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Review

Linear tilts:

ν(x) = (1+ 〈w, x− mean(µ)〉)︸ ︷︷ ︸
linear tilt

µ(x)

Covariance evolution: cov(µ) =
E[cov(ν)] + cov(µ) cov(w) cov(µ)

Trickle down: C-SI for links means

either µ is disconnected or C ′-SI:

C ′ = k−1
k−2−C · C

Generating polynomial:

gµ(z1, . . . , zn) =
∑

S µ(S)
∏

i∈S zi.

1 spectral independence same as

λ2(∇2g(1)) 6 0↔ ∇2 log g(1) � 0
Exponential tilts/external fields:

ν(x) ∝ exp(〈w, x〉)︸ ︷︷ ︸
exponential tilt

µ(x)

7→

Exp tilts of matroids are 1-SI:

∇2 log g � 0 on Rn
>0

gµ > 1
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Entropic Independence
Fractional log-concavity

Polynomial Interpolation
Matching polynomial

Taylor approximation

Riemann mappings
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Entropic Independence

For all distributions ν,

DKL(νDk→1 ‖ µDk→1) 6
C

k
·DKL(ν ‖ µ).

The greatest aspect of entropic independence: no need to consider all ν.

Enough to look at

ν(x) ∝ exp(〈w, x〉)µ(x)

for w ∈ Rn. This is an external field applied to µ.

If q = (q1, . . . , qn) is some distribution on [n] =
([n]

1

)
, then

inf{DKL(ν ‖ µ) | νDk→1 = q} = − log
(

inf
z1,...,zn>0

∑
S µ(S)

∏
i∈S zi

z
kq1

1 · · · zkqn
n

)
.
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Let ν/µ = f, and q/(µDk→1) = g.
Then convex program is

inf{Entµ[f] | U1→kf = g}

The Lagrangian is

Entµ[f] − 〈λ,U1→kf− g〉
Fixing λ, optimality cond for f is

∇f Entµ[f] = λᵀU1→k

But we have
d

df(S) Entµ[f] = µ(S) log f(S)
Eµ[f]

If we let wi = λi/PS∼µ[i ∈ S], then
(λᵀU1→k)S = µ(S)

∑
i∈Swi

Thus, the optimality condition is

f(S) ∝ exp(〈w, 1S〉)

If we let Z = Eµ[exp(〈w, 1S〉)], then
f(S) = exp(〈w, 1S〉)/Z

Note Ent is 1-homogeneous, so

Entµ[f] = Entµ[exp(〈w, 1S〉)]/Z
We get that

〈λ,U1→kf〉 =
∑

S µ(s)f(s)〈w, 1S〉
The Lagrangian simplifies to

− log(Z) + 〈λ, g〉 = k〈w,q〉− log(Z)
If we reparameterize zi = e

wi ,

then this is

log
(∏

i∈[n] z
kqi
i

gµ(z)

)
This finishes the proof.
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kqi
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Polynomial view of HDX

Spectral Independence

Level sets of gµ(
C
√
z) locally convex at

1.

zC1

zC2

gµ > 1

Entropic Independence

Level sets of gµ(
C
√
z) bounded by tan-

gent at 1.

zC1

zC2

gµ > 1

Theorem [A-Jain-Koehler-Pham-Vuong’21]

C-spectral independence for all exp tilts =⇒ C-entropic independence.
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When gµ(
C
√
z) is log-concave, we

call it C fractionally log-concave.

Matroids are C = 1 log-concave.

For Dk→k−CUk−C→k we have

tmix = O
((

k
C

)
· logDKL(ν0 ‖ µ)

)
For matroids, this was proved

before EI by [Cryan-Guo-Mousa].

Example: hypercube

{0, 1}n ↪→
(
[2n]
n

)
Glauber becomes

Dn→n−1

tmix = O(n logn)

Example: spanning trees (I)

P: drop edge u.a.r., then add

tmix = O(n logn)

Example: spanning trees (II)

P: add edge u.a.r., then drop

tmix = O(m logn)
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Entropic Independence
Fractional log-concavity

Polynomial Interpolation
Matching polynomial

Taylor approximation

Riemann mappings
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Polynomial interpolation

We will now focus on a

deterministic counting method

invented by [Barvinok].

Running example: matchings

Goal: matchings

not necessarily perfect

.

There is FPRAS [Jerrum-Sinclair].

Open: design FPTAS

For ∆ = O(1)-bounded degree

graphs, we know FPTAS

[Bayati-Gamarnik-Katz-Nair-Tetali]

Withmk = #(k-matchings in G),
matching polynomial is:

pG(z) = m0 +m1z+m2z
2 + . . .

