-1}
$$


$D t_{\text {mix }}=O(n \log n)$

## Example: spanning trees (I)



D P: drop edge u.a.r., then add
$D \mathrm{t}_{\text {mix }}=\mathrm{O}(\mathrm{n} \log \mathrm{n})$

D When $g_{\mu}(\sqrt[c]{z})$ is log-concave, we call it C fractionally log-concave.
D Matroids are $\mathrm{C}=1 \mathrm{log}$-concave.
$D$ For $\mathrm{D}_{\mathrm{k} \rightarrow \mathrm{k}-\mathrm{C}} \mathrm{U}_{\mathrm{k}-\mathrm{C} \rightarrow \mathrm{k}}$ we have

$$
\mathrm{t}_{\text {mix }}=\mathrm{O}\left(\binom{\mathrm{k}}{\mathrm{c}} \cdot \log \mathcal{D}_{\mathrm{KL}}\left(v_{\mathrm{O}} \| \mu\right)\right)
$$

- For matroids, this was proved before El by [Cryan-Guo-Mousa].


## Example: hypercube

$D\{0,1\}^{n} \hookrightarrow\binom{[2 n]}{n}$
© Glauber becomes

$$
D_{n \rightarrow n-1}
$$

$D t_{\text {mix }}=O(n \log n)$

## Example: spanning trees (I)


$\bigcirc$ P: drop edge u.a.r., then add
$D t_{\text {mix }}=O(n \log n)$

## Example: spanning trees (II)


$\checkmark$ P: add edge u.a.r., then drop
$D \mathrm{t}_{\text {mix }}=\mathrm{O}(\mathrm{m} \log n)$

## Entropic Independence

$\bigcirc$ Fractional log-concavity

## Polynomial Interpolation

- Matching polynomial
- Taylor approximation

D Riemann mappings

## Entropic Independence

$D$ Fractional log-concavity

## Polynomial Interpolation

D Matching polynomial

- Taylor approximation

D Riemann mappings

## Polynomial interpolation

- We will now focus on a
deterministic counting method invented by [Barvinok].


## Polynomial interpolation

- We will now focus on a deterministic counting method invented by [Barvinok].



## Polynomial interpolation

- We will now focus on a deterministic counting method invented by [Barvinok].

Running example: matchings


D There is FPRAS [Jerrum-Sinclair].

## Polynomial interpolation

- We will now focus on a deterministic counting method invented by [Barvinok].


## Running example: matchings



D There is FPRAS [Jerrum-Sinclair].
O Open: design FPTAS

## Polynomial interpolation

D We will now focus on a deterministic counting method invented by [Barvinok].

Running example: matchings
Goal: matchings.
$\uparrow$
not necessarily perfect

$D$ There is FPRAS [Jerrum-Sinclair].
$\bigcirc$ Open: design FPTAS
$D$ For $\Delta=\mathrm{O}(1)$-bounded degree graphs, we know FPTAS
[Bayati-Gamarnik-Katz-Nair-Tetali]

## Polynomial interpolation

- We will now focus on a deterministic counting method invented by [Barvinok].


## Running example: matchings

Goal: matchings. not necessarily perfect

$\checkmark$ There is FPRAS [Jerrum-Sinclair].
$\bigcirc$ Open: design FPTAS
$D$ For $\Delta=\mathrm{O}(1)$-bounded degree graphs, we know FPTAS [Bayati-Gamarnik-Katz-Nair-Tetali]

- With $m_{k}=\#(k$-matchings in $G)$, matching polynomial is:

$$
p_{\mathrm{G}}(z)=m_{0}+m_{1} z+m_{2} z^{2}+\ldots
$$

## Polynomial interpolation

- We will now focus on a deterministic counting method invented by [Barvinok].


## Running example: matchings

Goal: matchings. not necessarily perfect


D There is FPRAS [Jerrum-Sinclair].
$\bigcirc$ Open: design FPTAS
$D$ For $\Delta=\mathrm{O}(1)$-bounded degree graphs, we know FPTAS [Bayati-Gamarnik-Katz-Nair-Tetali]
$\checkmark$ With $m_{k}=\#(k$-matchings in $G)$, matching polynomial is:

$$
p_{\mathrm{G}}(z)=m_{0}+m_{1} z+m_{2} z^{2}+\ldots
$$

$D$ Goal: approximate $\mathrm{p}_{\mathrm{G}}(1)$

## Polynomial interpolation

- We will now focus on a deterministic counting method invented by [Barvinok].


## Running example: matchings

Goal: matchings.
$\uparrow$
not necessarily perfect

$\checkmark$ With $m_{k}=\#(k$-matchings in $G)$, matching polynomial is:

$$
p_{\mathrm{G}}(z)=m_{0}+m_{1} z+m_{2} z^{2}+\ldots
$$

$\bigcirc$ Goal: approximate $\mathrm{p}_{\mathrm{G}}(1)$
$\checkmark$ Note that $m_{k}$, and thus $p_{G}^{(k)}(0)$ can be computed in $\mathrm{n}^{\mathrm{O}(\mathrm{k})}$ time.'
kth derivative
$D$ There is FPRAS [Jerrum-Sinclair].
$\bigcirc$ Open: design FPTAS
$D$ For $\Delta=\mathrm{O}(1)$-bounded degree graphs, we know FPTAS [Bayati-Gamarnik-Katz-Nair-Tetali]

## Polynomial interpolation

- We will now focus on a deterministic counting method invented by [Barvinok].


