CS 263: Counting and Sampling

Nima Anari
5 semblat
slides for
Log-Concave Polynomials

Review

Useful settings for local-to-global:

Spectral [A-Liu-OveisGharan]

$$
\chi^{2}\left(v D_{k \rightarrow 1} \| \mu D_{k \rightarrow 1}\right) \leqslant \frac{c \chi^{2}(v \| \mu)}{k}
$$

and similar inequalities for links is called C spectral independence.

Review

Useful settings for local-to-global:

Spectral [A-Liu-OveisGharan]

$$
\chi^{2}\left(\nu D_{k \rightarrow 1} \| \mu D_{k \rightarrow 1}\right) \leqslant \frac{C \chi^{2}(v \| \mu)}{k}
$$

and similar inequalities for links is called C spectral independence.

Entropic [A-Jain-Koehler-Pham-Vuong]

$$
\mathcal{D}_{\mathrm{KL}}\left(v \mathrm{D}_{\mathrm{k} \rightarrow 1} \| \mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right) \leqslant \frac{\mathrm{C} \mathcal{D}_{\mathrm{KL}}(v \| \mu)}{\mathrm{k}}
$$

and similar inequalities for links is called C entropic independence.

Review

Useful settings for local-to-global:

Spectral [A-Liu-OveisGharan]

$$
\chi^{2}\left(v D_{k \rightarrow 1} \| \mu D_{k \rightarrow 1}\right) \leqslant \frac{c \chi^{2}(v \| \mu)}{k}
$$

and similar inequalities for links is called C spectral independence.

Entropic [A-Jain-Koehler-Pham-Vuong]

$$
\mathcal{D}_{\mathrm{KL}}\left(v \mathrm{D}_{\mathrm{k} \rightarrow 1} \| \mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right) \leqslant \frac{\mathrm{C} \mathcal{D}_{\mathrm{KL}}(v \| \mu)}{\mathrm{k}}
$$

and similar inequalities for links is called C entropic independence.

$$
\text { For } D_{k \rightarrow \ell}: \rho \geqslant\binom{ k-\ell}{C} /\binom{k}{c}
$$

Review

Useful settings for local-to-global:

Spectral [A-Liu-OveisGharan]

Correlation matrix

$$
\chi^{2}\left(v D_{k \rightarrow 1} \| \mu D_{k \rightarrow 1}\right) \leqslant \frac{c \chi^{2}(v \| \mu)}{k}
$$

and similar inequalities for links is called C spectral independence.

Entropic [A-Jain-Koehler-Pham-Vuong]

$$
\mathcal{D}_{\mathrm{KL}}\left(v \mathrm{D}_{\mathrm{k} \rightarrow 1} \| \mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right) \leqslant \frac{\mathrm{C} \mathcal{D}_{\mathrm{KL}}(v \| \mu)}{\mathrm{k}}
$$

and similar inequalities for links is called C entropic independence.

$$
\text { For } D_{k \rightarrow \ell}: \rho \geqslant\binom{ k-\ell}{C} /\binom{k}{c}
$$

Review

Useful settings for local-to-global:

Spectral [A-Liu-OveisGharan]

$$
\chi^{2}\left(\nu D_{k \rightarrow 1} \| \mu D_{k \rightarrow 1}\right) \leqslant \frac{c \chi^{2}(v \| \mu)}{k}
$$

and similar inequalities for links is called C spectral independence.

Entropic [A-Jain-Koehler-Pham-Vuong]

$$
\mathcal{D}_{\mathrm{KL}}\left(v \mathrm{D}_{\mathrm{k} \rightarrow 1} \| \mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right) \leqslant \frac{\mathrm{C} \mathcal{D}_{\mathrm{KL}}(v \| \mu)}{\mathrm{k}}
$$

and similar inequalities for links is called C entropic independence.

$$
\text { For } D_{k \rightarrow \ell}: \rho \geqslant\binom{ k-\ell}{C} /\binom{k}{c}
$$

Correlation matrix

The matrix Ψ with entries $\mathbb{P}[j \mid i]-\mathbb{P}[j]$.
$\bigcirc \mathrm{C}$-SI is same as $\lambda_{\max }(\Psi) \leqslant \mathrm{C}$

Review

Useful settings for local-to-global:

Spectral [A-Liu-OveisGharan]

$$
\chi^{2}\left(\nu D_{k \rightarrow 1} \| \mu D_{k \rightarrow 1}\right) \leqslant \frac{c \chi^{2}(v \| \mu)}{k}
$$

and similar inequalities for links is called C spectral independence.

Entropic [A-Jain-Koehler-Pham-Vuong]

$$
\mathcal{D}_{\mathrm{KL}}\left(v \mathrm{D}_{\mathrm{k} \rightarrow 1} \| \mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right) \leqslant \frac{\mathrm{C} \mathcal{D}_{\mathrm{KL}}(v \| \mu)}{\mathrm{k}}
$$

and similar inequalities for links is called C entropic independence.

$$
\text { For } D_{k \rightarrow \ell}: \rho \geqslant\binom{ k-\ell}{C} /\binom{k}{c}
$$

Correlation matrix

The matrix Ψ with entries $\mathbb{P}[j \mid i]-\mathbb{P}[j]$.
$D \mathrm{C}-\mathrm{SI}$ is same as $\lambda_{\max }(\Psi) \leqslant \mathrm{C}$
\bigcirc Also $\operatorname{cov}(\mu) \preceq C \operatorname{diag}(\operatorname{mean}(\mu))$

$$
\text { using }\binom{[n]]}{k} \hookrightarrow\{0,1\}^{n}
$$

Review

Useful settings for local-to-global:

Spectral [A-Liu-OveisGharan]

$$
\chi^{2}\left(\nu D_{k \rightarrow 1} \| \mu D_{k \rightarrow 1}\right) \leqslant \frac{c \chi^{2}(v \| \mu)}{k}
$$

and similar inequalities for links is called C spectral independence.

