CS 263: Counting and Sampling

Nima Anari

slides for

Spectral Independence

Dist μ on $\binom{u}{k} \leftarrow$ simplicial complex

▷ Dist μ on $\binom{u}{k}$ simplicial complex

▷ Dist μ on $\binom{U}{k}$ ← simplicial complex

▷ Dist μ on $\binom{U}{k}$ ← simplicial complex

▷ Dist μ on $\binom{u}{k}$ ← simplicial complex

HDX recipe

1 Conver	rt to	simplicial	comp	lex
----------	-------	------------	------	-----

- 2 Contraction for $D_{k \rightarrow 1}$ local
- 3 Transfer local to $D_{k \rightarrow \ell}$ global

▷ Dist μ on $\binom{u}{k}$ ← simplicial complex

alg useful for $\ell = k - O(1)$

HDX recipe

- 2 Contraction for $D_{k \to 1}$ local
- 3 Transfer local to $D_{k \to \ell}$ global

- Conversion for product spaces:
 - $\mathbf{U} = \left\{ \begin{smallmatrix} \mathbf{0} & -\mathbf{0} & \mathbf{0} & -\mathbf{0} \\ \mathbf{0} & -\mathbf{0} & \mathbf{0} & -\mathbf{0} \\ \bullet & -\mathbf{0} & \bullet & -\mathbf{0} \\ \end{smallmatrix} \right\}$

▷ Dist μ on $\binom{U}{k}$ ← simplicial complex

D_{3→1}

ď

⊃ Down kernels

D Up kernels:

 $U_{\ell \to k} = D_{k \to \ell}^{\circ}$

🕞 Walks:

$$D_{k \to \ell} \mathcal{U}_{\ell \to k}$$

alg useful for $\ell = k - O(1)$

HDX recipe

- 1 Convert to simplicial complex
- 2 Contraction for $D_{k \rightarrow 1}$ local
- 3 Transfer local to $D_{k \rightarrow \ell}$ global

Conversion for product spaces: $U = \left\{ \underbrace{\bullet \bullet \bullet}_{\bullet \bullet \bullet}, \underbrace{\bullet \bullet \bullet}_{\bullet \bullet \bullet}, \underbrace{\bullet \bullet \bullet}_{\bullet \bullet \bullet}, \ldots, \underbrace{\bullet \bullet \bullet}_{\bullet \bullet \bullet} \right\}$

Conditionals:

 $\mathsf{dist}_{S\sim \mu}(S \mid \mathsf{T} \subseteq S)$

▷ Dist μ on $\binom{u}{k}$ ← simplicial complex

D_{3→1}

ó.

D1→0

⊃ Down kernels

Up kernels:

 $U_{\ell \to k} = D_{k \to \ell}^{\circ}$

🕞 Walks:

$$D_{k \to \ell} U_{\ell \to k}$$

alg useful for $\ell = k - O(1)$

HDX recipe

- 1 Convert to simplicial complex
- 2 Contraction for $D_{k \rightarrow 1}$ local
- 3 Transfer local to $D_{k \rightarrow \ell}$ global

Conversion for product spaces: $U = \left\{ \underbrace{\bullet \bullet \bullet}_{\bullet \bullet \bullet}, \underbrace{\bullet \bullet \bullet}_{\bullet \bullet \bullet}, \underbrace{\bullet \bullet \bullet}_{\bullet \bullet \bullet}, \ldots, \underbrace{\bullet \bullet \bullet}_{\bullet \bullet \bullet} \right\}$

Conditionals:

 $\mathsf{dist}_{S\sim \mu}(S \mid \mathsf{T} \subseteq S)$

🗅 Links:

$$\mu_T = \mathsf{dist}_{S \sim \mu}(S - T \mid T \subseteq S)$$

▷ Dist μ on $\binom{u}{k}$ ← simplicial complex

D_{3→1}

▷ Down kernels

D Up kernels:

 $u_{\ell \to k} = \mathsf{D}_{k \to \ell}^\circ$

🕞 Walks:

 $D_{k \to \ell} U_{\ell \to k}$

alg useful for $\ell = k - O(1)$

HDX recipe

- 1 Convert to simplicial complex
- 2 Contraction for $D_{k \rightarrow 1}$ local
- 3 Transfer local to $D_{k \to \ell}$ global

- Conversion for product spaces:
 - $\mathbf{U} = \left\{ \begin{smallmatrix} \mathbf{0} & -\mathbf{0} & \mathbf{0} & -\mathbf{0} \\ \bullet & -\mathbf{0} & \bullet & -\mathbf{0} \\ \bullet & -\mathbf{0} & \bullet & -\mathbf{0} \\ \bullet & -\mathbf{0} & \bullet & -\mathbf{0} \\ \end{smallmatrix} \right\}$

▷ Conditionals:

 $\mathsf{dist}_{S\sim\mu}(S \mid \mathsf{T} \subseteq S)$

D Links:

$$\mu_{\mathsf{T}} = \mathsf{dist}_{S \sim \mu}(S - \mathsf{T} \mid \mathsf{T} \subseteq S)$$

Local to global

If μ_T has local contraction $1 - \rho_{|T|}$, then we get global contraction $1 - \rho$ where for $D_{k \rightarrow \ell}$

