CS 263: Counting and Sampling

Nima Anari
ssampard
slides for
Bipartite Perfect Matchings

Review
D $\mathrm{P}, \mathrm{P}^{\prime}$ reversible with same stationary distribution

Review

© $\mathrm{P}, \mathrm{P}^{\prime}$ reversible with same
stationary distribution
D Comparison: route Q^{\prime} through Q with low congestion and length.

$$
\pi\left(\text { path } \mid X_{0}=s, X_{\ell}=t\right)
$$

Review

D P, P^{\prime} reversible with same
stationary distribution
D Comparison: route Q^{\prime} through Q with low congestion and length.

$$
\pi\left(\text { path } \mid X_{0}=s, X_{\ell}=t\right)
$$

Congestion

Suppose π is dist over paths and Q is ergodic flow. Congestion is

$$
\max \left\{\left.\frac{\mathbb{P}_{\text {path } \sim \pi}[(x \rightarrow y) \in \text { path }]}{Q(x, y)} \right\rvert\, x \neq y\right\}
$$

Review

D $\mathrm{P}, \mathrm{P}^{\prime}$ reversible with same stationary distribution
D Comparison: route Q^{\prime} through Q with low congestion and length.

Lemma: comparison

Suppose ρ, ρ^{\prime} are χ^{2} contraction rates:

$$
\rho \geqslant \frac{\rho^{\prime}}{(\text { congestion }) \cdot(\text { max length })}
$$

Congestion

Suppose π is dist over paths and Q is ergodic flow. Congestion is

$$
\max \left\{\left.\frac{\mathbb{P}_{\text {path } \sim \pi}[(x \rightarrow y) \in \text { path }]}{Q(x, y)} \right\rvert\, x \neq y\right\}
$$

Review

D $\mathrm{P}, \mathrm{P}^{\prime}$ reversible with same stationary distribution
D Comparison: route Q^{\prime} through Q with low congestion and length.

$$
\pi\left(\text { path } \mid X_{0}=s, X_{\ell}=t\right)
$$

Lemma: comparison

Suppose ρ, ρ^{\prime} are χ^{2} contraction rates:

$$
\rho \geqslant \frac{\rho^{\prime}}{(\text { congestion }) \cdot(\text { max length })}
$$

\bigcirc If len $\leqslant 1$, can use any \mathcal{D}_{ϕ}.

Congestion

Suppose π is dist over paths and Q is ergodic flow. Congestion is

$$
\max \left\{\left.\frac{\mathbb{P}_{\text {path } \sim \pi}[(x \rightarrow y) \in \text { path }]}{Q(x, y)} \right\rvert\, x \neq y\right\}
$$

Review

© $\mathrm{P}, \mathrm{P}^{\prime}$ reversible with same stationary distribution
D Comparison: route Q^{\prime} through Q with low congestion and length.

$$
\pi\left(\text { path } \mid X_{0}=s, X_{\ell}=t\right)
$$

Congestion

Suppose π is dist over paths and Q is ergodic flow. Congestion is

$$
\max \left\{\left.\frac{\mathbb{P}_{\text {path } \sim \pi}[(x \rightarrow y) \in \text { path }]}{Q(x, y)} \right\rvert\, x \neq y\right\}
$$

Lemma: comparison

Suppose ρ, ρ^{\prime} are χ^{2} contraction rates:

$$
\rho \geqslant \frac{\rho^{\prime}}{(\text { congestion }) \cdot(\text { max length })}
$$

D If len $\leqslant 1$, can use any \mathcal{D}_{ϕ}.

- Canonical paths: a few-to-one mapping enc from (s, t)-pairs whose path passes $x \rightarrow y$ to Ω :

$$
\mu(s) \mu(t) \leqslant C \cdot \mu(\operatorname{enc}(s, t)) Q(x, y)
$$

Review

© P, P^{\prime} reversible with same stationary distribution
D Comparison: route Q^{\prime} through Q with low congestion and length.

$$
\pi\left(\text { path } \mid X_{0}=s, X_{\ell}=t\right)
$$

Congestion

Suppose π is dist over paths and Q is ergodic flow. Congestion is

$$
\max \left\{\left.\frac{\mathbb{P}_{\text {path } \sim \pi}[(x \rightarrow y) \in \text { path }]}{Q(x, y)} \right\rvert\, x \neq y\right\}
$$

Lemma: comparison

Suppose ρ, ρ^{\prime} are χ^{2} contraction rates:

$$
\rho \geqslant \frac{\rho^{\prime}}{(\text { congestion }) \cdot(\text { max length })}
$$

D If len $\leqslant 1$, can use any \mathcal{D}_{ϕ}.

- Canonical paths: a few-to-one mapping enc from (s, t)-pairs whose path passes $x \rightarrow y$ to Ω :

$$
\mu(s) \mu(t) \leqslant C \cdot \mu(\operatorname{enc}(s, t)) Q(x, y)
$$

D If M-to-one, then cong $\leqslant C M$.

Review

© $\mathrm{P}, \mathrm{P}^{\prime}$ reversible with same stationary distribution
D Comparison: route Q^{\prime} through Q with low congestion and length.

$$
\pi\left(\text { path } \mid X_{0}=s, X_{\ell}=t\right)
$$

Congestion

Suppose π is dist over paths and Q is ergodic flow. Congestion is

$$
\max \left\{\left.\frac{\mathbb{P}_{\text {path } \sim \pi}[(x \rightarrow y) \in \text { path }]}{Q(x, y)} \right\rvert\, x \neq y\right\}
$$

Lemma: comparison

Suppose ρ, ρ^{\prime} are χ^{2} contraction rates:

$$
\rho \geqslant \frac{\rho^{\prime}}{(\text { congestion }) \cdot(\text { max length })}
$$

D If len $\leqslant 1$, can use any \mathcal{D}_{ϕ}.
D Canonical paths: a few-to-one mapping enc from (s, t)-pairs whose path passes $x \rightarrow y$ to Ω :

$$
\mu(s) \mu(t) \leqslant C \cdot \mu(\operatorname{enc}(s, t)) Q(x, y)
$$

D If M-to-one, then cong $\leqslant C M$.
\bigcirc Matching walks mix in poly (n).

Perfect Matchings

\bigcirc Monomer-dimer systems
D Log-concave sequences
D Bipartite graphs

Perfect Matchings

- Monomer-dimer systems
D Log-concave sequences
D Bipartite graphs

Monomer-dimer systems

D Markov chain on matchings mixes in poly(n) time [Jerrum-Sinclair'89].

Monomer-dimer systems

- Markov chain on matchings mixes
in poly(n) time [Jerrum-Sinclair'89].
D What about perfect matchings?

