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Review

Useful settings for local-to-global:

Spectral [A-Liu-OveisGharan]

χ2(νDk→1 ‖ µDk→1) 6
Cχ2(ν‖µ)

k

and similar inequalities for links is

called C spectral independence.

Entropic [A-Jain-Koehler-Pham-Vuong]

DKL(νDk→1 ‖ µDk→1) 6
CDKL(ν‖µ)

k

and similar inequalities for links is

called C entropic independence.

For Dk→`: ρ >
(
k−`
C

)
/
(
k
C

)

Correlation matrix

The matrix Ψ with entries P[j | i] −P[j].

C-SI is same as λmax(Ψ) 6 C

Also cov(µ)

using
(
[n]
k

)
↪→ {0, 1}n

� Cdiag(mean(µ))

Matroids of rank 2 are 1-SI.

If links µ{i} are SI, so is µ usually worse.

Special case of trickle-down

If k > 3 and links µ{i} are 1-SI, then µ

is either 1-SI, or λ2(U1→kDk→1) =1

disconnected

.



2/17

Review

Useful settings for local-to-global:

Spectral [A-Liu-OveisGharan]

χ2(νDk→1 ‖ µDk→1) 6
Cχ2(ν‖µ)

k

and similar inequalities for links is

called C spectral independence.

Entropic [A-Jain-Koehler-Pham-Vuong]

DKL(νDk→1 ‖ µDk→1) 6
CDKL(ν‖µ)

k

and similar inequalities for links is

called C entropic independence.

For Dk→`: ρ >
(
k−`
C

)
/
(
k
C

)

Correlation matrix

The matrix Ψ with entries P[j | i] −P[j].

C-SI is same as λmax(Ψ) 6 C

Also cov(µ)

using
(
[n]
k

)
↪→ {0, 1}n

� Cdiag(mean(µ))

Matroids of rank 2 are 1-SI.

If links µ{i} are SI, so is µ usually worse.

Special case of trickle-down

If k > 3 and links µ{i} are 1-SI, then µ

is either 1-SI, or λ2(U1→kDk→1) =1

disconnected

.



2/17

Review

Useful settings for local-to-global:

Spectral [A-Liu-OveisGharan]

χ2(νDk→1 ‖ µDk→1) 6
Cχ2(ν‖µ)

k

and similar inequalities for links is

called C spectral independence.

Entropic [A-Jain-Koehler-Pham-Vuong]

DKL(νDk→1 ‖ µDk→1) 6
CDKL(ν‖µ)

k

and similar inequalities for links is

called C entropic independence.

For Dk→`: ρ >
(
k−`
C

)
/
(
k
C

)

Correlation matrix

The matrix Ψ with entries P[j | i] −P[j].

C-SI is same as λmax(Ψ) 6 C

Also cov(µ)

using
(
[n]
k

)
↪→ {0, 1}n

� Cdiag(mean(µ))

Matroids of rank 2 are 1-SI.

If links µ{i} are SI, so is µ usually worse.

Special case of trickle-down

If k > 3 and links µ{i} are 1-SI, then µ

is either 1-SI, or λ2(U1→kDk→1) =1

disconnected

.



2/17

Review

Useful settings for local-to-global:

Spectral [A-Liu-OveisGharan]

χ2(νDk→1 ‖ µDk→1) 6
Cχ2(ν‖µ)

k

and similar inequalities for links is

called C spectral independence.

Entropic [A-Jain-Koehler-Pham-Vuong]

DKL(νDk→1 ‖ µDk→1) 6
CDKL(ν‖µ)

k

and similar inequalities for links is

called C entropic independence.

For Dk→`: ρ >
(
k−`
C

)
/
(
k
C

)

Correlation matrix

The matrix Ψ with entries P[j | i] −P[j].

C-SI is same as λmax(Ψ) 6 C

Also cov(µ)

using
(
[n]
k

)
↪→ {0, 1}n

� Cdiag(mean(µ))

Matroids of rank 2 are 1-SI.

If links µ{i} are SI, so is µ usually worse.

Special case of trickle-down

If k > 3 and links µ{i} are 1-SI, then µ

is either 1-SI, or λ2(U1→kDk→1) =1

disconnected

.



2/17

Review

Useful settings for local-to-global:

Spectral [A-Liu-OveisGharan]

χ2(νDk→1 ‖ µDk→1) 6
Cχ2(ν‖µ)

k

and similar inequalities for links is

called C spectral independence.

