CS 263: Counting and Sampling

Nima Anari
s Salard
slides for

Spectral Independence

Review
\bigcirc Dist μ on $\binom{U}{k} \leftarrow$ simplicial complex

Review

\bigcirc Dist μ on $\binom{\mathrm{U}}{\mathrm{k}} \leftarrow$ simplicial complex

D Down kernels

Review

\triangleright Dist μ on $\binom{\mathrm{U}}{\mathrm{k}}$ \& simplicial complex

D Down kernels - Up kernels:
$\mathrm{U}_{\ell \rightarrow \mathrm{k}}=\mathrm{D}_{\mathrm{k} \rightarrow \ell}^{\circ}$

Review

\triangleright Dist μ on $\binom{\mathrm{U}}{\mathrm{k}}$ \& simplicial complex

D Down kernels © Up kernels:

$$
\mathrm{u}_{\ell \rightarrow \mathrm{k}}=\mathrm{D}_{\mathrm{k} \rightarrow \ell}^{\circ}
$$

- Walks:
$\mathrm{D}_{\mathrm{k} \rightarrow \ell_{\uparrow}} \mathrm{U}_{\ell \rightarrow \mathrm{k}}$

alg useful for $\ell=\mathrm{k}-\mathrm{O}(1)$

Review

D Dist μ on $\binom{\mathrm{U}}{\mathrm{k}} \leftarrow$ simplicial complex

D Down kernels
© Up kernels:

$$
\mathrm{u}_{\ell \rightarrow \mathrm{k}}=\mathrm{D}_{\mathrm{k} \rightarrow \ell}^{\circ}
$$

- Walks:

$$
\mathrm{D}_{\mathrm{k} \rightarrow \ell} \mathrm{U}_{\ell \rightarrow \mathrm{k}}
$$

alg useful for $\ell=\mathrm{k}-\mathrm{O}(1)$

HDX recipe

(1) Convert to simplicial complex
(2) Contraction for $\mathrm{D}_{\mathrm{k} \rightarrow 1} \longleftarrow$ local
(3) Transfer local to $\mathrm{D}_{\mathrm{k} \rightarrow \ell} \longleftarrow$ global

Review
D Dist μ on $\binom{\mathrm{U}}{\mathrm{k}} \leftarrow$ simplicial complex
D Conversion for product spaces:

D Down kernels
\bigcirc Up kernels:

$$
\mathrm{u}_{\ell \rightarrow \mathrm{k}}=\mathrm{D}_{\mathrm{k} \rightarrow \ell}^{\circ}
$$

- Walks:

$$
\mathrm{D}_{\mathrm{k} \rightarrow \ell} \mathrm{U}_{\ell \rightarrow \mathrm{k}}
$$

$$
u=\left\{\begin{array}{ccc}
0-0,0-0,0-0 \\
0-0,0-0 & 0 & 0,0,0-0
\end{array}\right\}
$$

alg useful for $\ell=\mathrm{k}-\mathrm{O}(1)$
HDX recipe
(1) Convert to simplicial complex
(2) Contraction for $\mathrm{D}_{\mathrm{k} \rightarrow 1} \longleftarrow$ local
(3) Transfer local to $\mathrm{D}_{\mathrm{k} \rightarrow \ell} \longleftarrow$ global

Review

\bigcirc Dist μ on $\binom{\mathrm{U}}{\mathrm{k}} \leftarrow$ simplicial complex

D Down kernels
© Up kernels:

$$
\mathrm{u}_{\ell \rightarrow \mathrm{k}}=\mathrm{D}_{\mathrm{k} \rightarrow \ell}^{\circ}
$$

D Walks:

$$
\mathrm{D}_{\mathrm{k} \rightarrow \ell} \mathrm{U}_{\ell \rightarrow \mathrm{k}}
$$

alg useful for $\ell=\mathrm{k}-\mathrm{O}(1)$

HDX recipe

(1) Convert to simplicial complex
(2) Contraction for $\mathrm{D}_{\mathrm{k} \rightarrow 1} \longleftarrow$ local
(3) Transfer local to $\mathrm{D}_{\mathrm{k} \rightarrow \ell} \longleftarrow$ global
D Conversion for product spaces:

$$
u=\left\{\begin{array}{l}
0-0,0-0,0, \ldots, 0-0 \\
0-0,0,0,0,0
\end{array}\right\}
$$

- Conditionals:

$$
\operatorname{dist}_{S \sim \mu}(S \mid T \subseteq S)
$$

Review

D Dist μ on $\binom{\mathrm{U}}{\mathrm{k}} \leftarrow$ simplicial complex

D Down kernels
© Up kernels:

$$
\mathrm{u}_{\ell \rightarrow \mathrm{k}}=\mathrm{D}_{\mathrm{k} \rightarrow \ell}^{\circ}
$$

D Walks:

$$
\mathrm{D}_{\mathrm{k} \rightarrow \ell} \mathrm{U}_{\ell \rightarrow \mathrm{k}}
$$

alg useful for $\ell=\mathrm{k}-\mathrm{O}(1)$

HDX recipe

(1) Convert to simplicial complex
(2) Contraction for $\mathrm{D}_{\mathrm{k} \rightarrow 1} \longleftarrow$ local
(3) Transfer local to $\mathrm{D}_{\mathrm{k} \rightarrow \ell} \longleftarrow$ global

D Conversion for product spaces:

$$
u=\left\{\begin{array}{ccc}
0-0,0-0,0-0, \\
0-0,0,0,0 & 0-0
\end{array}\right\}
$$

- Conditionals:

$$
\operatorname{dist}_{S \sim \mu}(S \mid T \subseteq S)
$$

D Links:

$$
\mu_{\mathrm{T}}=\operatorname{dist}_{S \sim \mu}(S-\mathrm{T} \mid \mathrm{T} \subseteq \mathrm{~S})
$$

Review

D Dist μ on $\binom{\mathrm{U}}{\mathrm{k}} \leftarrow$ simplicial complex

D Down kernels
© Up kernels:

$$
\mathrm{u}_{\ell \rightarrow \mathrm{k}}=\mathrm{D}_{\mathrm{k} \rightarrow \ell}^{\circ}
$$

D Walks:

$$
\mathrm{D}_{\mathrm{k} \rightarrow \ell_{\uparrow}} \mathrm{U}_{\ell \rightarrow \mathrm{k}}
$$

alg useful for $\ell=\mathrm{k}-\mathrm{O}(1)$

HDX recipe

(1) Convert to simplicial complex
(2) Contraction for $D_{k \rightarrow 1} \longleftarrow$ local
(3) Transfer local to $\mathrm{D}_{\mathrm{k} \rightarrow \ell} \longleftarrow$ global