Monomer-dimer systems

D Markov chain on matchings mixes
in poly(n) time [Jerrum-Sinclair'89].
D What about perfect matchings?

\bigcirc This is open. No strong indication/evidence either way! :

Monomer-dimer systems

D Markov chain on matchings mixes
in poly(n) time [Jerrum-Sinclair'89].
D What about perfect matchings?

\bigcirc This is open. No strong indication/evidence either way! :
\bigcirc However, for bipartite graphs, [Jerrum-Sinclair-Vigoda'04] showed we can approx sample/count in poly(n) time. :)

Monomer-dimer systems

D Markov chain on matchings mixes in poly(n) time [Jerrum-Sinclair'89].
D What about perfect matchings?

Monomer-dimer system

Prob of matching \propto

\checkmark This is open. No strong indication/evidence either way! :
\bigcirc However, for bipartite graphs, [Jerrum-Sinclair-Vigoda'04] showed we can approx sample/count in poly (n) time. ;)

Monomer-dimer systems

D Markov chain on matchings mixes in poly(n) time [Jerrum-Sinclair'89].
D What about perfect matchings?

\bigcirc This is open. No strong indication/evidence either way! :
\bigcirc However, for bipartite graphs, [Jerrum-Sinclair-Vigoda'04] showed we can approx sample/count in poly(n) time. :)

Monomer-dimer system

Prob of matching \propto

D Monomer weights z_{v} can be absorbed into λ_{e}. So assume wlog that $z_{v}=1$.

Monomer-dimer systems

D Markov chain on matchings mixes in poly(n) time [Jerrum-Sinclair'89].
D What about perfect matchings?

\checkmark This is open. No strong indication/evidence either way! :
D However, for bipartite graphs, [Jerrum-Sinclair-Vigoda'04] showed we can approx sample/count in poly(n) time. :)

Monomer-dimer system

Prob of matching \propto

$$
\prod_{e \in M} \lambda_{\uparrow} \cdot \prod_{v \nsim M}{\underset{\sim}{\chi}}^{z_{\mathcal{V}}}
$$

D Monomer weights z_{v} can be absorbed into λ_{e}. So assume wlog that $z_{v}=1$.
\checkmark Mixing time is poly $\left(n, \lambda_{\max }\right)$ [Jerrum-Sinclair] :)

Monomer-dimer systems

D Markov chain on matchings mixes in poly(n) time [Jerrum-Sinclair'89].
\checkmark What about perfect matchings?

\checkmark This is open. No strong indication/evidence either way! :

- However, for bipartite graphs, [Jerrum-Sinclair-Vigoda'04] showed we can approx sample/count in poly(n) time. :)

Monomer-dimer system
Prob of matching \propto

D Monomer weights z_{v} can be absorbed into λ_{e}. So assume wlog that $z_{v}=1$.
\checkmark Mixing time is poly $\left(n, \lambda_{\max }\right)$ [Jerrum-Sinclair] :)
© Sampling/counting possible in poly $\left(n, \log \lambda_{\max }\right)$ time on bipartite graphs [Jerrum-Sinclair-Vigoda]. :)

Theorem [Jerrum-Sinclair]
Mixing time is poly $\left(\mathrm{n}, \lambda_{\max }\right)$.

Theorem [Jerrum-Sinclair]

Mixing time is poly $\left(\mathrm{n}, \lambda_{\max }\right)$.
Proof: for the $x \rightarrow y$ transition:

Theorem [Jerrum-Sinclair]

Mixing time is poly $\left(\mathrm{n}, \lambda_{\max }\right)$.
Proof: for the $x \rightarrow y$ transition:
\bigcirc Same encoding as before:
enc $(s, t)=s \oplus t \oplus x-$ couple edges

Theorem [Jerrum-Sinclair]

Mixing time is poly $\left(\mathrm{n}, \lambda_{\max }\right)$.
Proof: for the $x \rightarrow y$ transition:
\bigcirc Same encoding as before:
enc $(s, t)=s \oplus t \oplus x-$ couple edges
D Using notation $\lambda^{S}=\prod_{e \in S} \lambda_{e}$:

$$
\lambda^{s} \lambda^{t} \leqslant \underset{\uparrow}{\operatorname{poly}\left(\lambda_{\text {max }}\right) \cdot \lambda^{\text {enc }(s, t)} \lambda^{x}} \underset{\text { couple edges }}{ }
$$

Theorem [Jerrum-Sinclair]

Mixing time is poly $\left(\mathrm{n}, \lambda_{\max }\right)$.
Proof: for the $x \rightarrow y$ transition:
\bigcirc Same encoding as before:
enc $(s, t)=s \oplus t \oplus x-$ couple edges
\bigcirc Using notation $\lambda^{S}=\prod_{e \in S} \lambda_{e}$:

$$
\lambda^{s} \lambda^{t} \leqslant \operatorname{poly}\left(\lambda_{\max }\right) \cdot \lambda^{\operatorname{enc}(s, t)} \lambda^{x}
$$

\bigcirc Similarly: couple edges

$$
\lambda^{\mathrm{s}} \lambda^{\mathrm{t}} \leqslant \operatorname{poly}\left(\lambda_{\max }\right) \cdot \lambda^{\operatorname{enc}(s, t)} \lambda^{y}
$$

Theorem [Jerrum-Sinclair]

Mixing time is poly $\left(\mathrm{n}, \lambda_{\max }\right)$.
Proof: for the $x \rightarrow y$ transition:
\bigcirc Same encoding as before:
enc $(s, t)=s \oplus t \oplus x-$ couple edges
\bigcirc Using notation $\lambda^{S}=\prod_{e \in S} \lambda_{e}$:

$$
\lambda^{s} \lambda^{t} \leqslant \operatorname{poly}\left(\lambda_{\max }\right) \cdot \lambda^{\operatorname{enc}(s, t)} \lambda^{x}
$$

\bigcirc Similarly: couple edges

$$
\lambda^{s} \lambda^{t} \leqslant \operatorname{poly}\left(\lambda_{\max }\right) \cdot \lambda^{\mathrm{enc}(\mathrm{~s}, \mathrm{t})} \lambda^{y}
$$

\bigcirc Using Metropolis filter we get

$$
Q(x, y) \geqslant \frac{\min \{\mu(x), \mu(y)\}}{\operatorname{poly}(n)}
$$

Theorem [Jerrum-Sinclair]

