CS 263: Counting and Sampling

Stanford
S University

slides for

Bipartite Perfect Matchings

\Review /

> P, P’ reversible with same
stationary distribution

2/m

\Review

> P, P’ reversible with same
stationary distribution

> Comparison: route Q' through Q
with low congestion and length.

n(path | Xo =s,X¢ =t)

2/M

\Review /

& P,P’ reversible with same
stationary distribution

> Comparison: route Q' through Q
with low congestion and length.

n(path | Xg = s,X¢ = t)
s O<O_‘z>j t
O—

Congestion

Suppose 7t is dist over paths and Q is
ergodic flow. Congestion is

Ppath~r [(x—y) Epath]
max{ e S) ‘X#y}

2/M

\Review /

> P,P’ reversible with same Lemma: comparison

stationary distribution Suppose p, p’ are x? contraction rates:
> Comparison: route Q' through Q)
with low congestion and length. p= (Congesﬂonﬁ(mgx length)

n(path | Xg = s,X¢ = t)

2,

O—

Congestion

Suppose 7t is dist over paths and Q is
ergodic flow. Congestion is

Ppath~r [(x—y) Epath]
max{ e S) ‘X#U}

2/M

\Review /

> P,P’ reversible with same Lemma: comparison

stationary distribution Suppose p, p’ are x? contraction rates:
> Comparison: route Q' through Q)
with low congestion and length. p= (Congesﬂonﬁ(mgx length)

n(path | Xg = s,X¢ = t)

O<O_‘ O Iflen <1, canuse any Dy,
s t

O—

Congestion

Suppose 7t is dist over paths and Q is
ergodic flow. Congestion is

Ppath~r [(x—y) Epath]
max{ e S) ‘X#U}

2/M

\Review

B> PP’ reversible with scime

stationary distribution Suppose p, p’ are x? contraction rates:
> Comparison: route Q' through Q)
with low congestion and length. p= (Congesﬂon)p.(mgx length)

n(path | Xg = s,X¢ = t)

O Iflen <1, canuse any Dy,
s (}<O_‘ t > Canonical paths: a few-to-one
O— mapping enc from (s, t)-pairs
whose path passes x — y to Q:
Congestion
= 1(s)u(t) < C - plenc(s, 1))Q(x,y)

Suppose 7t is dist over paths and Q is
ergodic flow. Congestion is

Ppath~r [(x—y) Epath]
max{ e S) ‘X#y}

2/M

\Review

B> PP’ reversible with scime

stationary distribution Suppose p, p’ are x? contraction rates:
> Comparison: route Q' through Q)
with low congestion and length. p= (Congesﬂon)p.(mgx length)

n(path | Xg = s,X¢ = t)

O Iflen <1, canuse any Dy,
s (}<O_‘ t > Canonical paths: a few-to-one
O— mapping enc from (s, t)-pairs
whose path passes x — y to Q:
Congestion
= 1(s)u(t) < C - ulenc(s, 1)Q(x,y)

Suppose 7t is dist over paths and Q is > If M-to-one, then cong < CM.
ergodic flow. Congestion is

Ppath~r [(x—y) Epath]
max{ e S) ‘X#y}

2/M

\Review /

> P,P’ reversible with same Lemma: comparison

stationary distribution Suppose p, p’ are x? contraction rates:
> Comparison: route Q' through Q)

with low congestion and length. p = (Congesﬂon)p.(mgx length)
n(path | Xg = s,X¢ = t)

If len < 1, can use any D,.
s O<O_‘ t Canonical paths: a few-to-one
mapping enc from (s, t)-pairs

O—

\VAV,

whose path passes x — y to Q:

Congestion u(s)u(t) < C- ulenc(s,t))Q(x,y)

Suppose 7t is dist over paths and Q is > If M-to-one, then cong < CM.
ergodic flow. Congestion is

> Matching walks mix in poly(n).
max{lppotmn[(x—)y)epmh] ‘X#y} O 0-=0 0-O

Q) 1T X

2/M

Perfect Matchings
> Monomer-dimer systems
> Log-concave sequences
> Bipartite graphs

> Monomer-dimer systems
> Log-concave sequences
> Bipartite graphs

\Monomer—dimer systems /

> Markov chain on matchings mixes
in poly(n) time [Jerrum-Sinclairggl.