Entropic [A-Jain-Koehler-Pham-Vuong]

$$
\mathcal{D}_{\mathrm{KL}}\left(v \mathrm{D}_{\mathrm{k} \rightarrow 1} \| \mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right) \leqslant \frac{\mathrm{C} \mathcal{D}_{\mathrm{KL}}(v \| \mu)}{\mathrm{k}}
$$

and similar inequalities for links is called C entropic independence.

$$
\text { For } D_{k \rightarrow \ell}: \rho \geqslant\binom{ k-\ell}{C} /\binom{k}{c}
$$

Correlation matrix

The matrix Ψ with entries $\mathbb{P}[j \mid i]-\mathbb{P}[j]$.
$D \mathrm{C}$-SI is same as $\lambda_{\max }(\Psi) \leqslant \mathrm{C}$
D Also $\operatorname{cov}(\mu) \preceq C \operatorname{diag}($ mean $(\mu))$ using $\binom{[n]}{k} \hookrightarrow\{0,1\}^{n}$

- Matroids of rank 2 are 1-SI.

Review

Useful settings for local-to-global:

Spectral [A-Liu-OveisGharan]

$$
\chi^{2}\left(\nu D_{k \rightarrow 1} \| \mu D_{k \rightarrow 1}\right) \leqslant \frac{c \chi^{2}(v \| \mu)}{k}
$$

and similar inequalities for links is called C spectral independence.

Entropic [A-Jain-Koehler-Pham-Vuong]

$$
\mathcal{D}_{\mathrm{KL}}\left(v \mathrm{D}_{\mathrm{k} \rightarrow 1} \| \mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right) \leqslant \frac{\mathrm{C} \mathcal{D}_{\mathrm{KL}}(v \| \mu)}{\mathrm{k}}
$$

and similar inequalities for links is called C entropic independence.

$$
\text { For } D_{k \rightarrow \ell}: \rho \geqslant\binom{ k-\ell}{C} /\binom{k}{C}
$$

Correlation matrix

The matrix Ψ with entries $\mathbb{P}[j \mid i]-\mathbb{P}[j]$.
$D \mathrm{C}$-SI is same as $\lambda_{\max }(\Psi) \leqslant \mathrm{C}$
D Also $\operatorname{cov}(\mu) \preceq C \operatorname{diag}($ mean $(\mu))$ using $\binom{[n]}{k} \hookrightarrow\{0,1\}^{n}$

- Matroids of rank 2 are 1-SI.

D If links $\mu_{\{i\}}$ are SI , so is μ_{\leftarrow} usually worse

Review

Useful settings for local-to-global:

Spectral [A-Liu-OveisGharan]

$$
\chi^{2}\left(\nu D_{k \rightarrow 1} \| \mu D_{k \rightarrow 1}\right) \leqslant \frac{c \chi^{2}(v \| \mu)}{k}
$$

and similar inequalities for links is called C spectral independence.

Entropic [A-Jain-Koehler-Pham-Vuong]

$$
\mathcal{D}_{\mathrm{KL}}\left(v \mathrm{D}_{\mathrm{k} \rightarrow 1} \| \mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right) \leqslant \frac{\mathrm{C} \mathcal{D}_{\mathrm{KL}}(v \| \mu)}{\mathrm{k}}
$$

and similar inequalities for links is called C entropic independence.

$$
\text { For } D_{k \rightarrow \ell}: \rho \geqslant\binom{ k-\ell}{C} /\binom{k}{C}
$$

Correlation matrix

The matrix Ψ with entries $\mathbb{P}[j \mid i]-\mathbb{P}[j]$.
$D \mathrm{C}$-SI is same as $\lambda_{\max }(\Psi) \leqslant \mathrm{C}$
D Also $\operatorname{cov}(\mu) \preceq C \operatorname{diag}(\operatorname{mean}(\mu))$

$$
\text { using }\binom{[n]}{k} \hookrightarrow\{0,1\}^{n}
$$

- Matroids of rank 2 are 1-SI.

D If links $\mu_{\{i\}}$ are SI , so is μ_{\leftarrow} usually worse

Special case of trickle-down

If $k \geqslant 3$ and links $\mu_{\{i\}}$ are $1-\mathrm{SI}$, then μ is either $1-\mathrm{SI}$, or $\lambda_{2}\left(\mathrm{U}_{1 \rightarrow \mathrm{k}} \mathrm{D}_{\mathrm{k} \rightarrow 1}\right)=1$.

Trickle Down

D Simplicial localization

- Covariance evolution

D Linear tilts

Log-Concave Polynomials

\bigcirc Generating polynomials
D Exponential tilts
\checkmark Entropic independence

Trickle Down

- Simplicial localization
- Covariance evolution

D Linear tilts

Log-Concave Polynomials

\bigcirc Generating polynomials
D Exponential tilts

- Entropic independence

Simplicial localization

Simplicial localization

\triangle Imagine μ is on $\left(\begin{array}{c}{\left[\begin{array}{c}n] \\ k\end{array}\right)} \\ \hline\end{array}\{0,1\}^{n}\right.$.

Simplicial localization

D Imagine μ is on $\binom{[n]}{k} \hookrightarrow\{0,1\}^{n}$.
\triangle Denote $p_{i}=\mathbb{P}_{S \sim \mu}[i \in S]$. Let us choose $i \sim \mu D_{k \rightarrow 1}=p / k$.

Simplicial localization

D Imagine μ is on $\binom{[\mathrm{n}]}{k} \hookrightarrow\{0,1\}^{n}$.
D Denote $p_{i}=\mathbb{P}_{S \sim \mu}[i \in S]$. Let us choose $i \sim \mu D_{k \rightarrow 1}=p / k$.
\bigcirc Let γ be the conditional on $\{i\}$:
a random measure

$$
v(x)=\frac{x_{i}}{p_{i}} \mu(x)
$$

Simplicial localization

D Imagine μ is on $\binom{[\mathrm{n}]}{k} \hookrightarrow\{0,1\}^{n}$.
D Denote $p_{i}=\mathbb{P}_{S \sim \mu}[i \in S]$. Let us choose $i \sim \mu D_{k \rightarrow 1}=p / k$.
D Let γ be the conditional on $\{i\}$:
a random measure

$$
v(x)=\frac{x_{i}}{p_{i}} \mu(x)
$$

\bigcirc Note that $\mu=\mathbb{E}_{i}[v]$. This is a decomposition of measure.

