
1/11

CS 263: Counting and Sampling

Nima Anari

slides for

Bipartite Perfect Matchings

2/11

Review

P, P ′ reversible with same

stationary distribution

Comparison: route Q ′ through Q

with low congestion and length.

π(path | X0 = s, X` = t)

s t

Congestion

Suppose π is dist over paths and Q is

ergodic flow. Congestion is

max
{

Ppath∼π[(x→y)∈path]
Q(x,y)

∣∣∣ x 6= y
}

Lemma: comparison

Suppose ρ, ρ ′ are χ2 contraction rates:

ρ > ρ ′

(congestion)·(max length)

If len 6 1, can use any Dφ.

Canonical paths: a few-to-one

mapping enc from (s, t)-pairs
whose path passes x → y to Ω:

µ(s)µ(t) 6 C · µ(enc(s, t))Q(x, y)

If M-to-one, then cong 6 CM.

Matching walks mix in poly(n).

2/11

Review

P, P ′ reversible with same

stationary distribution

Comparison: route Q ′ through Q

with low congestion and length.

π(path | X0 = s, X` = t)

s t

Congestion

Suppose π is dist over paths and Q is

ergodic flow. Congestion is

max
{

Ppath∼π[(x→y)∈path]
Q(x,y)

∣∣∣ x 6= y
}

Lemma: comparison

Suppose ρ, ρ ′ are χ2 contraction rates:

ρ > ρ ′

(congestion)·(max length)

If len 6 1, can use any Dφ.

Canonical paths: a few-to-one

mapping enc from (s, t)-pairs
whose path passes x → y to Ω:

µ(s)µ(t) 6 C · µ(enc(s, t))Q(x, y)

If M-to-one, then cong 6 CM.

Matching walks mix in poly(n).

2/11

Review

P, P ′ reversible with same

stationary distribution

Comparison: route Q ′ through Q

with low congestion and length.

π(path | X0 = s, X` = t)

s t

Congestion

Suppose π is dist over paths and Q is

ergodic flow. Congestion is

max
{

Ppath∼π[(x→y)∈path]
Q(x,y)

∣∣∣ x 6= y
}

Lemma: comparison

Suppose ρ, ρ ′ are χ2 contraction rates:

ρ > ρ ′

(congestion)·(max length)

If len 6 1, can use any Dφ.

Canonical paths: a few-to-one

mapping enc from (s, t)-pairs
whose path passes x → y to Ω:

µ(s)µ(t) 6 C · µ(enc(s, t))Q(x, y)

If M-to-one, then cong 6 CM.

Matching walks mix in poly(n).

2/11

Review

P, P ′ reversible with same

stationary distribution

Comparison: route Q ′ through Q

with low congestion and length.

π(path | X0 = s, X` = t)

s t

Congestion

Suppose π is dist over paths and Q is

ergodic flow. Congestion is

max
{

Ppath∼π[(x→y)∈path]
Q(x,y)

∣∣∣ x 6= y
}

Lemma: comparison

Suppose ρ, ρ ′ are χ2 contraction rates:

ρ > ρ ′

(congestion)·(max length)

If len 6 1, can use any Dφ.

Canonical paths: a few-to-one

mapping enc from (s, t)-pairs
whose path passes x → y to Ω:

µ(s)µ(t) 6 C · µ(enc(s, t))Q(x, y)

If M-to-one, then cong 6 CM.

Matching walks mix in poly(n).

2/11

Review

P, P ′ reversible with same

stationary distribution

Comparison: route Q ′ through Q

with low congestion and length.

π(path | X0 = s, X` = t)

s t

Congestion

Suppose π is dist over paths and Q is

ergodic flow. Congestion is

max
{

Ppath∼π[(x→y)∈path]
Q(x,y)

∣∣∣ x 6= y
}

Lemma: comparison

Suppose ρ, ρ ′ are χ2 contraction rates:

ρ > ρ ′

(congestion)·(max length)

If len 6 1, can use any Dφ.

Canonical paths: a few-to-one

mapping enc from (s, t)-pairs
whose path passes x → y to Ω:

µ(s)µ(t) 6 C · µ(enc(s, t))Q(x, y)

If M-to-one, then cong 6 CM.

Matching walks mix in poly(n).

2/11

Review

P, P ′ reversible with same

stationary distribution

Comparison: route Q ′ through Q

with low congestion and length.

π(path | X0 = s, X` = t)

s t

Congestion

Suppose π is dist over paths and Q is

ergodic flow. Congestion is

max
{

Ppath∼π[(x→y)∈path]
Q(x,y)

∣∣∣ x 6= y
}

Lemma: comparison

Suppose ρ, ρ ′ are χ2 contraction rates:

ρ > ρ ′

(congestion)·(max length)

If len 6 1, can use any Dφ.

Canonical paths: a few-to-one

mapping enc from (s, t)-pairs
whose path passes x → y to Ω:

µ(s)µ(t) 6 C · µ(enc(s, t))Q(x, y)

If M-to-one, then cong 6 CM.

Matching walks mix in poly(n).

2/11

Review

P, P ′ reversible with same

stationary distribution

Comparison: route Q ′ through Q

with low congestion and length.

π(path | X0 = s, X` = t)

s t

Congestion

Suppose π is dist over paths and Q is

ergodic flow. Congestion is

max
{

Ppath∼π[(x→y)∈path]
Q(x,y)

∣∣∣ x 6= y
}

Lemma: comparison

Suppose ρ, ρ ′ are χ2 contraction rates:

ρ > ρ ′

(congestion)·(max length)

If len 6 1, can use any Dφ.

Canonical paths: a few-to-one

mapping enc from (s, t)-pairs
whose path passes x → y to Ω:

µ(s)µ(t) 6 C · µ(enc(s, t))Q(x, y)

If M-to-one, then cong 6 CM.

Matching walks mix in poly(n).

2/11

Review

P, P ′ reversible with same

stationary distribution

Comparison: route Q ′ through Q

with low congestion and length.

π(path | X0 = s, X` = t)

s t

Congestion

Suppose π is dist over paths and Q is

ergodic flow. Congestion is

max
{

Ppath∼π[(x→y)∈path]
Q(x,y)

∣∣∣ x 6= y
}

Lemma: comparison

Suppose ρ, ρ ′ are χ2 contraction rates:

ρ > ρ ′

(congestion)·(max length)

If len 6 1, can use any Dφ.

Canonical paths: a few-to-one

mapping enc from (s, t)-pairs
whose path passes x → y to Ω:

µ(s)µ(t) 6 C · µ(enc(s, t))Q(x, y)

If M-to-one, then cong 6 CM.

Matching walks mix in poly(n).

4/11

Perfect Matchings
Monomer-dimer systems

Log-concave sequences

Bipartite graphs

4/11

Perfect Matchings
Monomer-dimer systems

Log-concave sequences

Bipartite graphs

5/11

Monomer-dimer systems

Markov chain on matchings mixes

in poly(n) time [Jerrum-Sinclair’89].

What about perfect matchings?

This is open. No strong

indication/evidence either way!

However, for bipartite graphs,

[Jerrum-Sinclair-Vigoda’04] showed

we can approx sample/count in

poly(n) time.

Monomer-dimer system

Prob of matching ∝∏
e∈Mλe

dimer

·
∏

v 6∼Mzv

monomer

Monomer weights zv can be

absorbed into λe. So assume wlog

that zv = 1.

