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C Glauber becomes
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> VW has block form:

+3 —% 0 o 0]
1 1
0 0 +3 0
0 0 0 +3 ]

> This means Amax = 1.
> So Dy, contracts x?2 by ¢/n.

> VYalsohasa
DYD~'. With D diagonal and
Dii = +/PIil, we get
“1y.. _ PL,jl-PHIP])
(DYD™1)y; = PRIPG]

(B

is equiv to
DYD ! <C-1I

which is the same as
D2y < C- D2
u
O If we embed () < {0, 1}hf”1:k, by

sending S to Tg, the inequality
becomes

cov(u) =< C - diag(mean(u))
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How to establish spectral independence?

> Transport contraction

> Transport stability

> Correlation decay

> Geometry of polynomials
> Trickle down< today

> Universality: any bound on t,, for down-up

8/12



\Trickle down /

> Trickle-down [Oppenheim]: if links
wr for T € (V) are spectrally
independent, so is .

9/12



\Trickle down

> Trickle-down [Oppenheim]: if links
wr for T € (V) are spectrally
independent, so is .

> Note: parameter C deterigrotes.

matroids are exception

9/12



\Trickle down /

> Trickle-down [Oppenheim]: if links
wr for T € (V) are spectrally
independent, so is .

> Note: parameter C dete:’igrotes.

matroids are exception

Special case of trickle-down

If k > 3 and links py are 1-Sl, then p

is either 1-Sl, or A (U7 xDy—1) :*

disconnected

> For matroids, enough to look at
ropk 2 cases.

fancy word for k
9/12



\Trickle down /

> Trickle-down [Oppenheim]; if links & Walks on matroids are ergodic, so
wr for T € (V) are spectrally A2(Uy 5k Dysr) # 1
independent, so is .

> Note: parameter C deteriforotes. ®

If k > 3 and links py are 1-Sl, then p ®

is either 1-Sl, or A (U7 xDy—1) :*

disconnected

matroids are exception
Special case of trickle-down 1

T
s

> For matroids, enough to look at
r@pk 2 cases.

fancy word for k
9/12



\Trickle down /

> Trickle-down [Oppenheim]; if links & Walks on matroids are ergodic, so
wr for T € (V) are spectrally A2(Uy 5k Dysr) # 1
independent, so is .

> Note: parameter C deteriforotes. ®

If k > 3 and links py are 1-Sl, then p ®
is either 1-Sl, or A (U7 xDy—1) :*

matroids are exception
Special case of trickle-down 1

T
s

> For matroids, enough to look at > Canreach any T from any S by
r@pk 2 cases. exchanges.

disconnected

fancy word for k
9/12



\Ronk 2 matroids

|

10/12



Rank 2 matroids

-
I’ /’ ‘\ ’—~\\
3} Z 4 S
\ . 1
i P ! Y
1] , ' \ \
s ’ y \ \
] V_ 2, II 1 \ \
[ Ry p ’ 5 \
\
- =1 1= = o 4 |
. Vi . o > ! 4 * \
= B - 1 ’ N 1
-, Jh-- \ s N ’
’ 1 \ s ~
L2 ~-7 R ~=7
- ] 'l ’—' “\\
\ ] ’ >
’
V1
\
A\ A
N /’
. \\ 4
- "

10/12



\Rank 2 matroids

10/12



\Ronk 2 matroids

-

-
- -

& Distribution u = uniformly random edge of complete multipartite graph.

10/12



\Ronk 2 matroids

-

-
- -

& Distribution u = uniformly random edge of complete multipartite graph.
> The walk Uy _2D;_1: lazy random walk on complete multipartite graph.

10/12



> These graphs have adj matrix:

0 ... 01 ... 1
0 ... 01 ... 1

)
1 .10 ... o=

1/12



> These graphs have adj matrix:

0 ... 0 1 ...
0 ... 01 ... 1

)
1 .10 ... o=
1.1 0 ... 0

> This means A (adj) < 0.

1/12



> These graphs have adj matrix:

0 ... 0 1 ...
0 ... 01 ... 1

)
1 .10 ... o=
1.1 0 ... 0

> This means A (adj) < 0.
> The random walk P is

diag(deg) ™! - adj

1/12



> These graphs have adj matrix:

> This means A (adj) < 0.
> The random walk P is
diag(deg) ™! - adj
> Enough to show A, (P) <0,
because
Ui2D051 =3P+ %I-

0 ... 0 1 ...
0 ... 01 ... 1

)
1 .10 ... o=
1.1 0 ... 0

1/12



> These graphs have adj matrix:

> This means A (adj) < 0.
> The non-lozy random walk P is
diag(deg) ™! - adj
> Enough to show A, (P) <0,
because
Ui2D251 = 3P + L

0 .. 001 .1
0 0 1 1

)
1 10 ... of =1
1 ... 10 ... 0

(Fgct |

If symmetric A € Rggn hasA,(A) <0,

and D € R

nxXmn ; A
T5 " is diagonal, then

A>(DAD) < 0.

1/12



> These graphs have adj matrix:

> This means A (adj) < 0.
> The non-lazy random walk P is
diag(deg) ™! - adj
> Enough to show A, (P) <0,
because
Ui2D251 = 3P + L

0 .. 001 .1
0 0 1 1

)
1 10 ... of =1
1 ... 10 ... 0

(Fgct |

If symmetric A € Rggn hasAz(A) <0,
and D € RI5™ is diagonal, then
A>(DAD) < 0.

