CS 263: Counting and Sampling

Stanford
S University

slides for

Zeros of Polynomials

\Review /

> Linear tilts:
v(x) = (1+ (w,x — mean(w))) p(x)

linear tilt

2/17

\Review

> Linear tilts:
v(x) = (14 (w,x — mean(w)) u(x)

linear tilt
(> Covariance evolution: cov(p) =
Elcov(v)] + cov(u) cov(w) cov(u)

2/17

\Review /

> Linear tilts:
v(x) = (1 + (w,x — mean(p)) w(x)

linear tilt
(> Covariance evolution: cov(p) =

Elcov(v)] + cov(u) cov(w) cov(u)

> Trickle down: C-SI for links means
either wis disconnected or C’-SI:

c’ k—1 C

2/17

\Review /

> Linear tilts:
v(x) = (1 + (w,x — mean(p)) w(x)

linear tilt
(> Covariance evolution: cov(p) =

Elcov(v)] + cov(u) cov(w) cov(u)

> Trickle down: C-SI for links means
either wis disconnected or C’-SI:

c’ k—1 C

2/17

\Review /

> Linear tilts:
v(x) = (1 + (w,x — mean(p)) w(x)

linear tilt
(> Covariance evolution: cov(p) =

Elcov(v)] + cov(u) cov(w) cov(u)

> Trickle down: C-SI for links means
either wis disconnected or C’-Sl:

C’ k—1 C

> Generating polynomial:
gu(z1 yerosZn) = ZS u(s) HieS Zi.

2/17

\Review /

> Linear tilts: > 1 spectral independence same as
A2(V?g(1)) <0 ¢ VZlogg(1) <0

v(x) = (1+ (w,x — mean(w))) u(x)

linear tilt
(> Covariance evolution: cov(p) =
Elcov(v)] + cov(u) cov(w) cov(u)

> Trickle down: C-SI for links means
either wis disconnected or C’-Sl:

C’ k—1 C
/

~ k—2-C°

> Generating polynomial:
gu(z1 yerosZn) = ZS u(s) HieS Zi.

2/17

\Review /

> Linear tilts: > 1 spectral independence same as
A2(V?g(1)) <0 ¢ VZlogg(1) <0

v(x) = (1+ (w,x — mean(w))) u(x)

> Exponential tilts/external fields:

linear tilt
> Covariance evolution: cov(p) = v(x) oc exp({w,x)) n(x)
Elcov(v)] + cov(p) cov(w) cov(p) exponential tilt
> Trickle down: C-SI for links means
either wis disconnected or C’-Sl: ~
k—1
C'=x7cC

<

> Generating polynomial:
gu(z1 yerosZn) = ZS u(s) Hies Zi.

2/17

\Review

J

> Linear tilts:
v(x) = (1 + (w,x — mean(p)) w(x)

linear tilt
(> Covariance evolution: cov(p) =

Elcov(v)] + cov(u) cov(w) cov(u)

> Trickle down: C-SI for links means
either wis disconnected or C’-Sl:

C'=_k=1_.C
K—2—-C
| \/ /_)
> Generating polynomial:
gu(zl yerosZn) = ZS u(s) Hies Zi.

> 1 spectral independence same as
A2(V2g(1)) <0+ VZlogg(1) =0
> Exponential tilts/external fields:
v(x) o< exp({w,x)) u(x)
N R

exponential tilt

H {
> Exp tilts of matroids are 1-Sl:

gu =1
\V&, logg < 0onRZL,

2/17

Entropic Independence

> Fractional log-concavity

Polynomial Interpolation
> Matching polynomial

> Taylor approximation

> Riemann mappings

> Fractional log-concavity

Polynomial Interpolation
> Matching polynomial

> Taylor approximation

> Riemann mappings

Entropic Independence

For all distributions v,

Dk (vDxs1 || uDx—51) < — - D (v || w).

=0

5/17

Entropic Independence

For all distributions v,

Dk (vDxs1 || uDx—51) < — - D (v || w).

=0

> The greatest aspect of entropic independence: no need to consider all v.

Enough to look at
V(x) oc exp((w, x))p(x)

forw € R™. This is an external field applied to .

5/17

Entropic Independence

For all distributions v,

=0

Dk (vDxs1 || uDx—51) < — - D (v || w).

> The greatest aspect of entropic independence: no need to consider all v.
Enough to look at

v{x) oc exp((w, x))u(x)
forw € R™ This is an external field applied to .
> If g =(q1,---,qn) is some distribution on [n] = (), then

inf{DkL(v ||) | vDx—1 =g} =— Iog(inf 2s M) I Lies Zi) _

Z1yeeeyzn >0 Z];q] ...qu“

5/17

& Letv/u=fand q/(uDyx-1) =g
Then convex program is

inf{Enty, [f] | Uy i f = g}

& Letv/u=fand q/(uDyx-1) =g
Then convex program is

inf{Enty, [f] | Uy i f = g}
> The Lagrangian is
Ent,[f] — (\, U f—g)

& Letv/u=fand q/(uDyx-1) =g
Then convex program is

inf{Ent, [f] | Uj_xf = g}
> The Lagrangian is
Ent,[f] — (A, Uj i f —g)
> Fixing A, optimality cond for f is
V¢ Ent, [f] = ATU;