 $\rho = \rho_0 \cdots \rho_{\ell-1}$

Spectral HDX Analysis

- \triangleright Spectral independence
- \triangleright Entropic independence
- Trickle down
- Matroids

Spectral HDX Analysis

- \triangleright Spectral independence
- ▷ Entropic independence
- ▷ Trickle down
- Matroids

Useful settings for local-to-global:

Spectral [A-Liu-OveisGharan]

$$\chi^2(\nu D_{k\rightarrow 1}\parallel \mu D_{k\rightarrow 1})\leqslant \frac{C\,\chi^2(\nu\parallel \mu)}{k}$$

Useful settings for local-to-global:

Spectral [A-Liu-OveisGharan]

$$\chi^2(\nu D_{k\rightarrow 1} \parallel \mu D_{k\rightarrow 1}) \leqslant \frac{C\,\chi^2(\nu \parallel \mu)}{k}$$

and similar inequalities for links is called C spectral independence.

Entropic [A-Jain-Koehler-Pham-Vuong]

$$\mathfrak{D}_{\mathsf{KL}}(\nu D_{k \rightarrow 1} \parallel \mu D_{k \rightarrow 1}) \leqslant \frac{\mathsf{C} \, \mathfrak{D}_{\mathsf{KL}}(\nu \parallel \mu)}{k}$$

Useful settings for local-to-global:

Spectral [A-Liu-OveisGharan]

$$\chi^2(\nu D_{k\rightarrow 1} \parallel \mu D_{k\rightarrow 1}) \leqslant \frac{C \chi^2(\nu \parallel \mu)}{k}$$

and similar inequalities for links is called C spectral independence.

Entropic [A-Jain-Koehler-Pham-Vuong]

$$\mathfrak{D}_{\mathsf{KL}}(\nu D_{k \rightarrow 1} \parallel \mu D_{k \rightarrow 1}) \leqslant \frac{\mathtt{C}\, \mathfrak{D}_{\mathsf{KL}}(\nu \parallel \mu)}{k}$$

and similar inequalities for links is called C entropic independence.

 \triangleright For links μ_T , k becomes k - |T|.

Useful settings for local-to-global:

Spectral [A-Liu-OveisGharan]

$$\chi^2(\nu D_{k\rightarrow 1} \parallel \mu D_{k\rightarrow 1}) \leqslant \frac{\mathsf{C}\,\chi^2(\nu \parallel \mu)}{k}$$

and similar inequalities for links is called C spectral independence.

Entropic [A-Jain-Koehler-Pham-Vuong]

$$\mathfrak{D}_{\mathsf{KL}}(\nu D_{k \rightarrow 1} \parallel \mu D_{k \rightarrow 1}) \leqslant \frac{\mathsf{C}\, \mathfrak{D}_{\mathsf{KL}}(\nu \parallel \mu)}{k}$$

- \triangleright For links μ_T , k becomes k |T|.
- Useful for C = O(1). When C not mentioned, it just means O(1).

Useful settings for local-to-global:

Spectral [A-Liu-OveisGharan]

$$\chi^2(\nu D_{k\rightarrow 1} \parallel \mu D_{k\rightarrow 1}) \leqslant \frac{\mathsf{C}\,\chi^2(\nu \parallel \mu)}{k}$$

and similar inequalities for links is called C spectral independence.

Entropic [A-Jain-Koehler-Pham-Vuong]

$$\mathfrak{D}_{\mathsf{KL}}(\nu D_{k \rightarrow 1} \parallel \mu D_{k \rightarrow 1}) \leqslant \frac{C \, \mathfrak{D}_{\mathsf{KL}}(\nu \parallel \mu)}{k}$$

- \triangleright For links μ_T , k becomes k |T|.
- Useful for C = O(1). When C not mentioned, it just means O(1).
- For integer C, local-to-global gives $D_{k \to \ell}$ contraction rate of $a > \binom{k-\ell}{\ell}$

$$\rho \ge \binom{\kappa-\epsilon}{C} / \binom{\kappa}{C}$$

Useful settings for local-to-global:

Spectral [A-Liu-OveisGharan]

$$\chi^2(\nu D_{k\rightarrow 1} \parallel \mu D_{k\rightarrow 1}) \leqslant \frac{C\,\chi^2(\nu \parallel \mu)}{k}$$

and similar inequalities for links is called C spectral independence.

Entropic [A-Jain-Koehler-Pham-Vuong]

$$\mathfrak{D}_{\mathsf{KL}}(\nu D_{k \to 1} \parallel \mu D_{k \to 1}) \leqslant \frac{C \, \mathfrak{D}_{\mathsf{KL}}(\nu \parallel \mu)}{k}$$

- \triangleright For links μ_T , k becomes k |T|.
- Useful for C = O(1). When C not mentioned, it just means O(1).
- For integer C, local-to-global gives $D_{k \to \ell}$ contraction rate of

$$\rho \geq (c) / (c)$$

> If $\ell \leq k - C$, this is $\simeq k^{-C}$.

Useful settings for local-to-global:

Spectral [A-Liu-OveisGharan]

$$\chi^2(\nu D_{k\rightarrow 1}\parallel \mu D_{k\rightarrow 1})\leqslant \frac{C\,\chi^2(\nu\parallel \mu)}{k}$$

and similar inequalities for links is called C spectral independence.

