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Useful settings for local-to-global:
Correlation matrix
Spectral [A-Liu-OveisGharan] The matrix ¥ with entries P[j | il — P[jl.

~ 2
X2 (VDios1 || WD) € X

> C-Slis same as Amax (W) < C

and similar inequalities for links is (> Also cov(p)=< Cdiag(mean(p))
called C spectral independence. A
using (7)) < {o, 1}

k

Entropic [A-Jain-Koehler-Pham-Vuong] > Matroids of rank 2 are 1-Sl.
C DKIk(VHHJ

DL (VD1 || uDx—1) <

O If links Kqy are Sl, sois We usually worse

and similar inequalities for links is EJelelelNele[{-Ro} i iglel (e [e]%)]

called C entropic independence. If k > 3 and links g, are 1-SI, then p
B is either 1-SI, or A; (U7 4k Dy—1) =1.
For Die: p = (5¢9)/(8) t

disconnected
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C Imagine pis on ([2]) — {0, 1}™.

> Denote p; = Ps-,[i € S]. Let us choose i ~ uDy_,1 = p/k.
> Let \T/ be the conditional on {i}

x4
a random measure v(x) = pﬁu(X)-

> Note that p = E;[v]. Thisis a decomposition of measure.
> Continuing this we get a measure-valued random process« martingale

Simplicial localization

Let S ~ u, and let ey, ..., ex be a u.r. permutation of
S. Define v; as conditional of won {ey,...,ei}. Then

L=YVYo —=>V]y —> V2 — - — Vg
is called simplicial localization«—— we used this for local-to-global
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Lemma [A-Koehler-Vuong]

cov(p) = E[cov(v)] + cov(p) cov(w) cov(p)

Proof:
> We have cov(n) — Elcov(v)] = E[mean(v) mean(v)T] — mean () mean(u)T.
> We have mean(v) = 3, (1 + (w,x — mean(p)))p(x) - x

an(
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6/17



\Covorionce evolution /

> First step: u — v. We know mean(u) = E[mean(v)]. What about cov(u)?

> visalinear tilt of w. For random vector w = 1;/p; — 1/kie—— note Elw] =0

[Chen-Eldan] V(X) = (1 + <W)X_ mean(u))) PL(X)

linear tilt

Lemma [A-Koehler-Vuong]

cov(p) = E[cov(v)] + cov(p) cov(w) cov(p)

Proof:
> We have cov(u) — E[cov(v)] = E[mean(v) mean(v)T] — mean(u) mean(p)T.
> We have mean(v) = Y, (1 + (w,x — mean(p)))p(x) - x =
mean(p) + E,[x - (x — mean(p), w)] = mean(p) + cov(p)w.
> So Eilmean(v)mean(v)T] is mean(p) mean(w)T + cov(p) cov(w) cov(p).
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Weighted hypergraph: Enodes u in coefficients:
w: ([Tl]) — R>o Ju (z1y+++y2n) Z (S Hzi-
k - ies
> Links become derivatives,
> 1-spectral independence becomes Az(Vng(ﬂ)) < 0. Non-lazy walk

255 (U kD1 — 1) is random walk on graph with weights
(V2gu(1)yj oc Tl #3] - Psy[i,j € S]
We have AZ(VZQH(Z)) < 0 iff V2 log gu(z) < 0= log-concavity

If deg = 2 derivatives h are log-concave at 1, and links are connected, then
gy is log-concave at 1% [Oppenheim, /-Liu-OveisGharan-Vinzant, Braindén-Huh]

\VAV,

in fact everywhere
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= —

Y

u(x) = v(x) oc exp((w, X)) p(x)
—
exponential tilt
gu — gv(z) = gul(e™'zy,...,e""zy)
O If for deg = 2 derivatives h of g, we have A2(V2h) < 0, we do for g~ too:

V2h +— DV2hD

&> Corollary: gv is at 1. This means g, is on RZ,. o
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Theorem [Oppenheim, A-Liu-OveisGharan-Vinzant, Bréndén-Huh]

gu is log-concave on RY, iff all of its deg = 2 derivatives
are log-concave and all derivatives are connected.

> Note: since g, is homogeneous, its log-concavity is
equivalent to convexity of level sets:

V

Iu

> So far we know matroids are 1-SI, and thus
tmix = O(k? logn). Can we improve?
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Bound pentropy PY pvariance-

> Impossible with no assumption @

For constant degree expanders
Pvariance = Q(1),
but mixing time is

~ log(|state space|) .
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Entropic Independence

For all distributions v,

=0

Dk (vDxs1 || uDx—51) < — - D (v || w).

> The greatest aspect of entropic independence: no need to consider all v.
Enough to look at

v{x) oc exp((w, x))u(x)
forw € R™ This is an external field applied to .
> If g =(q1,---,qn) is some distribution on [n] = (), then

inf{DkL(v || ) | vDx—1 =g} =— Iog( inf 2s M) I Lies Zi) _

Z1yeeeyzn >0 Z];q] ...qu“
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\Polgnomiol view of HDX /
gulz1y...yzn) 5:ZH(S)HZi

3 ies
Spectral Independence Entropic Independence
> Local: level sets of > Global: level sets of
gu( §/z1,..., {zn) locally convex gu(z1,..., {/zn) bounded by
at 1. tangent at 1.
ZZC ZZC
gH 2 ] gu 2 1
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Theorem [A-Jain-Koehler-Pham-Vuong’21]

C-spectral independence for external fields = C-
entropic independence.
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