D Conversion for product spaces:

$$
u=\left\{\begin{array}{l}
0-0,0-0,0-0, \ldots, 0-0 \\
0-0,0-0,0,0
\end{array}\right\}
$$

- Conditionals:

$$
\operatorname{dist}_{S \sim \mu}(S \mid T \subseteq S)
$$

D Links:

$$
\mu_{\mathrm{T}}=\operatorname{dist}_{S \sim \mu}(\mathrm{~S}-\mathrm{T} \mid \mathrm{T} \subseteq \mathrm{~S})
$$

Local to global

If μ_{T} has local contraction $1-\rho_{|\mathrm{T}|}$, then we get global contraction $1-\rho$ where

$$
\begin{gathered}
\uparrow \\
\text { for } D_{k \rightarrow \ell}
\end{gathered}
$$

$$
\rho=\rho_{0} \cdots \rho_{\ell-1}
$$

Spectral HDX Analysis

\checkmark Spectral independence

- Entropic independence
- Trickle down
- Matroids

Spectral HDX Analysis

\checkmark Spectral independence

- Entropic independence
- Trickle down
- Matroids

Spectral and entropic independence

Useful settings for local-to-global:
Spectral [A-Liu-OveisGharan]

$$
\chi^{2}\left(v D_{k \rightarrow 1} \| \mu D_{k \rightarrow 1}\right) \leqslant \frac{C \chi^{2}(v \| \mu)}{k}
$$

and similar inequalities for links is called C spectral independence.

Spectral and entropic independence

Useful settings for local-to-global:
Spectral [A-Liu-OveisGharan]

$$
\chi^{2}\left(v D_{k \rightarrow 1} \| \mu D_{k \rightarrow 1}\right) \leqslant \frac{c \chi^{2}(v \| \mu)}{k}
$$

and similar inequalities for links is called C spectral independence.

Entropic [A-Jain-Koehler-Pham-Vuong]

$$
\mathcal{D}_{\mathrm{KL}}\left(v \mathrm{D}_{\mathrm{k} \rightarrow 1} \| \mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right) \leqslant \frac{\mathrm{C} \mathcal{D}_{\mathrm{KL}}(v \| \mu)}{\mathrm{k}}
$$

and similar inequalities for links is called C entropic independence.

Spectral and entropic independence

Useful settings for local-to-global:
Spectral [A-Liu-OveisGharan]

$$
\chi^{2}\left(v D_{k \rightarrow 1} \| \mu D_{k \rightarrow 1}\right) \leqslant \frac{C \chi^{2}(v \| \mu)}{k}
$$

and similar inequalities for links is called C spectral independence.

Entropic [A-Jain-Koehler-Pham-Vuong]

$$
\mathcal{D}_{\mathrm{KL}}\left(v \mathrm{D}_{\mathrm{k} \rightarrow 1} \| \mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right) \leqslant \frac{\mathrm{C} \mathcal{D}_{\mathrm{KL}}(v \| \mu)}{\mathrm{k}}
$$

and similar inequalities for links is called C entropic independence.
D For links $\mu_{\mathrm{T}}, \mathrm{k}$ becomes $\mathrm{k}-|\mathrm{T}|$.

Spectral and entropic independence

Useful settings for local-to-global:
Spectral [A-Liu-OveisGharan]

$$
\chi^{2}\left(v D_{k \rightarrow 1} \| \mu D_{k \rightarrow 1}\right) \leqslant \frac{C x^{2}(v \| \mu)}{k}
$$

and similar inequalities for links is called C spectral independence.

Entropic [A-Jain-Koehler-Pham-Vuong]

$$
\mathcal{D}_{\mathrm{KL}}\left(v \mathrm{D}_{\mathrm{k} \rightarrow 1} \| \mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right) \leqslant \frac{\mathrm{C} \mathcal{D}_{\mathrm{KL}}(v \| \mu)}{\mathrm{k}}
$$

and similar inequalities for links is called C entropic independence.
D For links $\mu_{\mathrm{T}}, \mathrm{k}$ becomes $\mathrm{k}-|\mathrm{T}|$.
D Useful for $\mathrm{C}=\mathrm{O}(1)$. When C not mentioned, it just means $\mathrm{O}(1)$.

Spectral and entropic independence

Useful settings for local-to-global:
Spectral [A-Liu-OveisGharan]

$$
\chi^{2}\left(v D_{k \rightarrow 1} \| \mu D_{k \rightarrow 1}\right) \leqslant \frac{C \chi^{2}(v \| \mu)}{k}
$$

and similar inequalities for links is called C spectral independence.

Entropic [A-Jain-Koehler-Pham-Vuong]

$$
\mathcal{D}_{\mathrm{KL}}\left(v \mathrm{D}_{\mathrm{k} \rightarrow 1} \| \mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right) \leqslant \frac{\mathrm{C} \mathcal{D}_{\mathrm{KL}}(v \| \mu)}{\mathrm{k}}
$$

and similar inequalities for links is called C entropic independence.
D For links $\mu_{\mathrm{T}}, \mathrm{k}$ becomes $\mathrm{k}-|\mathrm{T}|$.
D Useful for $\mathrm{C}=\mathrm{O}(1)$. When C not mentioned, it just means $\mathrm{O}(1)$.

D For integer C, local-to-global gives $\mathrm{D}_{\mathrm{k} \rightarrow \ell}$ contraction rate of

$$
\rho \geqslant\binom{ k-\ell}{C} /\binom{k}{c}
$$

Spectral and entropic independence

Useful settings for local-to-global:
Spectral [A-Liu-OveisGharan]

$$
\chi^{2}\left(v D_{k \rightarrow 1} \| \mu D_{k \rightarrow 1}\right) \leqslant \frac{c \chi^{2}(v \| \mu)}{k}
$$

and similar inequalities for links is called C spectral independence.

Entropic [A-Jain-Koehler-Pham-Vuong]
$\mathcal{D}_{\mathrm{KL}}\left(v \mathrm{D}_{\mathrm{k} \rightarrow 1} \| \mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right) \leqslant \frac{\mathrm{C} \mathcal{D}_{\mathrm{KL}}(v \| \mu)}{\mathrm{k}}$
and similar inequalities for links is called C entropic independence.
D For links $\mu_{\mathrm{T}}, \mathrm{k}$ becomes $\mathrm{k}-|\mathrm{T}|$.
D Useful for $\mathrm{C}=\mathrm{O}(1)$. When C not mentioned, it just means $\mathrm{O}(1)$.