Simplicial localization

D Imagine μ is on $\binom{[n]}{k} \hookrightarrow\{0,1\}^{n}$.
D Denote $p_{i}=\mathbb{P}_{S \sim \mu}[i \in S]$. Let us choose $i \sim \mu D_{k \rightarrow 1}=p / k$.
D Let γ be the conditional on $\{i\}$:
a random measure

$$
v(x)=\frac{x_{i}}{p_{i}} \mu(x)
$$

\bigcirc Note that $\mu=\mathbb{E}_{i}[v]$. This is a decomposition of measure.
D Continuing this we get a measure-valued random process: \leftarrow martingale

Simplicial localization

D Imagine μ is on $\binom{[n]}{k} \hookrightarrow\{0,1\}^{n}$.
D Denote $p_{i}=\mathbb{P}_{S \sim \mu}[i \in S]$. Let us choose $i \sim \mu D_{k \rightarrow 1}=p / k$.
D Let γ be the conditional on $\{i\}$:
a random measure

$$
v(x)=\frac{x_{i}}{p_{i}} \mu(x) .
$$

\bigcirc Note that $\mu=\mathbb{E}_{\mathfrak{i}}[v]$. This is a decomposition of measure.
D Continuing this we get a measure-valued random process: \leftarrow martingale

Simplicial localization

Let $S \sim \mu$, and let e_{1}, \ldots, e_{k} be a u.r. permutation of
S. Define v_{i} as conditional of μ on $\left\{e_{1}, \ldots, e_{i}\right\}$. Then

$$
\mu=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{k}
$$

is called simplicial localization \longleftarrow we used this for local-to-global

Covariance evolution

D First step: $\mu \rightarrow \nu$. We know mean $(\mu)=\mathbb{E}[$ mean $(v)]$. What about $\operatorname{cov}(\mu)$?

Covariance evolution

D First step: $\mu \rightarrow v$. We know mean $(\mu)=\mathbb{E}[$ mean $(v)]$. What about $\operatorname{cov}(\mu)$?
$D v$ is a linear tilt of μ. For random vector $w=\mathbb{1}_{\mathfrak{i}} / p_{i}-\mathbb{1} / \mathrm{k}: \longleftarrow$ note $\mathbb{E}[w]=0$
[Chen-Eldan]

$$
v(x)=\underbrace{(1+\langle w, x-\operatorname{mean}(\mu)\rangle)}_{\text {linear tilt }} \mu(x)
$$

Covariance evolution

D First step: $\mu \rightarrow v$. We know mean $(\mu)=\mathbb{E}[$ mean $(v)]$. What about $\operatorname{cov}(\mu)$?
$D v$ is a linear tilt of μ. For random vector $w=\mathbb{1}_{\mathfrak{i}} / p_{i}-\mathbb{1} / \mathrm{k}: \longleftarrow$ note $\mathbb{E}[w]=0$
[Chen-Eldan]

$$
v(x)=\underbrace{(1+\langle w, x-\operatorname{mean}(\mu)\rangle)}_{\text {linear tilt }} \mu(x)
$$

Lemma [A-Koehler-Vuong]

$$
\operatorname{cov}(\mu)=\mathbb{E}[\operatorname{cov}(v)]+\operatorname{cov}(\mu) \operatorname{cov}(w) \operatorname{cov}(\mu)
$$

Covariance evolution

D First step: $\mu \rightarrow \nu$. We know mean $(\mu)=\mathbb{E}[$ mean $(\nu)]$. What about $\operatorname{cov}(\mu)$?
$D v$ is a linear tilt of μ. For random vector $w=\mathbb{1}_{\mathfrak{i}} / p_{i}-\mathbb{1} / \mathrm{k}: \longleftarrow$ note $\mathbb{E}[w]=0$

$$
\nu(x)=\underbrace{(1+\langle w, x-\operatorname{mean}(\mu)\rangle)}_{\text {linear tilt }} \mu(x)
$$

Lemma [A-Koehler-Vuong]

$$
\operatorname{cov}(\mu)=\mathbb{E}[\operatorname{cov}(v)]+\operatorname{cov}(\mu) \operatorname{cov}(w) \operatorname{cov}(\mu)
$$

Proof:

Covariance evolution

D First step: $\mu \rightarrow \nu$. We know mean $(\mu)=\mathbb{E}[$ mean $(\nu)]$. What about $\operatorname{cov}(\mu)$?
$D v$ is a linear tilt of μ. For random vector $w=\mathbb{1}_{\mathfrak{i}} / p_{i}-\mathbb{1} / \mathrm{k}: \longleftarrow$ note $\mathbb{E}[w]=0$
[Chen-Eldan]

$$
\nu(x)=\underbrace{(1+\langle w, x-\operatorname{mean}(\mu)\rangle)}_{\text {linear tilt }} \mu(x)
$$

Lemma [A-Koehler-Vuong]

$$
\operatorname{cov}(\mu)=\mathbb{E}[\operatorname{cov}(v)]+\operatorname{cov}(\mu) \operatorname{cov}(w) \operatorname{cov}(\mu)
$$

Proof:
D We have $\operatorname{cov}(\mu)-\mathbb{E}[\operatorname{cov}(v)]=\mathbb{E}\left[\right.$ mean (v) mean $\left.(v)^{\top}\right]-\operatorname{mean}(\mu)$ mean $(\mu)^{\top}$.

Covariance evolution

D First step: $\mu \rightarrow v$. We know mean $(\mu)=\mathbb{E}[$ mean $(v)]$. What about $\operatorname{cov}(\mu)$?
$D v$ is a linear tilt of μ. For random vector $w=\mathbb{1}_{\mathfrak{i}} / p_{i}-\mathbb{1} / \mathrm{k}: \longleftarrow$ note $\mathbb{E}[w]=0$
[Chen-Eldan]

$$
v(x)=\underbrace{(1+\langle w, x-\operatorname{mean}(\mu)\rangle)}_{\text {linear tilt }} \mu(x)
$$

Lemma [A-Koehler-Vuong]

$$
\operatorname{cov}(\mu)=\mathbb{E}[\operatorname{cov}(v)]+\operatorname{cov}(\mu) \operatorname{cov}(w) \operatorname{cov}(\mu)
$$

Proof:
D We have $\operatorname{cov}(\mu)-\mathbb{E}[\operatorname{cov}(v)]=\mathbb{E}\left[\right.$ mean (v) mean $\left.(v)^{\top}\right]-\operatorname{mean}(\mu)$ mean $(\mu)^{\top}$.
\bigcirc We have mean $(v)=\sum_{x}(1+\langle w, x-\operatorname{mean}(\mu)\rangle) \mu(x) \cdot x=$

$$
\operatorname{mean}(\mu)+\mathbb{E}_{\mu}[x \cdot\langle x-\operatorname{mean}(\mu), w\rangle]=\operatorname{mean}(\mu)+\operatorname{cov}(\mu) w .
$$

