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Review

Dist µ on
(
U
k

)
simplicial complex

Down kernels

Up kernels:

U`→k = D◦
k→`

Walks:

Dk→`U`→k

alg useful for ` = k−O(1)

· · ·

· · ·

· · ·

D
3
→

2
D

2
→

1
D

1
→

0

D
3
→

1

HDX recipe

1 Convert to simplicial complex

2 Contraction for Dk→1 local

3 Transfer local to Dk→` global

Conversion for product spaces:

U =

{
, , , . . . ,

}
Conditionals:

distS∼µ(S | T ⊆ S)

Links:

µT = distS∼µ(S− T | T ⊆ S)

Local to global

If µT has local contraction 1−ρ|T |, then

we get global contraction

for Dk→`

1− ρ where

ρ = ρ0 · · · ρ`−1
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Spectral and entropic independence

Useful settings for local-to-global:

Spectral [A-Liu-OveisGharan]

χ2(νDk→1 ‖ µDk→1) 6
Cχ2(ν‖µ)

k

and similar inequalities for links is

called C spectral independence.

Entropic [A-Jain-Koehler-Pham-Vuong]

DKL(νDk→1 ‖ µDk→1) 6
CDKL(ν‖µ)

k

and similar inequalities for links is

called C entropic independence.

For links µT , k becomes k− |T |.

Useful for C = O(1). When C not

mentioned, it just means O(1).

For integer C, local-to-global gives

Dk→` contraction rate of

ρ >
(
k−`
C

)
/
(
k
C

)
If ` 6 k− C, this is ' k−C.

Will show matroids satisfy C = 1.
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Spectral independence

Spectral independence is about χ2

contraction. Related to eigval:

λ2(Dk→1U1→k)

The same as eigval:

λ2(U1→kDk→1

n× n matrix

)

The (i, j) entry is
1
k PS∼µ[j ∈ S | i ∈ S] = P[j | i]/k

Note that λ1 = 1 with right eigvec

1 and left eigvec

µDk→1 = 1
k [P[1], · · · ,P[n]]

So λ2 is simply

λmax(U1→kDk→1 − 1µDk→1)

The (i, j) entry is
1
k(P[j | i] − P[j]

vaguely similar to influence

)

Correlation matrix

The matrix Ψ with entries P[j | i] −P[j].

C-spectral ind is same as

λmax(Ψ) 6 C
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Example: hypercube

{0, 1}n ↪→
(
[2n]
n

)
Glauber becomes

Dn→n−1

Ψ has block form:
+1

2 −1
2 0 · · · 0

−1
2 +1

2 0 · · · 0

0 0 +1
2 · · · 0

...
...

...
. . .

...

0 0 0 · · · +1
2


This means λmax = 1.

So Dn→` contracts χ
2 by `/n.

Ψ also has a symmetric form

DΨD−1. With D diagonal and

Dii =
√

P[i], we get

(DΨD−1)ij =
P[i,j]−P[i]P[j]√

P[i]P[j]

Spectral independence is equiv to

DΨD−1 � C · I
which is the same as

D2Ψ � C ·D2.

If we embed
(
U
k

)
↪→ {0, 1}U‖·‖1=k, by

sending S to 1S, the inequality

becomes

cov(µ) � C · diag(mean(µ))
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How to establish spectral independence?

Transport contraction

Transport stability

Correlation decay

Geometry of polynomials

Trickle down today

. . .

Universality: any linear bound on trel for down-up
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Trickle down

Trickle-down [Oppenheim]: if links

µT for T ∈
(
U
1

)
are spectrally

independent, so is µ.

Note: parameter C deteriorates

matroids are exception

.

Special case of trickle-down

If k > 3 and links µ{i} are 1-SI, then µ

is either 1-SI, or λ2(U1→kDk→1) =1

disconnected

.

For matroids, enough to look at

rank

fancy word for k

2 cases.

Walks on matroids are ergodic, so

λ2(U1→kDk→1) 6= 1:

1 2

3 4

Can reach any T from any S by

exchanges.
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Rank 2 matroids

Distribution µ ≡ uniformly random edge of complete multipartite graph.

The walk U1→2D2→1: lazy random walk on complete multipartite graph.
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These graphs have adj matrix:

0 . . . 0 1 . . . 1
...

. . .
...

...
. . .

...

0 . . . 0 1 . . . 1

1 . . . 1 0 . . . 0
...

. . .
...

...
. . .

...

1 . . . 1 0 . . . 0


� 11ᵀ.

This means λ2(adj) 6 0.

The non-lazy random walk P is

diag(deg)−1 · adj
Enough to show λ2(P) 6 0,

because

U1→2D2→1 = 1
2P + 1

2I.

Fact

If symmetricA ∈ Rn×n
>0 has λ2(A) 6 0,

and D ∈ Rn×n
>0 is diagonal, then

λ2(DAD) 6 0.

We apply this with A = adj and

D = diag(deg)−1/2.

Proof:

For any v ∈ Rn
>0 and u ∈ Rn,

(uᵀAv)2 > (uᵀAu)(vᵀAv)

This is det([u, v]ᵀA[u, v]).

Opposite is true too:

A− (Av)(Av)ᵀ/(vᵀAv) � 0

Ineq for A equiv to one for DAD.
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Now we prove trickle down of [Oppenheim].

Imagine µ is on
([n]

k

)
↪→ {0, 1}n.

Denote pi = PS∼µ[i ∈ S]. Let us choose i ∼ µDk→1 = p/k.

Let ν

a random measure

be the conditional on i. Note that µ = Ei[ν]:

ν(x) =
xi
pi

µ(x).

We have

cov(µ) = E[cov(ν)] + cov(µ)C cov(µ)

where C is the covariance of random vector 1i/pi.

This gives an inequality for C1/2 cov(µ)C1/2. Note that λmax is SI parameter.

On board . . .
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