Entropic [A-Jain-Koehler-Pham-Vuong]

$$\mathfrak{D}_{\mathsf{KL}}(\nu D_{k \to 1} \parallel \mu D_{k \to 1}) \leqslant \frac{\mathsf{C} \, \mathfrak{D}_{\mathsf{KL}}(\nu \parallel \mu)}{k}$$

and similar inequalities for links is called C entropic independence.

- \triangleright For links μ_T , k becomes k |T|.
- Useful for C = O(1). When C not mentioned, it just means O(1).
- For integer C, local-to-global gives $D_{k \to \ell}$ contraction rate of

$$\rho \ge \binom{\kappa - \ell}{C} / \binom{\kappa}{C}$$

▷ If
$$l \leq k - C$$
, this is $\simeq k^{-C}$.

 \triangleright Will show matroids satisfy C = 1.

Spectral independence is about χ^2 contraction. Related to eigval:

 $\lambda_2(D_{k\to 1} U_{1\to k})$

 $\begin{array}{l} \triangleright \quad \mbox{Spectral independence is about } \chi^2 \\ \mbox{contraction. Related to eigval:} \\ \lambda_2(D_{k \rightarrow 1} U_{1 \rightarrow k}) \\ \hline \mbox{The same as eigval:} \\ \lambda_2(U_{1 \rightarrow k} D_{k \rightarrow 1}) \end{array}$

 $n \times n$ matrix

 $\tfrac{1}{k}\,\mathbb{P}_{S\sim\mu}[j\in S\mid i\in S]=\mathbb{P}[j\mid i]/k$

 $\begin{array}{l} \triangleright \quad \mbox{Spectral independence is about } \chi^2 \\ \mbox{contraction. Related to eigval:} \\ \lambda_2(D_{k \rightarrow 1} U_{1 \rightarrow k}) \\ \hline \mbox{The same as eigval:} \\ \lambda_2(U_{1 \rightarrow k} D_{k \rightarrow 1}) \\ \mbox{$n \times n \ matrix$} \end{array}$

 \triangleright The (i, j) entry is

 $\tfrac{1}{k} \mathbb{P}_{S \sim \mu}[j \in S \mid i \in S] = \mathbb{P}[j \mid i]/k$

 \triangleright Note that $\lambda_1=1$ with right eigvec 1 and left eigvec

 $\mu D_{k \to 1} = \frac{1}{k} [\mathbb{P}[1], \cdots, \mathbb{P}[n]]$

 $\lambda_2(D_{k\to 1}U_{1\to k})$

> The same as eigval:

 $\lambda_2(U_{1 \to k} D_{k \to 1})$

 $n \times n$ matrix

 \triangleright The (i, j) entry is

 $\tfrac{1}{k} \, \mathbb{P}_{S \sim \mu}[j \in S \mid i \in S] = \mathbb{P}[j \mid i] / k$

 \triangleright Note that $\lambda_1=1$ with right eigvec 1 and left eigvec

 $\mu D_{k \to 1} = \frac{1}{k} [\mathbb{P}[1], \cdots, \mathbb{P}[n]]$

 $\blacktriangleright \ \mbox{So} \ \lambda_2 \ \mbox{is simply} $\lambda_{max}(U_{1 \rightarrow k} D_{k \rightarrow 1} - \mathbbm{1} \mu D_{k \rightarrow 1})$$

Spectral independence is about χ^2 contraction. Related to eigval:

 $\lambda_2(D_{k\to 1}U_{1\to k})$

 \triangleright The same as eigval:

 $\lambda_2(U_{1 \to k} D_{k \to 1})$

▷ The (i, j) entru is

 $\tfrac{1}{k} \, \mathbb{P}_{S \sim \mu}[j \in S \mid i \in S] = \mathbb{P}[j \mid i] / k$

 $\triangleright \$ Note that $\lambda_1 = 1$ with right eigvec 1 and left eigvec

 $\mu D_{k \to 1} = \frac{1}{k} [\mathbb{P}[1], \cdots, \mathbb{P}[n]]$

$$\begin{split} & \triangleright \quad \text{So } \lambda_2 \text{ is simply} \\ & \lambda_{\text{max}}(U_{1 \to k} D_{k \to 1} - \mathbb{1} \mu D_{k \to 1}) \\ & \triangleright \quad \text{The } (i,j) \text{ entry is} \\ & \quad \frac{1}{k} (\mathbb{P}[j \mid i] - \mathbb{P}[j]) \\ & \quad \uparrow \\ & \quad \text{vaguely similar to influence} \end{split}$$

Spectral independence is about χ^2 contraction. Related to eigval:

 $\lambda_2(D_{k\to 1}U_{1\to k})$

> The same as eigval:

 $\lambda_2(u_{1 \to k} D_{k \to 1})$

 $n \times n$ matrix

 \triangleright The (i, j) entry is

 $\tfrac{1}{k}\,\mathbb{P}_{S\sim\mu}[j\in S\mid i\in S]=\mathbb{P}[j\mid i]/k$

 $\triangleright \$ Note that $\lambda_1 = 1$ with right eigvec 1 and left eigvec

 $\mu D_{k \to 1} = \frac{1}{k} [\mathbb{P}[1], \cdots, \mathbb{P}[n]]$

$$\begin{split} & \triangleright \quad \text{So } \lambda_2 \text{ is simply} \\ & \lambda_{\max}(U_{1 \to k} D_{k \to 1} - \mathbb{1} \mu D_{k \to 1}) \\ & \triangleright \quad \text{The } (i, j) \text{ entry is} \\ & \quad \frac{1}{k} (\mathbb{P}[j \mid i] - \mathbb{P}[j]) \\ & \quad \uparrow \\ & \quad \text{vaguely similar to influence} \end{split}$$

Correlation matrix

The matrix Ψ with entries $\mathbb{P}[j \mid i] - \mathbb{P}[j]$.