Covariance evolution

D First step: $\mu \rightarrow v$. We know mean $(\mu)=\mathbb{E}[$ mean $(v)]$. What about $\operatorname{cov}(\mu)$?
$D v$ is a linear tilt of μ. For random vector $w=\mathbb{1}_{\mathfrak{i}} / p_{i}-\mathbb{1} / k: \longleftarrow$ note $\mathbb{E}[w]=0$
[Chen-Eldan]

$$
\nu(x)=\underbrace{(1+\langle w, x-\operatorname{mean}(\mu)\rangle)}_{\text {linear tilt }} \mu(x)
$$

Lemma [A-Koehler-Vuong]

$$
\operatorname{cov}(\mu)=\mathbb{E}[\operatorname{cov}(v)]+\operatorname{cov}(\mu) \operatorname{cov}(w) \operatorname{cov}(\mu)
$$

Proof:
D We have $\operatorname{cov}(\mu)-\mathbb{E}[\operatorname{cov}(v)]=\mathbb{E}\left[\right.$ mean (v) mean $\left.(v)^{\top}\right]-\operatorname{mean}(\mu)$ mean $(\mu)^{\top}$.
D We have mean $(v)=\sum_{x}(1+\langle w, x-\operatorname{mean}(\mu)\rangle) \mu(x) \cdot x=$

$$
\operatorname{mean}(\mu)+\mathbb{E}_{\mu}[x \cdot\langle x-\operatorname{mean}(\mu), w\rangle]=\operatorname{mean}(\mu)+\operatorname{cov}(\mu) w .
$$

D So $\mathbb{E}_{i}\left[\right.$ mean (v) mean $\left.(v)^{\top}\right]$ is mean (μ) mean $(\mu)^{\top}+\operatorname{cov}(\mu) \operatorname{cov}(w) \operatorname{cov}(\mu)$.

Now we attempt to prove trickle down: \longleftarrow will need to refine

Now we attempt to prove trickle down: \longleftarrow will need to refine
\bigcirc For our choice of w, we have

$$
\operatorname{cov}(w)=\mathbb{E}_{i}\left[\mathbb{1}_{i} \mathbb{1}_{i}^{\top} / p_{i}^{2}\right]-\mathbb{1}^{\top} / k^{2}=\operatorname{diag}(\operatorname{mean}(\mu))^{-1} / k-\mathbb{1} \mathbb{1}^{\top} / k^{2}
$$

Now we attempt to prove trickle down: \longleftarrow will need to refine
\checkmark For our choice of w, we have

$$
\operatorname{cov}(w)=\mathbb{E}_{i}\left[\mathbb{1}_{i} \mathbb{1}_{i}^{\top} / p_{i}^{2}\right]-\mathbb{1} \mathbb{1}^{\top} / k^{2}=\operatorname{diag}(\operatorname{mean}(\mu))^{-1} / k-\mathbb{1} \mathbb{1}^{\top} / k^{2}
$$

\bigcirc We can ignore $\mathbb{1}^{\top} / k^{2}$, since $\operatorname{cov}(\mu) \mathbb{1}=0$. If $\Pi=\operatorname{diag}(\operatorname{mean}(\mu))$, then

$$
\operatorname{cov}(\mu)=\mathbb{E}[\operatorname{cov}(v)]+\frac{1}{k} \operatorname{cov}(\mu) \Pi^{-1} \operatorname{cov}(\mu)
$$

$D v$ is a conditional. If v^{\prime} is the link, then

$$
\operatorname{cov}(v)=\operatorname{cov}\left(v^{\prime}\right) \text { and mean }(v)=\mathbb{1}_{i}+\operatorname{mean}\left(v^{\prime}\right)
$$

Now we attempt to prove trickle down: \longleftarrow will need to refine
\checkmark For our choice of w, we have

$$
\operatorname{cov}(w)=\mathbb{E}_{i}\left[\mathbb{1}_{i} \mathbb{1}_{i}^{\top} / p_{i}^{2}\right]-\mathbb{1}^{\top} / k^{2}=\operatorname{diag}(\operatorname{mean}(\mu))^{-1} / k-\mathbb{1} \mathbb{1}^{\top} / k^{2}
$$

\bigcirc We can ignore $\mathbb{1}^{\top} / k^{2}$, since $\operatorname{cov}(\mu) \mathbb{1}=0$. If $\Pi=\operatorname{diag}(\operatorname{mean}(\mu))$, then

$$
\operatorname{cov}(\mu)=\mathbb{E}[\operatorname{cov}(v)]+\frac{1}{k} \operatorname{cov}(\mu) \Pi^{-1} \operatorname{cov}(\mu)
$$

$D v$ is a conditional. If v^{\prime} is the link, then

$$
\operatorname{cov}(v)=\operatorname{cov}\left(v^{\prime}\right) \text { and mean }(v)=\mathbb{1}_{i}+\operatorname{mean}\left(v^{\prime}\right)
$$

\bigcirc By assumption $\operatorname{cov}\left(\nu^{\prime}\right) \preceq C \operatorname{diag}\left(\right.$ mean $\left.\left(\nu^{\prime}\right)\right)$, so we get $\operatorname{cov}(\mu) \preceq$
$C \cdot \mathbb{E}\left[\operatorname{diag}\left(\operatorname{mean}(v)-\mathbb{1}_{i}\right)\right]+\frac{1}{k} \operatorname{cov}(\mu) \Pi^{-1} \operatorname{cov}(\mu)=\frac{C(k-1)}{k} \Pi+\frac{1}{k} \operatorname{cov}(\mu) \Pi^{-1} \operatorname{cov}(\mu)$

Now we attempt to prove trickle down: \longleftarrow will need to refine
\checkmark For our choice of w, we have

$$
\operatorname{cov}(w)=\mathbb{E}_{i}\left[\mathbb{1}_{i} \mathbb{1}_{i}^{\top} / p_{i}^{2}\right]-\mathbb{1}^{\top} / k^{2}=\operatorname{diag}(\operatorname{mean}(\mu))^{-1} / k-\mathbb{1} \mathbb{1}^{\top} / k^{2}
$$

\bigcirc We can ignore $\mathbb{1}^{\top} / k^{2}$, since $\operatorname{cov}(\mu) \mathbb{1}=0$. If $\Pi=\operatorname{diag}(\operatorname{mean}(\mu))$, then

$$
\operatorname{cov}(\mu)=\mathbb{E}[\operatorname{cov}(v)]+\frac{1}{k} \operatorname{cov}(\mu) \Pi^{-1} \operatorname{cov}(\mu)
$$