## Running example: matchings

Goal: matchings.
not necessarily perfect


D There is FPRAS [Jerrum-Sinclair].
$\bigcirc$ Open: design FPTAS
$D$ For $\Delta=\mathrm{O}(1)$-bounded degree graphs, we know FPTAS
[Bayati-Gamarnik-Katz-Nair-Tetali]

D With $\mathrm{m}_{\mathrm{k}}=\#(\mathrm{k}$-matchings in G$)$, matching polynomial is:

$$
p_{\mathrm{G}}(z)=\mathfrak{m}_{0}+\mathfrak{m}_{1} z+\mathfrak{m}_{2} z^{2}+\ldots
$$

$D$ Goal: approximate $\mathrm{p}_{\mathrm{G}}(1)$
$\checkmark$ Note that $m_{k}$, and thus $p_{G}^{(k)}(0)$ can be computed in $\mathrm{n}^{\mathrm{O}(\mathrm{k})}$ time. ${ }^{\text {. }}$
kth derivative

## Polynomial interpolation

For $\Delta=\mathrm{O}(1)$, we can multiplicatively approximate $\mathrm{p}_{\mathrm{G}}(1)$ using

$$
p_{\mathrm{G}}^{(0)}(0), \ldots, p_{\mathrm{G}}^{\mathrm{O}(\log n)}(0)
$$

$D$ Naïvely this gives $\mathrm{n}^{\mathrm{O}(\log n)}$.
$\triangleright$ Naïvely this gives $\mathrm{n}^{\mathrm{O}(\log n)}$.
$\bigcirc$ Trick of [Patel-Regts] computes $m_{0}, \ldots, m_{k}$ in time $\Delta^{\mathrm{O}(\mathrm{k})}$ poly $(\mathrm{n})$.
$\bigcirc$ Naïvely this gives $n^{\mathrm{O}(\log n)}$.
$\bigcirc$ Trick of [Patel-Regts] computes $m_{0}, \ldots, m_{k}$ in time $\Delta^{\mathrm{O}(\mathrm{k})}$ poly $(\mathrm{n})$.
$\bigcirc$ What's special about matchings?
$D$ Naïvely this gives $n^{\mathrm{O}(\log n)}$.
D Trick of [Patel-Regts] computes $m_{0}, \ldots, m_{k}$ in time $\Delta^{\mathrm{O}(\mathrm{k})}$ poly $(\mathrm{n})$.
$\bigcirc$ What's special about matchings?
Theorem [Heilmann-Lieb'72]
Zeros/roots of $p_{G}$ are real. In fact they lie in $\left(-\infty,-\Omega_{\Delta}(1)\right]$.

$\bigcirc$ Naïvely this gives $n^{\mathrm{O}(\log n)}$.
$\bigcirc$ Trick of [Patel-Regts] computes $m_{0}, \ldots, m_{k}$ in time $\Delta^{\mathrm{O}(\mathrm{k})}$ poly $(\mathrm{n})$.
$\bigcirc$ What's special about matchings?

## Theorem [Heilmann-Lieb'72]

Zeros/roots of $p_{G}$ are real. In fact they lie in $\left(-\infty,-\Omega_{\Delta}(1)\right]$.
$D$ Roots are singularities of $\log p_{G}$. Derivatives of $\log p_{G}$ are macroscopic observables. Physics: phase transitions happen at roots.

$D$ Naïvely this gives $n^{O(\log n)}$.
$\bigcirc$ Trick of [Patel-Regts] computes $m_{0}, \ldots, m_{k}$ in time $\Delta^{\mathrm{O}(\mathrm{k})}$ poly $(\mathrm{n})$.
$\bigcirc$ What's special about matchings?

## Theorem [Heilmann-Lieb'72]

Zeros/roots of $p_{G}$ are real. In fact they lie in $\left(-\infty,-\Omega_{\Delta}(1)\right]$.

$D$ Roots are singularities of $\log p_{G}$. Derivatives of $\log p_{G}$ are macroscopic observables. Physics: phase transitions happen at roots.
$\bigcirc$ General setting for [Barvinok]:


D "Fat" simply connected zero-free region around 0,1 .
can be any two points
$D$ Naïvely this gives $n^{O(\log n)}$.
$\bigcirc$ Trick of [Patel-Regts] computes $m_{0}, \ldots, m_{k}$ in time $\Delta^{\mathrm{O}(\mathrm{k})}$ poly $(\mathrm{n})$.
$\bigcirc$ What's special about matchings?

## Theorem [Heilmann-Lieb'72]

Zeros/roots of $p_{G}$ are real. In fact they lie in $\left(-\infty,-\Omega_{\Delta}(1)\right]$.

$D$ Roots are singularities of $\log p_{G}$. Derivatives of $\log p_{G}$ are macroscopic observables. Physics: phase transitions happen at roots.

D General setting for [Barvinok]:


D "Fat" simply connected zero-free region around $0_{\uparrow} 1$.