5/1

\Monomer—dimer systems /

> Markov chain on matchings mixes
in poly(n) time [Jerrum-Sinclairggl.

> What about perfect matchings?

et

5/1

\Monomer—dimer systems /

> Markov chain on matchings mixes
in poly(n) time [Jerrum-Sinclairggl.
> What about perfect matchings?

e

& Thisis open. No strong
indication/evidence either way! @

5/1

\Monomer—dimer systems

(B

o

Markov chain on matchings mixes
in poly(n) time [Jerrum-Sinclairggl.
What about perfect matchings?

e

& Thisis open. No strong

indication/evidence either way! @

> However, for bipartite graphs,

[Jerrum-Sinclair-Vigodar04] showed
we can approx sample/count in
poly(n) time. @

5/1

\Monomer—dimer systems /
> Markov chain on matchings mixes

in poly(n) time [Jerrum-Sinclairggl. Prob of matching o
> What about perfect matchings?

HeeM7‘Te‘ HV%MZTV
m dimer monomer

& Thisis open. No strong
indication/evidence either way! @

> However, for bipartite graphs,
[Jerrum-Sinclair-Vigodar04] showed
we can approx sample/count in
poly(n) time. @

5/1

\Monomer—dimer systems /

Monomer-dimer system

> Markov chain on matchings mixes
in poly(n) time [Jerrum-Sinclairggl. Prob of matching o

> What about perfect matchings?

HeeM}\Te' HV%MZTV
m dimer monomer
> Monomer weights z,, can be

> Thisis open. No strong absorbed into A.. So assume wlog
indication/evidence either way! @ that z, = 1.

> However, for bipartite graphs,
[Jerrum-Sinclair-Vigodar04] showed
we can approx sample/count in
poly(n) time. @

5/1

\Monomer—dimer systems

> Markov chain on matchings mixes
in poly(n) time [Jerrum-Sinclairggl.
> What about perfect matchings?

e

& Thisis open. No strong
indication/evidence either way! @

> However, for bipartite graphs,
[Jerrum-Sinclair-Vigodar04] showed
we can approx sample/count in
poly(n) time. @

Monomer-dimer system

Prob of matching o

HeeM7‘Te‘ HV%MZ’V

f

dimer monomer
> Monomer weights z,, can be
absorbed into Ae. So assume wlog
that z, = 1.
> Mixing time is poly (1, Amax)
[Jerrum-Sinclair] ©

5/1

\Monomer—dimer systems /

Monomer-dimer system

> Markov chain on matchings mixes
in poly(n) time [Jerrum-Sinclairggl. Prob of matching o
> What about perfect matchings?

HeeM}\Te' HV%MZTV
W dimer monomer
> Monomer weights z,, can be

> Thisis open. No strong absorbed into Ae. So assume wlog
indication/evidence either way! @ that z, = 1.

> However, for bipartite graphs, > Mixing time is poly (1, Amax)
[Jerrum-Sinclair-Vigodar04] showed [Jerrum-Sinclair] @
we can approx sample/count in > Sampling/counting possible in
poly(n) time. @ poly(n, log Amax) time on bipartite

graphs [Jerrum-Sinclair-Vigoda]. ©

5/1

Theorem [Jerrum-Sinclair]

Mixing time is poly(n, Amax)-

6/

Theorem [Jerrum-Sinclair]

Mixing time is poly(n, Amax)-

Proof: for the x — y transition:

6/

Theorem [Jerrum-Sinclair]

Mixing time is poly (1, Amax).

Proof: for the x — y transition:
(> Same encoding as before:
enc(s,t) = s @t @ x — couple edges

6/1

Theorem [Jerrum-Sinclair]

Mixing time is poly (1, Amax).

Proof: for the x — y transition:
(> Same encoding as before:

enc(s,t) = s @t @ x — couple edges
B> Using notation AS =TT, cg Ae:

AS}\t ngIY(Z\max) '}\enc(s,t)xx
couple edges

6/1

Theorem [Jerrum-Sinclair]

Mixing time is poly (1, Amax).