D v is a conditional. If v^{\prime} is the link, then

$$
\operatorname{cov}(v)=\operatorname{cov}\left(v^{\prime}\right) \text { and mean }(v)=\mathbb{1}_{i}+\operatorname{mean}\left(v^{\prime}\right)
$$

\bigcirc By assumption $\operatorname{cov}\left(\nu^{\prime}\right) \preceq C \operatorname{diag}\left(\right.$ mean $\left.\left(\nu^{\prime}\right)\right)$, so we get $\operatorname{cov}(\mu) \preceq$
$C \cdot \mathbb{E}\left[\operatorname{diag}\left(\operatorname{mean}(v)-\mathbb{1}_{i}\right)\right]+\frac{1}{k} \operatorname{cov}(\mu) \Pi^{-1} \operatorname{cov}(\mu)=\frac{C(k-1)}{k} \Pi+\frac{1}{k} \operatorname{cov}(\mu) \Pi^{-1} \operatorname{cov}(\mu)$
D If we let $X=\Pi^{-1 / 2} \operatorname{cov}(\mu) \Pi^{-1 / 2}$, this simplifies to

$$
X \preceq \frac{C(k-1)}{k} I+\frac{1}{k} X^{2}
$$

Now we attempt to prove trickle down: \longleftarrow will need to refine
\checkmark For our choice of w, we have

$$
\operatorname{cov}(w)=\mathbb{E}_{i}\left[\mathbb{1}_{i} \mathbb{1}_{i}^{\top} / p_{i}^{2}\right]-\mathbb{1}^{\top} / k^{2}=\operatorname{diag}(\operatorname{mean}(\mu))^{-1} / k-\mathbb{1} \mathbb{1}^{\top} / k^{2}
$$

\bigcirc We can ignore $\mathbb{1}^{\top} / k^{2}$, since $\operatorname{cov}(\mu) \mathbb{1}=0$. If $\Pi=\operatorname{diag}(\operatorname{mean}(\mu))$, then

$$
\operatorname{cov}(\mu)=\mathbb{E}[\operatorname{cov}(v)]+\frac{1}{k} \operatorname{cov}(\mu) \Pi^{-1} \operatorname{cov}(\mu)
$$

$D v$ is a conditional. If v^{\prime} is the link, then

$$
\operatorname{cov}(v)=\operatorname{cov}\left(v^{\prime}\right) \text { and mean }(v)=\mathbb{1}_{i}+\operatorname{mean}\left(v^{\prime}\right)
$$

\bigcirc By assumption $\operatorname{cov}\left(\nu^{\prime}\right) \preceq C \operatorname{diag}\left(\right.$ mean $\left.\left(\nu^{\prime}\right)\right)$, so we get $\operatorname{cov}(\mu) \preceq$
$C \cdot \mathbb{E}\left[\operatorname{diag}\left(\operatorname{mean}(v)-\mathbb{1}_{i}\right)\right]+\frac{1}{k} \operatorname{cov}(\mu) \Pi^{-1} \operatorname{cov}(\mu)=\frac{C(k-1)}{k} \Pi+\frac{1}{k} \operatorname{cov}(\mu) \Pi^{-1} \operatorname{cov}(\mu)$
D If we let $X=\Pi^{-1 / 2} \operatorname{cov}(\mu) \Pi^{-1 / 2}$, this simplifies to

$$
X \preceq \frac{C(k-1)}{k} I+\frac{1}{k} X^{2}
$$

\bigcirc Same inequality must be satisfied by all eigs of X. We want $\lambda_{\max }(X)$!

Now we attempt to prove trickle down: \longleftarrow will need to refine
\checkmark For our choice of w, we have

$$
\operatorname{cov}(w)=\mathbb{E}_{i}\left[\mathbb{1}_{i} \mathbb{1}_{i}^{\top} / p_{i}^{2}\right]-\mathbb{1}^{\top} / k^{2}=\operatorname{diag}(\operatorname{mean}(\mu))^{-1} / k-\mathbb{1} \mathbb{1}^{\top} / k^{2}
$$

\bigcirc We can ignore $\mathbb{1} \mathbb{1}^{\top} / k^{2}$, since $\operatorname{cov}(\mu) \mathbb{1}=0$. If $\Pi=\operatorname{diag}($ mean $(\mu))$, then

$$
\operatorname{cov}(\mu)=\mathbb{E}[\operatorname{cov}(v)]+\frac{1}{k} \operatorname{cov}(\mu) \Pi^{-1} \operatorname{cov}(\mu)
$$

$D v$ is a conditional. If v^{\prime} is the link, then

$$
\operatorname{cov}(v)=\operatorname{cov}\left(v^{\prime}\right) \text { and mean }(v)=\mathbb{1}_{\mathfrak{i}}+\operatorname{mean}\left(v^{\prime}\right)
$$

\bigcirc By assumption $\operatorname{cov}\left(\nu^{\prime}\right) \preceq C \operatorname{diag}\left(\right.$ mean $\left.\left(\nu^{\prime}\right)\right)$, so we get $\operatorname{cov}(\mu) \preceq$
$C \cdot \mathbb{E}\left[\operatorname{diag}\left(\operatorname{mean}(v)-\mathbb{1}_{i}\right)\right]+\frac{1}{k} \operatorname{cov}(\mu) \Pi^{-1} \operatorname{cov}(\mu)=\frac{C(k-1)}{k} \Pi+\frac{1}{k} \operatorname{cov}(\mu) \Pi^{-1} \operatorname{cov}(\mu)$
D If we let $X=\Pi^{-1 / 2} \operatorname{cov}(\mu) \Pi^{-1 / 2}$, this simplifies to

$$
X \preceq \frac{C(k-1)}{k} I+\frac{1}{k} X^{2}
$$

D Same inequality must be satisfied by all eigs of X. We want $\lambda_{\max }(X)$!