D For integer C, local-to-global gives $\mathrm{D}_{\mathrm{k} \rightarrow \ell}$ contraction rate of

$$
\rho \geqslant\binom{ k-\ell}{c} /\binom{k}{c}
$$

D If $\ell \leqslant k-C$, this is $\simeq k^{-C}$. \cdot

Spectral and entropic independence

Useful settings for local-to-global:
Spectral [A-Liu-OveisGharan]

$$
\chi^{2}\left(v D_{k \rightarrow 1} \| \mu D_{k \rightarrow 1}\right) \leqslant \frac{C \chi^{2}(v \| \mu)}{k}
$$

and similar inequalities for links is called C spectral independence.

Entropic [A-Jain-Koehler-Pham-Vuong]

$$
\mathcal{D}_{\mathrm{KL}}\left(v \mathrm{D}_{\mathrm{k} \rightarrow 1} \| \mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right) \leqslant \frac{\mathrm{C} \mathcal{D}_{\mathrm{KL}}(v \| \mu)}{\mathrm{k}}
$$

and similar inequalities for links is called C entropic independence.
D For links $\mu_{\mathrm{T}}, \mathrm{k}$ becomes $\mathrm{k}-|\mathrm{T}|$.
D Useful for $\mathrm{C}=\mathrm{O}(1)$. When C not mentioned, it just means $\mathrm{O}(1)$.
D For integer C, local-to-global gives $\mathrm{D}_{\mathrm{k} \rightarrow \ell}$ contraction rate of

$$
\rho \geqslant\binom{ k-\ell}{c} /\binom{k}{c}
$$

D If $\ell \leqslant k-C$, this is $\simeq k^{-C}$. \cdot
D Will show matroids satisfy $C=1$.

Spectral independence

\bigcirc Spectral independence is about χ^{2} contraction. Related to eigval:

$$
\lambda_{2}\left(\mathrm{D}_{\mathrm{k} \rightarrow 1} \mathrm{U}_{1 \rightarrow \mathrm{k}}\right)
$$

Spectral independence

\bigcirc Spectral independence is about χ^{2} contraction. Related to eigval:

$$
\lambda_{2}\left(\mathrm{D}_{\mathrm{k} \rightarrow 1} \mathrm{U}_{1 \rightarrow \mathrm{k}}\right)
$$

\checkmark The same as eigval:

$$
\begin{gathered}
\lambda_{2}\left(\mathrm{U}_{\left.1 \rightarrow \mathrm{k}_{\uparrow} \mathrm{D}_{\mathrm{k} \rightarrow 1}\right)} \mathrm{n} \times \mathrm{n}\right. \text { matrix }
\end{gathered}
$$

Spectral independence

\bigcirc Spectral independence is about χ^{2} contraction. Related to eigval:

$$
\lambda_{2}\left(\mathrm{D}_{\mathrm{k} \rightarrow 1} \mathrm{U}_{1 \rightarrow \mathrm{k}}\right)
$$

\checkmark The same as eigval:

$$
\begin{gathered}
\lambda_{2}\left(\mathrm{U}_{1 \rightarrow k_{\uparrow}} \mathrm{D}_{\mathrm{k} \rightarrow 1}\right) \\
n \times n \text { matrix }
\end{gathered}
$$

- The $(\mathfrak{i}, \mathfrak{j})$ entry is

$$
\frac{1}{k} \mathbb{P}_{S \sim \mu}[j \in S \mid i \in S]=\mathbb{P}[j \mid i] / k
$$

Spectral independence

\checkmark Spectral independence is about χ^{2} contraction. Related to eigval:

$$
\lambda_{2}\left(\mathrm{D}_{\mathrm{k} \rightarrow 1} \mathrm{U}_{1 \rightarrow \mathrm{k}}\right)
$$

\bigcirc The same as eigval:

$$
\begin{gathered}
\lambda_{2}\left(\mathrm{U}_{1 \rightarrow k_{\uparrow}} \mathrm{D}_{\mathrm{k} \rightarrow 1}\right) \\
n \times n \text { matrix }
\end{gathered}
$$

- The $(\mathfrak{i}, \mathfrak{j})$ entry is

$$
\frac{1}{k} \mathbb{P}_{S \sim \mu}[j \in S \mid i \in S]=\mathbb{P}[j \mid i] / k
$$

\bigcirc Note that $\lambda_{1}=1$ with right eigvec 1 and left eigvec

$$
\mu D_{k \rightarrow 1}=\frac{1}{k}[P[1], \cdots, \mathbb{P}[n]]
$$

Spectral independence

\checkmark Spectral independence is about χ^{2} contraction. Related to eigval:

$$
\lambda_{2}\left(\mathrm{D}_{\mathrm{k} \rightarrow 1} \mathrm{U}_{1 \rightarrow \mathrm{k}}\right)
$$

D So λ_{2} is simply

$$
\lambda_{\max }\left(\mathrm{U}_{1 \rightarrow \mathrm{k}} \mathrm{D}_{\mathrm{k} \rightarrow 1}-\mathbb{1} \mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right)
$$

© The same as eigval:

$$
\lambda_{2}\left(\mathrm{U}_{1 \rightarrow \mathrm{k}}^{\uparrow} \mathrm{D}_{\mathrm{k} \rightarrow 1}\right)
$$

$$
n \times n \text { matrix }
$$

- The $(\mathfrak{i}, \mathfrak{j})$ entry is

$$
\frac{1}{k} \mathbb{P}_{S \sim \mu}[\mathfrak{j} \in S \mid i \in S]=\mathbb{P}[j \mid i] / k
$$

\checkmark Note that $\lambda_{1}=1$ with right eigvec 1 and left eigvec

$$
\mu D_{k \rightarrow 1}=\frac{1}{k}[P[1], \cdots, \mathbb{P}[n]]
$$

Spectral independence

\checkmark Spectral independence is about χ^{2} contraction. Related to eigval:

$$
\lambda_{2}\left(\mathrm{D}_{\mathrm{k} \rightarrow 1} \mathrm{U}_{1 \rightarrow \mathrm{k}}\right)
$$