& Letv/u=fand q/(uDyx-1) =g
Then convex program is

inf{Ent, [f] | Uj_xf = g}
> The Lagrangian is
Ent,[fl — (A, U1k f—g)
> Fixing A, optimality cond for f is
Vi Ent,[f] = ATU
> But we have

£(S)
—df‘(ls) Enty[f] = u(S) log MG

Letv/u=f, and q/(uDx—1) =g
Then convex program is

inf{Ent, [f] | Uj_xf = g}
The Lagrangian is
Ent,[fl — (A, U1k f—g)
Fixing A, optimality cond for f is
Vi Ent [f] = ATU; Sk
But we hove

f(S)

If we Iet Wy = 7\1/ PSNH[i € S], then
ATU15k)s = 1(S) D jes Wi

Letv/u=f, and q/(uDx—1) =g
Then convex program is

inf{Ent, [f] | Uj_xf = g}
The Lagrangian is
Ent,[fl — (A, U1k f—g)
Fixing A, optimality cond for f is
Vi Ent [f] = ATU; Sk
But we hove

f(S)

If we Iet Wy = 7\1/ PSNH[i € S], then
ATU15k)s = 1(S) D jes Wi
Thus, the is
f(S) ox exp((w, 1s))

Letv/u=f, and q/(uDx—1) =g

Then convex program is
inf{Ent, [f] | Uj_xf = g}
The Lagrangian is
Ent,[f] — (A, Uj i f —g)
Fixing A, optimality cond for f is
Vi Ent [f] = ATU; Sk
But we have

Ent,,[f] = (S)Ioggi—s)

df() (f]

If we let wi =Ai/Ps-[i € S], then

ATU1 51)s = 1(S) X _jes Wi
Thus, the is

f(S) ox exp((w, 1s))

O If we let Z = E,[exp((w, Ts))], then
f(S) = exp((w, 15))/Z

Letv/u=f, and q/(uDx—1) =g

Then convex program is
inf{Ent, [f] | Uj_xf = g}
The Lagrangian is
Ent,[f] — (A, Uj i f —g)
Fixing A, optimality cond for f is
Vi Ent [f] = ATU; Sk
But we have

Ent,,[f] = (S)Ioggi—s)

df() (f]

If we let wi =Ai/Ps-[i € S], then

ATU1 51)s = 1(S) X _jes Wi
Thus, the is

f(S) ox exp((w, 1s))

O If we let Z = E,[exp((w, Ts))], then
f(S) = exp((w, 1s))/Z
(> Note Ent is 1-homogeneous, so
Ent,[f] = Enty[exp((w, 15))]/Z

Letv/u=f, and q/(uDx—1) =g

Then convex program is
inf{Ent, [f] | Uj_xf = g}
The Lagrangian is
Ent,[f] — (A, Uj i f —g)
Fixing A, optimality cond for f is
Vi Ent [f] = ATU; Sk
But we have

Ent,,[f] = (S)Ioggi—s)

df() (f]

If we let wi =Ai/Ps-[i € S], then

ATU1 51)s = 1(S) X _jes Wi

Thus, the is

f(S) ox exp((w, 1s))

O If we let Z = E,[exp((w, Ts))], then

f(S) = exp((w, 15))/Z

(> Note Ent is 1-homogeneous, so

Ent,[f] = Enty[exp((w, 15))]/Z

> We get that

<)\>u1—>kf> = ZS u(s)f(s)(w,]]s)

Letv/u=f, and q/(uDx—1) =g

Then convex program is
inf{Ent, [f] | Uj_xf = g}
The Lagrangian is
Ent,[fl — (A, U1k f—g)
Fixing A, optimality cond for f is
Vi Ent [f] = ATU; Sk
But we have

Ent,, [f] = u(S) log 25k

df() En[f]

If we let wi =Ai/Ps-[i € S], then

ATU1 51)s = 1(S) X _jes Wi
Thus, the is

f(S) ox exp((w, 1s))

If we let Z = E [exp((w, Ts))], then
f(S) = exp({w, 1s))/Z

Note Ent is T-homogeneous, so

Ent,[f] = Enty[exp((w, 15))]/Z
We get that
(A Uy i f) = 3 g pls)f(s)(w, Ts)
The Lagrangian simplifies to
—log(Z) 4 (A, g) = k(w, q) — log(Z)

v ¢ © @

Letv/u=f, and q/(uDx—1) =g
Then convex program is

inf{Ent, [f] | Uj_xf = g}
The Lagrangian is
Entu[ﬂ — <?\, Uy f— g>

Fixing A, optimality cond for f is
Vi Ent [f] = ATU; Sk
But we have

Ent,,[f] = (S)Ioggi—s)

df() (f]
If we let wi =Ai/Ps-[i € S], then
ATU15k)s = 1(S) D jes Wi
Thus, the is
f(S) ox exp((w, 1s))

If we let Z = E [exp((w, Ts))], then
f(S) = exp({w, 1s))/Z

Note Ent is T-homogeneous, so

Ent,[f] = Enty[exp((w, 15))]/Z
We get that
(A, Ui f) =2 g n(s)f(s)(w, Ts)