D Refinement: the ineq $\operatorname{cov}(\mu) \preceq C \cdot \operatorname{diag}(\operatorname{mean}(\mu))$ is never tight. This ineq implies the tighter one:

$$
\operatorname{cov}(\mu) \preceq \mathrm{C} \cdot\left(\operatorname{diag}(\operatorname{mean}(\mu))-\frac{1}{\mathrm{k}} \operatorname{mean}(\mu) \operatorname{mean}(\mu)^{\top}\right)
$$

D Refinement: the ineq $\operatorname{cov}(\mu) \preceq C \cdot \operatorname{diag}(\operatorname{mean}(\mu))$ is never tight. This ineq implies the tighter one:

$$
\operatorname{cov}(\mu) \preceq C \cdot\left(\operatorname{diag}(\operatorname{mean}(\mu))-\frac{1}{k} \operatorname{mean}(\mu) \text { mean }(\mu)^{\top}\right)
$$

\bigcirc Plugging this in for the link v^{\prime} we get $\operatorname{cov}(\mu) \preceq$

$$
\mathbb{E}\left[\operatorname{diag}\left(\operatorname{mean}\left(\mu_{\mathfrak{i}}\right)-\mathbb{1}_{\mathfrak{i}}\right)-\frac{\left(\operatorname{mean}(v)-\mathbb{1}_{\mathfrak{i}}\right)\left(\operatorname{mean}(v)-\mathbb{1}_{\mathfrak{i}}\right)^{\top}}{k-1}\right]+\frac{\operatorname{cov}(\mu) \Pi^{-1} \operatorname{cov}(\mu)}{k}
$$

D Refinement: the ineq $\operatorname{cov}(\mu) \preceq C \cdot \operatorname{diag}(\operatorname{mean}(\mu))$ is never tight. This ineq implies the tighter one:

$$
\operatorname{cov}(\mu) \preceq C \cdot\left(\operatorname{diag}(\operatorname{mean}(\mu))-\frac{1}{k} \operatorname{mean}(\mu) \text { mean }(\mu)^{\top}\right)
$$

\bigcirc Plugging this in for the link v^{\prime} we get $\operatorname{cov}(\mu) \preceq$

$$
\mathbb{E}\left[\operatorname{diag}\left(\operatorname{mean}\left(\mu_{\mathfrak{i}}\right)-\mathbb{1}_{\mathfrak{i}}\right)-\frac{\left(\operatorname{mean}(v)-\mathbb{1}_{\mathfrak{i}}\right)\left(\operatorname{mean}(v)-\mathbb{1}_{\mathfrak{i}}\right)^{\top}}{k-1}\right]+\frac{\operatorname{cov}(\mu) \Pi^{-1} \operatorname{cov}(\mu)}{k}
$$

\bigcirc Expanding this and using $X=\Pi^{-1 / 2} \operatorname{cov}(\mu) \Pi^{-1 / 2}$ gives refined ineq:

$$
X \preceq C \cdot\left(\frac{k-2}{k-1} \cdot I+\frac{2}{k(k-1)} \cdot X-\frac{1}{k(k-1)} \cdot X^{2}\right)+\frac{1}{k} X^{2}
$$

D Refinement: the ineq $\operatorname{cov}(\mu) \preceq C \cdot \operatorname{diag}(\operatorname{mean}(\mu))$ is never tight. This ineq implies the tighter one:

$$
\operatorname{cov}(\mu) \preceq C \cdot\left(\operatorname{diag}(\operatorname{mean}(\mu))-\frac{1}{k} \operatorname{mean}(\mu) \text { mean }(\mu)^{\top}\right)
$$

\bigcirc Plugging this in for the link v^{\prime} we get $\operatorname{cov}(\mu) \preceq$

$$
\mathbb{E}\left[\operatorname{diag}\left(\operatorname{mean}\left(\mu_{\mathfrak{i}}\right)-\mathbb{1}_{\mathfrak{i}}\right)-\frac{\left(\operatorname{mean}(v)-\mathbb{1}_{\mathfrak{i}}\right)\left(\operatorname{mean}(v)-\mathbb{1}_{\mathfrak{i}}\right)^{\top}}{k-1}\right]+\frac{\operatorname{cov}(\mu) \Pi^{-1} \operatorname{cov}(\mu)}{k}
$$

D Expanding this and using $X=\Pi^{-1 / 2} \operatorname{cov}(\mu) \Pi^{-1 / 2}$ gives refined ineq:

$$
X \preceq C \cdot\left(\frac{k-2}{k-1} \cdot I+\frac{2}{k(k-1)} \cdot X-\frac{1}{k(k-1)} \cdot X^{2}\right)+\frac{1}{k} X^{2}
$$

D The scalar version of this ineq has solutions $[k, \infty)$ and $\left(-\infty, C^{\prime}\right]$, where

$$
C^{\prime}=\frac{k-2}{k-1-C} \cdot C
$$

D Refinement: the ineq $\operatorname{cov}(\mu) \preceq C \cdot \operatorname{diag}(\operatorname{mean}(\mu))$ is never tight. This ineq implies the tighter one:

$$
\operatorname{cov}(\mu) \preceq C \cdot\left(\operatorname{diag}(\operatorname{mean}(\mu))-\frac{1}{k} \operatorname{mean}(\mu) \text { mean }(\mu)^{\top}\right)
$$

\bigcirc Plugging this in for the link v^{\prime} we get $\operatorname{cov}(\mu) \preceq$

$$
\mathbb{E}\left[\operatorname{diag}\left(\operatorname{mean}\left(\mu_{i}\right)-\mathbb{1}_{\mathfrak{i}}\right)-\frac{\left(\operatorname{mean}(v)-\mathbb{1}_{\mathfrak{i}}\right)\left(\operatorname{mean}(v)-\mathbb{1}_{\mathfrak{i}}\right)^{\top}}{k-1}\right]+\frac{\operatorname{cov}(\mu) \Pi^{-1} \operatorname{cov}(\mu)}{k}
$$

D Expanding this and using $X=\Pi^{-1 / 2} \operatorname{cov}(\mu) \Pi^{-1 / 2}$ gives refined ineq:

$$
X \preceq C \cdot\left(\frac{k-2}{k-1} \cdot I+\frac{2}{k(k-1)} \cdot X-\frac{1}{k(k-1)} \cdot X^{2}\right)+\frac{1}{k} X^{2}
$$

D The scalar version of this ineq has solutions $[k, \infty)$ and $\left(-\infty, C^{\prime}\right]$, where

$$
C^{\prime}=\frac{k-2}{k-1-C} \cdot C
$$

D $\mathrm{C}=1$ implies $\mathrm{C}^{\prime}=1 ;$ while $\mathrm{C}>1$ implies $\mathrm{C}^{\prime}>\mathrm{C}:$
D Refinement: the ineq $\operatorname{cov}(\mu) \preceq C \cdot \operatorname{diag}(\operatorname{mean}(\mu))$ is never tight. This ineq implies the tighter one:

$$
\operatorname{cov}(\mu) \preceq C \cdot\left(\operatorname{diag}(\operatorname{mean}(\mu))-\frac{1}{k} \operatorname{mean}(\mu) \operatorname{mean}(\mu)^{\top}\right)
$$