\checkmark The same as eigval:

$$
\begin{gathered}
\lambda_{2}\left(\mathrm{U}_{1 \rightarrow k_{\uparrow}} \mathrm{D}_{\mathrm{k} \rightarrow 1}\right) \\
\mathrm{n} \times \mathrm{n} \text { matrix }
\end{gathered}
$$

D So λ_{2} is simply

$$
\lambda_{\max }\left(\mathrm{U}_{1 \rightarrow \mathrm{k}} \mathrm{D}_{\mathrm{k} \rightarrow 1}-\mathbb{1} \mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right)
$$

\bigcirc The (i, j) entry is

$$
\begin{aligned}
& \qquad \frac{1}{\mathrm{k}}(\mathbb{P}[j \mid i]-\mathbb{P}[j]) \\
& \text { vaguely similar to influence }
\end{aligned}
$$

D The $(\mathfrak{i}, \mathfrak{j})$ entry is

$$
\frac{1}{k} \mathbb{P}_{S \sim \mu}[\mathfrak{j} \in S \mid i \in S]=\mathbb{P}[j \mid i] / k
$$

\checkmark Note that $\lambda_{1}=1$ with right eigvec 1 and left eigvec

$$
\mu D_{k \rightarrow 1}=\frac{1}{k}[P[1], \cdots, \mathbb{P}[n]]
$$

Spectral independence

\bigcirc Spectral independence is about χ^{2} contraction. Related to eigval:

$$
\lambda_{2}\left(\mathrm{D}_{\mathrm{k} \rightarrow 1} \mathrm{U}_{1 \rightarrow \mathrm{k}}\right)
$$

\checkmark The same as eigval:

$$
\begin{gathered}
\lambda_{2}\left(\mathrm{U}_{\left.1 \rightarrow \mathrm{k}_{\uparrow} \mathrm{D}_{\mathrm{k} \rightarrow 1}\right)} \mathrm{n} \times \mathrm{n}\right. \text { matrix }
\end{gathered}
$$

- The $(\mathfrak{i}, \mathfrak{j})$ entry is

$$
\frac{1}{k} \mathbb{P}_{S \sim \mu}[j \in S \mid i \in S]=\mathbb{P}[j \mid i] / k
$$

D So λ_{2} is simply

$$
\lambda_{\max }\left(\mathrm{U}_{1 \rightarrow \mathrm{k}} \mathrm{D}_{\mathrm{k} \rightarrow 1}-\mathbb{1} \mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right)
$$

\checkmark The (i, j) entry is

$$
\frac{1}{\mathrm{k}}(\mathbb{P}[j \mid \underset{\uparrow}{i]}-\mathbb{P}[j])
$$

vaguely similar to influence

Correlation matrix

The matrix Ψ with entries $\mathbb{P}[j \mid i]-\mathbb{P}[j]$.
\checkmark Note that $\lambda_{1}=1$ with right eigvec 1 and left eigvec

$$
\mu D_{k \rightarrow 1}=\frac{1}{k}[P[1], \cdots, \mathbb{P}[n]]
$$

Spectral independence

\bigcirc Spectral independence is about χ^{2} contraction. Related to eigval:

$$
\lambda_{2}\left(\mathrm{D}_{\mathrm{k} \rightarrow 1} \mathrm{U}_{1 \rightarrow \mathrm{k}}\right)
$$

\checkmark The same as eigval:

$$
\begin{gathered}
\lambda_{2}\left(U_{1 \rightarrow k_{\uparrow}} D_{k \rightarrow 1}\right) \\
n \times n \text { matrix }
\end{gathered}
$$

- The $(\mathfrak{i}, \mathfrak{j})$ entry is

$$
\frac{1}{k} \mathbb{P}_{S \sim \mu}[\mathfrak{j} \in S \mid i \in S]=\mathbb{P}[j \mid i] / k
$$

\bigcirc Note that $\lambda_{1}=1$ with right eigvec 1 and left eigvec

$$
\mu D_{k \rightarrow 1}=\frac{1}{k}[\mathbb{P}[1], \cdots, \mathbb{P}[n]]
$$

D So λ_{2} is simply

$$
\lambda_{\max }\left(\mathrm{U}_{1 \rightarrow \mathrm{k}} \mathrm{D}_{\mathrm{k} \rightarrow 1}-\mathbb{1} \mu \mathrm{D}_{\mathrm{k} \rightarrow 1}\right)
$$

\checkmark The (i, j) entry is

$$
\begin{aligned}
& \quad \frac{1}{\mathrm{k}}(\mathbb{P}[\mathrm{j} \mid \mathrm{i}]-\mathbb{P}[\mathrm{j}]) \\
& \text { vaguely similar to influence }
\end{aligned}
$$

Correlation matrix

The matrix Ψ with entries $\mathbb{P}[j \mid i]-\mathbb{P}[j]$.

- C-spectral ind is same as

$$
\lambda_{\max }(\Psi) \leqslant C
$$

Example: hypercube

$D\{0,1\}^{n} \hookrightarrow\binom{[2 n]}{n}$

- Glauber becomes
$\mathrm{D}_{\mathrm{n} \rightarrow \mathrm{n}-1}$

Example: hypercube

$D\{0,1\}^{n} \hookrightarrow\binom{[2 n]}{n}$
D Glauber becomes
$\mathrm{D}_{\mathrm{n} \rightarrow \mathrm{n}-1}$

D Ψ has block form:

$$
\left[\begin{array}{ccccc}
+\frac{1}{2} & -\frac{1}{2} & 0 & \cdots & 0 \\
-\frac{1}{2} & +\frac{1}{2} & 0 & \cdots & 0 \\
0 & 0 & +\frac{1}{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & +\frac{1}{2}
\end{array}\right]
$$

Example: hypercube

$D\{0,1\}^{n} \hookrightarrow\binom{[2 n]}{n}$

- Glauber becomes
$\mathrm{D}_{\mathrm{n} \rightarrow \mathrm{n}-1}$

D Ψ has block form:

$$
\left[\begin{array}{ccccc}
+\frac{1}{2} & -\frac{1}{2} & 0 & \cdots & 0 \\
-\frac{1}{2} & +\frac{1}{2} & 0 & \cdots & 0 \\
0 & 0 & +\frac{1}{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & +\frac{1}{2}
\end{array}\right]
$$

\checkmark This means $\lambda_{\max }=1$.