## can be any two points

D Approximate $p(1)$ using low-order derivatives of $p$ at 0 . ©
$\bigcirc$ Idea: truncate Taylor of $\log p$ :
$\log p(z)=a_{0}+a_{1} z+\ldots$
where $\mathrm{k}!\cdot \mathrm{a}_{\mathrm{k}}=\frac{\mathrm{d}^{k}}{\mathrm{~d} z^{k}} \log p(0)$ is a function of $p^{(0)}(0), \ldots, p^{(k)}(0)$. by calculus rules
$\bigcirc$ Idea: truncate Taylor of $\log p$ :
$\log p(z)=a_{0}+a_{1} z+\ldots$
where $\mathrm{k}!\cdot a_{k}=\frac{\mathrm{d}^{k}}{\mathrm{~d} z^{k}} \log p(0)$ is a function of $p^{(0)}(0), \ldots, p^{(k)}(0)$.

## by calculus rules

$\bigcirc$ Complex analysis fact: Taylor series convergence radius is distance to nearest singularity.

```
zero of p
```

- Idea: truncate Taylor of $\log p$ :
$\log p(z)=a_{0}+a_{1} z+\ldots$
where $k!\cdot a_{k}=\frac{d^{k}}{d z^{k}} \log p(0)$ is a function of $p^{(0)}(0), \ldots, p^{(k)}(0)$.
by calculus rules
$\bigcirc$ Complex analysis fact: Taylor series convergence radius is distance to nearest singularity.
zero of $p$
D When converging, there is hope truncation has low error.
$\bigcirc$ Idea: truncate Taylor of $\log p$ :

$$
\log p(z)=a_{0}+a_{1} z+\ldots
$$

where $k!\cdot a_{k}=\frac{d^{k}}{d z^{k}} \log p(0)$ is a function of $p^{(0)}(0), \ldots, p^{(k)}(0)$.

## by calculus rules

$\bigcirc$ Complex analysis fact: Taylor series convergence radius is distance to nearest singularity.

$$
\text { zero of } p
$$

$\checkmark$ When converging, there is hope truncation has low error.

- This can only work for disks. Will generalize to other regions later.
- Idea: truncate Taylor of $\log \mathrm{p}$ :

$$
\log p(z)=a_{0}+a_{1} z+\ldots
$$

where $k!\cdot a_{k}=\frac{\mathrm{d}^{k}}{d z^{k}} \log p(0)$ is a function of $p^{(0)}(0), \ldots, p^{(k)}(0)$.

## by calculus rules

D Complex analysis fact: Taylor series convergence radius is distance to nearest singularity.

$$
\text { zero of } p
$$

D When converging, there is hope truncation has low error.

- This can only work for disks. Will generalize to other regions later.


## Polynomial interpolation for disks

Suppose $p(z) \neq 0$ whenever $|z| \leqslant 1+\delta$ :

then $k$-trunc of Taylor for $\log p(1)$ has additive error $\leqslant\left(2 e^{-\delta k} / k \delta\right) \cdot \operatorname{deg}(p)$.
$D$ Idea: truncate Taylor of $\log p$ :

$$
\log p(z)=a_{0}+a_{1} z+\ldots
$$

where $k!\cdot a_{k}=\frac{d^{k}}{d z^{k}} \log p(0)$ is a function of $p^{(0)}(0), \ldots, p^{(k)}(0)$.

## by calculus rules

D Complex analysis fact: Taylor series convergence radius is distance to nearest singularity.

$$
\text { zero of } p
$$

D When converging, there is hope truncation has low error.

- This can only work for disks. Will generalize to other regions later.


## Polynomial interpolation for disks

Suppose $p(z) \neq 0$ whenever $|z| \leqslant 1+\delta$ :

then $k$-trunc of Taylor for $\log p(1)$ has additive error $\leqslant\left(2 e^{-\delta k} / k \delta\right) \cdot \operatorname{deg}(p)$.

For $1+\epsilon$ approx of $p(1)$, set

$$
\mathrm{k}=\mathrm{O}\left(\frac{\log (\operatorname{deg}(p) / \epsilon)}{\delta}\right)
$$

Proof:
$D$ Since $p$ is polynomial we can write

$$
p(z)=c\left(1-\frac{z}{\lambda_{1}}\right) \cdots\left(1-\frac{z}{\lambda_{n}}\right)
$$

Proof:
$D$ Since $p$ is polynomial we can write

$$
p(z)=c\left(1-\frac{z}{\lambda_{1}}\right) \cdots\left(1-\frac{z}{\lambda_{n}}\right)
$$

$\bigcirc$ Or in logarithms

$$
\log p(z)=\log (c)+\sum_{i} \log \left(1-\frac{z}{\lambda_{i}}\right)
$$

Proof:

- Since $p$ is polynomial we can write

$$
p(z)=c\left(1-\frac{z}{\lambda_{1}}\right) \cdots\left(1-\frac{z}{\lambda_{n}}\right)
$$

- Or in logarithms

$$
\log p(z)=\log (c)+\sum_{i} \log \left(1-\frac{z}{\lambda_{i}}\right)
$$

$\bigcirc$ Which means Taylor $_{\mathrm{k}}(\log p)=$

$$
\log (c)+\sum_{i} \operatorname{Taylor}_{k}\left(1-\frac{z}{\lambda_{i}}\right)
$$

Proof:
$D$ Since $p$ is polynomial we can write

$$
p(z)=c\left(1-\frac{z}{\lambda_{1}}\right) \cdots\left(1-\frac{z}{\lambda_{n}}\right)
$$

- Or in logarithms

$$
\log p(z)=\log (c)+\sum_{i} \log \left(1-\frac{z}{\lambda_{i}}\right)
$$

$\bigcirc$ Which means Taylor $_{\mathrm{k}}(\log p)=$

$$
\log (c)+\sum_{i} \text { Taylor }_{k}\left(1-\frac{z}{\lambda_{i}}\right)
$$

$\checkmark$ Enough to bound error of each Taylor $_{k}\left(1-\frac{z}{\lambda_{i}}\right)$ and multiply by $n$.