\bigcirc Plugging this in for the link v^{\prime} we get $\operatorname{cov}(\mu) \preceq$

$$
\mathbb{E}\left[\operatorname{diag}\left(\operatorname{mean}\left(\mu_{\mathfrak{i}}\right)-\mathbb{1}_{\mathfrak{i}}\right)-\frac{\left(\operatorname{mean}(v)-\mathbb{1}_{\mathfrak{i}}\right)\left(\operatorname{mean}(v)-\mathbb{1}_{\mathfrak{i}}\right)^{\top}}{k-1}\right]+\frac{\operatorname{cov}(\mu) \Pi^{-1} \operatorname{cov}(\mu)}{k}
$$

D Expanding this and using $X=\Pi^{-1 / 2} \operatorname{cov}(\mu) \Pi^{-1 / 2}$ gives refined ineq:

$$
X \preceq C \cdot\left(\frac{k-2}{k-1} \cdot I+\frac{2}{k(k-1)} \cdot X-\frac{1}{k(k-1)} \cdot X^{2}\right)+\frac{1}{k} X^{2}
$$

\bigcirc The scalar version of this ineq has solutions $[k, \infty)$ and $\left(-\infty, C^{\prime}\right]$, where

$$
C^{\prime}=\frac{k-2}{k-1-C} \cdot C
$$

D $C=1$ implies $C^{\prime}=1 ;$ while $C>1$ implies $C^{\prime}>C:$
\checkmark Matroids are 1 spectrally independent $:$

Trickle Down

- Simplicial localization
- Covariance evolution

D Linear tilts

Log-Concave Polynomials

\bigcirc Generating polynomials
D Exponential tilts

- Entropic independence

Trickle Down

D Simplicial localization

- Covariance evolution

D Linear tilts

Log-Concave Polynomials

\bigcirc Generating polynomials
D Exponential tilts
D Entropic independence

Generating polynomial

Distribution

Weighted hypergraph:

$$
\mu:\binom{[n]}{k} \rightarrow \mathbb{R}_{\geqslant 0}
$$

Generating polynomial

Distribution

Weighted hypergraph:

$$
\mu:\binom{[n]}{k} \rightarrow \mathbb{R}_{\geqslant 0}
$$

Polynomial
Enodes μ in coefficients:

$$
g_{\mu}\left(z_{1}, \ldots, z_{n}\right)=\sum_{S} \mu(S) \prod_{i \in S} z_{i}
$$

Generating polynomial

Distribution

Weighted hypergraph:

$$
\mu:\binom{[n]}{k} \rightarrow \mathbb{R}_{\geqslant 0}
$$

D Links become derivatives.

Polynomial

Enodes μ in coefficients:

$$
g_{\mu}\left(z_{1}, \ldots, z_{n}\right)=\sum_{S} \mu(S) \prod_{i \in S} z_{i}
$$

Generating polynomial

Distribution

Weighted hypergraph:

$$
\mu:\binom{[n]}{k} \rightarrow \mathbb{R}_{\geqslant 0}
$$

Polynomial

Enodes μ in coefficients:

$$
g_{\mu}\left(z_{1}, \ldots, z_{n}\right)=\sum_{S} \mu(S) \prod_{i \in S} z_{i}
$$

D Links become derivatives.
\checkmark 1-spectral independence becomes $\lambda_{2}\left(\nabla^{2} g_{\mu}(\mathbb{1})\right) \leqslant 0$. Non-lazy walk $\frac{k}{k-1}\left(U_{1 \rightarrow k} D_{k \rightarrow 1}-\frac{1}{k} I\right)$ is random walk on graph with weights

$$
\left(\nabla^{2} g_{\mu}(\mathbb{1})\right)_{i j} \propto \mathbb{1}[i \neq j] \cdot \mathbb{P}_{S \sim \mu}[i, j \in S]
$$

Generating polynomial

Distribution

Weighted hypergraph:

$$
\mu:\binom{[n]}{k} \rightarrow \mathbb{R}_{\geqslant 0}
$$

Polynomial

Enodes μ in coefficients:

$$
g_{\mu}\left(z_{1}, \ldots, z_{n}\right)=\sum_{S} \mu(S) \prod_{i \in S} z_{i} .
$$

\checkmark Links become derivatives.
\checkmark 1-spectral independence becomes $\lambda_{2}\left(\nabla^{2} g_{\mu}(\mathbb{1})\right) \leqslant 0$. Non-lazy walk $\frac{k}{k-1}\left(U_{1 \rightarrow k} D_{k \rightarrow 1}-\frac{1}{k} I\right)$ is random walk on graph with weights

$$
\left(\nabla^{2} g_{\mu}(\mathbb{1})\right)_{i j} \propto \mathbb{1}[i \neq j] \cdot \mathbb{P}_{S \sim \mu}[i, j \in S]
$$

D We have $\lambda_{2}\left(\nabla^{2} g_{\mu}(z)\right) \leqslant 0$ iff $\nabla^{2} \log g_{\mu}(z) \preceq 0 \longleftarrow \longleftarrow$ log-concavity

Generating polynomial

Distribution

Weighted hypergraph:

$$
\mu:\binom{[n]}{k} \rightarrow \mathbb{R}_{\geqslant 0}
$$

Polynomial

Enodes μ in coefficients:

$$
g_{\mu}\left(z_{1}, \ldots, z_{n}\right)=\sum_{S} \mu(S) \prod_{i \in S} z_{i} .
$$

D Links become derivatives.
\checkmark 1-spectral independence becomes $\lambda_{2}\left(\nabla^{2} g_{\mu}(\mathbb{1})\right) \leqslant 0$. Non-lazy walk $\frac{k}{k-1}\left(U_{1 \rightarrow k} D_{k \rightarrow 1}-\frac{1}{k} I\right)$ is random walk on graph with weights

$$
\left(\nabla^{2} g_{\mu}(\mathbb{1})\right)_{i j} \propto \mathbb{1}[i \neq j] \cdot \mathbb{P}_{S \sim \mu}[i, j \in S]
$$