Example: hypercube

$D\{0,1\}^{n} \hookrightarrow\binom{[2 n]}{n}$

- Glauber becomes
$\mathrm{D}_{\mathrm{n} \rightarrow \mathrm{n}-1}$

D Ψ has block form:

$$
\left[\begin{array}{ccccc}
+\frac{1}{2} & -\frac{1}{2} & 0 & \cdots & 0 \\
-\frac{1}{2} & +\frac{1}{2} & 0 & \cdots & 0 \\
0 & 0 & +\frac{1}{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & +\frac{1}{2}
\end{array}\right]
$$

D This means $\lambda_{\max }=1$.
D So $D_{n \rightarrow \ell}$ contracts χ^{2} by ℓ / n.

Example: hypercube
$D\{0,1\}^{n} \hookrightarrow\binom{[2 n]}{n}$

- Glauber becomes $D_{n \rightarrow n-1}$

D Ψ has block form:

$$
\left[\begin{array}{ccccc}
+\frac{1}{2} & -\frac{1}{2} & 0 & \cdots & 0 \\
-\frac{1}{2} & +\frac{1}{2} & 0 & \cdots & 0 \\
0 & 0 & +\frac{1}{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & +\frac{1}{2}
\end{array}\right]
$$

D This means $\lambda_{\max }=1$.
D So $\mathrm{D}_{\mathrm{n} \rightarrow \ell}$ contracts χ^{2} by ℓ / n.

D Ψ also has a symmetric form $\mathrm{D} \Psi \mathrm{D}^{-1}$. With D diagonal and $D_{i i}=\sqrt{\mathbb{P}[i]}$, we get

$$
\left(D \Psi D^{-1}\right)_{i j}=\frac{\mathbb{P}[i, j]-\mathbb{P}[i] \mathbb{P}[j]}{\sqrt{\mathbb{P}[i] \mathbb{P}[j]}}
$$

Example: hypercube
$D\{0,1\}^{n} \hookrightarrow\binom{[2 n]}{n}$

- Glauber becomes $D_{n \rightarrow n-1}$

D Ψ has block form:

$$
\left[\begin{array}{ccccc}
+\frac{1}{2} & -\frac{1}{2} & 0 & \cdots & 0 \\
-\frac{1}{2} & +\frac{1}{2} & 0 & \cdots & 0 \\
0 & 0 & +\frac{1}{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & +\frac{1}{2}
\end{array}\right]
$$

D Ψ also has a symmetric form $\mathrm{D} \Psi \mathrm{D}^{-1}$. With D diagonal and $D_{i i}=\sqrt{\mathbb{P}[i]}$, we get

$$
\left(D \Psi D^{-1}\right)_{i j}=\frac{\mathbb{P}[i, j]-\mathbb{P}[i] \mathbb{P}[j]}{\sqrt{\mathbb{P}[i] \mathbb{P}[j]}}
$$

\bigcirc spectral independence is equiv to

$$
\mathrm{D} \Psi \mathrm{D}^{-1} \preceq \mathrm{C} \cdot \mathrm{I}
$$

which is the same as

$$
\mathrm{D}^{2} \Psi \preceq \mathrm{C} \cdot \mathrm{D}^{2}
$$

\bigcirc This means $\lambda_{\max }=1$.
D So $D_{n \rightarrow \ell}$ contracts χ^{2} by ℓ / n.

Example: hypercube
$D\{0,1\}^{n} \hookrightarrow\binom{[2 n]}{n}$

- Glauber becomes $\mathrm{D}_{\mathrm{n} \rightarrow \mathrm{n}-1}$

D Ψ has block form:

$$
\left[\begin{array}{ccccc}
+\frac{1}{2} & -\frac{1}{2} & 0 & \cdots & 0 \\
-\frac{1}{2} & +\frac{1}{2} & 0 & \cdots & 0 \\
0 & 0 & +\frac{1}{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & +\frac{1}{2}
\end{array}\right]
$$

- This means $\lambda_{\max }=1$.

D So $\mathrm{D}_{\mathrm{n} \rightarrow \ell}$ contracts χ^{2} by ℓ / n.

D Ψ also has a symmetric form $\mathrm{D} \Psi \mathrm{D}^{-1}$. With D diagonal and $D_{i i}=\sqrt{\mathbb{P}[i]}$, we get

$$
\left(D \Psi D^{-1}\right)_{i j}=\frac{\mathbb{P}[i, j]-\mathbb{P}[i] \mathbb{P}[j]}{\sqrt{\mathbb{P}[i] \mathbb{P}[j]}}
$$

D spectral independence is equiv to

$$
\mathrm{D} \Psi \mathrm{D}^{-1} \preceq \mathrm{C} \cdot \mathrm{I}
$$

which is the same as

$$
D^{2} \Psi \preceq C \cdot D^{2} .
$$

\bigcirc If we embed $\binom{\mathrm{u}}{\mathrm{k}} \hookrightarrow\{0,1\}_{\|\cdot\|_{1}=k}^{U}$, by sending S to $\mathbb{1}_{s}$, the inequality becomes

$$
\operatorname{cov}(\mu) \preceq C \cdot \operatorname{diag}(\text { mean }(\mu))
$$

How to establish spectral independence?

D Transport contraction
D Transport stability

- Correlation decay
D Geometry of polynomials
\checkmark Trickle down \leftarrow today
D...

D Universality: any linear bound on $t_{\text {rel }}$ for down-up

Trickle down

- Trickle-down [Oppenheim]: if links μ_{T} for $\mathrm{T} \in\binom{\mathrm{u}}{1}$ are spectrally independent, so is μ.