Goal: approximate pG(1)

Note thatmk, and thus p
(k)
G (0)

kth derivative

can

be computed in nO(k) time.

Polynomial interpolation

For ∆ = O(1), we can multiplicatively

approximate pG(1) using

p
(0)
G (0), . . . , p

O(logn)
G (0)
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Naïvely this gives nO(logn).

Trick of [Patel-Regts] computes

m0, . . . ,mk in time ∆O(k)poly(n).
What’s special about matchings?

Theorem [Heilmann-Lieb’72]

Zeros/roots of pG are real. In fact

they lie in (−∞,−Ω∆(1)].

0

Ω∆(1)

Roots are singularities of log pG.
Derivatives of log pG are

macroscopic observables. Physics:

phase transitions happen at roots.

General setting for [Barvinok]:

C

1

zero-free region

“Fat” simply connected zero-free

region around 0, 1

can be any two points

.

Approximate p(1) using low-order

derivatives of p at 0.



12/17

Naïvely this gives nO(logn).

Trick of [Patel-Regts] computes

m0, . . . ,mk in time ∆O(k)poly(n).

What’s special about matchings?

Theorem [Heilmann-Lieb’72]

Zeros/roots of pG are real. In fact

they lie in (−∞,−Ω∆(1)].

0

Ω∆(1)

Roots are singularities of log pG.
Derivatives of log pG are

macroscopic observables. Physics:

phase transitions happen at roots.

General setting for [Barvinok]:

C

1

zero-free region

“Fat” simply connected zero-free

region around 0, 1

can be any two points

.

Approximate p(1) using low-order

derivatives of p at 0.



12/17

Naïvely this gives nO(logn).

Trick of [Patel-Regts] computes

m0, . . . ,mk in time ∆O(k)poly(n).
What’s special about matchings?

Theorem [Heilmann-Lieb’72]

Zeros/roots of pG are real. In fact

they lie in (−∞,−Ω∆(1)].

0

Ω∆(1)

Roots are singularities of log pG.
Derivatives of log pG are

macroscopic observables. Physics:

phase transitions happen at roots.

General setting for [Barvinok]:

C

1

zero-free region

“Fat” simply connected zero-free

region around 0, 1

can be any two points

.

Approximate p(1) using low-order

derivatives of p at 0.



12/17

Naïvely this gives nO(logn).

Trick of [Patel-Regts] computes

m0, . . . ,mk in time ∆O(k)poly(n).
What’s special about matchings?

Theorem [Heilmann-Lieb’72]

Zeros/roots of pG are real. In fact

they lie in (−∞,−Ω∆(1)].

0

Ω∆(1)

Roots are singularities of log pG.
Derivatives of log pG are

macroscopic observables. Physics:

phase transitions happen at roots.

General setting for [Barvinok]:

C

1

zero-free region

“Fat” simply connected zero-free

region around 0, 1

can be any two points

.

Approximate p(1) using low-order

derivatives of p at 0.



12/17

Naïvely this gives nO(logn).

Trick of [Patel-Regts] computes

m0, . . . ,mk in time ∆O(k)poly(n).
What’s special about matchings?

Theorem [Heilmann-Lieb’72]

Zeros/roots of pG are real. In fact

they lie in (−∞,−Ω∆(1)].

0

Ω∆(1)

Roots are singularities of log pG.
Derivatives of log pG are

macroscopic observables. Physics:

phase transitions happen at roots.

General setting for [Barvinok]:

C

1

zero-free region

“Fat” simply connected zero-free

region around 0, 1

can be any two points

.

Approximate p(1) using low-order

derivatives of p at 0.



12/17

Naïvely this gives nO(logn).

Trick of [Patel-Regts] computes

m0, . . . ,mk in time ∆O(k)poly(n).
What’s special about matchings?

Theorem [Heilmann-Lieb’72]

Zeros/roots of pG are real. In fact

they lie in (−∞,−Ω∆(1)].

0

Ω∆(1)

Roots are singularities of log pG.
Derivatives of log pG are

macroscopic observables. Physics:

phase transitions happen at roots.

General setting for [Barvinok]:

C

1

zero-free region

“Fat” simply connected zero-free

region around 0, 1

can be any two points

.

Approximate p(1) using low-order

derivatives of p at 0.



12/17

Naïvely this gives nO(logn).

Trick of [Patel-Regts] computes

m0, . . . ,mk in time ∆O(k)poly(n).
What’s special about matchings?

Theorem [Heilmann-Lieb’72]

Zeros/roots of pG are real. In fact

they lie in (−∞,−Ω∆(1)].

0

Ω∆(1)

Roots are singularities of log pG.
Derivatives of log pG are

macroscopic observables. Physics:

phase transitions happen at roots.