> We apply this with A = adj and
D = diag(deg)~ /2. ©

1/12



> These graphs have adj matrix:

> This means A (adj) < 0.
> The non-lazy random walk P is
diag(deg) ™! - adj
> Enough to show A, (P) <0,
because
Ui2D251 = 3P + L

0 .. 001 .1
0 0 1 1

)
1 10 ... of =1
1 ... 10 ... 0

(Fgct |

If symmetric A € Rggn hasA,(A) <0,

and D € RI5™ is diagonal, then

A>(DAD) < 0.
> We apply this with A = adj and

D = diag(deg) /2. @
Proof:

1/12



> These graphs have adj matrix:

> This means Ay (adj) <0
> The non-lazy random walk P is
diag(deg) ™! - adj
> Enough to show A, (P) <0,
because

Ui,Dp1 =3P+ JL

0 .. 001 .1
0 0 1 1

)
1 10 ... of =1
1 ... 10 ... 0

(Fgct |

If symmetric A € R“X“ hasA>(A) <0,
and D e RI§™is dlogonol, then

A>(DAD) < 0.

> We apply this with A = adj and
D = diag(deg)~ /2. ©
Proof:
> Foranyv e RY,and u e R™,
(UTAV)? > (UTAU)(VTAV)

1/12



> These graphs have adj matrix:

> This means A (adj) < 0.
> The non-lazy random walk P is
diag(deg) ™! - adj
> Enough to show A, (P) <0,
because

Ui 2D = 5P+ 31

0 .. 01 .1
0 01 1

)
1 10 ... of =1
1 ... 10 ... 0

(FQet ]
If symmetric A € R“X“ hasA>(A) <0,
and D e RI§™is dlogonol, then

A>(DAD) < 0.

> We apply this with A = adj and
D = diag(deg)~ /2. ©

Proof:

> Foranyv e RY,and u e R™,
(UTAV)? > (UTAU)(VTAV)

O Thisis det([u, v]TA[u,v]).

1/12



> These graphs have adj matrix:

> This means A (adj) < 0.
> The non-lazy random walk P is
diag(deg) ™! - adj
> Enough to show A, (P) <0,
because

Ui 2D = 5P+ 31

0 .0 1 .. 1]
0 01 1

)
1 10 ... of =1
1 ... 10 ... 0

(Fgct |

If symmetric A € R“X“ hasA>(A) <0,
and D e RI§™is dlogonol, then

A>(DAD) < 0.

> We apply this with A = adj and
D = diag(deg)~ /2. ©

Proof:
> Foranyv e RY,and u e R™,
(UTAV)? > (UTAU)(VTAV)
O Thisis det([u, v]TA[u,v]).
> Opposite is true too:
A — (AV)(AV)T/(VTAV) <0

1/12



> These graphs have adj matrix:

> This means A (adj) < 0.
> The non-lazy random walk P is
diag(deg) ™! - adj
> Enough to show A, (P) <0,
because
Ui2D251 = 3P + L

0 .0 1 .. 1]
0 01 1

)
1 10 ... of =1
1 ... 10 ... 0

(Fgct |

If symmetric A € R“X“ hasA>(A) <0,
and D e RI§™is dlogonol, then

A>(DAD) < 0.

> We apply this with A = adj and
D = diag(deg)~ /2. ©

Proof:

> Foranyv e RY,and u e R™,
(UTAV)? > (UTAU)(VTAV)

O Thisis det([u, v]TA[u,v]).

> Opposite is true too:
A — (AV)(AV)T/(VTAV) <0

> Ineq for A equiv to one for DAD.

1/12



Now we prove trickle down of [Oppenheim].

12/12



Now we prove trickle down of [Oppenheim].
e Imagine pis on ([2]) — {0, 1}™.

12/12



Now we prove trickle down of [Oppenheim].
e Imagine pis on ([2]) — {0, 1}™.
> Denote p; = Ps.,[i € S]. Let us choose i ~ uDy_,1 = p/k.

12/12



Now we prove trickle down of [Oppenheim].

e Imagine pis on ([2]) — {0, 1}™.

> Denote p; = Ps.,[i € S]. Let us choose i ~ uDy_,1 = p/k.
O Let \T/ be the on i. Note that p = E;[v]:

a random measure Xi
v(x) = —

= —u(x).
Pi

12/12



Now we prove trickle down of [Oppenheim].
e Imagine pis on ([2]) — {0, 1}™.

> Denote p; = Ps.,[i € S]. Let us choose i ~ uDy_,1 = p/k.

O Let \T/ be the on i. Note that p = E;[v]:
a random measure xi
v(x) = —ulx).
Pi
> We have

cov(p) = E[cov(v)] + cov(u)C cov(p)

where C is the covariance of random vector 1;/p;.

12/12



Now we prove trickle down of [Oppenheim].
e Imagine pis on ([2]) — {0, 1}™.
> Denote p; = Ps.,[i € S]. Let us choose i ~ uDy_,1 = p/k.

O Let \T/ be the on i. Note that p = E;[v]:
a random measure xi
v(x) = —ulx).
Pi
> We have

cov(p) = E[cov(v)] + cov(u)C cov(p)

where C is the covariance of random vector 1;/p;.
> This gives an inequality for C'/2 cov(pn)C'/2. Note that Amay is S| parameter.

12/12



Now we prove trickle down of [Oppenheim].
e Imagine pis on ([2]) — {0, 1}™.
> Denote p; = Ps.,[i € S]. Let us choose i ~ uDy_,1 = p/k.

O Let \T/ be the on i. Note that p = E;[v]:
a random measure xi
v(x) = —ulx).
Pi
> We have

cov(p) = E[cov(v)] + cov(u)C cov(p)

where C is the covariance of random vector 1;/p;.
> This gives an inequality for C'/2 cov(pn)C'/2. Note that Amay is S| parameter.
> Onboard...

12/12