Trickle down

- Trickle-down [Oppenheim]: if links μ_{T} for $\mathrm{T} \in\binom{\mathrm{U}}{1}$ are spectrally independent, so is μ.
D Note: parameter C deteriorates.
matroids are exception

Trickle down

© Trickle-down [Oppenheim]: if links
μ_{T} for $\mathrm{T} \in\binom{\mathrm{U}}{1}$ are spectrally independent, so is μ.
\bigcirc Note: parameter C deteriorates.
matroids are exception

Special case of trickle-down

If $k \geqslant 3$ and links $\mu_{\{i\}}$ are $1-$ SI, then μ is either $1-\mathrm{SI}$, or $\lambda_{2}\left(\mathrm{U}_{1 \rightarrow \mathrm{k}} \mathrm{D}_{\mathrm{k} \rightarrow 1}\right)=1$.
disconnected
D For matroids, enough to look at
rank 2 cases.
fancy word for k

Trickle down

© Trickle-down [Oppenheim]: if links μ_{T} for $\mathrm{T} \in\binom{\mathrm{U}}{1}$ are spectrally independent, so is μ.
\bigcirc Note: parameter C deteriorates.
matroids are exception

Special case of trickle-down

If $k \geqslant 3$ and links $\mu_{\{i\}}$ are $1-\mathrm{SI}$, then μ is either $1-\mathrm{SI}$, or $\lambda_{2}\left(\mathrm{U}_{1 \rightarrow \mathrm{k}} \mathrm{D}_{\mathrm{k} \rightarrow 1}\right)=1$.
disconnected
D For matroids, enough to look at rank 2 cases.
fancy word for k
© Walks on matroids are ergodic, so $\lambda_{2}\left(U_{1 \rightarrow k} D_{k \rightarrow 1}\right) \neq 1$:

Trickle down

© Trickle-down [Oppenheim]: if links
μ_{T} for $\mathrm{T} \in\binom{\mathrm{U}}{1}$ are spectrally independent, so is μ.
\bigcirc Note: parameter C deteriorates.
matroids are exception

Special case of trickle-down

If $k \geqslant 3$ and links $\mu_{\{i\}}$ are $1-$ SI, then μ is either $1-\mathrm{SI}$, or $\lambda_{2}\left(\mathrm{U}_{1 \rightarrow \mathrm{k}} \mathrm{D}_{\mathrm{k} \rightarrow 1}\right)=1$.
disconnected
D For matroids, enough to look at rank 2 cases.
fancy word for k
© Walks on matroids are ergodic, so $\lambda_{2}\left(U_{1 \rightarrow k} D_{k \rightarrow 1}\right) \neq 1$:

3

(2)

4

D Can reach any T from any S by exchanges.

$$
\neq
$$

Rank 2 matroids

Rank 2 matroids

Rank 2 matroids

- Distribution $\mu \equiv$ uniformly random edge of complete multipartite graph.

Rank 2 matroids

- Distribution $\mu \equiv$ uniformly random edge of complete multipartite graph.
D The walk $\mathrm{U}_{1 \rightarrow 2} \mathrm{D}_{2 \rightarrow 1}$: lazy random walk on complete multipartite graph.
\bigcirc These graphs have adj matrix:

$$
\left[\begin{array}{cccccc}
0 & \ldots & 0 & 1 & \ldots & 1 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & 1 & \ldots & 1 \\
1 & \ldots & 1 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
1 & \ldots & 1 & 0 & \ldots & 0
\end{array}\right] \preceq \mathbb{1} \mathbb{1}^{\top} .
$$

\bigcirc These graphs have adj matrix:

$$
\left[\begin{array}{cccccc}
0 & \ldots & 0 & 1 & \ldots & 1 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & 1 & \ldots & 1 \\
1 & \ldots & 1 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
1 & \ldots & 1 & 0 & \ldots & 0
\end{array}\right] \preceq \mathbb{\mathbb { 1 } ^ { \top } .}
$$

\triangleright This means $\lambda_{2}(\operatorname{adj}) \leqslant 0$.
© These graphs have adj matrix:

$$
\left[\begin{array}{cccccc}
0 & \ldots & 0 & 1 & \ldots & 1 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & 1 & \ldots & 1 \\
1 & \ldots & 1 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
1 & \ldots & 1 & 0 & \ldots & 0
\end{array}\right] \preceq \mathbb{1} \mathbb{1}^{\top} .
$$

D This means $\lambda_{2}(a d j) \leqslant 0$.
\triangleright The non-lazy random walk P is

$$
\operatorname{diag}(\operatorname{deg})^{-1} \cdot \operatorname{adj}
$$

\bigcirc These graphs have adj matrix:

$$
\left[\begin{array}{cccccc}
0 & \ldots & 0 & 1 & \ldots & 1 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & 1 & \ldots & 1 \\
1 & \ldots & 1 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
1 & \ldots & 1 & 0 & \ldots & 0
\end{array}\right] \preceq \mathbb{1}^{\top} .
$$

D This means $\lambda_{2}(a d j) \leqslant 0$.
D The non-lazy random walk P is

$$
\operatorname{diag}(\operatorname{deg})^{-1} \cdot \operatorname{adj}
$$

\triangleright Enough to show $\lambda_{2}(P) \leqslant 0$, because

$$
\mathrm{U}_{1 \rightarrow 2} \mathrm{D}_{2 \rightarrow 1}=\frac{1}{2} \mathrm{P}+\frac{1}{2} \mathrm{I} .
$$

\bigcirc These graphs have adj matrix:

$$
\left[\begin{array}{cccccc}
0 & \ldots & 0 & 1 & \ldots & 1 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & 1 & \ldots & 1 \\
1 & \ldots & 1 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
1 & \ldots & 1 & 0 & \ldots & 0
\end{array}\right] \preceq \mathbb{1}^{\top} .
$$

D This means $\lambda_{2}(a d j) \leqslant 0$.
D The non-lazy random walk P is diag(deg) ${ }^{-1} \cdot$ adj
\triangleright Enough to show $\lambda_{2}(P) \leqslant 0$, because

$$
\mathrm{U}_{1 \rightarrow 2} \mathrm{D}_{2 \rightarrow 1}=\frac{1}{2} \mathrm{P}+\frac{1}{2} \mathrm{I} .
$$

Fact

If symmetric $A \in \mathbb{R}_{\geqslant 0}^{n \times n}$ has $\lambda_{2}(A) \leqslant 0$, and $D \in \mathbb{R}_{>0}^{n \times n}$ is diagonal, then

$$
\lambda_{2}(D A D) \leqslant 0 .
$$

D These graphs have adj matrix:

$$
\left[\begin{array}{cccccc}
0 & \ldots & 0 & 1 & \ldots & 1 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & 1 & \ldots & 1 \\
1 & \ldots & 1 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
1 & \ldots & 1 & 0 & \ldots & 0
\end{array}\right] \preceq \mathbb{1} \mathbb{1}^{\top} .
$$

0 This means $\lambda_{2}(a d j) \leqslant 0$.
D The non-lazy random walk P is $\operatorname{diag}(\mathrm{deg})^{-1} \cdot \operatorname{adj}$
D Enough to show $\lambda_{2}(P) \leqslant 0$, because

$$
\mathrm{U}_{1 \rightarrow 2} \mathrm{D}_{2 \rightarrow 1}=\frac{1}{2} \mathrm{P}+\frac{1}{2} \mathrm{I}
$$

Fact

If symmetric $A \in \mathbb{R}_{\geqslant 0}^{n \times n}$ has $\lambda_{2}(A) \leqslant 0$, and $D \in \mathbb{R}_{>0}^{n \times n}$ is diagonal, then

$$
\lambda_{2}(D A D) \leqslant 0 .
$$

D We apply this with $A=\operatorname{adj}$ and $D=\operatorname{diag}(\operatorname{deg})^{-1 / 2}$.