Spectral independence is about χ^2 contraction. Related to eigval:

 $\lambda_2(D_{k\to 1}U_{1\to k})$

 \triangleright The same as eigval:

 $\lambda_2(u_{1 \to k} D_{k \to 1})$

 $n \times n$ matrix

 \triangleright The (i, j) entry is

 $\tfrac{1}{k} \mathbb{P}_{S \sim \mu} [j \in S \mid i \in S] = \mathbb{P}[j \mid i] / k$

 \bigcirc Note that $\lambda_1=1$ with right eigvec 1 and left eigvec

 $\mu D_{k \to 1} = \tfrac{1}{k} [\mathbb{P}[1], \cdots, \mathbb{P}[n]]$

$$\begin{split} & \triangleright \quad \text{So } \lambda_2 \text{ is simply} \\ & \lambda_{\max}(U_{1 \to k} D_{k \to 1} - \mathbb{1} \mu D_{k \to 1}) \\ & \triangleright \quad \text{The } (i, j) \text{ entry is} \\ & \quad \frac{1}{k} (\mathbb{P}[j \mid i] - \mathbb{P}[j]) \\ & \quad \wedge \\ & \quad \text{vaguely similar to influence} \end{split}$$

Correlation matrix

The matrix Ψ with entries $\mathbb{P}[j \mid i] - \mathbb{P}[j].$

> C-spectral ind is same as
$$\lambda_{\max}(\Psi) \leq C$$

$\triangleright \Psi$ has block form:

$$\begin{bmatrix} +\frac{1}{2} & -\frac{1}{2} & 0 & \cdots & 0 \\ -\frac{1}{2} & +\frac{1}{2} & 0 & \cdots & 0 \\ 0 & 0 & +\frac{1}{2} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & +\frac{1}{2} \end{bmatrix}$$

 $\triangleright \Psi$ has block form:

$$\begin{bmatrix} +\frac{1}{2} & -\frac{1}{2} & 0 & \cdots & 0 \\ -\frac{1}{2} & +\frac{1}{2} & 0 & \cdots & 0 \\ 0 & 0 & +\frac{1}{2} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & +\frac{1}{2} \end{bmatrix}$$

 \triangleright This means $\lambda_{max} = 1$.

 $\triangleright \Psi$ has block form:

$$\begin{bmatrix} +\frac{1}{2} & -\frac{1}{2} & 0 & \cdots & 0\\ -\frac{1}{2} & +\frac{1}{2} & 0 & \cdots & 0\\ 0 & 0 & +\frac{1}{2} & \cdots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & 0 & \cdots & +\frac{1}{2} \end{bmatrix}$$

 $\label{eq:lambda} \begin{array}{l} \bigtriangledown \ \ \, \mbox{This means } \lambda_{max} = 1. \\ \\ \bigcirc \ \ \, \mbox{So } D_{n \to \ell} \mbox{ contracts } \chi^2 \mbox{ by } \ell/n. \end{array}$

 $\begin{array}{c} \triangleright \ \{0,1\}^n \hookrightarrow {[2n] \choose n} \\ \triangleright \ \ \text{Glauber becomes} \\ D_{n \to n-1} \end{array}$

 $\triangleright \Psi$ has block form:

$$\begin{bmatrix} +\frac{1}{2} & -\frac{1}{2} & 0 & \cdots & 0\\ -\frac{1}{2} & +\frac{1}{2} & 0 & \cdots & 0\\ 0 & 0 & +\frac{1}{2} & \cdots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & 0 & \cdots & +\frac{1}{2} \end{bmatrix}$$

 $\label{eq:max_max} \begin{array}{l} \triangleright \ \mbox{This means } \lambda_{max} = 1. \\ \hline \ \ \mbox{So } D_{n \rightarrow \ell} \ \mbox{contracts } \chi^2 \ \mbox{by } \ell/n. \end{array}$

 $\begin{array}{l} \textcircled{D} \ \Psi \ \text{also has a symmetric form} \\ \ D\Psi D^{-1}. \ \text{With } D \ \text{diagonal and} \\ \ D_{\mathfrak{i}\mathfrak{i}} = \sqrt{\mathbb{P}[\mathfrak{i}]}, \ \text{we get} \\ \ (D\Psi D^{-1})_{\mathfrak{i}\mathfrak{j}} = \frac{\mathbb{P}[\mathfrak{i},\mathfrak{j}] - \mathbb{P}[\mathfrak{i}] \mathbb{P}[\mathfrak{j}]}{\sqrt{\mathbb{P}[\mathfrak{i}] \mathbb{P}[\mathfrak{j}]}} \end{array}$

 $\begin{array}{c} \triangleright \ \{0,1\}^n \hookrightarrow {[2n] \choose n} \\ \triangleright \ \ \mbox{Glauber becomes} \\ D_{n \to n-1} \end{array}$

