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> Linear tilts: > 1 spectral independence same as
A2(V?g(1)) <0 ¢ VZlogg(1) <0
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> Exponential tilts/external fields:

linear tilt
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> Linear tilts:
v(x) = (1 + (w,x — mean(p)) w(x)

linear tilt
(> Covariance evolution: cov(p) =

Elcov(v)] + cov(u) cov(w) cov(u)

> Trickle down: C-SI for links means
either wis disconnected or C’-Sl:

C'=_k=1_.C
K—2—-C
| \/ /_)
> Generating polynomial:
gu(zl yerosZn) = ZS u(s) Hies Zi.

> 1 spectral independence same as
A2(V2g(1)) <0+ VZlogg(1) =0
> Exponential tilts/external fields:
v(x) o< exp({w,x)) u(x)
N R

exponential tilt

H {
> Exp tilts of matroids are 1-Sl:

gu =1
\V&, logg < 0onRZL,
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Entropic Independence

For all distributions v,

=0

Dk (vDxs1 || uDx—51) < — - D (v || w).

> The greatest aspect of entropic independence: no need to consider all v.
Enough to look at

v{x) oc exp((w, x))u(x)
forw € R™ This is an external field applied to .
> If g =(q1,---,qn) is some distribution on [n] = (), then

inf{DkL(v || ) | vDx—1 =g} =— Iog( inf 2s M) I Lies Zi) _

Z1yeeeyzn >0 Z];q] ...qu“
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inf{Ent, [f] | Uj_xf = g}
The Lagrangian is
Entu[ﬂ — <?\, Uy f— g>

Fixing A, optimality cond for f is
Vi Ent [f] = ATU; Sk
But we have

Ent,, [f] = u(S) log 25k

df( ) E. [f]
If we let wi =Ai/Ps-[i € S], then
ATU15k)s = 1(S) D jes Wi
Thus, the is
f(S) ox exp((w, 1s))

If we let Z = E [exp((w, Ts))], then
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Note Ent is T-homogeneous, so

Ent,[f] = Enty[exp((w, 15))]/Z
We get that
(A, Ui f) =2 g n(s)f(s)(w, Ts)

The Lagrangian simplifies to

—log(Z) + O\a 9> = k<W, q> —log(Z)

If we reparameterize z; = e™1,

then this is

[Lic
|Og( EI—L(Z) >
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For we
want & Dy (q || kD7) <
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For we
want € Dk (q || pDk—1) <
kqq
sup{log(rhe‘ig;)) z€ [R{;‘O}

> For f(z) = g( {/z)¢/¥, we have
V£(1) = uDy_1 and VZf(1)
cov—C- (dlag(mean) — %meam)

Let h(z) = Ei—up, [Z,C]k/c_ PPl Folklore lemma

1

sup{log(l_[‘a(‘{z)l 1) z € [RT;O}

is achieved at z; = {/qi/(uDx_1)i

and has value & D (q || uDx—1).

Thus C-El is as
gu(z) < h(z)

If y; = z&, this is the same as

gu( )% < (uDyo1,Y)

linear tangent at 1

For a d-homogeneous function f, tfae:

{z] f(z) > 1} convex

V/f is concave

log f is concave
Similarly tfae:

z1f(2) > 1 Sz | (Fhh2) > 1}
V/f bounded by tangent at 1
log f bounded by tangent at 1

717
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\Polgnomiol view of HDX /

Spectral Independence Entropic Independence
Level sets of g, ({/z) locally convex at Level sets of g, ( {/z) bounded by tan-
1. gent at 1.

25 z§
gu =1

Theorem [A-Jain-Koehler-Pham-Vuong’21]
C-spectral independence for all exp tilts = C-entropic independence.
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> When g, ( V/z) is log-concave, we
call it C fractionally log-concave.

> Matroids are C = 1 log-concave.
> For Dx_x_cUx_c_k we have

tmix = O( (&) - log D (vo || W)

(> For matroids, this was proved
before El by [Cryan-Guo-Mousal.

Example: hypercube

> {0, 1" = (2) R
> Glauber becomes %

D tmix = O(Tl |Og T'L)

Example: spanning trees (I)

K — X

> P: drop edge u.a.r, then add
D tmix = O(Tl |Ong)

Example: spanning trees (lI)

K — X

> P: add edge u.a.r, then drop
> tmix = O(mlogn)
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> We will now focus on a O With my = #(k-matchings in G),
deterministic counting method matching polynomial is:

invented by [Barvinok].

pc(z) =mo +miz4+maz? + ...

Running example: matchings > Goal: approximate pg (1)

Goal: matchings. > Note that my, and thus pg{)(O) can
t be computed in nO) time|
not necessarily perfect
kth derivative

> There is FPRAS [Jerrum-Sinclair]. Polynomial interpolation

> Open: design FPTAS For A = O(1), we can multiplicatively
> For A = O(1)-bounded degree approximate pg(1) using
graphs, we know FPTAS (0)

O (logn)
0),... 0
[Bayati-Gamarnik-Katz-Nair-Tetali] PG (0), 'Pe (0

n/17
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> Trick of [Patel-Regts] computes
mo, ..., My in time A poly(n).

> What's special about matchings?

Theorem [Heilmann-Lieb’72]

Zeros/roots of pg are real. In fact
they lie in (—oo, —QAa(1)].

QA1)

> Roots are singularities of logpg.
Derivatives of logpg are
macroscopic observables. Physics:
phase transitions happen at roots.

> General setting for [Barvinok]:

£

zero-free region

5

\

J

A

1
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> Naively this gives n©(lesm),

> General setting for [Barvinok]:
> Trick of [Patel-Regts] computes g [Barvinok]

mo, ..., My in time A poly(n). zero-free region
> What's special about matchings? C \g
Theorem [Heilmann-Lieb’72] K\ .
Zeros/roots of pg are real. In fact \ 1
they lie in (—oo, —QAa(1)].
Qa(1)
—O O0—O g > “Fat” simply connected zero-free
region around 0}1.
> Roots are singularities of logpg. can be any two points

Derivatives of logpg are
macroscopic observables. Physics:
phase transitions happen at roots.

> Approximate p(1) using low-order
derivatives of p at 0. ©

12/17
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& Idea: truncate Taylor of log p:
logp(z) =ap+ajz+...
where k! - ay = % logp(0) isa
funcTtion of pl9)(0),...,p™(0).
by calculus rules
> Complex analysis fact: Taylor

series convergence radius is
distance to nearest singularity.
A

zero of p
> When converging, there is hope
truncation has low error.
> This can only work for disks. Will
generalize to other regions later.

Polynomial interpolation for disks
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\Riemonn mapping /

There is a biholomorphic map between > Apply disk [Barvinok] to p o ). @
any two simply connected regions in C: > Read first k derivatives from

d)71
pl(0),...,p™(0).

~
[\ / > Fine when deg(\) reasonable.

K/ kj Example: matching polynomial
\/

> Regionis C —R¢_, for some r.

. > Start with Mdbius map
> We can also map one interior &(z) = (az+b)/(cz + d)
point to one interior point. > Seta,b,c,d toensure ¢(0) =
> Approximating ¢, we can 0,b(1) =1, d(disk) NR¢_,/ = 0.

truct pol ial h that
construct polynomiclp such tha > Exercise: Taylor approx ¢ and
Y(0) =0,P(1) =1 compose with linear fn to get .
P (disk) C region '

to ensure P (0) = 0,P(1) =1
16/17
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