D These graphs have adj matrix:

$$
\left[\begin{array}{cccccc}
0 & \ldots & 0 & 1 & \ldots & 1 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & 1 & \ldots & 1 \\
1 & \ldots & 1 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
1 & \ldots & 1 & 0 & \ldots & 0
\end{array}\right] \preceq \mathbb{1} \mathbb{1}^{\top} .
$$

\bigcirc This means $\lambda_{2}(a d j) \leqslant 0$.
D The non-lazy random walk P is $\operatorname{diag}(\mathrm{deg})^{-1} \cdot \operatorname{adj}$
D Enough to show $\lambda_{2}(P) \leqslant 0$, because

$$
\mathrm{U}_{1 \rightarrow 2} \mathrm{D}_{2 \rightarrow 1}=\frac{1}{2} \mathrm{P}+\frac{1}{2} \mathrm{I}
$$

Fact

If symmetric $A \in \mathbb{R}_{\geqslant 0}^{n \times n}$ has $\lambda_{2}(A) \leqslant 0$, and $D \in \mathbb{R}_{>0}^{n \times n}$ is diagonal, then

$$
\lambda_{2}(D A D) \leqslant 0 .
$$

D We apply this with $A=\operatorname{adj}$ and

$$
\mathrm{D}=\operatorname{diag}(\operatorname{deg})^{-1 / 2}
$$

Proof:
D These graphs have adj matrix:

$$
\left[\begin{array}{cccccc}
0 & \ldots & 0 & 1 & \ldots & 1 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & 1 & \ldots & 1 \\
1 & \ldots & 1 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
1 & \ldots & 1 & 0 & \ldots & 0
\end{array}\right] \preceq \mathbb{1} \mathbb{1}^{\top} .
$$

\bigcirc This means $\lambda_{2}(a d j) \leqslant 0$.
D The non-lazy random walk P is $\operatorname{diag}(\mathrm{deg})^{-1} \cdot \operatorname{adj}$
D Enough to show $\lambda_{2}(P) \leqslant 0$,
because

$$
\mathrm{U}_{1 \rightarrow 2} \mathrm{D}_{2 \rightarrow 1}=\frac{1}{2} \mathrm{P}+\frac{1}{2} \mathrm{I}
$$

Fact

If symmetric $A \in \mathbb{R}_{\geqslant 0}^{n \times n}$ has $\lambda_{2}(A) \leqslant 0$, and $D \in \mathbb{R}_{>0}^{n \times n}$ is diagonal, then

$$
\lambda_{2}(D A D) \leqslant 0 .
$$

D We apply this with $A=\operatorname{adj}$ and

$$
\mathrm{D}=\operatorname{diag}(\operatorname{deg})^{-1 / 2}
$$

Proof:
D For any $v \in \mathbb{R}_{\geqslant 0}^{n}$ and $u \in \mathbb{R}^{n}$,

$$
\left(u^{\top} A v\right)^{2} \geqslant\left(u^{\top} A u\right)\left(v^{\top} A v\right)
$$

\bigcirc These graphs have adj matrix:

$$
\left[\begin{array}{cccccc}
0 & \ldots & 0 & 1 & \ldots & 1 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & 1 & \ldots & 1 \\
1 & \ldots & 1 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
1 & \ldots & 1 & 0 & \ldots & 0
\end{array}\right] \preceq \mathbb{1}^{\top} .
$$

- This means $\lambda_{2}(a d j) \leqslant 0$.
D The non-lazy random walk P is $\operatorname{diag}(\mathrm{deg})^{-1} \cdot \operatorname{adj}$
\bigcirc Enough to show $\lambda_{2}(P) \leqslant 0$, because

$$
\mathrm{U}_{1 \rightarrow 2} \mathrm{D}_{2 \rightarrow 1}=\frac{1}{2} \mathrm{P}+\frac{1}{2} \mathrm{I}
$$

Fact
If symmetric $A \in \mathbb{R}_{\geqslant 0}^{n \times n}$ has $\lambda_{2}(A) \leqslant 0$, and $\mathrm{D} \in \mathbb{R}_{>0}^{n \times n}$ is diagonal, then

$$
\lambda_{2}(D A D) \leqslant 0
$$

We apply this with $A=\operatorname{adj}$ and $\mathrm{D}=\operatorname{diag}(\operatorname{deg})^{-1 / 2}$.
Proof:
D For any $v \in \mathbb{R}_{\geqslant 0}^{n}$ and $u \in \mathbb{R}^{n}$,

$$
\left(u^{\top} A v\right)^{2} \geqslant\left(u^{\top} A u\right)\left(v^{\top} A v\right)
$$

\bigcirc This is $\operatorname{det}\left([u, v]^{\top} \mathcal{A}[u, v]\right)$.
D These graphs have adj matrix:

$$
\left[\begin{array}{cccccc}
0 & \ldots & 0 & 1 & \ldots & 1 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & 1 & \ldots & 1 \\
1 & \ldots & 1 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
1 & \ldots & 1 & 0 & \ldots & 0
\end{array}\right] \preceq \mathbb{1} \mathbb{1}^{\top} .
$$

0 This means $\lambda_{2}(a d j) \leqslant 0$.
D The non-lazy random walk P is $\operatorname{diag}(\mathrm{deg})^{-1} \cdot \operatorname{adj}$
D Enough to show $\lambda_{2}(P) \leqslant 0$, because

$$
\mathrm{U}_{1 \rightarrow 2} \mathrm{D}_{2 \rightarrow 1}=\frac{1}{2} \mathrm{P}+\frac{1}{2} \mathrm{I}
$$