 $\triangleright \Psi$ has block form:

$$\begin{bmatrix} +\frac{1}{2} & -\frac{1}{2} & 0 & \cdots & 0\\ -\frac{1}{2} & +\frac{1}{2} & 0 & \cdots & 0\\ 0 & 0 & +\frac{1}{2} & \cdots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & 0 & \cdots & +\frac{1}{2} \end{bmatrix}$$

 $\label{eq:linear} \begin{array}{l} \triangleright \quad \mbox{This means } \lambda_{max} = 1. \\ \hline \quad \mbox{So } D_{n \rightarrow \ell} \mbox{ contracts } \chi^2 \mbox{ by } \ell/n. \end{array}$

- $\begin{array}{l} \textcircled{D} \ \Psi \ \text{also has a symmetric form} \\ \ D\Psi D^{-1}. \ \text{With } D \ \text{diagonal and} \\ \ D_{\mathfrak{i}\mathfrak{i}} = \sqrt{\mathbb{P}[\mathfrak{i}]}, \ \text{we get} \\ (D\Psi D^{-1})_{\mathfrak{i}\mathfrak{j}} = \frac{\mathbb{P}[\mathfrak{i},\mathfrak{j}] \mathbb{P}[\mathfrak{i}] \ \mathbb{P}[\mathfrak{j}]}{\sqrt{\mathbb{P}[\mathfrak{i}] \ \mathbb{P}[\mathfrak{j}]}} \end{array}$
- Spectral independence is equiv to $D\Psi D^{-1} \preceq C \cdot I$ which is the same as $D^2 \Psi \preceq C \cdot D^2$.

 $\begin{array}{c} \triangleright \ \{0,1\}^n \hookrightarrow {[2n] \choose n} \\ \triangleright \ \ \mbox{Glauber becomes} \\ D_{n \to n-1} \end{array}$

 $\triangleright \Psi$ has block form:

$$\begin{bmatrix} +\frac{1}{2} & -\frac{1}{2} & 0 & \cdots & 0\\ -\frac{1}{2} & +\frac{1}{2} & 0 & \cdots & 0\\ 0 & 0 & +\frac{1}{2} & \cdots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & 0 & \cdots & +\frac{1}{2} \end{bmatrix}$$

 $\label{eq:linear} \begin{array}{l} \triangleright \quad \mbox{This means } \lambda_{max} = 1. \\ \hline \quad \mbox{So } D_{n \rightarrow \ell} \mbox{ contracts } \chi^2 \mbox{ by } \ell/n. \end{array}$

- $\begin{array}{l} \textcircled{} \label{eq:phi} \Psi \text{ also has a symmetric form} \\ D\Psi D^{-1}. \text{ With } D \text{ diagonal and} \\ D_{\mathfrak{i}\mathfrak{i}} = \sqrt{\mathbb{P}[\mathfrak{i}]}, \text{ we get} \\ (D\Psi D^{-1})_{\mathfrak{i}\mathfrak{j}} = \frac{\mathbb{P}[\mathfrak{i},\mathfrak{j}] \mathbb{P}[\mathfrak{i}] \, \mathbb{P}[\mathfrak{j}]}{\sqrt{\mathbb{P}[\mathfrak{i}] \, \mathbb{P}[\mathfrak{j}]}} \end{array}$
- $\begin{array}{l|l} \hline & \text{Spectral independence is equiv to} \\ & D\Psi D^{-1} \preceq C \cdot I \\ & \text{which is the same as} \\ & D^2\Psi \preceq C \cdot D^2. \\ \hline & \text{If we embed } \binom{U}{k} \hookrightarrow \{0,1\}_{\|\cdot\|_1=k}^{U}, \text{ by} \\ & \text{ sending S to $\mathbb{1}_S$, the inequality} \\ & \text{ becomes} \end{array}$

 $\mathsf{cov}(\mu) \preceq C \cdot \mathsf{diag}(\mathsf{mean}(\mu))$

How to establish spectral independence?

- \triangleright Transport contraction
- ▷ Transport stability
- \triangleright Correlation decay
- ▷ Geometry of polynomials
- $\triangleright \dots$
- $\,\triangleright\,$ Universality: any linear bound on t_{rel} for down-up

 $\begin{array}{l} \fboxlength{\abovedisplayskip}{1.5\textwidth} Trickle-down [Oppenheim]: if links $$\mu_T$ for $T \in {U \\ 1$} are spectrally $$independent, so is μ. $ \end{tabular}$

- ▷ Note: parameter C deteriorates.
 ↑
 matroids are exception

- Note: parameter C deteriorates.
 A matroids are exception

Special case of trickle-down

If $k \ge 3$ and links $\mu_{\{i\}}$ are 1-SI, then μ is either 1-SI, or $\lambda_2(U_{1 \to k}D_{k \to 1}) = 1$.

disconnected

For matroids, enough to look at rank 2 cases.
fancy word for k

- ▷ Note: parameter C deteriorates. ↑ matroids are exception

Special case of trickle-down

If $k \ge 3$ and links $\mu_{\{i\}}$ are 1-SI, then μ is either 1-SI, or $\lambda_2(U_{1 \to k}D_{k \to 1}) = 1$.

disconnected

For matroids, enough to look at rank 2 cases. fancy word for k ▷ Walks on matroids are ergodic, so $\lambda_2(U_{1\rightarrow k}D_{k\rightarrow 1}) \neq 1$:

- ▷ Note: parameter C deteriorates. ↑ matroids are exception

Special case of trickle-down

If $k \ge 3$ and links $\mu_{\{i\}}$ are 1-SI, then μ is either 1-SI, or $\lambda_2(U_{1 \to k}D_{k \to 1}) = 1$.

disconnected

For matroids, enough to look at rank 2 cases.

fancy word for k

▷ Walks on matroids are ergodic, so $\lambda_2(U_{1\rightarrow k}D_{k\rightarrow 1}) \neq 1$:

Can reach any T from any S by exchanges.