Mixing time is poly $\left(\mathrm{n}, \lambda_{\max }\right)$.
Proof: for the $x \rightarrow y$ transition:
\bigcirc Same encoding as before:
enc $(s, t)=s \oplus t \oplus x-$ couple edges
\bigcirc Using notation $\lambda^{S}=\prod_{e \in S} \lambda_{e}$:

$$
\lambda^{s} \lambda^{t} \leqslant \operatorname{poly}\left(\lambda_{\max }\right) \cdot \lambda^{\mathrm{enc}(s, t)} \lambda^{x}
$$

\bigcirc Similarly: couple edges

$$
\lambda^{\mathrm{s}} \lambda^{\mathrm{t}} \leqslant \operatorname{poly}\left(\lambda_{\max }\right) \cdot \lambda^{\operatorname{enc}(\mathrm{s}, \mathrm{t})} \lambda^{y}
$$

\bigcirc Using Metropolis filter we get

$$
Q(x, y) \geqslant \frac{\min \{\mu(x), \mu(y)\}}{\operatorname{poly}(n)}
$$

D So we have $\mu(s) \mu(t) \leqslant$

$$
\operatorname{poly}\left(n, \lambda_{\max }\right) \cdot \mu(\operatorname{enc}(s, t)) Q(x, y)
$$

Theorem [Jerrum-Sinclair]

Mixing time is poly $\left(\mathrm{n}, \lambda_{\max }\right)$.
Proof: for the $x \rightarrow y$ transition:
\bigcirc Same encoding as before:
enc $(s, t)=s \oplus t \oplus x-$ couple edges
\bigcirc Using notation $\lambda^{S}=\prod_{e \in S} \lambda_{e}$:

$$
\lambda^{s} \lambda^{t} \leqslant \operatorname{poly}\left(\lambda_{\max }\right) \cdot \lambda^{\text {enc }(s, t)} \lambda^{x}
$$

\bigcirc Similarly: couple edges

$$
\lambda^{\mathrm{s}} \lambda^{\mathrm{t}} \leqslant \operatorname{poly}\left(\lambda_{\max }\right) \cdot \lambda^{\operatorname{enc}(\mathrm{s}, \mathrm{t})} \lambda^{y}
$$

\bigcirc Using Metropolis filter we get

$$
Q(x, y) \geqslant \frac{\min \{\mu(x), \mu(y)\}}{\operatorname{poly}(n)}
$$

D So we have $\mu(s) \mu(t) \leqslant$

$$
\operatorname{poly}\left(n, \lambda_{\max }\right) \cdot \mu(\operatorname{enc}(s, t)) Q(x, y)
$$

Theorem [Jerrum-Sinclair]

Mixing time is poly $\left(\mathrm{n}, \lambda_{\max }\right)$.
Proof: for the $x \rightarrow y$ transition:
\bigcirc Same encoding as before:
enc $(s, t)=s \oplus t \oplus x-$ couple edges
\triangleright Using notation $\lambda^{S}=\prod_{e \in S} \lambda_{e}$:

$$
\lambda^{s} \lambda^{t} \leqslant \operatorname{poly}\left(\lambda_{\max }\right) \cdot \lambda^{\mathrm{enc}(s, t)} \lambda^{x}
$$

\bigcirc Similarly: couple edges

$$
\lambda^{\mathrm{s}} \lambda^{\mathrm{t}} \leqslant \operatorname{poly}\left(\lambda_{\max }\right) \cdot \lambda^{\operatorname{enc}(\mathrm{s}, \mathrm{t})} \lambda^{y}
$$

\triangle Using Metropolis filter we get

$$
Q(x, y) \geqslant \frac{\min \{\mu(x), \mu(y)\}}{\operatorname{poly}(n)}
$$

D So we have $\mu(s) \mu(t) \leqslant$

$$
\operatorname{poly}\left(n, \lambda_{\max }\right) \cdot \mu(\operatorname{enc}(s, t)) Q(x, y)
$$

D What if we want perfect matchings?
\bigcirc Idea 1: restrict chain to perfect and near-perfect matchings. one fewer edge

Theorem [Jerrum-Sinclair]

Mixing time is poly $\left(\mathrm{n}, \lambda_{\max }\right)$.
Proof: for the $x \rightarrow y$ transition:
\bigcirc Same encoding as before:
enc $(s, t)=s \oplus t \oplus x-$ couple edges
\bigcirc Using notation $\lambda^{S}=\prod_{e \in S} \lambda_{e}$:

$$
\lambda^{s} \lambda^{t} \leqslant \operatorname{poly}\left(\lambda_{\max }\right) \cdot \lambda^{\mathrm{enc}(s, \mathrm{t})} \lambda^{x}
$$

\bigcirc Similarly: couple edges

$$
\lambda^{\mathrm{s}} \lambda^{\mathrm{t}} \leqslant \operatorname{poly}\left(\lambda_{\max }\right) \cdot \lambda^{\operatorname{enc}(\mathrm{s}, \mathrm{t})} \lambda^{y}
$$

\bigcirc Using Metropolis filter we get

$$
Q(x, y) \geqslant \frac{\min \{\mu(x), \mu(y)\}}{\operatorname{poly}(n)}
$$

D So we have $\mu(s) \mu(t) \leqslant$

$$
\operatorname{poly}\left(n, \lambda_{\max }\right) \cdot \mu(\operatorname{enc}(s, t)) Q(x, y)
$$

D What if we want perfect matchings?
D Idea 1: restrict chain to perfect and near-perfect matchings. one fewer edge
\bigcirc Idea 2: set $\lambda_{e}=\lambda$ very large.

Theorem [Jerrum-Sinclair]

Mixing time is poly $\left(\mathrm{n}, \lambda_{\max }\right)$.
Proof: for the $x \rightarrow y$ transition:
\bigcirc Same encoding as before:
enc $(s, t)=s \oplus t \oplus x-$ couple edges
\bigcirc Using notation $\lambda^{S}=\prod_{e \in S} \lambda_{e}$:

$$
\lambda^{s} \lambda^{t} \leqslant \operatorname{poly}\left(\lambda_{\max }\right) \cdot \lambda^{\operatorname{enc}(s, t)} \lambda^{x}
$$

\bigcirc Similarly: couple edges

$$
\lambda^{s} \lambda^{t} \leqslant \operatorname{poly}\left(\lambda_{\max }\right) \cdot \lambda^{\operatorname{enc}(s, t)} \lambda^{y}
$$

\bigcirc Using Metropolis filter we get

$$
Q(x, y) \geqslant \frac{\min \{\mu(x), \mu(y)\}}{\operatorname{poly}(n)}
$$

D So we have $\mu(s) \mu(t) \leqslant$

$$
\operatorname{poly}\left(n, \lambda_{\max }\right) \cdot \mu(\operatorname{enc}(s, t)) Q(x, y)
$$