Mixing time is poly(n, λmax)
[Jerrum-Sinclair]

Sampling/counting possible in

poly(n, log λmax) time on bipartite

graphs [Jerrum-Sinclair-Vigoda].

5/11

Monomer-dimer systems

Markov chain on matchings mixes

in poly(n) time [Jerrum-Sinclair’89].

What about perfect matchings?

This is open. No strong

indication/evidence either way!

However, for bipartite graphs,

[Jerrum-Sinclair-Vigoda’04] showed

we can approx sample/count in

poly(n) time.

Monomer-dimer system

Prob of matching ∝∏
e∈Mλe

dimer

·
∏

v 6∼Mzv

monomer

Monomer weights zv can be

absorbed into λe. So assume wlog

that zv = 1.

Mixing time is poly(n, λmax)
[Jerrum-Sinclair]

Sampling/counting possible in

poly(n, log λmax) time on bipartite

graphs [Jerrum-Sinclair-Vigoda].

5/11

Monomer-dimer systems

Markov chain on matchings mixes

in poly(n) time [Jerrum-Sinclair’89].

What about perfect matchings?

This is open. No strong

indication/evidence either way!

However, for bipartite graphs,

[Jerrum-Sinclair-Vigoda’04] showed

we can approx sample/count in

poly(n) time.

Monomer-dimer system

Prob of matching ∝∏
e∈Mλe

dimer

·
∏

v 6∼Mzv

monomer

Monomer weights zv can be

absorbed into λe. So assume wlog

that zv = 1.

Mixing time is poly(n, λmax)
[Jerrum-Sinclair]

Sampling/counting possible in

poly(n, log λmax) time on bipartite

graphs [Jerrum-Sinclair-Vigoda].

5/11

Monomer-dimer systems

Markov chain on matchings mixes

in poly(n) time [Jerrum-Sinclair’89].

What about perfect matchings?

This is open. No strong

indication/evidence either way!

However, for bipartite graphs,

[Jerrum-Sinclair-Vigoda’04] showed

we can approx sample/count in

poly(n) time.

Monomer-dimer system

Prob of matching ∝∏
e∈Mλe

dimer

·
∏

v 6∼Mzv

monomer

Monomer weights zv can be

absorbed into λe. So assume wlog

that zv = 1.

Mixing time is poly(n, λmax)
[Jerrum-Sinclair]

Sampling/counting possible in

poly(n, log λmax) time on bipartite

graphs [Jerrum-Sinclair-Vigoda].

5/11

Monomer-dimer systems

Markov chain on matchings mixes

in poly(n) time [Jerrum-Sinclair’89].

What about perfect matchings?

This is open. No strong

indication/evidence either way!

However, for bipartite graphs,

[Jerrum-Sinclair-Vigoda’04] showed

we can approx sample/count in

poly(n) time.

Monomer-dimer system

Prob of matching ∝∏
e∈Mλe

dimer

·
∏

v 6∼Mzv

monomer

Monomer weights zv can be

absorbed into λe. So assume wlog

that zv = 1.

Mixing time is poly(n, λmax)
[Jerrum-Sinclair]

Sampling/counting possible in

poly(n, log λmax) time on bipartite

graphs [Jerrum-Sinclair-Vigoda].

5/11

Monomer-dimer systems

Markov chain on matchings mixes

in poly(n) time [Jerrum-Sinclair’89].

What about perfect matchings?

This is open. No strong

indication/evidence either way!

However, for bipartite graphs,

[Jerrum-Sinclair-Vigoda’04] showed

we can approx sample/count in

poly(n) time.

Monomer-dimer system

Prob of matching ∝∏
e∈Mλe

dimer

·
∏

v 6∼Mzv

monomer

Monomer weights zv can be

absorbed into λe. So assume wlog

that zv = 1.

Mixing time is poly(n, λmax)
[Jerrum-Sinclair]

Sampling/counting possible in

poly(n, log λmax) time on bipartite

graphs [Jerrum-Sinclair-Vigoda].

5/11

Monomer-dimer systems

Markov chain on matchings mixes

in poly(n) time [Jerrum-Sinclair’89].

What about perfect matchings?

This is open. No strong

indication/evidence either way!

However, for bipartite graphs,

[Jerrum-Sinclair-Vigoda’04] showed

we can approx sample/count in

poly(n) time.

Monomer-dimer system

Prob of matching ∝∏
e∈Mλe

dimer

·
∏

v 6∼Mzv

monomer

Monomer weights zv can be

absorbed into λe. So assume wlog

that zv = 1.

Mixing time is poly(n, λmax)
[Jerrum-Sinclair]

Sampling/counting possible in

poly(n, log λmax) time on bipartite

graphs [Jerrum-Sinclair-Vigoda].

5/11

Monomer-dimer systems

Markov chain on matchings mixes

in poly(n) time [Jerrum-Sinclair’89].

What about perfect matchings?

This is open. No strong

indication/evidence either way!

However, for bipartite graphs,

[Jerrum-Sinclair-Vigoda’04] showed

we can approx sample/count in

poly(n) time.

Monomer-dimer system

Prob of matching ∝∏
e∈Mλe

dimer

·
∏

v 6∼Mzv

monomer

Monomer weights zv can be

absorbed into λe. So assume wlog

that zv = 1.

Mixing time is poly(n, λmax)
[Jerrum-Sinclair]

Sampling/counting possible in

poly(n, log λmax) time on bipartite

graphs [Jerrum-Sinclair-Vigoda].

6/11

Theorem [Jerrum-Sinclair]

Mixing time is poly(n, λmax).

Proof: for the x → y transition:

Same encoding as before:

enc(s, t) = s⊕ t⊕ x− couple edges

Using notation λS =
∏

e∈S λe:

λsλt 6poly(λmax)

couple edges

·λenc(s,t)λx

Similarly:

λsλt 6 poly(λmax) · λenc(s,t)λy

Using Metropolis filter we get

Q(x, y) > min{µ(x),µ(y)}
poly(n)

So we have µ(s)µ(t) 6

poly(n, λmax) · µ(enc(s, t))Q(x, y)

What if we want perfect

matchings?

Idea 1: restrict chain to perfect and

near-perfect

one fewer edge

matchings.

Idea 2: set λe = λ very large.

Dist of matching size:

0 1 2 · · · n
2

If λk · #(k-matchings) maximized

for k = n
2 , use rejection sampling.

6/11

Theorem [Jerrum-Sinclair]

Mixing time is poly(n, λmax).

Proof: for the x → y transition:

Same encoding as before:

enc(s, t) = s⊕ t⊕ x− couple edges

Using notation λS =
∏

e∈S λe:

λsλt 6poly(λmax)

couple edges

·λenc(s,t)λx

Similarly:

λsλt 6 poly(λmax) · λenc(s,t)λy

Using Metropolis filter we get

Q(x, y) > min{µ(x),µ(y)}
poly(n)

So we have µ(s)µ(t) 6

poly(n, λmax) · µ(enc(s, t))Q(x, y)

What if we want perfect

matchings?

Idea 1: restrict chain to perfect and

near-perfect

one fewer edge

matchings.

Idea 2: set λe = λ very large.

Dist of matching size:

0 1 2 · · · n
2

If λk · #(k-matchings) maximized

for k = n
2 , use rejection sampling.

6/11

Theorem [Jerrum-Sinclair]

Mixing time is poly(n, λmax).