Entropic [A-Jain-Koehler-Pham-Vuong]

DKL(νDk→1 ‖ µDk→1) 6
CDKL(ν‖µ)

k

and similar inequalities for links is

called C entropic independence.

For Dk→`: ρ >
(
k−`
C

)
/
(
k
C

)

Correlation matrix

The matrix Ψ with entries P[j | i] −P[j].

C-SI is same as λmax(Ψ) 6 C

Also cov(µ)

using
(
[n]
k

)
↪→ {0, 1}n

� Cdiag(mean(µ))

Matroids of rank 2 are 1-SI.

If links µ{i} are SI, so is µ usually worse.

Special case of trickle-down

If k > 3 and links µ{i} are 1-SI, then µ

is either 1-SI, or λ2(U1→kDk→1) =1

disconnected

.



2/17

Review

Useful settings for local-to-global:

Spectral [A-Liu-OveisGharan]

χ2(νDk→1 ‖ µDk→1) 6
Cχ2(ν‖µ)

k

and similar inequalities for links is

called C spectral independence.

Entropic [A-Jain-Koehler-Pham-Vuong]

DKL(νDk→1 ‖ µDk→1) 6
CDKL(ν‖µ)

k

and similar inequalities for links is

called C entropic independence.

For Dk→`: ρ >
(
k−`
C

)
/
(
k
C

)

Correlation matrix

The matrix Ψ with entries P[j | i] −P[j].

C-SI is same as λmax(Ψ) 6 C

Also cov(µ)

using
(
[n]
k

)
↪→ {0, 1}n

� Cdiag(mean(µ))

Matroids of rank 2 are 1-SI.

If links µ{i} are SI, so is µ usually worse.

Special case of trickle-down

If k > 3 and links µ{i} are 1-SI, then µ

is either 1-SI, or λ2(U1→kDk→1) =1

disconnected

.



2/17

Review

Useful settings for local-to-global:

Spectral [A-Liu-OveisGharan]

χ2(νDk→1 ‖ µDk→1) 6
Cχ2(ν‖µ)

k

and similar inequalities for links is

called C spectral independence.

Entropic [A-Jain-Koehler-Pham-Vuong]

DKL(νDk→1 ‖ µDk→1) 6
CDKL(ν‖µ)

k

and similar inequalities for links is

called C entropic independence.

For Dk→`: ρ >
(
k−`
C

)
/
(
k
C

)

Correlation matrix

The matrix Ψ with entries P[j | i] −P[j].

C-SI is same as λmax(Ψ) 6 C

Also cov(µ)

using
(
[n]
k

)
↪→ {0, 1}n

� Cdiag(mean(µ))

Matroids of rank 2 are 1-SI.

If links µ{i} are SI, so is µ usually worse.

Special case of trickle-down

If k > 3 and links µ{i} are 1-SI, then µ

is either 1-SI, or λ2(U1→kDk→1) =1

disconnected

.



2/17

Review

Useful settings for local-to-global:

Spectral [A-Liu-OveisGharan]

χ2(νDk→1 ‖ µDk→1) 6
Cχ2(ν‖µ)

k

and similar inequalities for links is

called C spectral independence.

Entropic [A-Jain-Koehler-Pham-Vuong]

DKL(νDk→1 ‖ µDk→1) 6
CDKL(ν‖µ)

k

and similar inequalities for links is

called C entropic independence.

For Dk→`: ρ >
(
k−`
C

)
/
(
k
C

)

Correlation matrix

The matrix Ψ with entries P[j | i] −P[j].

C-SI is same as λmax(Ψ) 6 C

Also cov(µ)

using
(
[n]
k

)
↪→ {0, 1}n

� Cdiag(mean(µ))

Matroids of rank 2 are 1-SI.

If links µ{i} are SI, so is µ usually worse.

Special case of trickle-down

If k > 3 and links µ{i} are 1-SI, then µ

is either 1-SI, or λ2(U1→kDk→1) =1

disconnected

.



2/17

Review

Useful settings for local-to-global:

Spectral [A-Liu-OveisGharan]

χ2(νDk→1 ‖ µDk→1) 6
Cχ2(ν‖µ)

k

and similar inequalities for links is

called C spectral independence.

Entropic [A-Jain-Koehler-Pham-Vuong]

DKL(νDk→1 ‖ µDk→1) 6
CDKL(ν‖µ)

k

and similar inequalities for links is

called C entropic independence.