D What if we want perfect matchings?
D Idea 1: restrict chain to perfect and near-perfect matchings. one fewer edge
D Idea 2: set $\lambda_{e}=\lambda$ very large.
D Dist of matching size:

Theorem [Jerrum-Sinclair]

Mixing time is poly $\left(\mathrm{n}, \lambda_{\max }\right)$.
Proof: for the $x \rightarrow y$ transition:
\bigcirc Same encoding as before:
enc $(s, t)=s \oplus t \oplus x-$ couple edges
\triangleright Using notation $\lambda^{S}=\prod_{e \in S} \lambda_{e}$:

$$
\lambda^{s} \lambda^{t} \leqslant \operatorname{poly}\left(\lambda_{\max }\right) \cdot \lambda^{\operatorname{enc}(s, t)} \lambda^{x}
$$

\bigcirc Similarly: couple edges

$$
\lambda^{s} \lambda^{t} \leqslant \operatorname{poly}\left(\lambda_{\max }\right) \cdot \lambda^{\operatorname{enc}(s, t)} \lambda^{y}
$$

\bigcirc Using Metropolis filter we get

$$
Q(x, y) \geqslant \frac{\min \{\mu(x), \mu(y)\}}{\operatorname{poly}(n)}
$$

D So we have $\mu(s) \mu(t) \leqslant$

$$
\operatorname{poly}\left(n, \lambda_{\max }\right) \cdot \mu(\operatorname{enc}(s, t)) Q(x, y)
$$

D What if we want perfect matchings?
D Idea 1: restrict chain to perfect and near-perfect matchings. one fewer edge
\bigcirc Idea 2: set $\lambda_{e}=\lambda$ very large.
D Dist of matching size:

D If $\lambda^{k} \cdot \#(k$-matchings) maximized for $k=\frac{n}{2}$, use rejection sampling.

Fact: log-concavity of matchings
If m_{k} is $\#(k-m a t c h i n g s)$, then

$$
\frac{m_{0}}{m_{1}} \leqslant \frac{m_{1}}{m_{2}} \leqslant \cdots \leqslant \frac{m_{n / 2-1}}{m_{n / 2}}
$$

Fact: log-concavity of matchings
If m_{k} is $\#(k-m a t c h i n g s)$, then

$$
\frac{m_{0}}{m_{1}} \leqslant \frac{m_{1}}{m_{2}} \leqslant \cdots \leqslant \frac{m_{n / 2-1}}{m_{n / 2}}
$$

\bigcirc So just need to set

$$
\lambda \geqslant m_{n / 2-1} / m_{n / 2}
$$

Fact: log-concavity of matchings

If m_{k} is \#(k-matchings), then

$$
\frac{m_{0}}{m_{1}} \leqslant \frac{m_{1}}{m_{2}} \leqslant \cdots \leqslant \frac{m_{n / 2-1}}{m_{n / 2}}
$$

\bigcirc So just need to set

$$
\lambda \geqslant m_{n / 2-1} / m_{n / 2}
$$

D Corollary: if

$$
m_{n / 2-1} \leqslant \operatorname{poly}(n) \cdot m_{n / 2}
$$

can sample perfect matchings. :)

Fact: log-concavity of matchings

If m_{k} is \#(k-matchings), then

$$
\frac{m_{0}}{m_{1}} \leqslant \frac{m_{1}}{m_{2}} \leqslant \cdots \leqslant \frac{m_{n / 2-1}}{m_{n / 2}}
$$

\bigcirc So just need to set

$$
\lambda \geqslant m_{n / 2-1} / m_{n / 2}
$$

D Corollary: if

$$
m_{n / 2-1} \leqslant \operatorname{poly}(n) \cdot m_{n / 2}
$$

can sample perfect matchings. :)

- Note: same cond for idea 1.

Fact: log-concavity of matchings

If m_{k} is $\#(k$-matchings), then

$$
\frac{m_{0}}{m_{1}} \leqslant \frac{m_{1}}{m_{2}} \leqslant \cdots \leqslant \frac{m_{n / 2-1}}{m_{n / 2}}
$$

\bigcirc So just need to set

$$
\lambda \geqslant m_{n / 2-1} / m_{n / 2}
$$

D Corollary: if

$$
m_{n / 2-1} \leqslant \operatorname{poly}(n) \cdot m_{n / 2}
$$

can sample perfect matchings. ;)
\bigcirc Note: same cond for idea 1.
Bad example: chain of boxes

Fact: log-concavity of matchings

If m_{k} is $\#(k$-matchings $)$, then

$$
\frac{m_{0}}{m_{1}} \leqslant \frac{m_{1}}{m_{2}} \leqslant \cdots \leqslant \frac{m_{n / 2-1}}{m_{n / 2}}
$$

\bigcirc So just need to set

$$
\lambda \geqslant m_{n / 2-1} / m_{n / 2}
$$

D Corollary: if

$$
m_{n / 2-1} \leqslant \operatorname{poly}(n) \cdot m_{n / 2}
$$

can sample perfect matchings. :)
\bigcirc Note: same cond for idea 1.
Bad example: chain of boxes

Fact: log-concavity of matchings

If m_{k} is $\#$ (k-matchings), then

$$
\frac{m_{0}}{m_{1}} \leqslant \frac{m_{1}}{m_{2}} \leqslant \cdots \leqslant \frac{m_{n / 2-1}}{m_{n / 2}}
$$

\bigcirc So just need to set

$$
\lambda \geqslant m_{n / 2-1} / m_{n / 2}
$$

D Corollary: if

$$
m_{n / 2-1} \leqslant \operatorname{poly}(n) \cdot m_{n / 2}
$$

can sample perfect matchings. ;)
\bigcirc Note: same cond for idea 1.
Bad example: chain of boxes

© There are bad examples. :
\bigcirc In chain of boxes, we have 1 perfect and $2^{\Omega(n)}$ near-perfect matchings.

Fact: log-concavity of matchings

If m_{k} is $\#$ (k-matchings), then

$$
\frac{m_{0}}{m_{1}} \leqslant \frac{m_{1}}{m_{2}} \leqslant \cdots \leqslant \frac{m_{n / 2-1}}{m_{n / 2}}
$$

\bigcirc So just need to set

$$
\lambda \geqslant m_{n / 2-1} / m_{n / 2}
$$

D Corollary: if

$$
m_{n / 2-1} \leqslant \operatorname{poly}(n) \cdot m_{n / 2}
$$

can sample perfect matchings. ;)
\bigcirc Note: same cond for idea 1.
Bad example: chain of boxes

D There are bad examples. :
\bigcirc In chain of boxes, we have 1 perfect and $2^{\Omega(n)}$ near-perfect matchings.
D Exercise: modify chain of boxes to get slow mixing for idea 1.