Proof: for the x → y transition:

Same encoding as before:

enc(s, t) = s⊕ t⊕ x− couple edges

Using notation λS =
∏

e∈S λe:

λsλt 6poly(λmax)

couple edges

·λenc(s,t)λx

Similarly:

λsλt 6 poly(λmax) · λenc(s,t)λy

Using Metropolis filter we get

Q(x, y) > min{µ(x),µ(y)}
poly(n)

So we have µ(s)µ(t) 6

poly(n, λmax) · µ(enc(s, t))Q(x, y)

What if we want perfect

matchings?

Idea 1: restrict chain to perfect and

near-perfect

one fewer edge

matchings.

Idea 2: set λe = λ very large.

Dist of matching size:

0 1 2 · · · n
2

If λk · #(k-matchings) maximized

for k = n
2 , use rejection sampling.

6/11

Theorem [Jerrum-Sinclair]

Mixing time is poly(n, λmax).

Proof: for the x → y transition:

Same encoding as before:

enc(s, t) = s⊕ t⊕ x− couple edges

Using notation λS =
∏

e∈S λe:

λsλt 6poly(λmax)

couple edges

·λenc(s,t)λx

Similarly:

λsλt 6 poly(λmax) · λenc(s,t)λy

Using Metropolis filter we get

Q(x, y) > min{µ(x),µ(y)}
poly(n)

So we have µ(s)µ(t) 6

poly(n, λmax) · µ(enc(s, t))Q(x, y)

What if we want perfect

matchings?

Idea 1: restrict chain to perfect and

near-perfect

one fewer edge

matchings.

Idea 2: set λe = λ very large.

Dist of matching size:

0 1 2 · · · n
2

If λk · #(k-matchings) maximized

for k = n
2 , use rejection sampling.

6/11

Theorem [Jerrum-Sinclair]

Mixing time is poly(n, λmax).

Proof: for the x → y transition:

Same encoding as before:

enc(s, t) = s⊕ t⊕ x− couple edges

Using notation λS =
∏

e∈S λe:

λsλt 6poly(λmax)

couple edges

·λenc(s,t)λx

Similarly:

λsλt 6 poly(λmax) · λenc(s,t)λy

Using Metropolis filter we get

Q(x, y) > min{µ(x),µ(y)}
poly(n)

So we have µ(s)µ(t) 6

poly(n, λmax) · µ(enc(s, t))Q(x, y)

What if we want perfect

matchings?

Idea 1: restrict chain to perfect and

near-perfect

one fewer edge

matchings.

Idea 2: set λe = λ very large.

Dist of matching size:

0 1 2 · · · n
2

If λk · #(k-matchings) maximized

for k = n
2 , use rejection sampling.

6/11

Theorem [Jerrum-Sinclair]

Mixing time is poly(n, λmax).

Proof: for the x → y transition:

Same encoding as before:

enc(s, t) = s⊕ t⊕ x− couple edges

Using notation λS =
∏

e∈S λe:

λsλt 6poly(λmax)

couple edges

·λenc(s,t)λx

Similarly:

λsλt 6 poly(λmax) · λenc(s,t)λy

Using Metropolis filter we get

Q(x, y) > min{µ(x),µ(y)}
poly(n)

So we have µ(s)µ(t) 6

poly(n, λmax) · µ(enc(s, t))Q(x, y)

What if we want perfect

matchings?

Idea 1: restrict chain to perfect and

near-perfect

one fewer edge

matchings.

Idea 2: set λe = λ very large.

Dist of matching size:

0 1 2 · · · n
2

If λk · #(k-matchings) maximized

for k = n
2 , use rejection sampling.

6/11

Theorem [Jerrum-Sinclair]

Mixing time is poly(n, λmax).

Proof: for the x → y transition:

Same encoding as before:

enc(s, t) = s⊕ t⊕ x− couple edges

Using notation λS =
∏

e∈S λe:

λsλt 6poly(λmax)

couple edges

·λenc(s,t)λx

Similarly:

λsλt 6 poly(λmax) · λenc(s,t)λy

Using Metropolis filter we get

Q(x, y) > min{µ(x),µ(y)}
poly(n)

So we have µ(s)µ(t) 6

poly(n, λmax) · µ(enc(s, t))Q(x, y)

What if we want perfect

matchings?

Idea 1: restrict chain to perfect and

near-perfect

one fewer edge

matchings.

Idea 2: set λe = λ very large.

Dist of matching size:

0 1 2 · · · n
2

If λk · #(k-matchings) maximized

for k = n
2 , use rejection sampling.

6/11

Theorem [Jerrum-Sinclair]

Mixing time is poly(n, λmax).

Proof: for the x → y transition:

Same encoding as before:

enc(s, t) = s⊕ t⊕ x− couple edges

Using notation λS =
∏

e∈S λe:

λsλt 6poly(λmax)

couple edges

·λenc(s,t)λx

Similarly:

λsλt 6 poly(λmax) · λenc(s,t)λy

Using Metropolis filter we get

Q(x, y) > min{µ(x),µ(y)}
poly(n)

So we have µ(s)µ(t) 6

poly(n, λmax) · µ(enc(s, t))Q(x, y)

What if we want perfect

matchings?

Idea 1: restrict chain to perfect and

near-perfect

one fewer edge

matchings.

Idea 2: set λe = λ very large.

Dist of matching size:

0 1 2 · · · n
2

If λk · #(k-matchings) maximized

for k = n
2 , use rejection sampling.

6/11

Theorem [Jerrum-Sinclair]

Mixing time is poly(n, λmax).

Proof: for the x → y transition:

Same encoding as before:

enc(s, t) = s⊕ t⊕ x− couple edges

Using notation λS =
∏

e∈S λe:

λsλt 6poly(λmax)

couple edges

·λenc(s,t)λx

Similarly:

λsλt 6 poly(λmax) · λenc(s,t)λy

Using Metropolis filter we get

Q(x, y) > min{µ(x),µ(y)}
poly(n)

So we have µ(s)µ(t) 6

poly(n, λmax) · µ(enc(s, t))Q(x, y)

What if we want perfect

matchings?

Idea 1: restrict chain to perfect and

near-perfect

one fewer edge

matchings.

Idea 2: set λe = λ very large.

Dist of matching size:

0 1 2 · · · n
2

If λk · #(k-matchings) maximized

for k = n
2 , use rejection sampling.

6/11

Theorem [Jerrum-Sinclair]

Mixing time is poly(n, λmax).

Proof: for the x → y transition:

Same encoding as before:

enc(s, t) = s⊕ t⊕ x− couple edges

Using notation λS =
∏

e∈S λe:

λsλt 6poly(λmax)

couple edges

·λenc(s,t)λx

Similarly:

λsλt 6 poly(λmax) · λenc(s,t)λy

Using Metropolis filter we get

Q(x, y) > min{µ(x),µ(y)}
poly(n)

So we have µ(s)µ(t) 6

poly(n, λmax) · µ(enc(s, t))Q(x, y)

What if we want perfect

matchings?

Idea 1: restrict chain to perfect and

near-perfect

one fewer edge

matchings.

Idea 2: set λe = λ very large.

Dist of matching size:

0 1 2 · · · n
2

If λk · #(k-matchings) maximized

for k = n
2 , use rejection sampling.

6/11

Theorem [Jerrum-Sinclair]

Mixing time is poly(n, λmax).