The Lagrangian simplifies to

—log(Z) + O\a 9> = k<W, q> —log(Z)

If we reparameterize z; = e™1,

then this is

[Lic
|Og(EI—L(Z) >

v ¢ v v v

Letv/u=f, and q/(uDx—1) =g
Then convex program is

inf{Ent, [f] | Uj_xf = g}
The Lagrangian is
Entu[ﬂ — <?\, Uy f— g>

Fixing A, optimality cond for f is
Vi Ent [f] = ATU; Sk
But we have

Ent,, [f] = u(S) log 25k

df() E. [f]
If we let wi =Ai/Ps-[i € S], then
ATU15k)s = 1(S) D jes Wi
Thus, the is
f(S) ox exp((w, 1s))

If we let Z = E [exp((w, Ts))], then
f(S) = exp({w, 1s))/Z

Note Ent is T-homogeneous, so

Ent,[f] = Enty[exp((w, 15))]/Z
We get that
(A, Ui f) =2 g n(s)f(s)(w, Ts)

The Lagrangian simplifies to

—log(Z) + O\a 9> = k<W, q> —log(Z)

If we reparameterize z; = e™1,

then this is

[Lic
|Og(EI—L(Z) >

> This finishes the proof. ©

v ¢ v v v

> For we
want & Dke(q || pDk—1) <

A kdy
sup{log<Hlsr(];)1) ZGR;‘O}

~

> For we
want & Dy (q || kD7) <

kqq
sup{log<nl€“(];)) z€ [R;‘O}

D Leth(z) = Eiyp, , [z€]%C. Then

sup{log(nle?{z)‘ 1) z € [RT;O}

is achieved at z; = {/qi/(uDx_1)i

and has value & D (q || uDx—1).

~

> For we
want & Dy (q || kD7) <

kqq
sup{log<nl€“(];)) z€ [R;‘O}

D Leth(z) = Eiyp, , [z€]%C. Then

sup{log(nle?{z)‘ 1) z € [RT;O}

is achieved at z; = {/qi/(uDx_1)i

and has value & D (q || uDx—1).
> Thus C-Elis as
gulz) <h(z)

~

For we
want & Dy (q || kD7) <

kqq
sup{log<nl€“(];)) z€ [R;‘O}

Let h(z) = Ei~up, , [z.c]k/c. Then

1

sup{log(nle?{z)‘ 1) z € [RT;O}

is achieved at z; = {/qi/(uDx_1)i

and has value & D (q || uDx—1).
Thus C-El is as
gu(z) < h(z)
If y; = z&, this is the same as
gu(Y1)/ < (uDxo1,y)

linear tangent at 1

~

For we
want € Dk (q || pDk—1) <
kqq
sup{log(rhe‘ig;)) z€ [R{;‘O}

> For f(z) = g({/z)¢/¥, we have
V£(1) = uDy_1 and VZf(1)
cov—C- (dlag(mean) — %meam)

Let h(z) = Ei—up, [Z,C]k/c_ PPl Folklore lemma

1

sup{log(l_[‘a(‘{z)l 1) z € [RT;O}

is achieved at z; = {/qi/(uDx_1)i

and has value & D (q || uDx—1).

Thus C-El is as
gu(z) < h(z)

If y; = z&, this is the same as

gu()% < (uDyo1,Y)

linear tangent at 1

For a d-homogeneous function f, tfae:

{z] f(z) > 1} convex

V/f is concave

log f is concave
Similarly tfae:

z1f(2) > 1 Sz | (Fhh2) > 1}
V/f bounded by tangent at 1
log f bounded by tangent at 1

717

\Polgnomiol view of HDX /

Spectral Independence Entropic Independence
Level sets of g, ({/z) locally convex at Level sets of g, ({/z) bounded by tan-
1. gent at 1.

z5 z§
gu =1

8/17

\Polgnomiol view of HDX /

Spectral Independence Entropic Independence
Level sets of g, ({/z) locally convex at Level sets of g, ({/z) bounded by tan-
1. gent at 1.

25 z§
gu =1

Theorem [A-Jain-Koehler-Pham-Vuong’21]
C-spectral independence for all exp tilts = C-entropic independence.

8/17

> When g, (V/z) is log-concave, we
call it C fractionally log-concave.

> When g, (V/z) is log-concave, we
call it C fractionally log-concave.

> Matroids are C = 1 log-concave.

~

> When g, (V/z) is log-concave, we
call it C fractionally log-concave.

> Matroids are C = 1 log-concave.
> For Dyxk—cUx_c_x we have

tmix = O((&) - log D (vo || W)

~

> When g, (V/z) is log-concave, we

\VAV,

call it C fractionally log-concave.
Matroids are C = 1 log-concave.
For Dx—k_cUx_c—_x we have

tmix = O((&) - log D (vo || W)

For matroids, this was proved
before El by [Cryan-Guo-Mousal.

~

> When g, (V/z) is log-concave, we
call it C fractionally log-concave.

> Matroids are C = 1 log-concave.
> For Dyxk—cUx_c_x we have

tmix = O((&) - log D (vo || W)

(> For matroids, this was proved
before El by [Cryan-Guo-Mousal.