Fact: log-concavity of matchings

If m_{k} is $\#(k$-matchings), then

$$
\frac{m_{0}}{m_{1}} \leqslant \frac{m_{1}}{m_{2}} \leqslant \cdots \leqslant \frac{m_{n / 2-1}}{m_{n / 2}}
$$

\bigcirc So just need to set

$$
\lambda \geqslant m_{n / 2-1} / m_{n / 2}
$$

D Corollary: if

$$
m_{n / 2-1} \leqslant \operatorname{poly}(n) \cdot m_{n / 2}
$$

can sample perfect matchings. ;)
\bigcirc Note: same cond for idea 1.
Bad example: chain of boxes

D There are bad examples. :
\bigcirc In chain of boxes, we have 1 perfect and $2^{\Omega(n)}$ near-perfect matchings.
D Exercise: modify chain of boxes to get slow mixing for idea 1.
D Idea: since there can be many more near-perfect matchings, why not reweigh matchings based on size?

Fact: log-concavity of matchings

If m_{k} is $\#(k$-matchings), then

$$
\frac{m_{0}}{m_{1}} \leqslant \frac{m_{1}}{m_{2}} \leqslant \cdots \leqslant \frac{m_{n / 2-1}}{m_{n / 2}}
$$

D So just need to set

$$
\lambda \geqslant m_{n / 2-1} / m_{n / 2}
$$

D Corollary: if

$$
m_{n / 2-1} \leqslant \operatorname{poly}(n) \cdot m_{n / 2}
$$

can sample perfect matchings. ;)
\bigcirc Note: same cond for idea 1.
Bad example: chain of boxes

© There are bad examples. :
D In chain of boxes, we have 1 perfect and $2^{\Omega(n)}$ near-perfect matchings.
D Exercise: modify chain of boxes to get slow mixing for idea 1.
D Idea: since there can be many more near-perfect matchings, why not reweigh matchings based on size?

D [Jerrum-Sinclair-Vigoda'04] showed this works on bipartite graphs.
\bigcirc Let Ω_{S} be the class of matchings whose monomers are S. Example: Ω_{\emptyset} is perfect matchings, and $\Omega_{\{u, v\}}$ matchings that only miss
u, v.

- Let Ω_{S} be the class of matchings whose monomers are S. Example: Ω_{\emptyset} is perfect matchings, and $\Omega_{\{u, v\}}$ matchings that only miss u, v.
\bigcirc Let λ^{M} denote monomer-dimer weight of M :

$$
\lambda^{M}=\prod_{e \in M} \lambda_{e}
$$

D Let Ω_{S} be the class of matchings whose monomers are S. Example: Ω_{\emptyset} is perfect matchings, and $\Omega_{\{u, v\}}$ matchings that only miss u, v.
\bigcirc Let λ^{M} denote monomer-dimer weight of M :

$$
\lambda^{M}=\prod_{e \in M} \lambda_{e}
$$

\bigcirc We get weights for each class:

$$
\lambda\left(\Omega_{S}\right)=\sum_{M \in \Omega_{S}} \lambda^{M}
$$

D Let Ω_{S} be the class of matchings whose monomers are S. Example: Ω_{\emptyset} is perfect matchings, and $\Omega_{\{u, v\}}$ matchings that only miss u, v.
\bigcirc Let λ^{M} denote monomer-dimer weight of M :

$$
\lambda^{M}=\prod_{e \in M} \lambda_{e}
$$

\bigcirc We get weights for each class:

$$
\lambda\left(\Omega_{S}\right)=\sum_{M \in \Omega_{S}} \lambda^{M}
$$

\triangleright Define modified distribution on matchings:

$$
\mu(M) \propto \frac{\lambda^{M}}{\lambda\left(\Omega_{\text {monomes }(M))}\right)}
$$

D Let Ω_{S} be the class of matchings whose monomers are S. Example: Ω_{\emptyset} is perfect matchings, and $\Omega_{\{u, v\}}$ matchings that only miss u, v.
\bigcirc Let λ^{M} denote monomer-dimer weight of M :

$$
\lambda^{M}=\prod_{e \in M} \lambda_{e}
$$

\bigcirc We get weights for each class:

$$
\lambda\left(\Omega_{S}\right)=\sum_{M \in \Omega_{S}} \lambda^{M}
$$

\bigcirc Define modified distribution on matchings:

$$
\mu(M) \propto \frac{\lambda^{M}}{\lambda\left(\Omega_{\text {monomes }(M))}\right)}
$$

\bigcirc Note: $\mu\left(\Omega_{S}\right)$ is the same for all S.
\bigcirc Let Ω_{S} be the class of matchings whose monomers are S. Example: Ω_{\emptyset} is perfect matchings, and $\Omega_{\{u, v\}}$ matchings that only miss u, v.
\bigcirc Let λ^{M} denote monomer-dimer weight of M :

$$
\lambda^{M}=\prod_{e \in M} \lambda_{e}
$$

\bigcirc We get weights for each class:

$$
\lambda\left(\Omega_{S}\right)=\sum_{M \in \Omega_{S}} \lambda^{M}
$$

\triangleright Define modified distribution on matchings:

$$
\mu(M) \propto \frac{\lambda^{M}}{\lambda\left(\Omega_{\text {monomes }(M))}\right)}
$$

\triangleright Note: $\mu\left(\Omega_{S}\right)$ is the same for all S.

Theorem [Jerrum-Sinclair-Vigoda'04]
If P is Metropolis walk restricted to perfect and near-perfect matchings weighted $\propto \mu$, and graph is bipartite

$$
\mathrm{t}_{\text {mix }}\left(\mathrm{P}, \mathbb{1}_{\text {max-weight }} M\right)=\operatorname{poly}(\mathrm{n})
$$

D Let Ω_{S} be the class of matchings whose monomers are S. Example: Ω_{\emptyset} is perfect matchings, and
$\Omega_{\{u, v\}}$ matchings that only miss u, v.
\checkmark Let λ^{M} denote monomer-dimer weight of M :

$$
\lambda^{M}=\prod_{e \in M} \lambda_{e}
$$

\bigcirc We get weights for each class:

$$
\lambda\left(\Omega_{S}\right)=\sum_{M \in \Omega_{S}} \lambda^{M}
$$

\checkmark Define modified distribution on matchings:

$$
\mu(M) \propto \frac{\lambda^{M}}{\lambda\left(\Omega_{\text {monomers }(M)}\right)}
$$

D Note: $\mu\left(\Omega_{S}\right)$ is the same for all S.