For Dk→`: ρ >
(
k−`
C

)
/
(
k
C

)

Correlation matrix

The matrix Ψ with entries P[j | i] −P[j].

C-SI is same as λmax(Ψ) 6 C

Also cov(µ)

using
(
[n]
k

)
↪→ {0, 1}n

� Cdiag(mean(µ))

Matroids of rank 2 are 1-SI.

If links µ{i} are SI, so is µ usually worse.

Special case of trickle-down

If k > 3 and links µ{i} are 1-SI, then µ

is either 1-SI, or λ2(U1→kDk→1) =1

disconnected

.



4/17

Trickle Down
Simplicial localization

Covariance evolution

Linear tilts

Log-Concave Polynomials
Generating polynomials

Exponential tilts

Entropic independence
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Simplicial localization

Imagine µ is on
([n]

k

)
↪→ {0, 1}n.

Denote pi = PS∼µ[i ∈ S]. Let us choose i ∼ µDk→1 = p/k.

Let ν

a random measure

be the conditional on {i}:

ν(x) = xi

pi
µ(x).

Note that µ = Ei[ν]. This is a decomposition of measure.

Continuing this we get a measure-valued random process martingale:

Simplicial localization

Let S ∼ µ, and let e1, . . . , ek be a u.r. permutation of

S. Define νi as conditional of µ on {e1, . . . , ei}. Then

µ = ν0 → ν1 → ν2 → · · · → νk

is called simplicial localization we used this for local-to-global.
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Covariance evolution

First step: µ → ν. We know mean(µ) = E[mean(ν)]. What about cov(µ)?

ν is a linear tilt

[Chen-Eldan]

of µ. For random vector w = 1i/pi − 1/k note E[w] = 0:

ν(x) = (1+ 〈w, x− mean(µ)〉)︸ ︷︷ ︸
linear tilt

µ(x)

Lemma [A-Koehler-Vuong]

cov(µ) = E[cov(ν)] + cov(µ) cov(w) cov(µ)

Proof:

We have cov(µ) − E[cov(ν)] = E[mean(ν)mean(ν)ᵀ] − mean(µ)mean(µ)ᵀ.
We have mean(ν) =

∑
x(1+ 〈w, x− mean(µ)〉)µ(x) · x =

mean(µ) + Eµ[x · 〈x− mean(µ), w〉] = mean(µ) + cov(µ)w.

So Ei[mean(ν)mean(ν)ᵀ] is mean(µ)mean(µ)ᵀ + cov(µ) cov(w) cov(µ).
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Now we attempt to prove trickle down will need to refine:

For our choice of w, we have

cov(w) = Ei[1i1
ᵀ
i /p

2
i ] − 11ᵀ/k2 = diag(mean(µ))−1/k− 11ᵀ/k2

We can ignore 11ᵀ/k2, since cov(µ)1 = 0. If Π = diag(mean(µ)), then
cov(µ) = E[cov(ν)] + 1

k cov(µ)Π−1 cov(µ)
ν is a conditional. If ν ′ is the link, then

cov(ν) = cov(ν ′) and mean(ν) = 1i + mean(ν ′).

By assumption cov(ν ′) � Cdiag(mean(ν ′)), so we get cov(µ) �
C·E[diag(mean(ν)−1i)]+

1
k cov(µ)Π−1 cov(µ) = C(k−1)

k Π+ 1
k cov(µ)Π−1 cov(µ)

If we let X = Π−1/2 cov(µ)Π−1/2, this simplifies to

X � C(k−1)
k I+ 1

kX
2

Same inequality must be satisfied by all eigs of X. We want λmax(X)!
rhs− lhs

this is 6= k
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Refinement: the ineq cov(µ) � C · diag(mean(µ)) is never tight. This ineq
implies the tighter one:

cov(µ) � C ·
(
diag(mean(µ)) − 1

k mean(µ)mean(µ)ᵀ
)

Plugging this in for the link ν ′ we get cov(µ) �

E
[
diag(mean(µi) − 1i) −

(mean(ν)−1i)(mean(ν)−1i)
ᵀ

k−1

]
+

cov(µ)Π−1 cov(µ)
k

Expanding this and using X = Π−1/2 cov(µ)Π−1/2 gives refined ineq:

X � C ·
(
k−2
k−1 · I+ 2

k(k−1) · X− 1
k(k−1) · X

2
)
+ 1

kX
2

The scalar version of this ineq has solutions [k,∞) and (−∞, C ′], where

C ′ =
k− 2

k− 1− C
· C.