Proof: for the x — y transition:
(> Same encoding as before:
enc(s,t) = s @t @ x — couple edges

B> Using notation AS =TT, cg Ae:

AS}\t ngIY(}\max)'}\enc(s’tJAX

. u

& Similarly: couple edges

AAC < poly(Amax) - ALY

6/1

Theorem [Jerrum-Sinclair]

Mixing time is poly (1, Amax).

Proof: for the x — y transition:
(> Same encoding as before:
enc(s,t) = s &t & x — couple edges

B> Using notation AS =TT, cg Ae:

AS}\t ngIY(}\max)'}\enc(s’tJAX

-)

& Similarly: couple edges

AAY < poly(Amax) - Al
> Using Metropolis filter we get

min{p(x),p(y)}
Qlx,y) > W

6/1

Theorem [Jerrum-Sinclair]

Mixing time is poly (1, Amax).

Proof: for the x — y transition:
(> Same encoding as before:
enc(s,t) = s @t @ x — couple edges

B> Using notation AS =TT, cg Ae:

ASAL <p0|y(7\max)_}\enc(s,t)7\x

- A

& Similarly: couple edges

ASAL < p0|y(7\max) . Aenc(s,t))\y
> Using Metropolis filter we get

min{p(x),p(y)}
Qlx,y) > = poly (1)

> So we have p(s)u(t) <
poly(m, Amax) - ulenc(s, 1)) Q(x,y)

6/1

Theorem [Jerrum-Sinclair]

Mixing time is poly (1, Amax).

Proof: for the x — y transition:
(> Same encoding as before:
enc(s,t) = s @t @ x — couple edges

B> Using notation AS =TT, cg Ae:

ASAL <p0|y(7\max)_}\enc(s,t)7\x

- A

& Similarly: couple edges

ASAL < p0|y(7\max) . Aenc(s,t))\y
> Using Metropolis filter we get

min{p(x),p(y)}
Qlx,y) > mpow

> So we have p(s)u(t) <
poly(m, Amax) - ulenc(s, 1)) Q(x,y)

> What if we want perfect
matchings?

6/1

Theorem [Jerrum-Sinclair]

Mixing time is poly (1, Amax).

Proof: for the x — y transition:
(> Same encoding as before:
enc(s,t) = s @t & x — couple edges

B> Using notation AS =TT, cg Ae:

ASAL <p0|y(7\max)_}\enc(s,t)7\x

- A

& Similarly: couple edges

ASAL < p0|y(7\max) . Aenc(s,t))\y
> Using Metropolis filter we get

min{p(x),p(y)}
Qlx,y) > mpow

> So we have p(s)u(t) <
pOIY(nw)\max) : H(GNC(S,’C))Q(%U)

> What if we want perfect
matchings?

> Idea 1 restrict chain to perfect and
near-perfect matchings.
4

one fewer edge

6/M

Theorem [Jerrum-Sinclair] B what if we want perfect

Mixing time i Iy (11, Ama) matchings?
ixing time is poly(n :
g POIYLTh Amax > Idea T restrict chain to perfect and

Proof: for the x — y transition: neor-aerfect matchings.
(> Same encoding as before: one fewer edge
enc(s,t) = s @t @ x —couple edges O ldea 2: set A, = A very large.
B> Using notation AS =TT, cg Ae:
}\S}\t ngIY(}\max)'}\enc(s)t)Ax
- A

& Similarly: couple edges

ASAL < p0|y(7\max) . Aenc(s,t))\y
> Using Metropolis filter we get

min{p(x),p(y)}
Qlx,y) > = poly (1)

> So we have p(s)u(t) <
pOIY(nw)\max) : H(GNC(S,’C))Q(%U)

6/M

> What if we want perfect

Theorem [Jerrum-Sinclair] A
matchings?