Theorem [Jerrum-Sinclair-Vigoda'04]
If P is Metropolis walk restricted to perfect and near-perfect matchings weighted $\propto \mu$, and graph is bipartite

$$
\mathrm{t}_{\text {mix }}\left(\mathrm{P}, \mathbb{1}_{\text {max-weight }} M\right)=\operatorname{poly}(\mathrm{n})
$$

D We need max-weight M as start to ensure $\log \chi^{2}\left(v_{0} \| \mu\right)=\operatorname{poly}(n)$.
D Let Ω_{S} be the class of matchings whose monomers are S. Example: Ω_{\emptyset} is perfect matchings, and
$\Omega_{\{u, v\}}$ matchings that only miss u, v.
\checkmark Let λ^{M} denote monomer-dimer weight of M :

$$
\lambda^{M}=\prod_{e \in M} \lambda_{e}
$$

\bigcirc We get weights for each class:

$$
\lambda\left(\Omega_{S}\right)=\sum_{M \in \Omega_{S}} \lambda^{M}
$$

\checkmark Define modified distribution on matchings:

$$
\mu(M) \propto \frac{\lambda^{M}}{\lambda\left(\Omega_{\text {monomers }(M)}\right)}
$$

D Note: $\mu\left(\Omega_{S}\right)$ is the same for all S.

Theorem [Jerrum-Sinclair-Vigoda'04]
If P is Metropolis walk restricted to perfect and near-perfect matchings weighted $\propto \mu$, and graph is bipartite

$$
t_{\text {mix }}\left(P, \mathbb{1}_{\text {max-weight }} M\right)=\operatorname{poly}(n)
$$

\bigcirc We need max-weight M as start to ensure $\log \chi^{2}\left(v_{0} \| \mu\right)=\operatorname{poly}(n)$.

The Chicken-and-Egg Problem
\checkmark Let Ω_{S} be the class of matchings whose monomers are S. Example: Ω_{\emptyset} is perfect matchings, and
$\Omega_{\{u, v\}}$ matchings that only miss u, v.
D Let λ^{M} denote monomer-dimer weight of M :

$$
\lambda^{M}=\prod_{e \in M} \lambda_{e}
$$

\bigcirc We get weights for each class:

$$
\lambda\left(\Omega_{S}\right)=\sum_{M \in \Omega_{S}} \lambda^{M}
$$

\checkmark Define modified distribution on matchings:

$$
\mu(M) \propto \frac{\lambda^{M}}{\lambda\left(\Omega_{\text {monomers }(M)}\right)}
$$

D Note: $\mu\left(\Omega_{S}\right)$ is the same for all S.

Theorem [Jerrum-Sinclair-Vigoda'04]
If P is Metropolis walk restricted to perfect and near-perfect matchings weighted $\propto \mu$, and graph is bipartite

$$
t_{\text {mix }}\left(P, \mathbb{1}_{\text {max-weight }} M\right)=\operatorname{poly}(n)
$$

\bigcirc We need max-weight M as start to ensure $\log \chi^{2}\left(v_{0} \| \mu\right)=\operatorname{poly}(n)$.

The Chicken-and-Egg Problem
D How can we compute $\lambda\left(\Omega_{S}\right)$?

\checkmark Let Ω_{S} be the class of matchings whose monomers are S. Example: Ω_{\emptyset} is perfect matchings, and
$\Omega_{\{u, v\}}$ matchings that only miss u, v.
D Let λ^{M} denote monomer-dimer weight of M :

$$
\lambda^{M}=\prod_{e \in M} \lambda_{e}
$$

\bigcirc We get weights for each class:

$$
\lambda\left(\Omega_{S}\right)=\sum_{M \in \Omega_{S}} \lambda^{M}
$$

\checkmark Define modified distribution on matchings:

$$
\mu(M) \propto \frac{\lambda^{M}}{\lambda\left(\Omega_{\text {monomers }(M)}\right)}
$$

D Note: $\mu\left(\Omega_{S}\right)$ is the same for all S.

Theorem [Jerrum-Sinclair-Vigoda'04]
If P is Metropolis walk restricted to perfect and near-perfect matchings weighted $\propto \mu$, and graph is bipartite
$\mathrm{t}_{\text {mix }}\left(\mathrm{P}, \mathbb{1}_{\text {max-weight }} M\right)=\operatorname{poly}(\mathrm{n})$
D We need max-weight M as start to ensure $\log \chi^{2}\left(v_{0} \| \mu\right)=\operatorname{poly}(n)$.

The Chicken-and-Egg Problem

- How can we compute $\lambda\left(\Omega_{S}\right)$?
\bigcirc By sampling.

\checkmark Let Ω_{S} be the class of matchings whose monomers are S. Example: Ω_{\emptyset} is perfect matchings, and
$\Omega_{\{u, v\}}$ matchings that only miss u, v.
D Let λ^{M} denote monomer-dimer weight of M :

$$
\lambda^{M}=\prod_{e \in M} \lambda_{e}
$$

\bigcirc We get weights for each class:

$$
\lambda\left(\Omega_{S}\right)=\sum_{M \in \Omega_{S}} \lambda^{M}
$$

\checkmark Define modified distribution on matchings:

$$
\mu(M) \propto \frac{\lambda^{M}}{\lambda\left(\Omega_{\text {monomers }(M))}\right.}
$$

Theorem [Jerrum-Sinclair-Vigoda'04]
If P is Metropolis walk restricted to perfect and near-perfect matchings weighted $\propto \mu$, and graph is bipartite

$$
t_{\text {mix }}\left(P, \mathbb{1}_{\text {max-weight }} M\right)=\operatorname{poly}(n)
$$

\bigcirc We need max-weight M as start to ensure $\log \chi^{2}\left(v_{0} \| \mu\right)=\operatorname{poly}(n)$.

The Chicken-and-Egg Problem

- How can we compute $\lambda\left(\Omega_{S}\right)$?
\bigcirc By sampling.
\bigcirc How to sample?
\bigcirc Let Ω_{S} be the class of matchings whose monomers are S. Example: Ω_{\emptyset} is perfect matchings, and $\Omega_{\{u, v\}}$ matchings that only miss u, v.
D Let λ^{M} denote monomer-dimer weight of M :

$$
\lambda^{M}=\prod_{e \in M} \lambda_{e}
$$

\bigcirc We get weights for each class:

$$
\lambda\left(\Omega_{S}\right)=\sum_{M \in \Omega_{S}} \lambda^{M}
$$

\checkmark Define modified distribution on matchings:

$$
\mu(M) \propto \frac{\lambda^{M}}{\lambda\left(\Omega_{\text {monomers }(M)}\right)}
$$

D Note: $\mu\left(\Omega_{S}\right)$ is the same for all S.