General setting for [Barvinok]:

C

1

zero-free region

“Fat” simply connected zero-free

region around 0, 1

can be any two points

.

Approximate p(1) using low-order

derivatives of p at 0.



13/17

Idea: truncate Taylor of log p:
log p(z) = a0 + a1z+ . . .

where k! · ak = dk

dzk
log p(0) is a

function

by calculus rules

of p(0)(0), . . . , p(k)(0).

Complex analysis fact: Taylor

series convergence radius is

distance to nearest singularity

zero of p

.

When converging, there is hope

truncation has low error.

This can only work for disks. Will

generalize to other regions later.

Polynomial interpolation for disks

Suppose p(z) 6= 0 whenever |z| 6 1+δ:

C

1

zero-free region

then k-trunc of Taylor for log p(1) has
additive error 6

(
2e−δk/kδ

)
· deg(p).

For 1+ ε approx of p(1), set

k = O
(

log(deg(p)/ε)
δ

)
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Proof:

Since p is polynomial we can write

p(z) = c
(
1− z

λ1

)
· · ·
(
1− z

λn

)

Or in logarithms

log p(z) = log(c) +
∑

i log
(
1− z

λi

)
Which means Taylork(log p) =

log(c) +
∑

i Taylork
(
1− z

λi

)
Enough to bound error of each

Taylork
(
1− z

λi

)
and multiply by n.

Taylor series of log(1− x) is
−x− x2

2 − x3

3 − x4

4 − . . .

Error of Taylork is

6
∑

i>k
|x|i

i 6
∑

i>k
|x|i

k =
|x|k

k(1−|x|)

For x = 1/λi, we have |x| 6 e−δ, so

error of each term is

6 e−δk

k(1−e−δ)
6 2e−δk

kδ

Since there are n = deg(p) terms,

overall error is 6 n · 2e−δk

kδ .

Note k = O(log(n/ε)/δ) makes

overall error ' ε, which means a

1+O(ε) mult approx of p(1).

If Taylork takes time nO(k), overall

runtime is nO(log(n/ε)).

With [Patel-Regts], runtime is

O(1)O(log(n/ε)) = poly(n, 1/ε).
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How to extend beyond disks?
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Riemann mapping

There is a biholomorphic map between

any two simply connected regions in C:
φ−1

φ

We can also map one interior

point to one interior point.

Approximating φ, we can

construct polynomial ψ such that

ψ(0) = 0,ψ(1) = 1

ψ(disk) ⊆ region

Apply disk [Barvinok] to p ◦ψ.
Read first k derivatives from

p(0)(0), . . . , p(k)(0).

Fine when deg(ψ) reasonable.

Example: matching polynomial

Region is C −R6−r for some r.

Start with Möbius map

φ(z) = (az+ b)/(cz+ d)

Set a, b, c, d to ensure φ(0) =
0,φ(1) = 1,φ(disk) ∩R6−r/2 = ∅.
Exercise: Taylor approx φ and

compose with linear fn

to ensure ψ(0) = 0,ψ(1) = 1

to get ψ.



16/17

Riemann mapping

There is a biholomorphic map between

any two simply connected regions in C:
φ−1

φ

We can also map one interior

point to one interior point.

Approximating φ, we can

construct polynomial ψ such that

ψ(0) = 0,ψ(1) = 1

ψ(disk) ⊆ region

Apply disk [Barvinok] to p ◦ψ.
Read first k derivatives from

p(0)(0), . . . , p(k)(0).

Fine when deg(ψ) reasonable.

Example: matching polynomial

Region is C −R6−r for some r.

Start with Möbius map

φ(z) = (az+ b)/(cz+ d)

Set a, b, c, d to ensure φ(0) =
0,φ(1) = 1,φ(disk) ∩R6−r/2 = ∅.
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to ensure ψ(0) = 0,ψ(1) = 1
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Theorem [Heilmann-Lieb’72]

Zeros/roots of pG are real. In fact

they lie in (−∞,−Ω∆(1)].

0

Ω∆(1)

Proof:

Idea: induction. Let u be vertex:

pG = pG−u + z
∑

v∼u pG−u−v

Inductive claim: roots of pG and

pG−u are real and interlace

alternate

:

0

Apply induction to pG−u and

pG−u−v. Signs at roots of pG−u:

0

pG−u 0 0 0 0
pG−u−v1 − + − +
pG−u−v2 − + − +

...

pG

...

+

...

−

...

+

...

−

By sign alts, we get interlacing of

roots for pG and pG−u.

Next prove for z ∈ (− 1
4∆ , 0]:

2pG(z) > pG−u(z) > 0.

Induction step:

pG(z) > (1+2∆z)pG−u > 1
2pG−u(z)

No roots > −1/4∆
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