Proof: for the x → y transition:

Same encoding as before:

enc(s, t) = s⊕ t⊕ x− couple edges

Using notation λS =
∏

e∈S λe:

λsλt 6poly(λmax)

couple edges

·λenc(s,t)λx

Similarly:

λsλt 6 poly(λmax) · λenc(s,t)λy

Using Metropolis filter we get

Q(x, y) > min{µ(x),µ(y)}
poly(n)

So we have µ(s)µ(t) 6

poly(n, λmax) · µ(enc(s, t))Q(x, y)

What if we want perfect

matchings?

Idea 1: restrict chain to perfect and

near-perfect

one fewer edge

matchings.

Idea 2: set λe = λ very large.

Dist of matching size:

0 1 2 · · · n
2

If λk · #(k-matchings) maximized

for k = n
2 , use rejection sampling.

6/11

Theorem [Jerrum-Sinclair]

Mixing time is poly(n, λmax).

Proof: for the x → y transition:

Same encoding as before:

enc(s, t) = s⊕ t⊕ x− couple edges

Using notation λS =
∏

e∈S λe:

λsλt 6poly(λmax)

couple edges

·λenc(s,t)λx

Similarly:

λsλt 6 poly(λmax) · λenc(s,t)λy

Using Metropolis filter we get

Q(x, y) > min{µ(x),µ(y)}
poly(n)

So we have µ(s)µ(t) 6

poly(n, λmax) · µ(enc(s, t))Q(x, y)

What if we want perfect

matchings?

Idea 1: restrict chain to perfect and

near-perfect

one fewer edge

matchings.

Idea 2: set λe = λ very large.

Dist of matching size:

0 1 2 · · · n
2

If λk · #(k-matchings) maximized

for k = n
2 , use rejection sampling.

7/11

Fact: log-concavity of matchings

If mk is #(k-matchings), then

m0

m1
6 m1

m2
6 · · · 6 mn/2−1

mn/2

So just need to set

λ > mn/2−1/mn/2

Corollary: if

mn/2−1 6 poly(n) ·mn/2

can sample perfect matchings.

Note: same cond for idea 1.

Bad example: chain of boxes

There are bad examples.

In chain of boxes, we have 1

perfect and 2Ω(n) near-perfect

matchings.

Exercise: modify chain of boxes to

get slow mixing for idea 1.

Idea: since there can be many

more near-perfect matchings, why

not reweigh matchings based on

size?

[Jerrum-Sinclair-Vigoda’04] showed

this works on bipartite graphs.

7/11

Fact: log-concavity of matchings

If mk is #(k-matchings), then

m0

m1
6 m1

m2
6 · · · 6 mn/2−1

mn/2

So just need to set

λ > mn/2−1/mn/2

Corollary: if

mn/2−1 6 poly(n) ·mn/2

can sample perfect matchings.

Note: same cond for idea 1.

Bad example: chain of boxes

There are bad examples.

In chain of boxes, we have 1

perfect and 2Ω(n) near-perfect

matchings.

Exercise: modify chain of boxes to

get slow mixing for idea 1.

Idea: since there can be many

more near-perfect matchings, why

not reweigh matchings based on

size?

[Jerrum-Sinclair-Vigoda’04] showed

this works on bipartite graphs.

7/11

Fact: log-concavity of matchings

If mk is #(k-matchings), then

m0

m1
6 m1

m2
6 · · · 6 mn/2−1

mn/2

So just need to set

λ > mn/2−1/mn/2

Corollary: if

mn/2−1 6 poly(n) ·mn/2

can sample perfect matchings.

Note: same cond for idea 1.

Bad example: chain of boxes

There are bad examples.

In chain of boxes, we have 1

perfect and 2Ω(n) near-perfect

matchings.

Exercise: modify chain of boxes to

get slow mixing for idea 1.

Idea: since there can be many

more near-perfect matchings, why

not reweigh matchings based on

size?

[Jerrum-Sinclair-Vigoda’04] showed

this works on bipartite graphs.

7/11

Fact: log-concavity of matchings

If mk is #(k-matchings), then

m0

m1
6 m1

m2
6 · · · 6 mn/2−1

mn/2

So just need to set

λ > mn/2−1/mn/2

Corollary: if

mn/2−1 6 poly(n) ·mn/2

can sample perfect matchings.

Note: same cond for idea 1.

Bad example: chain of boxes

There are bad examples.

In chain of boxes, we have 1

perfect and 2Ω(n) near-perfect

matchings.

Exercise: modify chain of boxes to

get slow mixing for idea 1.

Idea: since there can be many

more near-perfect matchings, why

not reweigh matchings based on

size?

[Jerrum-Sinclair-Vigoda’04] showed

this works on bipartite graphs.

7/11

Fact: log-concavity of matchings

If mk is #(k-matchings), then

m0

m1
6 m1

m2
6 · · · 6 mn/2−1

mn/2

So just need to set

λ > mn/2−1/mn/2

Corollary: if

mn/2−1 6 poly(n) ·mn/2

can sample perfect matchings.

Note: same cond for idea 1.

Bad example: chain of boxes

There are bad examples.

In chain of boxes, we have 1

perfect and 2Ω(n) near-perfect

matchings.

Exercise: modify chain of boxes to

get slow mixing for idea 1.

Idea: since there can be many

more near-perfect matchings, why

not reweigh matchings based on

size?

[Jerrum-Sinclair-Vigoda’04] showed

this works on bipartite graphs.

7/11

Fact: log-concavity of matchings

If mk is #(k-matchings), then

m0

m1
6 m1

m2
6 · · · 6 mn/2−1

mn/2

So just need to set

λ > mn/2−1/mn/2

Corollary: if

mn/2−1 6 poly(n) ·mn/2

can sample perfect matchings.

Note: same cond for idea 1.

Bad example: chain of boxes

There are bad examples.

In chain of boxes, we have 1

perfect and 2Ω(n) near-perfect

matchings.

Exercise: modify chain of boxes to

get slow mixing for idea 1.

Idea: since there can be many

more near-perfect matchings, why

not reweigh matchings based on

size?

[Jerrum-Sinclair-Vigoda’04] showed

this works on bipartite graphs.

7/11

Fact: log-concavity of matchings

If mk is #(k-matchings), then

m0

m1
6 m1

m2
6 · · · 6 mn/2−1

mn/2

So just need to set

λ > mn/2−1/mn/2

Corollary: if

mn/2−1 6 poly(n) ·mn/2

can sample perfect matchings.

Note: same cond for idea 1.

Bad example: chain of boxes

There are bad examples.

In chain of boxes, we have 1

perfect and 2Ω(n) near-perfect

matchings.

Exercise: modify chain of boxes to

get slow mixing for idea 1.

Idea: since there can be many

more near-perfect matchings, why

not reweigh matchings based on

size?

[Jerrum-Sinclair-Vigoda’04] showed

this works on bipartite graphs.

7/11

Fact: log-concavity of matchings

If mk is #(k-matchings), then

m0

m1
6 m1

m2
6 · · · 6 mn/2−1

mn/2

So just need to set

λ > mn/2−1/mn/2

Corollary: if

mn/2−1 6 poly(n) ·mn/2

can sample perfect matchings.

Note: same cond for idea 1.

Bad example: chain of boxes

There are bad examples.

In chain of boxes, we have 1

perfect and 2Ω(n) near-perfect

matchings.

Exercise: modify chain of boxes to

get slow mixing for idea 1.

Idea: since there can be many

more near-perfect matchings, why

not reweigh matchings based on

size?

[Jerrum-Sinclair-Vigoda’04] showed

this works on bipartite graphs.