C = 1 implies C ′ = 1 while C > 1 implies C ′ > C

Matroids are 1 spectrally independent



8/17

Refinement: the ineq cov(µ) � C · diag(mean(µ)) is never tight. This ineq
implies the tighter one:

cov(µ) � C ·
(
diag(mean(µ)) − 1

k mean(µ)mean(µ)ᵀ
)

Plugging this in for the link ν ′ we get cov(µ) �

E
[
diag(mean(µi) − 1i) −

(mean(ν)−1i)(mean(ν)−1i)
ᵀ

k−1

]
+

cov(µ)Π−1 cov(µ)
k

Expanding this and using X = Π−1/2 cov(µ)Π−1/2 gives refined ineq:

X � C ·
(
k−2
k−1 · I+ 2

k(k−1) · X− 1
k(k−1) · X

2
)
+ 1

kX
2

The scalar version of this ineq has solutions [k,∞) and (−∞, C ′], where

C ′ =
k− 2

k− 1− C
· C.

C = 1 implies C ′ = 1 while C > 1 implies C ′ > C

Matroids are 1 spectrally independent



8/17

Refinement: the ineq cov(µ) � C · diag(mean(µ)) is never tight. This ineq
implies the tighter one:

cov(µ) � C ·
(
diag(mean(µ)) − 1

k mean(µ)mean(µ)ᵀ
)

Plugging this in for the link ν ′ we get cov(µ) �

E
[
diag(mean(µi) − 1i) −

(mean(ν)−1i)(mean(ν)−1i)
ᵀ

k−1

]
+

cov(µ)Π−1 cov(µ)
k

Expanding this and using X = Π−1/2 cov(µ)Π−1/2 gives refined ineq:

X � C ·
(
k−2
k−1 · I+ 2

k(k−1) · X− 1
k(k−1) · X

2
)
+ 1

kX
2

The scalar version of this ineq has solutions [k,∞) and (−∞, C ′], where

C ′ =
k− 2

k− 1− C
· C.

C = 1 implies C ′ = 1 while C > 1 implies C ′ > C

Matroids are 1 spectrally independent



8/17

Refinement: the ineq cov(µ) � C · diag(mean(µ)) is never tight. This ineq
implies the tighter one:

cov(µ) � C ·
(
diag(mean(µ)) − 1

k mean(µ)mean(µ)ᵀ
)

Plugging this in for the link ν ′ we get cov(µ) �

E
[
diag(mean(µi) − 1i) −

(mean(ν)−1i)(mean(ν)−1i)
ᵀ

k−1

]
+

cov(µ)Π−1 cov(µ)
k

Expanding this and using X = Π−1/2 cov(µ)Π−1/2 gives refined ineq:

X � C ·
(
k−2
k−1 · I+ 2

k(k−1) · X− 1
k(k−1) · X

2
)
+ 1

kX
2

The scalar version of this ineq has solutions [k,∞) and (−∞, C ′], where

C ′ =
k− 2

k− 1− C
· C.

C = 1 implies C ′ = 1 while C > 1 implies C ′ > C

Matroids are 1 spectrally independent



8/17

Refinement: the ineq cov(µ) � C · diag(mean(µ)) is never tight. This ineq
implies the tighter one:

cov(µ) � C ·
(
diag(mean(µ)) − 1

k mean(µ)mean(µ)ᵀ
)

Plugging this in for the link ν ′ we get cov(µ) �

E
[
diag(mean(µi) − 1i) −

(mean(ν)−1i)(mean(ν)−1i)
ᵀ

k−1

]
+

cov(µ)Π−1 cov(µ)
k

Expanding this and using X = Π−1/2 cov(µ)Π−1/2 gives refined ineq:

X � C ·
(
k−2
k−1 · I+ 2

k(k−1) · X− 1
k(k−1) · X

2
)
+ 1

kX
2

The scalar version of this ineq has solutions [k,∞) and (−∞, C ′], where

C ′ =
k− 2

k− 1− C
· C.