Example: hypercube

> {0, 1" = (2) R
> Glauber becomes %

D tmix = O(Tl |Og Tl)

9/17

> When g, (V/z) is log-concave, we R3elgglellH oleliyllgle R{g-L1H ()]

call it C fractionally log-concave.
> Matroids are C = 1 log-concave. m —_— m
> For Dx_x_cUx_c_k we have

_ ky .
tmix = O((C) log Die(vo | ”)> > P: drop edge u.a.r, then add
(> For matroids, this was proved > tmix = O(nlogn)
before El by [Cryan-Guo-Mousal.

Example: hypercube

> {0, 1" = (2) R
> Glauber becomes %

D tmix = O(Tl |Og T'L)

9/17

> When g, (V/z) is log-concave, we
call it C fractionally log-concave.

> Matroids are C = 1 log-concave.
> For Dx_x_cUx_c_k we have

tmix = O((&) - log D (vo || W)

(> For matroids, this was proved
before El by [Cryan-Guo-Mousal.

Example: hypercube

> {0, 1" = (2) R
> Glauber becomes %

D tmix = O(Tl |Og T'L)

Example: spanning trees (I)

K — X

> P: drop edge u.a.r, then add
D tmix = O(Tl |Ong)

Example: spanning trees (lI)

K — X

> P: add edge u.a.r, then drop
> tmix = O(mlogn)

9/17

> Fractional log-concavity

Polynomial Interpolation
> Matching polynomial

> Taylor approximation

> Riemann mappings

Entropic Independence

> Fractional log-concavity

> Matching polynomial
> Taylor approximation
> Riemann mappings

\Polgnomiol interpolation /

> We will now focus on a
deterministic counting method
invented by [Barvinok].

n/17

\Polgnomiol interpolation /

> We will now focus on a
deterministic counting method
invented by [Barvinok].

Running example: matchings

Goal: matchings.
4
not necessarily perfect

n/17

\Polgnomiol interpolation

> We will now focus on a
deterministic counting method
invented by [Barvinok].

Running example: matchings
Goal: matchings.
0
not necessarily perfect

> There is FPRAS [Jerrum-Sinclair].

n/17

\Polgnomiol interpolation /

> We will now focus on a
deterministic counting method
invented by [Barvinok].

Running example: matchings

Goal: matchings.
4
not necessarily perfect

> There is FPRAS [Jerrum-Sinclair].
> Open: design FPTAS

n/17

\Polgnomiol interpolation /

> We will now focus on a
deterministic counting method
invented by [Barvinok].

Running example: matchings

Goal: matchings.
4
not necessarily perfect

> There is FPRAS [Jerrum-Sinclair].
> Open: design FPTAS

> For A = O(1)-bounded degree
graphs, we know FPTAS
[Bayati-Gamarnik-Katz-Nair-Tetali]

n/17

\Polgnomiol interpolation /

> We will now focus on a O With my = #(k-matchings in G),
deterministic counting method matching polynomial is:

invented by [Barvinok].

pc(z) =mo +miz4+maz? + ...

Running example: matchings

Goal: matchings.
4
not necessarily perfect

> There is FPRAS [Jerrum-Sinclair].
> Open: design FPTAS

> For A = O(1)-bounded degree
graphs, we know FPTAS
[Bayati-Gamarnik-Katz-Nair-Tetali]

n/17

\Polgnomiol interpolation /

> We will now focus on a O With my = #(k-matchings in G),
deterministic counting method matching polynomial is:

invented by [Barvinok].

pc(z) =mo +miz4+maz? + ...

Running example: matchings > Goal: approximate pg (1)
Goal: matchings.
4
not necessarily perfect

> There is FPRAS [Jerrum-Sinclair].
> Open: design FPTAS

> For A = O(1)-bounded degree
graphs, we know FPTAS
[Bayati-Gamarnik-Katz-Nair-Tetali]

n/17

\Polgnomiol interpolation /

> We will now focus on a O With my = #(k-matchings in G),
deterministic counting method matching polynomial is:

invented by [Barvinok].

pc(z) =mo +miz4+maz? + ...

Running example: matchings > Goal: approximate pg (1)

Goal: matchings. > Note that my, and thus p(Gk)(O) can
t be computed in nO) time|
not necessarily perfect
kth derivative

> There is FPRAS [Jerrum-Sinclair].
> Open: design FPTAS

> For A = O(1)-bounded degree
graphs, we know FPTAS
[Bayati-Gamarnik-Katz-Nair-Tetali]

n/17

\Polgnomiol interpolation /

> We will now focus on a O With my = #(k-matchings in G),
deterministic counting method matching polynomial is:

invented by [Barvinok].

pc(z) =mo +miz4+maz? + ...

Running example: matchings > Goal: approximate pg (1)

Goal: matchings. > Note that my, and thus pg{)(O) can
t be computed in nO) time|
not necessarily perfect
kth derivative

> There is FPRAS [Jerrum-Sinclair]. Polynomial interpolation

> Open: design FPTAS For A = O(1), we can multiplicatively
> For A = O(1)-bounded degree approximate pg(1) using
graphs, we know FPTAS (0)

O (logn)
0),... 0
[Bayati-Gamarnik-Katz-Nair-Tetali] PG (0), 'Pe (0

n/17

> Naively this gives n©(leen),

> Naively this gives n©(leen),

> Trick of [Patel-Regts] computes
mo, ..., My in time A poly(n).