7/11

Fact: log-concavity of matchings

If mk is #(k-matchings), then

m0

m1
6 m1

m2
6 · · · 6 mn/2−1

mn/2

So just need to set

λ > mn/2−1/mn/2

Corollary: if

mn/2−1 6 poly(n) ·mn/2

can sample perfect matchings.

Note: same cond for idea 1.

Bad example: chain of boxes

There are bad examples.

In chain of boxes, we have 1

perfect and 2Ω(n) near-perfect

matchings.

Exercise: modify chain of boxes to

get slow mixing for idea 1.

Idea: since there can be many

more near-perfect matchings, why

not reweigh matchings based on

size?

[Jerrum-Sinclair-Vigoda’04] showed

this works on bipartite graphs.

7/11

Fact: log-concavity of matchings

If mk is #(k-matchings), then

m0

m1
6 m1

m2
6 · · · 6 mn/2−1

mn/2

So just need to set

λ > mn/2−1/mn/2

Corollary: if

mn/2−1 6 poly(n) ·mn/2

can sample perfect matchings.

Note: same cond for idea 1.

Bad example: chain of boxes

There are bad examples.

In chain of boxes, we have 1

perfect and 2Ω(n) near-perfect

matchings.

Exercise: modify chain of boxes to

get slow mixing for idea 1.

Idea: since there can be many

more near-perfect matchings, why

not reweigh matchings based on

size?

[Jerrum-Sinclair-Vigoda’04] showed

this works on bipartite graphs.

8/11

Let ΩS be the class of matchings

whose monomers are S. Example:

Ω∅ is perfect matchings, and

Ω{u,v} matchings that only miss

u, v.

Let λM denote monomer-dimer

weight of M:

λM =
∏

e∈M λe

We get weights for each class:

λ(ΩS) =
∑

M∈ΩS
λM

Define modified distribution on

matchings:

µ(M) ∝ λM

λ(Ωmonomers(M))

Note: µ(ΩS) is the same for all S.

Theorem [Jerrum-Sinclair-Vigoda’04]

If P is Metropolis walk restricted to

perfect and near-perfect matchings

weighted ∝ µ, and graph is bipartite

tmix(P, 1max-weight M) = poly(n)

We need max-weight M as start

to ensure log χ2(ν0 ‖ µ) = poly(n).

The Chicken-and-Egg Problem

How can we

compute λ(ΩS)?

By sampling.

How to sample?

Use counting.

8/11

Let ΩS be the class of matchings

whose monomers are S. Example:

Ω∅ is perfect matchings, and

Ω{u,v} matchings that only miss

u, v.

Let λM denote monomer-dimer

weight of M:

λM =
∏

e∈M λe

We get weights for each class:

λ(ΩS) =
∑

M∈ΩS
λM

Define modified distribution on

matchings:

µ(M) ∝ λM

λ(Ωmonomers(M))

Note: µ(ΩS) is the same for all S.

Theorem [Jerrum-Sinclair-Vigoda’04]

If P is Metropolis walk restricted to

perfect and near-perfect matchings

weighted ∝ µ, and graph is bipartite

tmix(P, 1max-weight M) = poly(n)

We need max-weight M as start

to ensure log χ2(ν0 ‖ µ) = poly(n).

The Chicken-and-Egg Problem

How can we

compute λ(ΩS)?

By sampling.

How to sample?

Use counting.

8/11

Let ΩS be the class of matchings

whose monomers are S. Example:

Ω∅ is perfect matchings, and

Ω{u,v} matchings that only miss

u, v.

Let λM denote monomer-dimer

weight of M:

λM =
∏

e∈M λe

We get weights for each class:

λ(ΩS) =
∑

M∈ΩS
λM

Define modified distribution on

matchings:

µ(M) ∝ λM

λ(Ωmonomers(M))

Note: µ(ΩS) is the same for all S.

Theorem [Jerrum-Sinclair-Vigoda’04]

If P is Metropolis walk restricted to

perfect and near-perfect matchings

weighted ∝ µ, and graph is bipartite

tmix(P, 1max-weight M) = poly(n)

We need max-weight M as start

to ensure log χ2(ν0 ‖ µ) = poly(n).

The Chicken-and-Egg Problem

How can we

compute λ(ΩS)?

By sampling.

How to sample?

Use counting.

8/11

Let ΩS be the class of matchings

whose monomers are S. Example:

Ω∅ is perfect matchings, and

Ω{u,v} matchings that only miss

u, v.

Let λM denote monomer-dimer

weight of M:

λM =
∏

e∈M λe

We get weights for each class:

λ(ΩS) =
∑

M∈ΩS
λM

Define modified distribution on

matchings:

µ(M) ∝ λM

λ(Ωmonomers(M))

Note: µ(ΩS) is the same for all S.

Theorem [Jerrum-Sinclair-Vigoda’04]

If P is Metropolis walk restricted to

perfect and near-perfect matchings

weighted ∝ µ, and graph is bipartite

tmix(P, 1max-weight M) = poly(n)

We need max-weight M as start

to ensure log χ2(ν0 ‖ µ) = poly(n).

The Chicken-and-Egg Problem

How can we

compute λ(ΩS)?

By sampling.

How to sample?

Use counting.

8/11

Let ΩS be the class of matchings

whose monomers are S. Example:

Ω∅ is perfect matchings, and

Ω{u,v} matchings that only miss

u, v.

Let λM denote monomer-dimer

weight of M:

λM =
∏

e∈M λe

We get weights for each class:

λ(ΩS) =
∑

M∈ΩS
λM

Define modified distribution on

matchings:

µ(M) ∝ λM

λ(Ωmonomers(M))

Note: µ(ΩS) is the same for all S.

Theorem [Jerrum-Sinclair-Vigoda’04]

If P is Metropolis walk restricted to

perfect and near-perfect matchings

weighted ∝ µ, and graph is bipartite

tmix(P, 1max-weight M) = poly(n)

We need max-weight M as start

to ensure log χ2(ν0 ‖ µ) = poly(n).

The Chicken-and-Egg Problem

How can we

compute λ(ΩS)?

By sampling.

How to sample?

Use counting.

8/11

Let ΩS be the class of matchings

whose monomers are S. Example:

Ω∅ is perfect matchings, and

Ω{u,v} matchings that only miss

u, v.

Let λM denote monomer-dimer

weight of M:

λM =
∏

e∈M λe

We get weights for each class:

λ(ΩS) =
∑

M∈ΩS
λM

Define modified distribution on

matchings:

µ(M) ∝ λM

λ(Ωmonomers(M))

Note: µ(ΩS) is the same for all S.

Theorem [Jerrum-Sinclair-Vigoda’04]

If P is Metropolis walk restricted to

perfect and near-perfect matchings

weighted ∝ µ, and graph is bipartite

tmix(P, 1max-weight M) = poly(n)

We need max-weight M as start

to ensure log χ2(ν0 ‖ µ) = poly(n).

The Chicken-and-Egg Problem

How can we

compute λ(ΩS)?

By sampling.

How to sample?

Use counting.

8/11

Let ΩS be the class of matchings

whose monomers are S. Example:

Ω∅ is perfect matchings, and

Ω{u,v} matchings that only miss

u, v.

Let λM denote monomer-dimer

weight of M:

λM =
∏

e∈M λe

We get weights for each class:

λ(ΩS) =
∑

M∈ΩS
λM

Define modified distribution on

matchings:

µ(M) ∝ λM

λ(Ωmonomers(M))

Note: µ(ΩS) is the same for all S.