Proof:
$D$ Since $p$ is polynomial we can write

$$
p(z)=c\left(1-\frac{z}{\lambda_{1}}\right) \cdots\left(1-\frac{z}{\lambda_{n}}\right)
$$

- Or in logarithms

$$
\log p(z)=\log (c)+\sum_{i} \log \left(1-\frac{z}{\lambda_{i}}\right)
$$

$\bigcirc$ Which means Taylor $_{\mathrm{k}}(\log p)=$

$$
\log (c)+\sum_{i} \text { Taylor }_{k}\left(1-\frac{z}{\lambda_{i}}\right)
$$

$\checkmark$ Enough to bound error of each Taylor $_{k}\left(1-\frac{z}{\lambda_{i}}\right)$ and multiply by $n$.
$D$ Taylor series of $\log (1-x)$ is

$$
-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\ldots
$$

Proof:
$D$ Since $p$ is polynomial we can write

$$
p(z)=c\left(1-\frac{z}{\lambda_{1}}\right) \cdots\left(1-\frac{z}{\lambda_{n}}\right)
$$

- Or in logarithms

$$
\log p(z)=\log (c)+\sum_{i} \log \left(1-\frac{z}{\lambda_{i}}\right)
$$

$\bigcirc$ Which means Taylor $_{\mathrm{k}}(\log p)=$

$$
\log (c)+\sum_{i} \text { Taylor }_{k}\left(1-\frac{z}{\lambda_{i}}\right)
$$

$\checkmark$ Enough to bound error of each Taylor $_{k}\left(1-\frac{z}{\lambda_{i}}\right)$ and multiply by $n$.
$\checkmark$ Taylor series of $\log (1-x)$ is

$$
-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\ldots
$$

$D$ Error of Taylor ${ }_{k}$ is

$$
\leqslant \sum_{i>k} \frac{|x|^{i}}{i} \leqslant \sum_{i>k} \frac{|x|^{i}}{k}=\frac{|x|^{k}}{k(1-|x|)}
$$

Proof:
$D$ Since $p$ is polynomial we can write

$$
p(z)=c\left(1-\frac{z}{\lambda_{1}}\right) \cdots\left(1-\frac{z}{\lambda_{n}}\right)
$$

$\bigcirc$ Or in logarithms

$$
\log p(z)=\log (c)+\sum_{i} \log \left(1-\frac{z}{\lambda_{i}}\right)
$$

$\bigcirc$ Which means Taylor $_{\mathrm{k}}(\log p)=$

$$
\log (c)+\sum_{i} \text { Taylor }_{k}\left(1-\frac{z}{\lambda_{i}}\right)
$$

$\checkmark$ Enough to bound error of each Taylor $_{k}\left(1-\frac{z}{\lambda_{i}}\right)$ and multiply by $n$.
$D$ Taylor series of $\log (1-x)$ is

$$
-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\ldots
$$

$D$ Error of Taylor ${ }_{k}$ is

$$
\leqslant \sum_{i>k} \frac{|x|^{i}}{i} \leqslant \sum_{i>k} \frac{|x|^{i}}{k}=\frac{|x|^{k}}{k(1-|x|)}
$$

$D$ For $x=1 / \lambda_{i}$, we have $|x| \leqslant e^{-\delta}$, so error of each term is

$$
\leqslant \frac{e^{-\delta k}}{k\left(1-e^{-\delta}\right)} \leqslant \frac{2 e^{-\delta k}}{k \delta}
$$

## Proof:

- Since $p$ is polynomial we can write

$$
p(z)=c\left(1-\frac{z}{\lambda_{1}}\right) \cdots\left(1-\frac{z}{\lambda_{n}}\right)
$$

$\bigcirc$ Or in logarithms

$$
\log p(z)=\log (c)+\sum_{i} \log \left(1-\frac{z}{\lambda_{i}}\right)
$$

© Which means Taylor $_{\mathrm{k}}(\log p)=$

$$
\log (c)+\sum_{i} \operatorname{Taylor}_{k}\left(1-\frac{z}{\lambda_{i}}\right)
$$

D Enough to bound error of each
Taylor $_{k}\left(1-\frac{z}{\lambda_{i}}\right)$ and multiply by $n$.
$D$ Taylor series of $\log (1-x)$ is

$$
-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\ldots
$$

D Error of Taylor ${ }_{k}$ is
$\leqslant \sum_{i>k} \frac{|x|^{i}}{i} \leqslant \sum_{i>k} \frac{|x|^{i}}{k}=\frac{|x|^{k}}{k(1-|x|)}$
$D$ For $x=1 / \lambda_{i}$, we have $|x| \leqslant e^{-\delta}$, so error of each term is

$$
\leqslant \frac{e^{-\delta k}}{k\left(1-e^{-\delta}\right)} \leqslant \frac{2 e^{-\delta k}}{k \delta}
$$

$D$ Since there are $n=\operatorname{deg}(p)$ terms, overall error is $\leqslant n \cdot \frac{2 e^{-\delta k}}{k \delta}$.