Fact

If symmetric $A \in \mathbb{R}_{\geqslant 0}^{n \times n}$ has $\lambda_{2}(A) \leqslant 0$, and $D \in \mathbb{R}_{>0}^{n \times n}$ is diagonal, then

$$
\lambda_{2}(D A D) \leqslant 0 .
$$

D We apply this with $A=$ adj and $\mathrm{D}=\operatorname{diag}(\mathrm{deg})^{-1 / 2}$.
Proof:
D For any $v \in \mathbb{R}_{\geqslant 0}^{n}$ and $u \in \mathbb{R}^{n}$,

$$
\left(u^{\top} A v\right)^{2} \geqslant\left(u^{\top} A u\right)\left(v^{\top} A v\right)
$$

D This is $\operatorname{det}\left([u, v]^{\top} A[u, v]\right)$.
\bigcirc Opposite is true too:

$$
A-(A v)(A v)^{\top} /\left(v^{\top} A v\right) \preceq 0
$$

\bigcirc These graphs have adj matrix:

$$
\left[\begin{array}{cccccc}
0 & \ldots & 0 & 1 & \ldots & 1 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & 1 & \ldots & 1 \\
1 & \ldots & 1 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
1 & \ldots & 1 & 0 & \ldots & 0
\end{array}\right] \preceq \mathbb{1}^{\top} .
$$

- This means $\lambda_{2}(a d j) \leqslant 0$.
D The non-lazy random walk P is $\operatorname{diag}(\mathrm{deg})^{-1} \cdot \operatorname{adj}$
\checkmark Enough to show $\lambda_{2}(P) \leqslant 0$, because

$$
\mathrm{U}_{1 \rightarrow 2} \mathrm{D}_{2 \rightarrow 1}=\frac{1}{2} \mathrm{P}+\frac{1}{2} \mathrm{I} .
$$

Fact
If symmetric $A \in \mathbb{R}_{\geqslant 0}^{n \times n}$ has $\lambda_{2}(A) \leqslant 0$, and $\mathrm{D} \in \mathbb{R}_{>0}^{n \times n}$ is diagonal, then

$$
\lambda_{2}(D A D) \leqslant 0
$$

We apply this with $A=\operatorname{adj}$ and $\mathrm{D}=\operatorname{diag}(\operatorname{deg})^{-1 / 2}$.
Proof:
D For any $v \in \mathbb{R}_{\geqslant 0}^{n}$ and $u \in \mathbb{R}^{n}$,

$$
\left(u^{\top} A v\right)^{2} \geqslant\left(u^{\top} A u\right)\left(v^{\top} A v\right)
$$

D This is $\operatorname{det}\left([u, v]^{\top} A[u, v]\right)$.
\bigcirc Opposite is true too:

$$
A-(A v)(A v)^{\top} /\left(v^{\top} A v\right) \preceq 0
$$

D Ineq for A equiv to one for DAD.

Now we prove trickle down of [Oppenheim].

Now we prove trickle down of [Oppenheim].
\triangleright Imagine μ is on $\binom{[n]}{k} \hookrightarrow\{0,1\}^{n}$.

Now we prove trickle down of [Oppenheim].
D Imagine μ is on $\binom{[n]}{k} \hookrightarrow\{0,1\}^{n}$.
D Denote $p_{i}=\mathbb{P}_{S \sim \mu}[i \in S]$. Let us choose $i \sim \mu D_{k \rightarrow 1}=p / k$.

Now we prove trickle down of [Oppenheim].
D Imagine μ is on $\binom{[n]}{k} \hookrightarrow\{0,1\}^{n}$.
D Denote $p_{i}=\mathbb{P}_{S \sim \mu}[i \in S]$. Let us choose $i \sim \mu D_{k \rightarrow 1}=p / k$.
D Let γ be the conditional on i. Note that $\mu=\mathbb{E}_{i}[v]$:
a random measure

$$
v(x)=\frac{x_{i}}{p_{i}} \mu(x)
$$

Now we prove trickle down of [Oppenheim].
D Imagine μ is on $\binom{[n]}{k} \hookrightarrow\{0,1\}^{n}$.
D Denote $p_{i}=\mathbb{P}_{S \sim \mu}[i \in S]$. Let us choose $i \sim \mu D_{k \rightarrow 1}=p / k$.
D Let γ be the conditional on i. Note that $\mu=\mathbb{E}_{i}[v]$:
a random measure

$$
v(x)=\frac{x_{i}}{p_{i}} \mu(x)
$$

D We have

$$
\operatorname{cov}(\mu)=\mathbb{E}[\operatorname{cov}(v)]+\operatorname{cov}(\mu) C \operatorname{cov}(\mu)
$$

where C is the covariance of random vector $\mathbb{1}_{i} / p_{i}$.

Now we prove trickle down of [Oppenheim].
D Imagine μ is on $\binom{[n]}{k} \hookrightarrow\{0,1\}^{n}$.
D Denote $p_{i}=\mathbb{P}_{S \sim \mu}[i \in S]$. Let us choose $i \sim \mu D_{k \rightarrow 1}=p / k$.
D Let γ be the conditional on i. Note that $\mu=\mathbb{E}_{i}[v]$:
a random measure

$$
v(x)=\frac{x_{i}}{p_{i}} \mu(x)
$$

D We have

$$
\operatorname{cov}(\mu)=\mathbb{E}[\operatorname{cov}(v)]+\operatorname{cov}(\mu) C \operatorname{cov}(\mu)
$$

where C is the covariance of random vector $\mathbb{1}_{i} / p_{i}$.
D This gives an inequality for $\mathrm{C}^{1 / 2} \operatorname{cov}(\mu) \mathrm{C}^{1 / 2}$. Note that $\lambda_{\max }$ is SI parameter.

Now we prove trickle down of [Oppenheim].
D Imagine μ is on $\binom{[n]}{k} \hookrightarrow\{0,1\}^{n}$.
D Denote $p_{i}=\mathbb{P}_{S \sim \mu}[i \in S]$. Let us choose $i \sim \mu D_{k \rightarrow 1}=p / k$.
D Let γ be the conditional on i. Note that $\mu=\mathbb{E}_{i}[v]$:
a random measure

$$
v(x)=\frac{x_{i}}{p_{i}} \mu(x)
$$

D We have

$$
\operatorname{cov}(\mu)=\mathbb{E}[\operatorname{cov}(v)]+\operatorname{cov}(\mu) C \operatorname{cov}(\mu)
$$

where C is the covariance of random vector $\mathbb{1}_{i} / p_{i}$.
D This gives an inequality for $\mathrm{C}^{1 / 2} \operatorname{cov}(\mu) \mathrm{C}^{1 / 2}$. Note that $\lambda_{\max }$ is SI parameter.

- On board ...

