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problem: gradual change.

> Note: (Ae =0) & (Ae = exp(—n?))
> Itjust remains to prove fast mixing.

B> We use canonical paths. Enough

Chain mixes fast even if A(Qg) are re-
placed by opproxipwotions in W

say factor 10 approx

O Start with easy case. Take
G = Kn/z’n/z, and A, = 1.
> Slowly change Aes:
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> Use Markov chain for each AV to
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problem: gradual change.

Chain mixes fast even if A(Qg) are re-
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say factor 10 approx

O Start with easy case. Take
G = Kn/Z,n/Z’ and A, = 1.
> Slowly change Aes:
A0) A ..
by 1+ 1/n each time
> Use Markov chain for each AV to
estimate AV (Qg) for |S| < 2.
> Use estimates to define next p.

— Al

Note: (Ae = 0) & (Ae = exp(—n?))
It just remains to prove fast mixing.

We use canonical paths. Enough
to consider s € Q) and t € Q.
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B> We use canonical paths. Enough

Chain mixes fast even if A(Qg) are re- to consider s € Q) and t € Q.
placed by approximations in .
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Q
say factor 10 approx 0
O Start with easy cose. Take Qrviy Qrnvay o Qg oyvnga)

G = Kn/Z,n/Z’ and A, = 1.
> Assume A(Qgs) is accurate,

B Siowly change Aes: because the inequality

A0 A1) Iy oty ()
by 1+ 1/n each time pr(s)u(t) < Cplenc(s, t))Q(x,y)

> Use Markov chain for each A(V) to Is robust to approximation.

estimate AV (Qg) for [S] < 2. (> Use the same encoding as before:

> Use estimates to define next . enc(s, 1) = s © t & x —couple edges
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perfect/near-perfect.

> Issue: encoding might not be

O—0 O=—O

perfect/near-perfect:

O=—0
o O (0] I
O O O O o
> Thisis fine! We still get

< poly(n) because

2 isi<a H(Qs) <
poly(n) - Z\s\gz r(Qs)

> We just need to show p(s)u(t) <

poly(n) - min{p(x), n(y)} - p(enc)
O It's a bit of case analysis, but
hardest case is in the middle of
unraveling a cycle:
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