Theorem [Jerrum-Sinclair-Vigoda’04]

If P is Metropolis walk restricted to

perfect and near-perfect matchings

weighted ∝ µ, and graph is bipartite

tmix(P, 1max-weight M) = poly(n)

We need max-weight M as start

to ensure log χ2(ν0 ‖ µ) = poly(n).

The Chicken-and-Egg Problem

How can we

compute λ(ΩS)?

By sampling.

How to sample?

Use counting.

8/11

Let ΩS be the class of matchings

whose monomers are S. Example:

Ω∅ is perfect matchings, and

Ω{u,v} matchings that only miss

u, v.

Let λM denote monomer-dimer

weight of M:

λM =
∏

e∈M λe

We get weights for each class:

λ(ΩS) =
∑

M∈ΩS
λM

Define modified distribution on

matchings:

µ(M) ∝ λM

λ(Ωmonomers(M))

Note: µ(ΩS) is the same for all S.

Theorem [Jerrum-Sinclair-Vigoda’04]

If P is Metropolis walk restricted to

perfect and near-perfect matchings

weighted ∝ µ, and graph is bipartite

tmix(P, 1max-weight M) = poly(n)

We need max-weight M as start

to ensure log χ2(ν0 ‖ µ) = poly(n).

The Chicken-and-Egg Problem

How can we

compute λ(ΩS)?

By sampling.

How to sample?

Use counting.

8/11

Let ΩS be the class of matchings

whose monomers are S. Example:

Ω∅ is perfect matchings, and

Ω{u,v} matchings that only miss

u, v.

Let λM denote monomer-dimer

weight of M:

λM =
∏

e∈M λe

We get weights for each class:

λ(ΩS) =
∑

M∈ΩS
λM

Define modified distribution on

matchings:

µ(M) ∝ λM

λ(Ωmonomers(M))

Note: µ(ΩS) is the same for all S.

Theorem [Jerrum-Sinclair-Vigoda’04]

If P is Metropolis walk restricted to

perfect and near-perfect matchings

weighted ∝ µ, and graph is bipartite

tmix(P, 1max-weight M) = poly(n)

We need max-weight M as start

to ensure log χ2(ν0 ‖ µ) = poly(n).

The Chicken-and-Egg Problem

How can we

compute λ(ΩS)?

By sampling.

How to sample?

Use counting.

8/11

Let ΩS be the class of matchings

whose monomers are S. Example:

Ω∅ is perfect matchings, and

Ω{u,v} matchings that only miss

u, v.

Let λM denote monomer-dimer

weight of M:

λM =
∏

e∈M λe

We get weights for each class:

λ(ΩS) =
∑

M∈ΩS
λM

Define modified distribution on

matchings:

µ(M) ∝ λM

λ(Ωmonomers(M))

Note: µ(ΩS) is the same for all S.

Theorem [Jerrum-Sinclair-Vigoda’04]

If P is Metropolis walk restricted to

perfect and near-perfect matchings

weighted ∝ µ, and graph is bipartite

tmix(P, 1max-weight M) = poly(n)

We need max-weight M as start

to ensure log χ2(ν0 ‖ µ) = poly(n).

The Chicken-and-Egg Problem

How can we

compute λ(ΩS)?

By sampling.

How to sample?

Use counting.

8/11

Let ΩS be the class of matchings

whose monomers are S. Example:

Ω∅ is perfect matchings, and

Ω{u,v} matchings that only miss

u, v.

Let λM denote monomer-dimer

weight of M:

λM =
∏

e∈M λe

We get weights for each class:

λ(ΩS) =
∑

M∈ΩS
λM

Define modified distribution on

matchings:

µ(M) ∝ λM

λ(Ωmonomers(M))

Note: µ(ΩS) is the same for all S.

Theorem [Jerrum-Sinclair-Vigoda’04]

If P is Metropolis walk restricted to

perfect and near-perfect matchings

weighted ∝ µ, and graph is bipartite

tmix(P, 1max-weight M) = poly(n)

We need max-weight M as start

to ensure log χ2(ν0 ‖ µ) = poly(n).

The Chicken-and-Egg Problem

How can we

compute λ(ΩS)?

By sampling.

How to sample?

Use counting.

8/11

Let ΩS be the class of matchings

whose monomers are S. Example:

Ω∅ is perfect matchings, and

Ω{u,v} matchings that only miss

u, v.

Let λM denote monomer-dimer

weight of M:

λM =
∏

e∈M λe

We get weights for each class:

λ(ΩS) =
∑

M∈ΩS
λM

Define modified distribution on

matchings:

µ(M) ∝ λM

λ(Ωmonomers(M))

Note: µ(ΩS) is the same for all S.

Theorem [Jerrum-Sinclair-Vigoda’04]

If P is Metropolis walk restricted to

perfect and near-perfect matchings

weighted ∝ µ, and graph is bipartite

tmix(P, 1max-weight M) = poly(n)

We need max-weight M as start

to ensure log χ2(ν0 ‖ µ) = poly(n).

The Chicken-and-Egg Problem

How can we

compute λ(ΩS)?

By sampling.

How to sample?

Use counting.

9/11

Resolving the chicken-and-egg

problem: gradual change.

Theorem

Chain mixes fast even if λ(ΩS) are re-

placed by approximations

say factor 10 approx

in µ.

Start with easy case. Take

G = Kn/2,n/2, and λe = 1.

Slowly

by 1± 1/n each time

change λes:

λ(0) → λ(1) → · · · → λ(t)

Use Markov chain for each λ(i) to

estimate λ(i)(ΩS) for |S| 6 2.

Use estimates to define next µ.

Note: (λe = 0) ≈ (λe = exp(−n2))

It just remains to prove fast mixing.

We use canonical paths. Enough

to consider s ∈ Ω{u,v} and t ∈ Ω∅.

Ω∅

Ω{u1,v1} Ω{u1,v2}
. . . Ω{un/2,vn/2}

Assume λ(ΩS) is accurate,
because the inequality

µ(s)µ(t) 6 Cµ(enc(s, t))Q(x, y)

is robust to approximation.

Use the same encoding as before:

enc(s, t) = s⊕ t⊕ x− couple edges

9/11

Resolving the chicken-and-egg

problem: gradual change.

Theorem

Chain mixes fast even if λ(ΩS) are re-

placed by approximations

say factor 10 approx

in µ.

Start with easy case. Take

G = Kn/2,n/2, and λe = 1.

Slowly

by 1± 1/n each time

change λes:

λ(0) → λ(1) → · · · → λ(t)

Use Markov chain for each λ(i) to

estimate λ(i)(ΩS) for |S| 6 2.

Use estimates to define next µ.

Note: (λe = 0) ≈ (λe = exp(−n2))

It just remains to prove fast mixing.

We use canonical paths. Enough

to consider s ∈ Ω{u,v} and t ∈ Ω∅.

Ω∅

Ω{u1,v1} Ω{u1,v2}
. . . Ω{un/2,vn/2}

Assume λ(ΩS) is accurate,
because the inequality

µ(s)µ(t) 6 Cµ(enc(s, t))Q(x, y)

is robust to approximation.

Use the same encoding as before:

enc(s, t) = s⊕ t⊕ x− couple edges

9/11

Resolving the chicken-and-egg

problem: gradual change.