Mixing time is poly(mn, A .
9 POlY (1) Ama) > Idea 1 restrict chain to perfect and

Proof: for the x — y transition: neor-aerfect matchings.
(> Same encoding as before: one fewer edge

enc(s,t) = s @t @ x —couple edges O ldea 2: set A, = A very large.
B> Using notation AS =TT, cg Ae: > Dist of matching size:

}\S}\L ngIY(Amax)'}\enc(s)L)Ax
. A
& Similarly: couple edges
)\sAt < p0|y(7\max) . Aenc(s,t))\y
> Using Metropolis filter we get

min{p(x),pn(y)} 0 1 2
Qlx,y) > mpow

> So we have u(s)u(t) <
poly (1, Amax) - plenc(s, 1)) Q(x,y)

VB

6/M

Theorem [Jerrum-Sinclair]

Mixing time is poly (1, Amax).

Proof: for the x — y transition:
(> Same encoding as before:
enc(s,t) = s @t & x — couple edges

B> Using notation AS =TT, cg Ae:

}\S}\L ngIY(Amax)'}\enc(s)L)Ax

- A

& Similarly: couple edges

ASAL < p0|y(7\max) . Aenc(s,t))\y
> Using Metropolis filter we get

min{p(x),p(y)}
Qlx,y) > mpow

> So we have u(s)u(t) <
poly (1, Amax) - plenc(s, 1)) Q(x,y)

> What if we want perfect

o
(D

matchings?
|dea T restrict chain to perfect and
near-perfect matchings.
A
one fewer edge
ldea 2: set Ae = A very large.
Dist of matching size:

(&)
—
N
VB

If AK . 4 (k-matchings) maximized
for k = %, use rejection sompling.

6/M

Fact: log-concavity of matchings

If my is #(k-matchings), then

mo mq Mp/21
L L g L
my ma Mny/2

7/M

Fact: log-concavity of matchings

If my is #(k-matchings), then

mo mq Mp/21
L L g L
my my Mn/2

> Sojust need to set

AZmy o /My

7/M

Fact: log-concavity of matchings
If my is #(k-matchings), then

mo ~ My < Mn/2-1

m; X my X S my o
> Sojust need to set

AZMy o 1/Myyn
& Corollary: if
My 21 < poly(n) - my
can sample perfect matchings. ©

7/M

Fact: log-concavity of matchings
If my is #(k-matchings), then

mo ~ My < Mn/2-1

m; S my S D
> Sojust need to set

AZMy o 1/Myyn
> Corollary: if
My 21 < poly(n) - my
can sample perfect matchings. ©

> Note: same cond for idea 1.

7/M

Fact: log-concavity of matchings
If my is #(k-matchings), then

mo ~ My < Mn/2-1

m; S my S D
> Sojust need to set

AZMy o 1/Myyn
> Corollary: if
M -1 < poly(n)-my o
can sample perfect matchings. ©

> Note: same cond for idea 1.

Bad example: chain of boxes

7/M

Fact: log-concavity of matchings
If my is #(k-matchings), then

mo ~ My < Mn/2-1

m; S my S D
> Sojust need to set

AZMy o 1/Myyn
> Corollary: if
M -1 < poly(n)-my o
can sample perfect matchings. ©

> Note: same cond for idea 1.

Bad example: chain of boxes

> There are bad examples. @

7/M

Fact: log-concavity of matchings

If my is #(k-matchings), then
> There are bad examples. @

mo My ., ¢ Mn/2

S My NN Tm > In chain of boxes, we have 1
perfect and 22" near-perfect
> Sojust need to set matchings.
AZMy o 1/Myyn
> Corollary: if

M -1 < poly(n)-my o
can sample perfect matchings. ©
> Note: same cond for idea 1.

Bad example: chain of boxes

7/M

Fact: log-concavity of matchings

If my is #(k-matchings), then
> There are bad examples. @

mo ~ My < Mn/2-1 .
mN T, S N Tm, > In chain of boxes, we have 1
perfect and 22" near-perfect
> Sojust need to set matchings.
AZMy o 1/Myyn > Exercise: modify chain of boxes to
> Corollary: if get slow mixing for idea 1.

M -1 < poly(n)-my o
can sample perfect matchings. ©
> Note: same cond for idea 1.

Bad example: chain of boxes

7/M

Fact: log-concavity of matchings
If my is #(k-matchings), then
mo ~ My < Mn/2-1
m; S my S D
> Sojust need to set
AZmy o /My
> Corollary: if
M -1 < poly(n)-my o
can sample perfect matchings. ©
> Note: same cond for idea 1.