 \triangleright Distribution $\mu \equiv$ uniformly random edge of complete multipartite graph.

$$\begin{bmatrix} 0 & \dots & 0 & 1 & \dots & 1 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 1 & \dots & 1 \\ 1 & \dots & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 1 & \dots & 1 & 0 & \dots & 0 \end{bmatrix} \preceq \mathbb{1}\mathbb{1}^{\mathsf{T}}.$$

$$\begin{bmatrix} 0 & \dots & 0 & 1 & \dots & 1 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 1 & \dots & 1 \\ 1 & \dots & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 1 & \dots & 1 & 0 & \dots & 0 \end{bmatrix} \preceq \mathbb{1}\mathbb{1}^{\mathsf{T}}.$$

 \triangleright This means $\lambda_2(adj) \leq 0$.

$$\begin{bmatrix} 0 & \dots & 0 & 1 & \dots & 1 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 1 & \dots & 1 \\ 1 & \dots & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 1 & \dots & 1 & 0 & \dots & 0 \end{bmatrix} \preceq \mathbb{1}\mathbb{1}^{\mathsf{T}}.$$

$$\begin{bmatrix} 0 & \dots & 0 & 1 & \dots & 1 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 1 & \dots & 1 \\ 1 & \dots & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 1 & \dots & 1 & 0 & \dots & 0 \end{bmatrix} \preceq \mathbb{1}\mathbb{1}^{\mathsf{T}}.$$

- \triangleright This means $\lambda_2(adj) \leq 0$.
- > The non-lazy random walk P is

 $diag(deg)^{-1} \cdot adj$

$$U_{1\to 2}D_{2\to 1} = \frac{1}{2}P + \frac{1}{2}I.$$

 \triangleright These graphs have adj matrix:

$$\begin{bmatrix} 0 & \dots & 0 & 1 & \dots & 1 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 1 & \dots & 1 \\ 1 & \dots & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 1 & \dots & 1 & 0 & \dots & 0 \end{bmatrix} \preceq \mathbb{1}\mathbb{1}^{\intercal}.$$

Fact

If symmetric $A \in \mathbb{R}_{\geq 0}^{n \times n}$ has $\lambda_2(A) \leq 0$, and $D \in \mathbb{R}_{>0}^{n \times n}$ is diagonal, then

 $\lambda_2(DAD) \leqslant 0.$

- \triangleright This means $\lambda_2(adj) \leq 0$.
- ▷ The non-lazy random walk P is

 $diag(deg)^{-1} \cdot adj$

$$U_{1\to 2}D_{2\to 1} = \frac{1}{2}P + \frac{1}{2}I.$$

 \triangleright These graphs have adj matrix:

$$\begin{bmatrix} 0 & \dots & 0 & 1 & \dots & 1 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 1 & \dots & 1 \\ 1 & \dots & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 1 & \dots & 1 & 0 & \dots & 0 \end{bmatrix} \preceq \mathbb{1}\mathbb{1}^{\intercal}.$$

- \triangleright This means $\lambda_2(adj) \leqslant 0$.
- ▷ The non-lazy random walk P is

$$U_{1\to 2}D_{2\to 1} = \frac{1}{2}P + \frac{1}{2}I.$$

Fact

If symmetric $A \in \mathbb{R}_{\geq 0}^{n \times n}$ has $\lambda_2(A) \leq 0$, and $D \in \mathbb{R}_{>0}^{n \times n}$ is diagonal, then

 $\lambda_2(DAD) \leqslant 0.$

We apply this with
$$A = adj$$
 and $D = diag(deg)^{-1/2}$.

 \triangleright These graphs have adj matrix:

$$\begin{bmatrix} 0 & \dots & 0 & 1 & \dots & 1 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 1 & \dots & 1 \\ 1 & \dots & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 1 & \dots & 1 & 0 & \dots & 0 \end{bmatrix} \preceq \mathbb{1}\mathbb{1}^{\mathsf{T}}.$$

- \triangleright This means $\lambda_2(adj) \leqslant 0$.
- > The non-lazy random walk P is

$$U_{1\to 2}D_{2\to 1} = \frac{1}{2}P + \frac{1}{2}I.$$

Fact

If symmetric $A \in \mathbb{R}_{\geq 0}^{n \times n}$ has $\lambda_2(A) \leq 0$, and $D \in \mathbb{R}_{>0}^{n \times n}$ is diagonal, then

 $\lambda_2(DAD) \leqslant 0.$

We apply this with
$$A = adj$$
 and $D = diag(deg)^{-1/2}$.