Theorem

Chain mixes fast even if λ(ΩS) are re-

placed by approximations

say factor 10 approx

in µ.

Start with easy case. Take

G = Kn/2,n/2, and λe = 1.

Slowly

by 1± 1/n each time

change λes:

λ(0) → λ(1) → · · · → λ(t)

Use Markov chain for each λ(i) to

estimate λ(i)(ΩS) for |S| 6 2.

Use estimates to define next µ.

Note: (λe = 0) ≈ (λe = exp(−n2))

It just remains to prove fast mixing.

We use canonical paths. Enough

to consider s ∈ Ω{u,v} and t ∈ Ω∅.

Ω∅

Ω{u1,v1} Ω{u1,v2}
. . . Ω{un/2,vn/2}

Assume λ(ΩS) is accurate,
because the inequality

µ(s)µ(t) 6 Cµ(enc(s, t))Q(x, y)

is robust to approximation.

Use the same encoding as before:

enc(s, t) = s⊕ t⊕ x− couple edges

9/11

Resolving the chicken-and-egg

problem: gradual change.

Theorem

Chain mixes fast even if λ(ΩS) are re-

placed by approximations

say factor 10 approx

in µ.

Start with easy case. Take

G = Kn/2,n/2, and λe = 1.

Slowly

by 1± 1/n each time

change λes:

λ(0) → λ(1) → · · · → λ(t)

Use Markov chain for each λ(i) to

estimate λ(i)(ΩS) for |S| 6 2.

Use estimates to define next µ.

Note: (λe = 0) ≈ (λe = exp(−n2))

It just remains to prove fast mixing.

We use canonical paths. Enough

to consider s ∈ Ω{u,v} and t ∈ Ω∅.

Ω∅

Ω{u1,v1} Ω{u1,v2}
. . . Ω{un/2,vn/2}

Assume λ(ΩS) is accurate,
because the inequality

µ(s)µ(t) 6 Cµ(enc(s, t))Q(x, y)

is robust to approximation.

Use the same encoding as before:

enc(s, t) = s⊕ t⊕ x− couple edges

9/11

Resolving the chicken-and-egg

problem: gradual change.

Theorem

Chain mixes fast even if λ(ΩS) are re-

placed by approximations

say factor 10 approx

in µ.

Start with easy case. Take

G = Kn/2,n/2, and λe = 1.

Slowly

by 1± 1/n each time

change λes:

λ(0) → λ(1) → · · · → λ(t)

Use Markov chain for each λ(i) to

estimate λ(i)(ΩS) for |S| 6 2.

Use estimates to define next µ.

Note: (λe = 0) ≈ (λe = exp(−n2))

It just remains to prove fast mixing.

We use canonical paths. Enough

to consider s ∈ Ω{u,v} and t ∈ Ω∅.

Ω∅

Ω{u1,v1} Ω{u1,v2}
. . . Ω{un/2,vn/2}

Assume λ(ΩS) is accurate,
because the inequality

µ(s)µ(t) 6 Cµ(enc(s, t))Q(x, y)

is robust to approximation.

Use the same encoding as before:

enc(s, t) = s⊕ t⊕ x− couple edges

9/11

Resolving the chicken-and-egg

problem: gradual change.

Theorem

Chain mixes fast even if λ(ΩS) are re-

placed by approximations

say factor 10 approx

in µ.

Start with easy case. Take

G = Kn/2,n/2, and λe = 1.

Slowly

by 1± 1/n each time

change λes:

λ(0) → λ(1) → · · · → λ(t)

Use Markov chain for each λ(i) to

estimate λ(i)(ΩS) for |S| 6 2.

Use estimates to define next µ.

Note: (λe = 0) ≈ (λe = exp(−n2))

It just remains to prove fast mixing.

We use canonical paths. Enough

to consider s ∈ Ω{u,v} and t ∈ Ω∅.

Ω∅

Ω{u1,v1} Ω{u1,v2}
. . . Ω{un/2,vn/2}

Assume λ(ΩS) is accurate,
because the inequality

µ(s)µ(t) 6 Cµ(enc(s, t))Q(x, y)

is robust to approximation.

Use the same encoding as before:

enc(s, t) = s⊕ t⊕ x− couple edges

9/11

Resolving the chicken-and-egg

problem: gradual change.

Theorem

Chain mixes fast even if λ(ΩS) are re-

placed by approximations

say factor 10 approx

in µ.

Start with easy case. Take

G = Kn/2,n/2, and λe = 1.

Slowly

by 1± 1/n each time

change λes:

λ(0) → λ(1) → · · · → λ(t)

Use Markov chain for each λ(i) to

estimate λ(i)(ΩS) for |S| 6 2.

Use estimates to define next µ.

Note: (λe = 0) ≈ (λe = exp(−n2))

It just remains to prove fast mixing.

We use canonical paths. Enough

to consider s ∈ Ω{u,v} and t ∈ Ω∅.

Ω∅

Ω{u1,v1} Ω{u1,v2}
. . . Ω{un/2,vn/2}

Assume λ(ΩS) is accurate,
because the inequality

µ(s)µ(t) 6 Cµ(enc(s, t))Q(x, y)

is robust to approximation.

Use the same encoding as before:

enc(s, t) = s⊕ t⊕ x− couple edges

9/11

Resolving the chicken-and-egg

problem: gradual change.

Theorem

Chain mixes fast even if λ(ΩS) are re-

placed by approximations

say factor 10 approx

in µ.

Start with easy case. Take

G = Kn/2,n/2, and λe = 1.

Slowly

by 1± 1/n each time

change λes:

λ(0) → λ(1) → · · · → λ(t)

Use Markov chain for each λ(i) to

estimate λ(i)(ΩS) for |S| 6 2.

Use estimates to define next µ.

Note: (λe = 0) ≈ (λe = exp(−n2))

It just remains to prove fast mixing.

We use canonical paths. Enough

to consider s ∈ Ω{u,v} and t ∈ Ω∅.

Ω∅

Ω{u1,v1} Ω{u1,v2}
. . . Ω{un/2,vn/2}

Assume λ(ΩS) is accurate,
because the inequality

µ(s)µ(t) 6 Cµ(enc(s, t))Q(x, y)

is robust to approximation.

Use the same encoding as before:

enc(s, t) = s⊕ t⊕ x− couple edges

9/11

Resolving the chicken-and-egg

problem: gradual change.

Theorem

Chain mixes fast even if λ(ΩS) are re-

placed by approximations

say factor 10 approx

in µ.

Start with easy case. Take

G = Kn/2,n/2, and λe = 1.

Slowly

by 1± 1/n each time

change λes:

λ(0) → λ(1) → · · · → λ(t)

Use Markov chain for each λ(i) to

estimate λ(i)(ΩS) for |S| 6 2.

Use estimates to define next µ.

Note: (λe = 0) ≈ (λe = exp(−n2))

It just remains to prove fast mixing.

We use canonical paths. Enough

to consider s ∈ Ω{u,v} and t ∈ Ω∅.

Ω∅

Ω{u1,v1} Ω{u1,v2}
. . . Ω{un/2,vn/2}

Assume λ(ΩS) is accurate,
because the inequality

µ(s)µ(t) 6 Cµ(enc(s, t))Q(x, y)

is robust to approximation.

Use the same encoding as before:

enc(s, t) = s⊕ t⊕ x− couple edges

9/11

Resolving the chicken-and-egg

problem: gradual change.