> Naively this gives n©(leen),

> Trick of [Patel-Regts] computes
mo, ..., My in time A poly(n).

> What's special about ?

> Naively this gives n©(lesm),

> Trick of [Patel-Regts] computes
mo, ..., My in time A poly(n).
> What's special about matchings?

Theorem [Heilmann-Lieb’72]

Zeros/roots of pg are real. In fact
they lie in (—oo, —QAa(1)].

QA1)

12/17

> Naively this gives n©(lesm),

> Trick of [Patel-Regts] computes
mo, ..., My in time A poly(n).

> What's special about matchings?

Theorem [Heilmann-Lieb’72]

Zeros/roots of pg are real. In fact
they lie in (—oo, —QAa(1)].

QA1)

> Roots are singularities of logpg.
Derivatives of logpg are
macroscopic observables. Physics:
phase transitions happen at roots.

> General setting for [Barvinok]:

£

zero-free region

5

\

J

A

1

12/17

> Naively this gives n©(lesm),

> General setting for [Barvinok]:
> Trick of [Patel-Regts] computes g [Barvinok]

mo, ..., My in time A poly(n). zero-free region
> What's special about matchings? C \g
Theorem [Heilmann-Lieb’72] K\ .
Zeros/roots of pg are real. In fact \ 1
they lie in (—oo, —QAa(1)].
Qa(1)
—O O0—O g > “Fat” simply connected zero-free
region around 0}1.
> Roots are singularities of logpg. can be any two points

Derivatives of logpg are
macroscopic observables. Physics:
phase transitions happen at roots.

12/17

> Naively this gives n©(lesm),

> General setting for [Barvinok]:
> Trick of [Patel-Regts] computes g [Barvinok]

mo, ..., My in time A poly(n). zero-free region
> What's special about matchings? C \g
Theorem [Heilmann-Lieb’72] K\ .
Zeros/roots of pg are real. In fact \ 1
they lie in (—oo, —QAa(1)].
Qa(1)
—O O0—O g > “Fat” simply connected zero-free
region around 0}1.
> Roots are singularities of logpg. can be any two points

Derivatives of logpg are
macroscopic observables. Physics:
phase transitions happen at roots.

> Approximate p(1) using low-order
derivatives of p at 0. ©

12/17

() truncate Taylor of log p:
logp(z) =ap+ajz+...
where k! - ai = % logp(0) isa
funcTtion of pl9)(0),...,p™(0).

by calculus rules

13/17

() truncate Taylor of log p:
logp(z) =ap+ajz+...
where k! - ay = % logp(0) isa
funcTtion of pl9)(0),...,p™(0).
by calculus rules
> Complex analysis fact: Taylor

series convergence radius is
distance to nearest singularity.
A

zero of p

13/17

() truncate Taylor of log p:
logp(z) =ap+ajz+...
where k! - ay = % logp(0) isa
funcTtion of pl9)(0),...,p™(0).
by calculus rules
> Complex analysis fact: Taylor

series convergence radius is
distance to nearest singularity.
A

zero of p
> When , there is hope
truncation has low error.

() truncate Taylor of log p:
logp(z) =ap+ajz+...
where k! - ay = % logp(0) isa
funcTtion of pl9)(0),...,p™(0).
by calculus rules
> Complex analysis fact: Taylor

series convergence radius is
distance to nearest singularity.
A

zero of p
> When , there is hope
truncation has low error.

> This can only work for . Will
generalize to other regions later.

& Idea: truncate Taylor of log p:
logp(z) =ap+ajz+...
where k! - ay = % logp(0) isa
funcTtion of pl9)(0),...,p™(0).
by calculus rules
> Complex analysis fact: Taylor

series convergence radius is
distance to nearest singularity.
A

zero of p
> When converging, there is hope
truncation has low error.
> This can only work for disks. Will
generalize to other regions later.

Polynomial interpolation for disks
Suppose p(z) # 0 whenever [z| < 1+6:

zero-free region

\/

7 A

1

1

then k-trunc of Taylor for logp(1) has
additive error < (2e7%%/k8) - deg(p).

13/17

() truncate Taylor of log p:
logp(z) =ap+ajz+...
where k! - ay = % logp(0) isa
fun%tion of pl9)(0),...,p™(0).
by calculus rules
> Complex analysis fact: Taylor

series convergence radius is
distance to nearest singularity.
A

zero of p

> When , there is hope
truncation has low error.

> This can only work for . Will
generalize to other regions later.

Polynomial interpolation for disks

Suppose p(z) # 0 whenever [z| < 1+6:

zero-free region

C 4

0O
\/

1

then k-trunc of Taylor for logp(1) has
additive error < (2e7%%/k8) - deg(p).