\bigcirc We have $\lambda_{2}\left(\nabla^{2} g_{\mu}(z)\right) \leqslant 0$ iff $\nabla^{2} \log g_{\mu}(z) \preceq 0 \longleftarrow$ log-concavity
D If deg $=2$ derivatives h are log-concave at $\mathbb{1}$, and links are connected, then g_{μ} is log-concave at $\underset{\uparrow}{1}$. [Oppenheim, A-Liu-OveisGharan-Vinzant, Brändén-Huh]

Exponential tilt/external field

Exponential tilt/external field

$$
g_{\mu} \mapsto g_{v}(z)=g_{\mu}\left(e^{w_{1}} z_{1}, \ldots, e^{w_{n}} z_{n}\right)
$$

\bigcirc If for deg $=2$ derivatives h of g_{μ}, we have $\lambda_{2}\left(\nabla^{2} h\right) \preceq 0$, we do for g_{v} too:

$$
\nabla^{2} h \mapsto D \nabla^{2} h D
$$

Exponential tilt/external field

$$
\mu(x) \mapsto \nu(x) \propto \underbrace{\exp (\langle w, x\rangle)}_{\text {exponential tilt }} \mu(x)
$$

$$
g_{\mu} \mapsto g_{v}(z)=g_{\mu}\left(e^{w_{1}} z_{1}, \ldots, e^{w_{n}} z_{n}\right)
$$

D If for deg $=2$ derivatives h of g_{μ}, we have $\lambda_{2}\left(\nabla^{2} h\right) \preceq 0$, we do for g_{v} too:

$$
\nabla^{2} h \mapsto D \nabla^{2} h D
$$

D Corollary: g_{v} is log-concave at $\mathbb{1}$. This means g_{μ} is log-concave on $\mathbb{R}_{>0}^{n}$.

Theorem [Oppenheim, A-Liu-OveisGharan-Vinzant, Brändén-Huh] g_{μ} is log-concave on $\mathbb{R}_{>0}^{n}$ iff all of its deg $=2$ derivatives are log-concave and all derivatives are connected.

Theorem [Oppenheim, A-Liu-OveisGharan-Vinzant, Brändén-Huh]

g_{μ} is log-concave on $\mathbb{R}_{>0}^{n}$ iff all of its deg $=2$ derivatives are log-concave and all derivatives are connected.
D Note: since g_{μ} is homogeneous, its log-concavity is equivalent to convexity of level sets:

Theorem [Oppenheim, A-Liu-OveisGharan-Vinzant, Brändén-Huh]

g_{μ} is log-concave on $\mathbb{R}_{>0}^{n}$ iff all of its deg $=2$ derivatives are log-concave and all derivatives are connected.
D Note: since g_{μ} is homogeneous, its log-concavity is equivalent to convexity of level sets:

D So far we know matroids are 1-SI, and thus $\mathrm{t}_{\text {mix }}=\mathrm{O}\left(\mathrm{k}^{2} \log n\right)$. Can we improve?

Informal theorem [A-Jain-Koehler-Pham-Vuong'21]
"Improved mixing time" assuming μ is spectrally independent under all external fields.

$$
+\Rightarrow+
$$

Goal

Bound $\rho_{\text {entropy }}$ by $\rho_{\text {variance }}$.

Goal

Bound $\rho_{\text {entropy }}$ by $\rho_{\text {variance }}$.

- Impossible with no assumption :

For constant degree expanders

$$
\rho_{\text {variance }}=\Omega(1),
$$

but mixing time is

$$
\simeq \log (\mid \text { state space } \mid) .
$$

Entropic Independence

For all distributions v,

$$
\mathcal{D}_{\mathrm{KL}}\left(\nu \mathrm{D}_{\mathrm{k} \rightarrow 1} \| \mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right) \leqslant \frac{\mathrm{C}}{\mathrm{k}} \cdot \mathcal{D}_{\mathrm{KL}}(v \| \mu) .
$$

Entropic Independence

For all distributions v,

$$
\mathcal{D}_{\mathrm{KL}}\left(\nu \mathrm{D}_{\mathrm{k} \rightarrow 1} \| \mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right) \leqslant \frac{\mathrm{C}}{\mathrm{k}} \cdot \mathcal{D}_{\mathrm{KL}}(\nu \| \mu) .
$$

\bigcirc The greatest aspect of entropic independence: no need to consider all ν. Enough to look at

$$
v(x) \propto \exp (\langle w, x\rangle) \mu(x)
$$

for $w \in \mathbb{R}^{n}$. This is an external field applied to μ.

Entropic Independence

For all distributions v,

$$
\mathcal{D}_{\mathrm{KL}}\left(\nu \mathrm{D}_{\mathrm{k} \rightarrow 1} \| \mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right) \leqslant \frac{\mathrm{C}}{\mathrm{k}} \cdot \mathcal{D}_{\mathrm{KL}}(v \| \mu) .
$$

\checkmark The greatest aspect of entropic independence: no need to consider all ν. Enough to look at

$$
v(x) \propto \exp (\langle w, x\rangle) \mu(x)
$$

for $w \in \mathbb{R}^{n}$. This is an external field applied to μ.
D If $q=\left(q_{1}, \ldots, q_{n}\right)$ is some distribution on $[n]=\binom{[n]}{1}$, then

$$
\inf \left\{\mathcal{D}_{\mathrm{KL}}(v \| \mu) \mid v \mathrm{D}_{\mathrm{k} \rightarrow 1}=\mathrm{q}\right\}=-\log \left(\inf _{z_{1}, \ldots, z_{n}>0} \frac{\sum_{S} \mu(S) \prod_{i \in S} z_{i}}{z_{1}^{k q_{1}} \cdots z_{n}^{k q_{n}}}\right)
$$

Polynomial view of HDX

$$
g_{\mu}\left(z_{1}, \ldots, z_{n}\right):=\sum_{S} \mu(S) \prod_{i \in S} z_{i}
$$

Spectral Independence
D Local: level sets of $g_{\mu}\left(\sqrt[c]{z_{1}}, \ldots, \sqrt[c]{z_{n}}\right)$ locally convex at 1 .

Entropic Independence
\bigcirc Global: level sets of $g_{\mu}\left(\sqrt[C]{z_{1}}, \ldots, \sqrt[C]{z_{n}}\right)$ bounded by tangent at $\mathbb{1}$.

> Theorem [A-Jain-Koehler-Pham-Vuong'21]
> C-spectral independence for external fields \Longrightarrow Centropic independence.