Proof:

 \triangleright These graphs have adj matrix:

$$\begin{bmatrix} 0 & \dots & 0 & 1 & \dots & 1 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 1 & \dots & 1 \\ 1 & \dots & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 1 & \dots & 1 & 0 & \dots & 0 \end{bmatrix} \preceq \mathbb{1}\mathbb{1}^{\mathsf{T}}.$$

- \triangleright This means $\lambda_2(adj) \leqslant 0$.
- \triangleright The non-lazy random walk P is

$$U_{1\to 2}D_{2\to 1} = \frac{1}{2}P + \frac{1}{2}I.$$

Fact

If symmetric $A \in \mathbb{R}_{\ge 0}^{n \times n}$ has $\lambda_2(A) \leqslant 0$, and $D \in \mathbb{R}_{>0}^{n \times n}$ is diagonal, then

 $\lambda_2(DAD) \leqslant 0.$

We apply this with
$$A = adj$$
 and $D = diag(deg)^{-1/2}$.

Proof:

▷ For any
$$v \in \mathbb{R}^{n}_{\geq 0}$$
 and $u \in \mathbb{R}^{n}$,
 $(u^{\mathsf{T}}Av)^{2} \geq (u^{\mathsf{T}}Au)(v^{\mathsf{T}}Av)$

 \triangleright These graphs have adj matrix:

$$\begin{bmatrix} 0 & \dots & 0 & 1 & \dots & 1 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 1 & \dots & 1 \\ 1 & \dots & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 1 & \dots & 1 & 0 & \dots & 0 \end{bmatrix} \preceq \mathbb{1}\mathbb{1}^{\mathsf{T}}.$$

- \triangleright This means $\lambda_2(adj) \leq 0$.
- \triangleright The non-lazy random walk P is

$$U_{1\to 2}D_{2\to 1} = \frac{1}{2}P + \frac{1}{2}I.$$

Fact

If symmetric $A \in \mathbb{R}_{\geq 0}^{n \times n}$ has $\lambda_2(A) \leq 0$, and $D \in \mathbb{R}_{>0}^{n \times n}$ is diagonal, then

 $\lambda_2(\mathsf{D}\mathsf{A}\mathsf{D})\leqslant 0.$

 \triangleright We apply this with A = adj and $D = diag(deg)^{-1/2}$.

Proof:

- $\,\triangleright\,\,$ For any $\nu\in\mathbb{R}^n_{\geqq0}$ and $u\in\mathbb{R}^n$,
 - $(\mathfrak{u}^{\mathsf{T}} A \mathfrak{v})^2 \geqslant (\mathfrak{u}^{\mathsf{T}} A \mathfrak{u})(\mathfrak{v}^{\mathsf{T}} A \mathfrak{v})$
- \triangleright This is det([u,v]^TA[u,v]).

$$\begin{bmatrix} 0 & \dots & 0 & 1 & \dots & 1 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 1 & \dots & 1 \\ 1 & \dots & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 1 & \dots & 1 & 0 & \dots & 0 \end{bmatrix} \preceq \mathbb{1}\mathbb{1}^{\intercal}.$$

- \triangleright This means $\lambda_2(adj) \leq 0$.
- \triangleright The non-lazy random walk P is

 $diag(deg)^{-1} \cdot \alpha dj$

$$U_{1\to 2}D_{2\to 1} = \frac{1}{2}P + \frac{1}{2}I.$$

Fact

If symmetric $A \in \mathbb{R}_{\geq 0}^{n \times n}$ has $\lambda_2(A) \leq 0$, and $D \in \mathbb{R}_{>0}^{n \times n}$ is diagonal, then

 $\lambda_2(DAD) \leqslant 0.$

 \triangleright We apply this with A = adj and $D = diag(deg)^{-1/2}$.

Proof:

- $\,\triangleright\,\,$ For any $\nu\in\mathbb{R}^n_{\geqslant0}$ and $u\in\mathbb{R}^n$,
 - $(\mathfrak{u}^{\mathsf{T}} A \mathfrak{v})^2 \ge (\mathfrak{u}^{\mathsf{T}} A \mathfrak{u})(\mathfrak{v}^{\mathsf{T}} A \mathfrak{v})$
- \triangleright This is det([u,v]^TA[u,v]).
- ▷ Opposite is true too:

 $A - (A\nu)(A\nu)^\intercal/(\nu^\intercal A\nu) \preceq 0$

 \triangleright These graphs have adj matrix:

$$\begin{bmatrix} 0 & \dots & 0 & 1 & \dots & 1 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 1 & \dots & 1 \\ 1 & \dots & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 1 & \dots & 1 & 0 & \dots & 0 \end{bmatrix} \preceq \mathbb{1}\mathbb{1}^{\intercal}.$$

- \triangleright This means $\lambda_2(adj) \leq 0$.
- \triangleright The non-lazy random walk P is

 $diag(deg)^{-1} \cdot \alpha dj$

$$U_{1\rightarrow 2}D_{2\rightarrow 1}=\tfrac{1}{2}P+\tfrac{1}{2}I.$$

Fact

If symmetric $A \in \mathbb{R}_{\geq 0}^{n \times n}$ has $\lambda_2(A) \leq 0$, and $D \in \mathbb{R}_{>0}^{n \times n}$ is diagonal, then

 $\lambda_2(DAD) \leqslant 0.$

 \triangleright We apply this with A = adj and $D = diag(deg)^{-1/2}$.