## Proof:

- Since $p$ is polynomial we can write

$$
p(z)=c\left(1-\frac{z}{\lambda_{1}}\right) \cdots\left(1-\frac{z}{\lambda_{n}}\right)
$$

$\bigcirc$ Or in logarithms

$$
\log p(z)=\log (c)+\sum_{i} \log \left(1-\frac{z}{\lambda_{i}}\right)
$$

© Which means Taylor $_{k}(\log p)=$

$$
\log (c)+\sum_{i} \operatorname{Taylor}_{k}\left(1-\frac{z}{\lambda_{i}}\right)
$$

D Enough to bound error of each
Taylor $_{k}\left(1-\frac{z}{\lambda_{i}}\right)$ and multiply by $n$.
$D$ Taylor series of $\log (1-x)$ is

$$
-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\ldots
$$

$D$ Error of Taylor $_{k}$ is

$$
\leqslant \sum_{i>k} \frac{|x|^{i}}{i} \leqslant \sum_{i>k} \frac{|x|^{i}}{k}=\frac{|x|^{k}}{k(1-|x|)}
$$

$\bigcirc$ For $x=1 / \lambda_{i}$, we have $|x| \leqslant e^{-\delta}$, so error of each term is

$$
\leqslant \frac{e^{-\delta k}}{k\left(1-e^{-\delta}\right)} \leqslant \frac{2 e^{-\delta k}}{k \delta}
$$

$D$ Since there are $n=\operatorname{deg}(p)$ terms, overall error is $\leqslant n \cdot \frac{2 e^{-\delta k}}{k \delta}$.
$D$ Note $k=O(\log (n / \epsilon) / \delta)$ makes overall error $\simeq \epsilon$, which means a $1+O(\epsilon)$ mult approx of $p(1)$.

## Proof:

- Since $p$ is polynomial we can write

$$
p(z)=c\left(1-\frac{z}{\lambda_{1}}\right) \cdots\left(1-\frac{z}{\lambda_{n}}\right)
$$

$\bigcirc$ Or in logarithms

$$
\log p(z)=\log (c)+\sum_{i} \log \left(1-\frac{z}{\lambda_{i}}\right)
$$

© Which means Taylor $_{k}(\log p)=$

$$
\log (c)+\sum_{i} \operatorname{Taylor}_{k}\left(1-\frac{z}{\lambda_{i}}\right)
$$

D Enough to bound error of each Taylor $_{k}\left(1-\frac{z}{\lambda_{i}}\right)$ and multiply by $n$.
$D$ Taylor series of $\log (1-x)$ is

$$
-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\ldots
$$

$D$ Error of Taylor ${ }_{k}$ is

$$
\leqslant \sum_{i>k} \frac{|x|^{i}}{i} \leqslant \sum_{i>k} \frac{|x|^{i}}{k}=\frac{|x|^{k}}{k(1-|x|)}
$$

$D$ For $x=1 / \lambda_{i}$, we have $|x| \leqslant e^{-\delta}$, so error of each term is

$$
\leqslant \frac{e^{-\delta k}}{k\left(1-e^{-\delta}\right)} \leqslant \frac{2 e^{-\delta k}}{k \delta}
$$

$D$ Since there are $n=\operatorname{deg}(p)$ terms, overall error is $\leqslant n \cdot \frac{2 e^{-\delta k}}{k \delta}$.
$\bigcirc$ Note $k=O(\log (n / \epsilon) / \delta)$ makes overall error $\simeq \epsilon$, which means a $1+\mathrm{O}(\epsilon)$ mult approx of $p(1)$.
$D$ If Taylor $_{k}$ takes time $n^{\mathrm{O}(\mathrm{k})}$, overall runtime is $n^{O(\log (n / \epsilon))}$.

Proof:
$D$ Since $p$ is polynomial we can write

$$
p(z)=c\left(1-\frac{z}{\lambda_{1}}\right) \cdots\left(1-\frac{z}{\lambda_{n}}\right)
$$

- Or in logarithms

$$
\log p(z)=\log (c)+\sum_{i} \log \left(1-\frac{z}{\lambda_{i}}\right)
$$

$\bigcirc$ Which means Taylor $_{\mathrm{k}}(\log p)=$

$$
\log (c)+\sum_{i} \operatorname{Taylor}_{k}\left(1-\frac{z}{\lambda_{i}}\right)
$$

$\checkmark$ Enough to bound error of each Taylor $_{k}\left(1-\frac{z}{\lambda_{i}}\right)$ and multiply by $n$.
$D$ Taylor series of $\log (1-x)$ is

$$
-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\ldots
$$

$D$ Error of Taylor ${ }_{k}$ is

$$
\leqslant \sum_{i>k} \frac{|x|^{i}}{i} \leqslant \sum_{i>k} \frac{|x|^{i}}{k}=\frac{|x|^{k}}{k(1-|x|)}
$$