Bad example: chain of boxes

> There are bad examples. @

> In chain of boxes, we have 1
perfect and 22" near-perfect
matchings.

> Exercise: modify chain of boxes to
get slow mixing for idea 1.

|dea: since there can be many
more near-perfect matchings, why
not reweigh matchings based on
size?

7/M

Fact: log-concavity of matchings
If my is #(k-matchings), then >
m m My /21
L >
> Sojust need to set
AZMy o 1/Myyn
> Corollary: if
M -1 < poly(n)-my o
can sample perfect matchings. ©
> Note: same cond for idea 1.

Bad example: chain of boxes &

There are bad examples. @

In chain of boxes, we have 1
perfect and 22" near-perfect
matchings.

> Exercise: modify chain of boxes to

get slow mixing for idea 1.

|dea: since there can be many
more near-perfect matchings, why
not reweigh matchings based on
size?

[Jerrum-Sinclair-Vigoda’04] showed
this works on bipartite graphs.

7/M

> Let Qg be the class of matchings
whose monomers are S. Example:
Qg is ,and
Qg vy Mmatchings that only miss
u,v.

8/M

> Let Qg be the class of matchings
whose monomers are S. Example:

Qg is ,and
Qg vy Mmatchings that only miss
u,v.

> Let AM denote monomer-dimer
weight of M:

)\M = HeeM)\e

8/M

> Let Qg be the class of matchings
whose monomers are S. Example:

Qg is ,and
Qg vy Mmatchings that only miss
u,v.

> Let AM denote monomer-dimer
weight of M:

)\M = HeeM)\e
> We get weights for each class:

MQs) =X meas MW

8/M

> Let Qg be the class of matchings
whose monomers are S. Example:

Qg is ,and
Qg vy Mmatchings that only miss
u,v.

> Let AM denote monomer-dimer
weight of M:

)\M = HeeM)\e
> We get weights for each class:

MQs) =X meas MW

> Define distribution on
matchings:
)\M
H(M) x)\(Qmonomers[M])

8/M

> Let Qg be the class of matchings
whose monomers are S. Example:

Qg is ,and
Qg vy Mmatchings that only miss
u,v.

> Let AM denote monomer-dimer
weight of M:

)\M = HeeM)\e
> We get weights for each class:

MQs) =X meas MW

> Define distribution on
matchings:
)\M
H(M) x)\(Qmonomers[M])

> Note: u(Qg) is the forall S.

8/M

> Let Qs be the class of matchings Theorem [Jerrum-Sinclair-Vigoda’04]
whose monomers are S. Example: If P is Metropolis walk restricted to

Qy is perfect matchings, and perfect and near-perfect matchings
Q. vy matchings that only miss ~ weighted o p, and graph is bipartite
u, v.

tmix (P, Tmax-weight M) = poly(n)
> Let AM denote monomer-dimer mixt 1ty Tmax-weig

weight of M:
)\M = HeeM 7\@
> We get weights for each class:
AQs) = ZMer AM
> Define modified distribution on
matchings:
M) o< 5

(Qmonomers(M))

)\M

> Note: u(Qs) is the same for all S.

8/M

> Let Qs be the class of matchings Theorem [Jerrum-Sinclair-Vigoda’04]

whose monomers are S. Exomp|e; If P is Metropolis walk restricted to

Qy is perfect matchings, and perfect and near-perfect matchings
Q. vy matchings that only miss ~ weighted o p, and graph is bipartite
u,v.

tmix (Py Tmax-weight M) = poly(n)
> Let AM denote monomer-dimer e

weight of M: > We need max-weight M as start

AM = [Teem Ae to ensure logx?(vo || 1) = poly(n).
> We get weights for each class:

AQs) = X meas MM
> Define modified distribution on
matchings:

M) o< 5

(Qmonomers(M))

)\M

> Note: u(Qs) is the same for all S.