C = 1 implies C ′ = 1 while C > 1 implies C ′ > C

Matroids are 1 spectrally independent



8/17

Refinement: the ineq cov(µ) � C · diag(mean(µ)) is never tight. This ineq
implies the tighter one:

cov(µ) � C ·
(
diag(mean(µ)) − 1

k mean(µ)mean(µ)ᵀ
)

Plugging this in for the link ν ′ we get cov(µ) �

E
[
diag(mean(µi) − 1i) −

(mean(ν)−1i)(mean(ν)−1i)
ᵀ

k−1

]
+

cov(µ)Π−1 cov(µ)
k

Expanding this and using X = Π−1/2 cov(µ)Π−1/2 gives refined ineq:

X � C ·
(
k−2
k−1 · I+ 2

k(k−1) · X− 1
k(k−1) · X

2
)
+ 1

kX
2

The scalar version of this ineq has solutions [k,∞) and (−∞, C ′], where

C ′ =
k− 2

k− 1− C
· C.

C = 1 implies C ′ = 1 while C > 1 implies C ′ > C

Matroids are 1 spectrally independent



9/17

Trickle Down
Simplicial localization

Covariance evolution

Linear tilts

Log-Concave Polynomials
Generating polynomials

Exponential tilts

Entropic independence
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Generating polynomial

Distribution

Weighted hypergraph:

µ :

(
[n]

k

)
→ R>0

Polynomial

Enodes µ in coefficients:

gµ(z1, . . . , zn) =
∑
S

µ(S)
∏
i∈S

zi.

Links become derivatives.

1-spectral independence becomes λ2(∇2gµ(1)) 6 0. Non-lazy walk
k

k−1(U1→kDk→1 − 1
kI) is random walk on graph with weights

(∇2gµ(1))ij ∝ 1[i 6= j] · PS∼µ[i, j ∈ S]

We have λ2(∇2gµ(z)) 6 0 iff ∇2 log gµ(z) � 0 log-concavity.

If deg = 2 derivatives h are log-concave at 1, and links are connected, then

gµ is log-concave at 1

in fact everywhere

. [Oppenheim, A-Liu-OveisGharan-Vinzant, Brändén-Huh]
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Exponential tilt/external field

⇒

µ(x) 7→ ν(x) ∝ exp(〈w, x〉)︸ ︷︷ ︸
exponential tilt

µ(x)

gµ 7→ gν(z) = gµ(e
w1z1, . . . , e

wnzn)

If for deg = 2 derivatives h of gµ, we have λ2(∇2h) � 0, we do for gν too:

∇2h 7→ D∇2hD

Corollary: gν is log-concave at 1. This means gµ is log-concave on Rn
>0.
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Theorem [Oppenheim, A-Liu-OveisGharan-Vinzant, Brändén-Huh]

gµ is log-concave on Rn
>0 iff all of its deg = 2 derivatives

are log-concave and all derivatives are connected.

Note: since gµ is homogeneous, its log-concavity is

equivalent to convexity of level sets:

gµ > 1

So far we know matroids are 1-SI, and thus

tmix = O(k2 logn). Can we improve?
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Informal theorem [A-Jain-Koehler-Pham-Vuong’21]

“Improved mixing time” assuming µ is spectrally inde-

pendent under all external fields.
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Goal

Bound ρentropy by ρvariance.

Impossible with no assumption

For constant degree expanders

ρvariance = Ω(1),

but mixing time is

' log(|state space|) .

..
.

...
...

...

. . . . . .
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Entropic Independence

For all distributions ν,

DKL(νDk→1 ‖ µDk→1) 6
C

k
·DKL(ν ‖ µ).

The greatest aspect of entropic independence: no need to consider all ν.

Enough to look at

ν(x) ∝ exp(〈w, x〉)µ(x)

for w ∈ Rn. This is an external field applied to µ.

If q = (q1, . . . , qn) is some distribution on [n] =
([n]

1

)
, then

inf{DKL(ν ‖ µ) | νDk→1 = q} = − log
(

inf
z1,...,zn>0

∑
S µ(S)

∏
i∈S zi

z
kq1

1 · · · zkqn
n

)
.
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Polynomial view of HDX

gµ(z1, . . . , zn) :=
∑
S

µ(S)
∏
i∈S

zi

Spectral Independence

Local: level sets of

gµ( C
√
z1, . . . , C

√
zn) locally convex

at 1.

zC1

zC2

gµ > 1

Entropic Independence

Global: level sets of

gµ( C
√
z1, . . . , C

√
zn) bounded by

tangent at 1.

zC1

zC2

gµ > 1
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Theorem [A-Jain-Koehler-Pham-Vuong’21]

C-spectral independence for external fields =⇒ C-

entropic independence.