$D$ For $x=1 / \lambda_{i}$, we have $|x| \leqslant e^{-\delta}$, so error of each term is

$$
\leqslant \frac{e^{-\delta k}}{k\left(1-e^{-\delta}\right)} \leqslant \frac{2 e^{-\delta k}}{k \delta}
$$

$D$ Since there are $n=\operatorname{deg}(p)$ terms, overall error is $\leqslant n \cdot \frac{2 e^{-\delta k}}{k \delta}$.
$\bigcirc$ Note $\mathrm{k}=\mathrm{O}(\log (\mathrm{n} / \epsilon) / \delta)$ makes overall error $\simeq \epsilon$, which means a $1+O(\epsilon)$ mult approx of $p(1)$.
$\bigcirc$ If Taylor ${ }_{k}$ takes time $n^{\mathrm{O}}{ }^{(\mathrm{k})}$, overall runtime is $n^{\mathrm{O}}(\log (n / \epsilon))$.
$\bigcirc$ With [Patel-Regts], runtime is $\mathrm{O}(1)^{\mathrm{O}(\log (n / \epsilon))}=\operatorname{poly}(n, 1 / \epsilon)$.

How to extend beyond disks?

## Riemann mapping

There is a biholomorphic map between any two simply connected regions in $\mathbb{C}$ :


## Riemann mapping

There is a biholomorphic map between any two simply connected regions in $\mathbb{C}$ :

© We can also map one interior point to one interior point.

## Riemann mapping

There is a biholomorphic map between any two simply connected regions in $\mathbb{C}$ :


D We can also map one interior point to one interior point.
$\bigcirc$ Approximating $\phi$, we can construct polynomial $\psi$ such that

$$
\psi(0)=0, \psi(1)=1
$$

$\psi($ disk $) \subseteq$ region

## Riemann mapping

There is a biholomorphic map between $D$ Apply disk [Barvinok] to $p \circ \psi$. : any two simply connected regions in $\mathbb{C}$ :


D We can also map one interior point to one interior point.
$\bigcirc$ Approximating $\phi$, we can construct polynomial $\psi$ such that

$$
\psi(0)=0, \psi(1)=1
$$

$\psi($ disk $) \subseteq$ region

## Riemann mapping

There is a biholomorphic map between any two simply connected regions in $\mathbb{C}$ :

© We can also map one interior point to one interior point.
$\bigcirc$ Approximating $\phi$, we can construct polynomial $\psi$ such that

$$
\begin{aligned}
& \psi(0)=0, \psi(1)=1 \\
& \psi(\text { disk }) \subseteq \text { region }
\end{aligned}
$$

$\bigcirc$ Apply disk [Barvinok] to $p \circ \psi$. $;$
$\checkmark$ Read first $k$ derivatives from

$$
p^{(0)}(0), \ldots, p^{(k)}(0)
$$

## Riemann mapping

There is a biholomorphic map between any two simply connected regions in $\mathbb{C}$ :


D We can also map one interior point to one interior point.
$\bigcirc$ Approximating $\phi$, we can construct polynomial $\psi$ such that

$$
\begin{aligned}
& \psi(0)=0, \psi(1)=1 \\
& \psi(\text { disk }) \subseteq \text { region }
\end{aligned}
$$

$\checkmark$ Apply disk [Barvinok] to $\mathrm{p} \circ \psi$. :
$\checkmark$ Read first $k$ derivatives from

$$
p^{(0)}(0), \ldots, p^{(k)}(0)
$$

$\bigcirc$ Fine when $\operatorname{deg}(\psi)$ reasonable.

## Riemann mapping

There is a biholomorphic map between any two simply connected regions in $\mathbb{C}$ :


- We can also map one interior point to one interior point.
$\bigcirc$ Approximating $\phi$, we can construct polynomial $\psi$ such that

$$
\begin{aligned}
& \psi(0)=0, \psi(1)=1 \\
& \psi(\text { disk }) \subseteq \text { region }
\end{aligned}
$$

Apply disk [Barvinok] to $p \circ \psi$. :
$\checkmark$ Read first $k$ derivatives from

$$
p^{(0)}(0), \ldots, p^{(k)}(0)
$$

$\bigcirc$ Fine when $\operatorname{deg}(\psi)$ reasonable.

## Example: matching polynomial

$D$ Region is $\mathbb{C}-\mathbb{R}_{\leqslant-r}$ for some $r$.

- Start with Möbius map

$$
\phi(z)=(a z+b) /(c z+d)
$$

$\bigcirc$ Set $a, b, c, d$ to ensure $\phi(0)=$ $0, \phi(1)=1, \phi($ disk $) \cap \mathbb{R}_{\leqslant-r / 2}=\emptyset$.
$D$ Exercise: Taylor approx $\phi$ and compose with linear fn to get $\psi$.

$$
\text { to ensure } \psi(0)=0, \psi(1)=1
$$

Theorem [Heilmann-Lieb’72]
Zeros/roots of $\mathrm{p}_{\mathrm{G}}$ are real. In fact they lie in $\left(-\infty,-\Omega_{\Delta}(1)\right]$.


Theorem [Heilmann-Lieb’72]
Zeros/roots of $p_{G}$ are real. In fact they lie in $\left(-\infty,-\Omega_{\Delta}(1)\right]$.