For 1+ e approx of p(1), set

Kk — O(Iog deg(p)/e))

13/17

Proof:
> Since p is polynomial we can write

p)=c(1-2)(1-2)

Proof:
> Since p is polynomial we can write

pe)=c(1-%) - (1- %)

& Orin logarithms
logp(z) = log(c) + 2 ; I0g<1 - 7\%)

Proof:
> Since p is polynomial we can write

pe)=c(1-%) - (1- %)

> Orinlogarithms
logp(z) = log(c) +3_; Iog(*i)
> Which means Taylor, (logp) =

log(c) + >_; Taylory (1 — ﬁ)

Proof:
> Since p is polynomial we can write

pia)=c(1-%) - (1-%)
> Orinlogarithms
logp(z) = log(c) +>_; Iog(- %)
> Which means Taylor, (logp) =
log(c) + >_; Taylory (1 {')
> Enough to bound error of each
Taylork(1 — —) and multiply by n.

Proof:
> Since p is polynomial we can write
pia)=c(1-%) - (1-%)
> Orinlogarithms
logp(z) = log(c) +>_; Iog(- %)
> Which means Taylor, (logp) =

log(c) + >_; Taylory (1 {')
> Enough to bound error of each
Taylork(1 — —) and multiply by n.
C Taylor series of log(1 —x) is

X X X
_X_T_?_T_---

Proof:
> Since p is polynomial we can write
pia)=c(1-%) - (1-%)
> Orinlogarithms
logp(z) = log(c) +>_; Iog(- %)
> Which means Taylor, (logp) =
log(c) + >_; Taylory (1 {')
> Enough to bound error of each
Taylork(1 — —) and multiply by n.

C Taylor series of log(1 —x) is

X X X
_X_T_?_T_---

> Error of

x|
gZi>k &

X
i < i>k k

is

|k
k(T—=[x])

Proof: > Error of is

> Since p is polynomial we can write x|t Xt x[*
p s POl S isk i S Xlisk & = W1WD

plz) = C<] - %) (] - ﬁ) > Forx = 1/A, we have x| < e %, so
> Orinlogarithms error of each term is
< efék 22761‘

logp(z) =log(c) + 2 ; Iog(—%) N K(1—e %) X ks

> Which means Taylor, (logp) =
log(c) + >_; Taylory (1 {')

> Enough to bound error of each

Taylork(1 — —) and multiply by n.

C Taylor series of log(1 —x) is

X X X
_X_T_?_T_---

Proof: > Error of is

. . . . i i k
> Since p is polynomial we can write <Y Ixi\ <Yt % _ k(rﬂb‘”
plz) = C<] - %) (] - ﬁ) > Forx = 1/A, we have x| < e %, so
> Orin logarithms error of each term is
efék 22761‘
logp(z) =log(c) + 2 ; Iog(—%) Sti=e® S 15
> Since there are n = deg(p) terms,

> Which means Taylor, (logp) =
log(c) + >_; Taylory (1 {')

> Enough to bound error of each
Taylork(1 — —) and multiply by n.

. zefék
overall erroris<n- e

C Taylor series of log(1 —x) is

Proof: > Error of is

> Since p is polynomial we can write x|t Xt x[*
p s POl S isk i S Xlisk & = W1WD

plz) = C<] - %) (] - ﬁ) > Forx = 1/A, we have x| < e, so
> Orin logarithms error of each term is
< efék 22761‘
logp(z) = log(c) +3_; Iog(*i) S k(1—e™®) N ke
> Which means Taylor, (logp) =

> Since there are n = deg(p) terms,

. overall error is < n.- 262%,

og(e) + TiTaylon (1= %) 5 Noe e — O(log(n/e)/5) makes

> Enough to bound error of each overall error ~ €, which means a
Taylork(1 — —) and multiply by n. 1+ O(e) mult approx of p(1).

C Taylor series of log(1 —x) is

X X X
_X_T_?_T_---

Proof:

> Since p is polynomial we can write

pe)=c(1-%) - (1- %)

> Orinlogarithms

logp(z) = log(c) +>_; Iog(—%)

> Which means Taylor, (logp) =
log(c) + >_; Taylory (1 {')

> Enough to bound error of each

Taylork(1 — —) and multiply by n.

C Taylor series of log(1 —x) is

(B

o

Error of is

IxI¥ x|
S isk i SXlisk & = W10

For x = 1/, we have |x| < e™?®

error of each term is

< efék 22761‘
S k(1—e) N ks

Since there are n = deg(p) terms,

. —dk
overall erroris < n - 2&-.

Note k = O(log(n/€)/5) makes
overall error ~ ¢, which means a
1+ O(e) mult approx of p(1).

If Taylor, takes time n®() overall
runtime is n©Olog(n/e)),

, SO

Proof: > Error of is

> Since p is polynomial we can write x|t Xt x[*
p s POl S isk i S Xlisk & = W1WD

plz) = C<1 - %) (] - ﬁ) > Forx =1/A;, we have x| < e, so

> Orinlogarithms error of each term is
< efék < 22761‘
logp(z) =log(c) + 2 ; Iog(—%) N K(1—e %) X ks
> Which means Taylor, (logp) = > Since there aren = deg}ﬁ) terms,
- overall erroris < n - 2&-.
og(e) + TiTaylon (1= %) 5 Noe e — O(log(n/e)/5) makes
> Enough to bound error of each overall error ~ €, which means a
Taylork(1 — —) and multiply by n. 1+ O(e) mult approx of p(1).