8/M

Theorem [Jerrum-Sinclair-Vigoda’04]

> Let Qg be the class of matchings
whose monomers are S. Example: If P is Metropolis walk restricted to

Qy is perfect matchings, and perfect and near-perfect matchings
Q. vy matchings that only miss ~ weighted o p, and graph is bipartite
u,v.

tmix (Py Tmax-weight M) = poly(n)
> Let AM denote monomer-dimer e

weight of M: > We need max-weight M as start

AM = [Teem Ae to ensure logx?(vo || 1) = poly(n).
> We get weights for each class:

MQs) = ¥ pmea, MW

> Define modified distribution on v

matchings: "
)\M

H(M) x)\(Qmonomers(M])
> Note: u(Qs) is the same for all S.

The Chicken-and-Egg Problem

8/M

Theorem [Jerrum-Sinclair-Vigoda’04]

> Let Qg be the class of matchings
whose monomers are S. Example: If P is Metropolis walk restricted to

Qy is perfect matchings, and perfect and near-perfect matchings
Q. vy matchings that only miss ~ weighted o p, and graph is bipartite
u, v.

tmix (Py Tmax-weight M) = poly(n)
> Let AM denote monomer-dimer i) “maxweight M

weight of M: > We need max-weight M as start

AM = [Teem Ae to ensure logx?(vo || 1) = poly(n).
> We get weights for each class:

MQs) = ¥ peas WM
> Define modified distribution on > Esr\gpctj]tre] \?/\V(eﬂs)? o

matchings: "
)\M

H(M) x)\(Qmonomers(M])
> Note: u(Qs) is the same for all S.

The Chicken-and-Egg Problem

8/M

Theorem [Jerrum-Sinclair-Vigoda’04]

> Let Qg be the class of matchings
whose monomers are S. Example: If P is Metropolis walk restricted to

Qy is perfect matchings, and perfect and near-perfect matchings
Q. vy matchings that only miss ~ weighted o p, and graph is bipartite
u, v.

tmix (Py Tmax-weight M) = poly(n)
> Let AM denote monomer-dimer i) “maxweight M

weight of M: > We need max-weight M as start

AM = [Teem Ae to ensure logx?(vo || 1) = poly(n).
> We get weights for each class:

AMQs) =Y pmeas AM

> Define modified distribution on > How can \}/\veﬂ , v

matchings: compute A(Qg)* o
(M))\L & By sampling.

(Qmonomers(M])
> Note: u(Qs) is the same for all S.

The Chicken-and-Egg Problem

8/M

> Let Qg be the class of matchings
whose monomers are S. Example:
Qg is perfect matchings, and
Qg vy Mmatchings that only miss
u,v.

O Let AM denote monomer-dimer
weight of M:

)\M = HeeM 7\2
> We get weights for each class:
MQs) =X meas MM
> Define modified distribution on
matchings:
M) o< 5

(Qmonomers(M))

)\M

> Note: u(Qs) is the same for all S.

Theorem [Jerrum-Sinclair-Vigoda’04]

If P is Metropolis walk restricted to
perfect and near-perfect matchings
weighted o @, and graph is bipartite

tmix (P, “mox—weight m) = poly(n)

> We need max-weight M as start
to ensure logx?(vo || 1) = poly(n).

The Chicken-and-Egg Problem

> How can we v
compute A(Qg)?

> By sampling.

> How to sample?

"

=

8/M

> Let Qg be the class of matchings
whose monomers are S. Example:
Qg is perfect matchings, and
Qg vy Mmatchings that only miss
u,v.

O Let AM denote monomer-dimer
weight of M:

)\M = HeeM 7\2
> We get weights for each class:
MQs) =X meas MM
> Define modified distribution on
matchings:
M) o< 5

(Qmonomers(M))

)\M

> Note: u(Qs) is the same for all S.

Theorem [Jerrum-Sinclair-Vigoda’04]

If P is Metropolis walk restricted to
perfect and near-perfect matchings
weighted o @, and graph is bipartite

tmix (P, “mox—weight m) = poly(n)

> We need max-weight M as start
to ensure logx?(vo || 1) = poly(n).

The Chicken-and-Egg Problem
> How can we v
compute A(Qg)?
> By sampling.
> How to sample?
> Use counting. ©

"

=

8/M

> Resolving the chicken-and-egg
problem:

9/M

> Resolving the chicken-and-egg
problem: gradual change.