Proof:

 $\,\triangleright\,\,$ For any $\nu\in\mathbb{R}^n_{\geqslant0}$ and $u\in\mathbb{R}^n$,

 $(\mathfrak{u}^{\mathsf{T}} A \mathfrak{v})^2 \geqslant (\mathfrak{u}^{\mathsf{T}} A \mathfrak{u})(\mathfrak{v}^{\mathsf{T}} A \mathfrak{v})$

- \triangleright This is det([u,v]^TA[u,v]).
- ▷ Opposite is true too:

 $\mathbf{A} - (\mathbf{A}\mathbf{v})(\mathbf{A}\mathbf{v})^{\mathsf{T}} / (\mathbf{v}^{\mathsf{T}}\mathbf{A}\mathbf{v}) \preceq \mathbf{0}$

 \triangleright Ineq for A equiv to one for DAD.

Now we prove trickle down of [Oppenheim]. \square Imagine μ is on $\binom{[n]}{k} \hookrightarrow \{0, 1\}^n$.

- \triangleright Imagine μ is on $\binom{[n]}{k} \hookrightarrow \{0, 1\}^n$.
- $\label{eq:product} \square \ \mbox{Denote} \ p_i = \mathbb{P}_{S \sim \mu}[i \in S]. \ \mbox{Let us choose} \ i \sim \mu D_{k \rightarrow 1} = p/k.$

 $\ \ \, \hbox{Imagine μ is on $\binom{[n]}{k}$} \hookrightarrow \{0,1\}^n.$

 $\label{eq:constraint} \begin{tabular}{ll} $$ Denote $p_i = \mathbb{P}_{S \sim \mu}[i \in S]$. Let us choose $i \sim \mu D_{k \rightarrow 1} = p/k$. } \end{tabular}$

 \triangleright Let γ be the conditional on i. Note that $\mu = \mathbb{E}_i[\nu]$:

a random measure

$$\mathbf{v}(\mathbf{x}) = \frac{\mathbf{x}_{\mathbf{i}}}{\mathbf{p}_{\mathbf{i}}} \boldsymbol{\mu}(\mathbf{x}).$$

 $\label{eq:product} \fbox{Denote } p_i = \mathbb{P}_{S \sim \mu}[i \in S]. \text{ Let us choose } i \sim \mu D_{k \rightarrow 1} = p/k.$

 \triangleright Let γ be the conditional on i. Note that $\mu = \mathbb{E}_i[\nu]$:

a random measure

$$\mathbf{v}(\mathbf{x}) = \frac{\mathbf{x}_{i}}{\mathbf{p}_{i}} \boldsymbol{\mu}(\mathbf{x}).$$

▷ We have

$$\mathsf{cov}(\mu) = \mathbb{E}[\mathsf{cov}(\nu)] + \mathsf{cov}(\mu)C\,\mathsf{cov}(\mu)$$

where C is the covariance of random vector $\mathbb{1}_i/p_i$.

▷ Imagine
$$\mu$$
 is on $\binom{[n]}{k} \hookrightarrow \{0, 1\}^n$.

 $\label{eq:constraint} \begin{tabular}{ll} $$ Denote $p_i = \mathbb{P}_{S \sim \mu}[i \in S]$. Let us choose $i \sim \mu D_{k \rightarrow 1} = p/k$. } \end{tabular}$

 \triangleright Let γ be the conditional on i. Note that $\mu = \mathbb{E}_i[\nu]$:

a random measure

$$\mathbf{v}(\mathbf{x}) = \frac{\mathbf{x}_{i}}{\mathbf{p}_{i}} \boldsymbol{\mu}(\mathbf{x}).$$

▷ We have

$$\mathsf{cov}(\mu) = \mathbb{E}[\mathsf{cov}(\nu)] + \mathsf{cov}(\mu)C\,\mathsf{cov}(\mu)$$

where C is the covariance of random vector $\mathbb{1}_i/p_i$.

 \triangleright This gives an inequality for $C^{1/2} \operatorname{cov}(\mu) C^{1/2}$. Note that λ_{max} is SI parameter.

$$\triangleright$$
 Imagine μ is on $\binom{[n]}{k} \hookrightarrow \{0,1\}^n$.

 $\label{eq:product} \fbox{Denote } p_i = \mathbb{P}_{S \sim \mu} [i \in S]. \text{ Let us choose } i \sim \mu D_{k \rightarrow 1} = p/k.$

 \triangleright Let γ be the conditional on i. Note that $\mu = \mathbb{E}_i[\nu]$:

a random measure

$$\mathbf{v}(\mathbf{x}) = \frac{\mathbf{x}_{i}}{\mathbf{p}_{i}} \boldsymbol{\mu}(\mathbf{x}).$$

▷ We have

$$\mathsf{cov}(\mu) = \mathbb{E}[\mathsf{cov}(\nu)] + \mathsf{cov}(\mu)C\,\mathsf{cov}(\mu)$$

where C is the covariance of random vector $\mathbbm{1}_i/p_i.$

▷ This gives an inequality for $C^{1/2} cov(\mu) C^{1/2}$. Note that λ_{max} is SI parameter. ▷ On board ...