Proof:

Theorem [Heilmann-Lieb’72]
Zeros/roots of $p_{G}$ are real. In fact they lie in $\left(-\infty,-\Omega_{\Delta}(1)\right]$.


Proof:
$\bigcirc$ Idea: induction. Let $u$ be vertex:

$$
p_{G}=p_{G-u}+z \sum_{v \sim u} p_{G-u-v}
$$

Theorem [Heilmann-Lieb’72]
Zeros/roots of $p_{G}$ are real. In fact they lie in $\left(-\infty,-\Omega_{\Delta}(1)\right]$.


## Proof:

$\bigcirc$ Idea: induction. Let u be vertex:

$$
p_{\mathrm{G}}=p_{\mathrm{G}-\mathrm{u}}+z \sum_{v \sim u} p_{\mathrm{G}-\mathrm{u}-v}
$$

$D$ Inductive claim: roots of $p_{G}$ and $p_{G-u}$ are real and interlace:
alternate


Theorem [Heilmann-Lieb’72]
Zeros/roots of $p_{G}$ are real. In fact they lie in $\left(-\infty,-\Omega_{\Delta}(1)\right]$.


## Proof:

$\bigcirc$ Idea: induction. Let u be vertex:

$$
p_{\mathrm{G}}=p_{\mathrm{G}-\mathrm{u}}+z \sum_{v \sim u} p_{\mathrm{G}-\mathrm{u}-v}
$$

$D$ Inductive claim: roots of $p_{G}$ and $p_{G-u}$ are real and interlace:
alternate

$D$ Apply induction to $\mathrm{p}_{\mathrm{G}-\mathrm{u}}$ and $p_{G-u-v}$. Signs at roots of $p_{G-u}$ :


Theorem [Heilmann-Lieb’72]
Zeros/roots of $p_{G}$ are real. In fact they lie in $\left(-\infty,-\Omega_{\Delta}(1)\right]$.


## Proof:

$\bigcirc$ Idea: induction. Let u be vertex:

$$
p_{\mathrm{G}}=p_{\mathrm{G}-\mathrm{u}}+z \sum_{v \sim u} p_{\mathrm{G}-\mathrm{u}-v}
$$

$D$ Inductive claim: roots of $p_{G}$ and $p_{G-u}$ are real and interlace:
alternate

$D$ Apply induction to $\mathrm{p}_{\mathrm{G}-\mathrm{u}}$ and $p_{G-u-v}$. Signs at roots of $p_{G-u}$ :


Theorem [Heilmann-Lieb’72]
Zeros/roots of $p_{G}$ are real. In fact they lie in $\left(-\infty,-\Omega_{\Delta}(1)\right]$.


## Proof:

$\bigcirc$ Idea: induction. Let u be vertex:

$$
p_{\mathrm{G}}=p_{\mathrm{G}-\mathrm{u}}+z \sum_{v \sim u} p_{\mathrm{G}-\mathrm{u}-v}
$$

$D$ Inductive claim: roots of $p_{G}$ and $p_{G-u}$ are real and interlace:
alternate

$D$ Apply induction to $\mathrm{p}_{\mathrm{G}-\mathrm{u}}$ and $p_{G-u-v}$. Signs at roots of $p_{G-u}$ :


Theorem [Heilmann-Lieb’72]
Zeros/roots of $p_{G}$ are real. In fact they lie in $\left(-\infty,-\Omega_{\Delta}(1)\right]$.


## Proof:

$\bigcirc$ Idea: induction. Let u be vertex:

$$
p_{\mathrm{G}}=p_{\mathrm{G}-\mathrm{u}}+z \sum_{v \sim u} p_{\mathrm{G}-\mathrm{u}-v}
$$

$D$ Inductive claim: roots of $p_{G}$ and $p_{G-u}$ are real and interlace:
alternate

$D$ Apply induction to $\mathrm{p}_{\mathrm{G}-\mathrm{u}}$ and $p_{G-u-v}$. Signs at roots of $p_{G-u}$ :


Theorem [Heilmann-Lieb’72]
Zeros/roots of $p_{G}$ are real. In fact they lie in $\left(-\infty,-\Omega_{\Delta}(1)\right]$.


## Proof:

D Idea: induction. Let u be vertex:

$$
p_{\mathrm{G}}=p_{\mathrm{G}-u}+z \sum_{v \sim u} p_{\mathrm{G}-u-v}
$$

$\bigcirc$ Inductive claim: roots of $p_{G}$ and

$$
p_{G-u} \text { are real and interlace: }
$$

alternate

$D$ Apply induction to $\mathrm{p}_{\mathrm{G}-\mathrm{u}}$ and $p_{G-u-v}$. Signs at roots of $p_{G-u}$ :


Theorem [Heilmann-Lieb’72]
Zeros/roots of $\mathrm{p}_{\mathrm{G}}$ are real. In fact they lie in $\left(-\infty,-\Omega_{\Delta}(1)\right]$.