Theorem

Chain mixes fast even if λ(ΩS) are re-

placed by approximations

say factor 10 approx

in µ.

Start with easy case. Take

G = Kn/2,n/2, and λe = 1.

Slowly

by 1± 1/n each time

change λes:

λ(0) → λ(1) → · · · → λ(t)

Use Markov chain for each λ(i) to

estimate λ(i)(ΩS) for |S| 6 2.

Use estimates to define next µ.

Note: (λe = 0) ≈ (λe = exp(−n2))

It just remains to prove fast mixing.

We use canonical paths. Enough

to consider s ∈ Ω{u,v} and t ∈ Ω∅.

Ω∅

Ω{u1,v1} Ω{u1,v2}
. . . Ω{un/2,vn/2}

Assume λ(ΩS) is accurate,
because the inequality

µ(s)µ(t) 6 Cµ(enc(s, t))Q(x, y)

is robust to approximation.

Use the same encoding as before:

enc(s, t) = s⊕ t⊕ x− couple edges

9/11

Resolving the chicken-and-egg

problem: gradual change.

Theorem

Chain mixes fast even if λ(ΩS) are re-

placed by approximations

say factor 10 approx

in µ.

Start with easy case. Take

G = Kn/2,n/2, and λe = 1.

Slowly

by 1± 1/n each time

change λes:

λ(0) → λ(1) → · · · → λ(t)

Use Markov chain for each λ(i) to

estimate λ(i)(ΩS) for |S| 6 2.

Use estimates to define next µ.

Note: (λe = 0) ≈ (λe = exp(−n2))

It just remains to prove fast mixing.

We use canonical paths. Enough

to consider s ∈ Ω{u,v} and t ∈ Ω∅.

Ω∅

Ω{u1,v1} Ω{u1,v2}
. . . Ω{un/2,vn/2}

Assume λ(ΩS) is accurate,
because the inequality

µ(s)µ(t) 6 Cµ(enc(s, t))Q(x, y)

is robust to approximation.

Use the same encoding as before:

enc(s, t) = s⊕ t⊕ x− couple edges

10/11

Traverse alternating path first.

Ensures all x on the st-path are

perfect/near-perfect.

Issue: encoding might not be

perfect/near-perfect:

⇓

This is fine! We still get

cong 6 poly(n) because∑
|S|64 µ(ΩS) 6

poly(n) ·
∑

|S|62 µ(ΩS)

We just need to show µ(s)µ(t) 6

poly(n) · min{µ(x), µ(y)} · µ(enc)
It’s a bit of case analysis, but

hardest case is in the middle of

unraveling a cycle:

10/11

Traverse alternating path first.

Ensures all x on the st-path are

perfect/near-perfect.

Issue: encoding might not be

perfect/near-perfect:

⇓

This is fine! We still get

cong 6 poly(n) because∑
|S|64 µ(ΩS) 6

poly(n) ·
∑

|S|62 µ(ΩS)

We just need to show µ(s)µ(t) 6

poly(n) · min{µ(x), µ(y)} · µ(enc)
It’s a bit of case analysis, but

hardest case is in the middle of

unraveling a cycle:

10/11

Traverse alternating path first.

Ensures all x on the st-path are

perfect/near-perfect.

Issue: encoding might not be

perfect/near-perfect:

⇓

This is fine! We still get

cong 6 poly(n) because∑
|S|64 µ(ΩS) 6

poly(n) ·
∑

|S|62 µ(ΩS)

We just need to show µ(s)µ(t) 6

poly(n) · min{µ(x), µ(y)} · µ(enc)
It’s a bit of case analysis, but

hardest case is in the middle of

unraveling a cycle:

10/11

Traverse alternating path first.

Ensures all x on the st-path are

perfect/near-perfect.

Issue: encoding might not be

perfect/near-perfect:

⇓

This is fine! We still get

cong 6 poly(n) because∑
|S|64 µ(ΩS) 6

poly(n) ·
∑

|S|62 µ(ΩS)

We just need to show µ(s)µ(t) 6

poly(n) · min{µ(x), µ(y)} · µ(enc)

It’s a bit of case analysis, but

hardest case is in the middle of

unraveling a cycle:

10/11

Traverse alternating path first.

Ensures all x on the st-path are

perfect/near-perfect.

Issue: encoding might not be

perfect/near-perfect:

⇓

This is fine! We still get

cong 6 poly(n) because∑
|S|64 µ(ΩS) 6

poly(n) ·
∑

|S|62 µ(ΩS)

We just need to show µ(s)µ(t) 6

poly(n) · min{µ(x), µ(y)} · µ(enc)
It’s a bit of case analysis, but

hardest case is in the middle of

unraveling a cycle:

11/11

s x y t

enc = s⊕ t⊕ x− e− f

Note that λsλt = λeλfλ
xλenc. Let e’s endpoints be a, a ′

and f’s endpoints be b, b ′. Prove: via injective map

λ(Ω∅

t

)λ(Ω{u,v}

s

) > 1
poly(n) · λeλfλ(Ω{a,b}

x

)λ(Ω{u,v,a ′,b ′}

enc

)

Thus µ(s)µ(t) 6 poly(n) · µ(x)µ(enc). Similar ineqs yield

µ(s)µ(t) 6 poly(n) · µ(y)µ(enc). So cong 6 poly(n).

u v

b ′

b

a

a ′

f

e

s⊕ t⊕ x

11/11

s x y t

enc = s⊕ t⊕ x− e− f

Note that λsλt = λeλfλ
xλenc. Let e’s endpoints be a, a ′

and f’s endpoints be b, b ′. Prove: via injective map

λ(Ω∅

t

)λ(Ω{u,v}

s

) > 1
poly(n) · λeλfλ(Ω{a,b}

x

)λ(Ω{u,v,a ′,b ′}

enc

)

Thus µ(s)µ(t) 6 poly(n) · µ(x)µ(enc). Similar ineqs yield

µ(s)µ(t) 6 poly(n) · µ(y)µ(enc). So cong 6 poly(n).

u v

b ′

b

a

a ′

f

e

s⊕ t⊕ x

11/11

s x y t

enc = s⊕ t⊕ x− e− f

Note that λsλt = λeλfλ
xλenc. Let e’s endpoints be a, a ′

and f’s endpoints be b, b ′. Prove: via injective map

λ(Ω∅

t

)λ(Ω{u,v}

s

) > 1
poly(n) · λeλfλ(Ω{a,b}

x

)λ(Ω{u,v,a ′,b ′}

enc

)

Thus µ(s)µ(t) 6 poly(n) · µ(x)µ(enc). Similar ineqs yield

µ(s)µ(t) 6 poly(n) · µ(y)µ(enc). So cong 6 poly(n).

u v

b ′

b

a

a ′

f

e

s⊕ t⊕ x

11/11

s x y t

enc = s⊕ t⊕ x− e− f

Note that λsλt = λeλfλ
xλenc. Let e’s endpoints be a, a ′

and f’s endpoints be b, b ′. Prove: via injective map

λ(Ω∅

t

)λ(Ω{u,v}

s

) > 1
poly(n) · λeλfλ(Ω{a,b}

x

)λ(Ω{u,v,a ′,b ′}

enc

)

Thus µ(s)µ(t) 6 poly(n) · µ(x)µ(enc). Similar ineqs yield

µ(s)µ(t) 6 poly(n) · µ(y)µ(enc). So cong 6 poly(n).

u v

b ′

b

a

a ′

f

e

s⊕ t⊕ x