Theorem [Jerrum-Sinclair-Vigoda'04]
If P is Metropolis walk restricted to perfect and near-perfect matchings weighted $\propto \mu$, and graph is bipartite
$\mathrm{t}_{\text {mix }}\left(\mathrm{P}, \mathbb{1}_{\text {max-weight }} M\right)=\operatorname{poly}(\mathrm{n})$
D We need max-weight M as start to ensure $\log \chi^{2}\left(v_{0} \| \mu\right)=\operatorname{poly}(n)$.

The Chicken-and-Egg Problem

- How can we compute $\lambda\left(\Omega_{S}\right)$?

© Resolving the chicken-and-egg problem: gradual change.
\bigcirc Resolving the chicken-and-egg problem: gradual change.

Theorem

Chain mixes fast even if $\lambda\left(\Omega_{S}\right)$ are replaced by approximations in μ. \uparrow
say factor 10 approx
\bigcirc Resolving the chicken-and-egg problem: gradual change.

Theorem

Chain mixes fast even if $\lambda\left(\Omega_{S}\right)$ are replaced by approximations in μ.
say factor 10 approx
\bigcirc Start with easy case. Take $G=K_{n / 2, n / 2}$, and $\lambda_{e}=1$.
\bigcirc Resolving the chicken-and-egg problem: gradual change.

Theorem

Chain mixes fast even if $\lambda\left(\Omega_{S}\right)$ are replaced by approximations in μ.
say factor 10 approx

- Start with easy case. Take $\mathrm{G}=\mathrm{K}_{\mathrm{n} / 2, \mathrm{n} / 2}$, and $\lambda_{e}=1$.
\bigcirc Slowly change λ_{e} S:
$\uparrow \lambda^{(0)} \rightarrow \lambda^{(1)} \rightarrow \cdots \rightarrow \lambda^{(t)}$
by $1 \pm 1 / n$ each time
- Resolving the chicken-and-egg problem: gradual change.

Theorem

Chain mixes fast even if $\lambda\left(\Omega_{S}\right)$ are replaced by approximations in μ.
say factor 10 approx
\bigcirc Start with easy case. Take $\mathrm{G}=\mathrm{K}_{\mathrm{n} / 2, \mathrm{n} / 2}$, and $\lambda_{e}=1$.
\bigcirc Slowly change $\lambda_{e} \mathrm{~S}$:
$\uparrow \lambda^{(0)} \rightarrow \lambda^{(1)} \rightarrow \cdots \rightarrow \lambda^{(t)}$
by $1 \pm 1 / n$ each time
\bigcirc Use Markov chain for each $\lambda^{(i)}$ to estimate $\lambda^{(i)}\left(\Omega_{S}\right)$ for $|S| \leqslant 2$.

- Resolving the chicken-and-egg problem: gradual change.

Theorem

Chain mixes fast even if $\lambda\left(\Omega_{S}\right)$ are replaced by approximations in μ.
say factor 10 approx

- Start with easy case. Take $\mathrm{G}=\mathrm{K}_{\mathrm{n} / 2, \mathrm{n} / 2}$, and $\lambda_{e}=1$.
\bigcirc Slowly change $\lambda_{e} s$:
$\uparrow \lambda^{(0)} \rightarrow \lambda^{(1)} \rightarrow \cdots \rightarrow \lambda^{(t)}$
by $1 \pm 1 / n$ each time
- Use Markov chain for each $\lambda^{(i)}$ to estimate $\lambda^{(i)}\left(\Omega_{S}\right)$ for $|S| \leqslant 2$.
D Use estimates to define next μ.

D Resolving the chicken-and-egg problem: gradual change.
\bigcirc Note: $\left(\lambda_{e}=0\right) \approx\left(\lambda_{e}=\exp \left(-n^{2}\right)\right)$

Theorem

Chain mixes fast even if $\lambda\left(\Omega_{S}\right)$ are replaced by approximations in μ.
say factor 10 approx

- Start with easy case. Take

$$
\mathrm{G}=\mathrm{K}_{n / 2, n / 2}, \text { and } \lambda_{e}=1
$$

\bigcirc Slowly change $\lambda_{e} \mathrm{~s}$:
$\uparrow \lambda^{(0)} \rightarrow \lambda^{(1)} \rightarrow \cdots \rightarrow \lambda^{(t)}$
by $1 \pm 1 / n$ each time
D Use Markov chain for each $\lambda^{(i)}$ to estimate $\lambda^{(i)}\left(\Omega_{S}\right)$ for $|S| \leqslant 2$.
D Use estimates to define next μ.

- Resolving the chicken-and-egg problem: gradual change.

Theorem

Chain mixes fast even if $\lambda\left(\Omega_{S}\right)$ are replaced by approximations in μ.

say factor 10 approx

\bigcirc Start with easy case. Take

$$
\mathrm{G}=\mathrm{K}_{\mathrm{n} / 2, \mathrm{n} / 2} \text {, and } \lambda_{e}=1 .
$$

\triangleright Slowly change λ_{e} S:
$\uparrow \lambda^{(0)} \rightarrow \lambda^{(1)} \rightarrow \cdots \rightarrow \lambda^{(t)}$
by $1 \pm 1 / n$ each time

- Use Markov chain for each $\lambda^{(i)}$ to estimate $\lambda^{(i)}\left(\Omega_{S}\right)$ for $|S| \leqslant 2$.
D Use estimates to define next μ.
\checkmark Note: $\left(\lambda_{e}=0\right) \approx\left(\lambda_{e}=\exp \left(-n^{2}\right)\right)$
\bigcirc It just remains to prove fast mixing.
\checkmark Resolving the chicken-and-egg problem: gradual change.

Theorem

Chain mixes fast even if $\lambda\left(\Omega_{S}\right)$ are replaced by approximations in μ.

say factor 10 approx

\checkmark Start with easy case. Take

$$
\mathrm{G}=\mathrm{K}_{n / 2, n / 2}, \text { and } \lambda_{e}=1
$$

\checkmark Slowly change $\lambda_{e} \mathrm{~s}$:
$\uparrow \lambda^{(0)} \rightarrow \lambda^{(1)} \rightarrow \cdots \rightarrow \lambda^{(t)}$
by $1 \pm 1 / n$ each time
D Use Markov chain for each $\lambda^{(i)}$ to estimate $\lambda^{(i)}\left(\Omega_{S}\right)$ for $|S| \leqslant 2$.
D Use estimates to define next μ.
D Note: $\left(\lambda_{e}=0\right) \approx\left(\lambda_{e}=\exp \left(-n^{2}\right)\right)$
D It just remains to prove fast mixing.
\bigcirc We use canonical paths. Enough to consider $s \in \Omega_{\{u, v\}}$ and $t \in \Omega_{\emptyset}$.