## Proof:

D Idea: induction. Let u be vertex:

$$
p_{\mathrm{G}}=p_{\mathrm{G}-\mathrm{u}}+z \sum_{v \sim u} p_{\mathrm{G}-\mathrm{u}-v}
$$

$D$ Inductive claim: roots of $p_{G}$ and $p_{G-u}$ are real and interlace:
alternate

$D$ Apply induction to $\mathrm{p}_{\mathrm{G}-\mathrm{u}}$ and $p_{G-u-v}$. Signs at roots of $p_{G-u}$ :

$\bigcirc$ By sign alts, we get interlacing of roots for $p_{G}$ and $p_{G-u}$. ;)

Theorem [Heilmann-Lieb’72]
Zeros/roots of $\mathrm{p}_{\mathrm{G}}$ are real. In fact they lie in $\left(-\infty,-\Omega_{\Delta}(1)\right]$.


## Proof:

D Idea: induction. Let u be vertex:

$$
p_{\mathrm{G}}=p_{\mathrm{G}-\mathrm{u}}+z \sum_{v \sim u} p_{\mathrm{G}-\mathrm{u}-v}
$$

$D$ Inductive claim: roots of $p_{G}$ and $p_{G-u}$ are real and interlace:

## alternate


$D$ Apply induction to $\mathrm{p}_{\mathrm{G}-\mathrm{u}}$ and $p_{G-u-v}$. Signs at roots of $p_{G-u}$ :

|  | $-0-0-0$ | 0 |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $p_{\mathrm{G}-\mathrm{u}}$ | 0 | 0 | 0 | 0 |
| $p_{\mathrm{G}-\mathrm{u}-v_{1}}$ | - | + | - | + |
| $\mathrm{p}_{\mathrm{G}-\mathrm{u}-v_{2}}$ | - | + | - | + |
| $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ |
| $p_{\mathrm{G}}$ | + | - | + | - |

D By sign alts, we get interlacing of roots for $p_{G}$ and $p_{G-u}$. :)
$\bigcirc$ Next prove for $z \in\left(-\frac{1}{4 \Delta}, 0\right]$ :

$$
2 p_{\mathrm{G}}(z)>\mathrm{p}_{\mathrm{G}-\mathrm{u}}(z)>0 .
$$

Theorem [Heilmann-Lieb’72]
Zeros/roots of $p_{G}$ are real. In fact they lie in $\left(-\infty,-\Omega_{\Delta}(1)\right]$.


Proof:
$D$ Idea: induction. Let $u$ be vertex:

$$
p_{G}=p_{G-u}+z \sum_{v \sim u} p_{G-u-v}
$$

$\bigcirc$ Inductive claim: roots of $p_{G}$ and $p_{G-u}$ are real and interlace: alternate


D Apply induction to $\mathrm{p}_{\mathrm{G}-\mathrm{u}}$ and $p_{G-u-v}$. Signs at roots of $p_{G-u}$ :

$\bigcirc$ By sign alts, we get interlacing of roots for $p_{G}$ and $p_{G-u}$.
$\bigcirc$ Next prove for $z \in\left(-\frac{1}{4 \Delta}, 0\right]$ :

$$
2 p_{\mathrm{G}}(z)>\mathrm{p}_{\mathrm{G}-\mathrm{u}}(z)>0 .
$$

$\bigcirc$ Induction step:

$$
\mathfrak{p}_{\mathrm{G}}(z) \geqslant(1+2 \Delta z) \mathfrak{p}_{\mathrm{G}-\mathrm{u}} \geqslant \frac{1}{2} \mathfrak{p}_{\mathrm{G}-\mathrm{u}}(z)
$$

Theorem [Heilmann-Lieb’72]
Zeros/roots of $\mathrm{p}_{\mathrm{G}}$ are real. In fact they lie in $\left(-\infty,-\Omega_{\Delta}(1)\right]$.


## Proof:

D Idea: induction. Let u be vertex:

$$
p_{\mathrm{G}}=p_{\mathrm{G}-\mathrm{u}}+z \sum_{v \sim u} p_{\mathrm{G}-\mathrm{u}-v}
$$

$D$ Inductive claim: roots of $p_{G}$ and $p_{G-u}$ are real and interlace:
alternate

$D$ Apply induction to $\mathrm{p}_{\mathrm{G}-\mathrm{u}}$ and $p_{G-u-v}$. Signs at roots of $p_{G-u}$ :

|  | $-O-O-O-$ | + |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{p}_{\mathrm{G}-\mathrm{u}}$ | 0 | 0 | 0 | 0 |
| $\mathrm{p}_{\mathrm{G}-\mathrm{u}-v_{1}}$ | - | + | - | + |
| $\mathrm{p}_{\mathrm{G}-\mathrm{u}-v_{2}}$ | - | + | - | + |
| $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ |
| $\mathrm{P}_{\mathrm{G}}$ | + | - | + | - |

$\bigcirc$ By sign alts, we get interlacing of roots for $p_{G}$ and $p_{G-u}$. :)
$\bigcirc$ Next prove for $z \in\left(-\frac{1}{4 \Delta}, 0\right]$ :

$$
2 \mathrm{p}_{\mathrm{G}}(z)>\mathrm{p}_{\mathrm{G}-\mathrm{u}}(z)>0
$$

$D$ Induction step:

$$
\mathrm{p}_{\mathrm{G}}(z) \geqslant(1+2 \Delta z) \mathrm{p}_{\mathrm{G}-\mathrm{u}} \geqslant \frac{1}{2} \mathrm{p}_{\mathrm{G}-\mathrm{u}}(z)
$$

$\bigcirc$ No roots $\geqslant-1 / 4 \Delta$;