If Taylor, takes time n®() overall

& Taylor series of log(1 —x) is cuntime is 1.0 (log(n/e))

X2 x xt , o
2 3 4 > With [Patel-Regts], runtime is

0(1)Cllee(n/e)) = poly(n,1/€). ©

How to extend beyond disks?

\Riemonn mapping

There is a biholomorphic map between
any two simply connected regions in C:

;

¢71

A

.

FE&BN

N
%

¢

16/17

\Riemonn mapping

There is a biholomorphic map between
any two simply connected regions in C:

;

¢71

A

.

FE&BN

N
%

¢

> We can also map one interior
point to one interior point.

16/17

\Riemonn mapping /

There is a biholomorphic map between
any two simply connected regions in C:
¢71

(S, 72N
NZEB N

¢
> We can also map one interior
point to one interior point.

> Approximating ¢, we can
construct polynomial ¥ such that

P(0) =0,9(1) =1
P (disk) C region

16/17

\Riemonn mapping /

There is a biholomorphic map between > Apply disk [Barvinok] to p o 1. ©
any two simply connected regions in C:

<7
7

¢
> We can also map one interior
point to one interior point.

> Approximating ¢, we can
construct polynomial ¥ such that

P(0) =0,9(1) =1
P (disk) C region

16/17

\Riemonn mapping /

There is a biholomorphic map between (> Apply disk [Barvinok] to p o . ©
any two simply connected regions in C: > Read first k derivatives from

b, e
7

¢
> We can also map one interior
point to one interior point.

> Approximating ¢, we can
construct polynomial ¥ such that

P(0) =0,(1) =1
P (disk) C region

16/17

\Riemonn mapping /

There is a biholomorphic map between > Apply disk [Barvinok] to p o). @
any two simply connected regions in C: > Read first k derivatives from

¢71
p©(0),...,p"(0).

T
[\ K\ > Fine when deg(\) reasonable.
NZEB N

¢
> We can also map one interior
point to one interior point.

> Approximating ¢, we can
construct polynomial ¥ such that

P(0) =0,(1) =1
P (disk) C region

16/17

\Riemonn mapping /

There is a biholomorphic map between > Apply disk [Barvinok] to p o). @
any two simply connected regions in C: > Read first k derivatives from

d)71
pl(0),...,p™(0).

~
[\ / > Fine when deg(\) reasonable.

K/ kj Example: matching polynomial
\/

> Regionis C —R¢_, for some r.

. > Start with Mdbius map
> We can also map one interior &(z) = (az+b)/(cz + d)
point to one interior point. > Seta,b,c,d toensure ¢(0) =
> Approximating ¢, we can 0,b(1) =1, d(disk) NR¢_,/ = 0.

truct pol ial h that
construct polynomiclp such tha > Exercise: Taylor approx ¢ and
Y(0) =0,P(1) =1 compose with linear fn to get .
P (disk) C region '

to ensure P (0) = 0,P(1) =1
16/17

Theorem [Heilmann-Lieb’72]

Zeros/roots of pg are real. In fact
they lie in (—oo, —Qa(1)].

Qa(1)
—O0——O0—0

17/17

Theorem [Heilmann-Lieb’72]

Zeros/roots of pg are real. In fact
they lie in (—oo, —Qa(1)].

Qa(1)
—O0——O0—0

Proof:

17/17

Theorem [Heilmann-Lieb’72]

Zeros/roots of pg are real. In fact
they lie in (—oo, —Qa(1)].

Qa(1)
—O0——O0—0

Proof:
> Idea: induction. Let u be vertex:

PG=Pc ut+Z) yyuPG-u—v

17/17

Theorem [Heilmann-Lieb’72]

Zeros/roots of pg are real. In fact
they lie in (—oo, —Qa(1)].

Qa(1)
—O0——O0—0

Proof:
> Idea: induction. Let u be vertex:
PG=Pc ut+Z) yyuPG-u—v
> Inductive claim: roots of pg and
pc . arereal and interTloce:
alternate

-00—O0—000——O0——
0

17/17

Theorem [Heilmann-Lieb’72] & Apply induction to pg_, and
Zeros/roots of pg are real. In fact PG-u-—v- Signs at roots of gy
they lie in (—oo, —Qa(1)].

_C O_C O I

\ T

Qa(1)

—O0—00

Proof:
> Idea: induction. Let u be vertex:

PG =PG-u T ZZ\hqufufv
> Inductive claim: roots of pg and
pc . arereal and interlace:

alternate
-00—O0—000—0——

0

17/17

Theorem [Heilmann-Lieb’72] & Apply induction to pg_, and
Zeros/roots of pg are real.