\checkmark Resolving the chicken-and-egg problem: gradual change.

Theorem

Chain mixes fast even if $\lambda\left(\Omega_{S}\right)$ are replaced by approximations in μ.

say factor 10 approx

- Start with easy case. Take

$$
\mathrm{G}=\mathrm{K}_{n / 2, n / 2}, \text { and } \lambda_{e}=1
$$

\bigcirc Slowly change $\lambda_{e} \mathrm{~s}$:
$\uparrow \lambda^{(0)} \rightarrow \lambda^{(1)} \rightarrow \cdots \rightarrow \lambda^{(t)}$
by $1 \pm 1 / n$ each time
D Use Markov chain for each $\lambda^{(i)}$ to estimate $\lambda^{(i)}\left(\Omega_{S}\right)$ for $|S| \leqslant 2$.
D Use estimates to define next μ.
D Note: $\left(\lambda_{e}=0\right) \approx\left(\lambda_{e}=\exp \left(-n^{2}\right)\right)$
D It just remains to prove fast mixing.
\bigcirc We use canonical paths. Enough to consider $s \in \Omega_{\{u, v\}}$ and $t \in \Omega_{\emptyset}$.

D Assume $\lambda\left(\Omega_{S}\right)$ is accurate, because the inequality

$$
\mu(s) \mu(t) \leqslant C \mu(e n c(s, t)) Q(x, y)
$$

is robust to approximation.
\checkmark Resolving the chicken-and-egg problem: gradual change.

Theorem

Chain mixes fast even if $\lambda\left(\Omega_{S}\right)$ are replaced by approximations in μ.

say factor 10 approx

\checkmark Start with easy case. Take

$$
\mathrm{G}=\mathrm{K}_{\mathrm{n} / 2, \mathrm{n} / 2}, \text { and } \lambda_{e}=1 .
$$

\bigcirc Slowly change $\lambda_{e} \mathrm{~s}$:

$$
\uparrow \lambda^{(0)} \rightarrow \lambda^{(1)} \rightarrow \cdots \rightarrow \lambda^{(\mathrm{t})}
$$

by $1 \pm 1 / n$ each time
D Use Markov chain for each $\lambda^{(i)}$ to estimate $\lambda^{(i)}\left(\Omega_{S}\right)$ for $|S| \leqslant 2$.
D Use estimates to define next μ.
\checkmark Note: $\left(\lambda_{e}=0\right) \approx\left(\lambda_{e}=\exp \left(-n^{2}\right)\right)$
D It just remains to prove fast mixing.
\bigcirc We use canonical paths. Enough to consider $s \in \Omega_{\{u, v\}}$ and $t \in \Omega_{\emptyset}$.

D Assume $\lambda\left(\Omega_{S}\right)$ is accurate, because the inequality

$$
\mu(s) \mu(t) \leqslant C \mu(e n c(s, t)) Q(x, y)
$$

is robust to approximation.
D Use the same encoding as before: enc $(s, t)=s \oplus t \oplus x-$ couple edges

D Traverse alternating path first. Ensures all x on the st-path are perfect/near-perfect.

D Traverse alternating path first.
Ensures all x on the st-path are perfect/near-perfect.
D Issue: encoding might not be perfect/near-perfect:

D Traverse alternating path first.
Ensures all x on the st-path are perfect/near-perfect.
D Issue: encoding might not be perfect/near-perfect:

\checkmark This is fine! We still get
cong $\leqslant \operatorname{poly}(n)$ because

$$
\begin{gathered}
\sum_{|S| \leqslant 4} \mu\left(\Omega_{S}\right) \leqslant \\
\operatorname{poly}(n) \cdot \sum_{|S| \leqslant 2} \mu\left(\Omega_{S}\right)
\end{gathered}
$$

D Traverse alternating path first. Ensures all x on the st-path are perfect/near-perfect.
D We just need to show $\mu(s) \mu(t) \leqslant$ $\operatorname{poly}(n) \cdot \min \{\mu(x), \mu(y)\} \cdot \mu(e n c)$ perfect/near-perfect:

\checkmark This is fine! We still get
cong $\leqslant \operatorname{poly}(n)$ because

$$
\sum_{|S| \leqslant 4} \mu\left(\Omega_{S}\right) \leqslant
$$

D Traverse alternating path first.
Ensures all x on the st-path are perfect/near-perfect.
D Issue: encoding might not be perfect/near-perfect:

D This is fine! We still get cong $\leqslant \operatorname{poly}(\mathrm{n})$ because

$$
\begin{gathered}
\sum_{|S| \leqslant 4} \mu\left(\Omega_{S}\right) \leqslant \\
\operatorname{poly}(n) \cdot \sum_{|S| \leqslant 2} \mu\left(\Omega_{S}\right)
\end{gathered}
$$

D We just need to show $\mu(s) \mu(\mathrm{t}) \leqslant$ $\operatorname{poly}(n) \cdot \min \{\mu(x), \mu(y)\} \cdot \mu(e n c)$

- It's a bit of case analysis, but hardest case is in the middle of unraveling a cycle:

$\mathrm{enc}=s \oplus t \oplus x-e-f$

enc $=s \oplus t \oplus x-e-f$
D Note that $\lambda^{s} \lambda^{t}=\lambda_{e} \lambda_{f} \lambda^{x} \lambda^{\text {enc }}$. Let e^{\prime} s endpoints be a, a^{\prime} and f^{\prime} 's endpoints be $\mathrm{b}, \mathrm{b}^{\prime}$. Prove: \longleftarrow via injective map

$s \oplus t \oplus x$

$\mathrm{enc}=s \oplus t \oplus x-e-f$
D Note that $\lambda^{s} \lambda^{t}=\lambda_{e} \lambda_{f} \lambda^{x} \lambda^{\text {enc }}$. Let e^{\prime} s endpoints be a, a^{\prime} and f's endpoints be b, b^{\prime}. Prove: \longleftarrow via injective map
D Thus $\mu(s) \mu(t) \leqslant \operatorname{poly}(n) \cdot \mu(x) \mu($ enc $)$. Similar ineqs yield $\mu(s) \mu(t) \leqslant \operatorname{poly}(n) \cdot \mu(y) \mu(e n c)$. So cong $\leqslant \operatorname{poly}(n)$.

$s \oplus t \oplus x$