Chain mixes fast even if A(Qg) are re-
placed by opproxipwotions in W

say factor 10 approx

9/M

> Resolving the chicken-and-egg
problem: gradual change.

Chain mixes fast even if A(Qg) are re-
placed by opproxipwotions in W

say factor 10 approx

O Start with easy case. Take
G = Kn/z’n/z, and A, = 1.

9/M

> Resolving the chicken-and-egg
problem: gradual change.

Chain mixes fast even if A(Qg) are re-
placed by opproxipwotions in W

say factor 10 approx
O Start with easy case. Take
G = Kn/z’n/z, and A, = 1.
> Slowly change Aes:

A0) A1) y oLy (b)
by 1+ 1/n each time

9/M

> Resolving the chicken-and-egg
problem: gradual change.

Chain mixes fast even if A(Qg) are re-
placed by opproxipwotions in W

say factor 10 approx
O Start with easy case. Take
G = Kn/z’n/z, and A, = 1.
> Slowly change Aes:

A0) A1) y oLy (b)
by 1+ 1/n each time

> Use Markov chain for each AV to
estimate AV (Qg) for |S| < 2.

9/M

> Resolving the chicken-and-egg
problem: gradual change.

Chain mixes fast even if A(Qg) are re-
placed by opproxipwotions in W

say factor 10 approx

O Start with easy case. Take
G = Kn/z’n/z, and A, = 1.
> Slowly change Aes:
A0 Al oo (D)
by 1+ 1/n each time
> Use Markov chain for each AV to
estimate AV (Qg) for |S| < 2.
> Use estimates to define next p.

9/M

> Resolving the chicken-and-egg > Note: (Ae = 0) ~ (A = exp(—n2))

problem: gradual change.

Chain mixes fast even if A(Qg) are re-
placed by opproxumotions in W

say factor 10 approx

O Start with easy case. Take
G = Kn/z’n/z, and A, = 1.
> Slowly change Aes:
A0 Al oo (D)
by 1+ 1/n each time
> Use Markov chain for each AV to
estimate AV (Qg) for |S| < 2.
> Use estimates to define next p.

9/M

> Resolving the chicken-and-egg
problem: gradual change.

Chain mixes fast even if A(Qg) are re-
placed by opproxipwotions in W

say factor 10 approx

O Start with easy case. Take
G = Kn/z’n/z, and A, = 1.
> Slowly change Aes:

A0) A ..
by 1+ 1/n each time

— Al

> Use Markov chain for each AV to
estimate AV (Qg) for |S| < 2.

> Use estimates to define next p.

> Note: (Ae =0) & (Ae = exp(—n?))
> Itjust remains to prove fast mixing.

9/M

> Resolving the chicken-and-egg
problem: gradual change.

> Note: (Ae =0) & (Ae = exp(—n?))
> Itjust remains to prove fast mixing.

B> We use canonical paths. Enough

Chain mixes fast even if A(Qg) are re-
placed by opproxipwotions in W

say factor 10 approx

O Start with easy case. Take
G = Kn/z’n/z, and A, = 1.
> Slowly change Aes:

A0) A ..
by 1+ 1/n each time

> Use Markov chain for each AV to
estimate AV (Qg) for |S| < 2.

> Use estimates to define next p.

— Al

to consider s € Q) and t € Q.

Qg
/Z’

Q{ul il Q{u1 ,V2}

™~~~

Q{un/bvn/z}

9/M

> Resolving the chicken-and-egg
problem: gradual change.

Chain mixes fast even if A(Qg) are re-
placed by approximations in .
A

say factor 10 approx

O Start with easy case. Take
G = Kn/Z,n/Z’ and A, = 1.
> Slowly change Aes:
A0) A ..
by 1+ 1/n each time
> Use Markov chain for each AV to
estimate AV (Qg) for |S| < 2.
> Use estimates to define next p.

— Al

Note: (Ae = 0) & (Ae = exp(—n?))
It just remains to prove fast mixing.

We use canonical paths. Enough
to consider s € Q) and t € Q.

Qg
/Z’

Q{ul il 'O‘{u1 ,V2}

™~~~

Q{un/bvn/z}

Assume A(Qg) is accurate,
because the inequality

r(s)p(t) < Culenc(s, 1))Q(x,y)
is robust to approximation.