7 Ee PG_u—_v- Signs at roots of pg_y:
they lie in (—oo, —Qa(1)]. —O O0—0Or O—t
PG—u 0 00 0
Qa(1)
—O O—0r t

Proof:

> Idea: induction. Let u be vertex:

PG =PG-u T ZZ\hqufufv
> Inductive claim: roots of pg and
pc . arereal and interlace:

alternate

-00—O0—000——O0——

0

17/17

Theorem [Heilmann-Lieb’72] & Apply induction to pg_, and

Zeros/roots of pg are real. In fact PG—u—v- Signs atroots of pg_v:
they lie in (—oo, —Qa(1)].

—0O O—0 O (:)
PG—u 0 00 0
Qa(1) PG—u—vy — + — +

—O0—00

Proof:
> Idea: induction. Let u be vertex:
PG=Pc ut+Z) yyuPG-u—v

> Inductive claim: roots of pg and
pc . arereal and interTloce:

alternate

-00—O0—000——O0——

0

17/17

Theorem [Heilmann-Lieb’72] & Apply induction to pg_, and

Zeros/roots of pg are real. In fact PG—u—v- Signs atroots of pg—u!
they lie in (—oo, —Qa(1)]. —O 0—0 O 0
PG—u 0 00 0
Q400) PG—u—vy — + — +
— o0 (:) PG—u—v; — + — +

Proof:
> Idea: induction. Let u be vertex:
PG=Pc ut+Z) yyuPG-u—v
> Inductive claim: roots of pg and
pc . arereal and interTloce:

alternate

-00—O0—000——O0——
0

17/17

Theorem [Heilmann-Lieb’72] & Apply induction to pg_, and

Zeros/roots of pg are real. In fact PG—u—v- Signs atroots of pg—u!
they lie in (—oo, —Qa(1)]. —O 0—0 O 0
PG—u 0 00 0
Q400) PG—u—vy — + — +
— o0 (:) PG—u—v; — + — +
Proof: C '
PG + -+ -

> Idea: induction. Let u be vertex:

PG =PG-u T ZZ\hqufufv
> Inductive claim: roots of pg and
pc . arereal and interTloce:

alternate

-00—O0—000——O0——
0

17/17

Theorem [Heilmann-Lieb’72] & Apply induction to pg_, and

Zeros/roots of pg are real. In fact
they lie in (—oo, —Qa(1)].

Qa(1)

—O0—00

Proof:
> Idea: induction. Let u be vertex:

PG=Pc ut+Z) yyuPG-u—v
> Inductive claim: roots of pg and
pc . arereal and interTloce:

alternate

-00—O0—000——O0——
0

PG_u—_v- Signs at roots of pg_y:

—0 O—0 O (l)
PG—u 0 00 0
PG—u—v; — + — +
PG—u—v; + — +
PG + -+ -

> By sign alts, we get interlacing of
roots forpg and pe .. ©

17/17

Theorem [Heilmann-Lieb’72] & Apply induction to pg_, and

Zeros/roots of pg are real. In fact
they lie in (—oo, —Qa(1)].

Qa(1)
—O0——O0—0

Proof:
> Idea: induction. Let u be vertex:
PG=Pc ut+Z) yyuPG-u—v
> Inductive claim: roots of pg and
pc . arereal and interTloce:

alternate

-00—O0—000——O0——
0

PG_u—_v- Signs at roots of pg_y:
—0O O0—O

M
PG—u 0 00 0
PG—u—v; — + — +
PG—u—v; + — +
PG + -+ -

> By sign alts, we get interlacing of
roots forpg and pe .. ©

> Next prove for z € (—ﬁ,O]:

2pg(z) > pg_ulz) > 0.

17/17

Theorem [Heilmann-Lieb’72] & Apply induction to pg_, and

Zeros/roots of pg are real. In fact
they lie in (—oo, —Qa(1)].

Qa(1)
—O0——O0—0

Proof:
> Idea: induction. Let u be vertex:
PG=Pc ut+Z) yyuPG-u—v
> Inductive claim: roots of pg and
pc . arereal and interTloce:

alternate

-00—O0—000——O0——
0

PG_u—_v- Signs at roots of pg_y:

—O O—0 O (l)
PG—u 0 00 0
PG—u—v; — + — +
PG—u—v; — + — +
PG + -+ -

> By sign alts, we get interlacing of
roots forpg and pe .. ©

> Next prove for z € (—ﬁ,O]:

2pg(z) > pg—ulz) > 0.
> Induction step:

pe(z) = (142A2)pG—v = 3PG—u(2)

17/17

Theorem [Heilmann-Lieb’72] & Apply induction to pg_, and

Zeros/roots of pg are real. In fact
they lie in (—oo, —Qa(1)].

Qa(1)
—O0——O0—0

Proof:
> Idea: induction. Let u be vertex:
PG=Pc ut+Z) yyuPG-u—v
> Inductive claim: roots of pg and
pc . arereal and interTloce:

alternate

-00—O0—000——O0——
0

PG_u—_v- Signs at roots of pg_y:

—O O—0 O (l)
PG—u 0 00 0
PG—u—v; — + — +
PG—u—v; + — +
PG + -+ -

> By sign alts, we get interlacing of
roots forpg and pe .. ©

> Next prove for z € (—ﬁ,O]:

2pg(z) > pg—ulz) > 0.
> Induction step:

pe(z) = (142A2)pG—v = 3PG—u(2)

> Noroots > —1/4A ©

17/17