9/M

> Resolving the chicken-and-egg > Note: (Ae = 0) ~ (A = exp(—n2))

problem: gradual change. > Itjust remains to prove fast mixing.

B> We use canonical paths. Enough

Chain mixes fast even if A(Qg) are re- to consider s € Q) and t € Q.
placed by approximations in .
A

Q
say factor 10 approx 0
O Start with easy cose. Take Qrviy Qrnvay o Qg oyvnga)

G = Kn/Z,n/Z’ and A, = 1.
> Assume A(Qgs) is accurate,

B Siowly change Aes: because the inequality

A0 A1) Iy oty ()
by 1+ 1/n each time pr(s)u(t) < Cplenc(s, t))Q(x,y)

> Use Markov chain for each A(V) to Is robust to approximation.

estimate AV (Qg) for [S] < 2. (> Use the same encoding as before:

> Use estimates to define next . enc(s, 1) = s © t & x —couple edges

9/M

(> Traverse alternating path first.
Ensures all x on the st-path are
perfect/near-perfect.

10/M

(> Traverse alternating path first.
Ensures all x on the st-path are
perfect/near-perfect.

> Issue: encoding might not be
perfect/near-perfect:

1o 1
Y

o O OI
o O O O O

10/1

(> Traverse alternating path first.
Ensures all x on the st-path are
perfect/near-perfect.

> Issue: encoding might not be
perfect/near-perfect:

L [
O—0 O=—O
o O (0] I
O O O O o
> Thisis fine! We still get
< poly(n) because

2 isi<a H(Qs) <
poly(n) - Z\s\gz r(Qs)

10/M

(> Traverse alternating path first.
Ensures all x on the st-path are
perfect/near-perfect.

> Issue: encoding might not be

O—0 O=—O

perfect/near-perfect:

O=—0
o O (0] I
O O O O o
> Thisis fine! We still get

< poly(n) because

2 isi<a H(Qs) <
poly(n) - Z\s\gz r(Qs)

> We just need to show p(s)u(t) <
poly(n) - min{p(x), n(y)} - p(enc)

10/M

(> Traverse alternating path first.
Ensures all x on the st-path are
perfect/near-perfect.

> Issue: encoding might not be

O—0 O=—O

perfect/near-perfect:

O=—0
o O (0] I
O O O O o
> Thisis fine! We still get

< poly(n) because

2 isi<a H(Qs) <
poly(n) - Z\s\gz r(Qs)

> We just need to show p(s)u(t) <

poly(n) - min{p(x), n(y)} - p(enc)
O It's a bit of case analysis, but
hardest case is in the middle of
unraveling a cycle:

10/M

o

e o

o

‘0—0 o—o| [(o0—0 o—0| [0—0 o0—0]

e o

o

SRR

sOtdx

n/Mm

enc=sPthx—e—f

n/Mm

S X Yy t

0 o—o0 o| [o=—0 o=—o0 O=—0 O==O (O=—0 O=—O!

fo\o Oo/oo e o O/OX

enc=sPthx—e—f

o=
Q<

> Note that ASAt = AAeAXASC, Let e’s endpoints be a, a’

and f’s endpoints be b b’. Prove:«— via injective map b
)\(-O-(Z)))\(Q{u,v}) = pon A)\f)\(-o-{a b}))\(Q{u,v,a’,b’}) a - b’
1) t 0 ®
t S X enc , O/)

n/Mm

S X Yy t

3 s 3

o o—o o| [o=—0 o—o O=—0 O=—O (O=—0 00|

fo\o Oo/oo e o O/OX

enc=sPthx—e—f

o=
Q<

> Note that ASAt = AAeAXASC, Let e’s endpoints be a, a’
and f’s endpoints be b b’. Prove:«— via injective map b

7\(%@)?\(9{?,\;}) > oy Me 7\f7\(Q{$ b}))\(Q{u,VT,a’,b’}) a

t s X enc ,
a
- 1(x)u(enc). Similar inegs yield O/o
r(s)p(t) < poly() 1(y)u(enc). So cong < poly(n).

_|
>
C
»
=~ E
E
C",
0_
=3
2
g

n/Mm

