CS 263: Counting and Sampling

Nima Anari

Stanford
University
slides for
Introduction

Logistics

- Course staff:

Nima Anari
Victor Lecomte
(Instructor) (Course Assistant)

Logistics

- Course staff:

Nima Anari
Victor Lecomte
(Instructor) (Course Assistant)
\checkmark You:
~39 undergrad + masters + Ph.D.

Logistics

\bigcirc Course staff:

Nima Anari (Instructor) (Course Assistant)

- You:
~39 undergrad + masters + Ph.D.
20080

Logistics

\bigcirc Course staff:

https://cs263.stanford.edu

Nima Anari

(Instructor)

D Lectures: Monday, Wednesday 3:00 pm - 4:20 pm (Hewlett 102)
\bigcirc Recorded and on Canvas
D Plans to make edited recordings public later...
© You:

> ~39 undergrad + masters + Ph.D.

Logistics

D Course staff:

https://cs263.stanford.edu

Nima Anari (Instructor)

Victor Lecomte (Course Assistant)

D Lectures: Monday, Wednesday 3:00 pm - 4:20 pm (Hewlett 102)
\bigcirc Recorded and on Canvas

- Plans to make edited recordings public later...
\bigcirc Homework: 4 sets (20\% each)
- You:
~39 undergrad + masters + Ph.D.
23230

Logistics

D Course staff：

https：／／cs263．stanford．edu

Nima Anari （Instructor）

Victor Lecomte （Course Assistant）
\checkmark You：
~39 undergrad + masters + Ph.D.

シ3 シ シ

D Lectures：Monday，Wednesday 3：00 pm－4：20 pm（Hewlett 102）
\checkmark Recorded and on Canvas
D Plans to make edited recordings public later．．．
D Homework： 4 sets（20\％each）
－Final report：20\％of grade
\bigcirc Groups of 1 or 2
D Survey（of $\geqslant 3$ papers）or research（new progress）on topics related to the course

Logistics

D Course staff:

https://cs263.stanford.edu

Nima Anari (Instructor)

Victor Lecomte (Course Assistant)
\checkmark You:
~39 undergrad + masters + Ph.D.

20222

D Lectures: Monday, Wednesday 3:00 pm - 4:20 pm (Hewlett 102)
\bigcirc Recorded and on Canvas
D Plans to make edited recordings public later...

D Homework: 4 sets (20\% each)

- Final report: 20\% of grade
- Groups of 1 or 2
D Survey (of $\geqslant 3$ papers) or research (new progress) on topics related to the course
D Office hours: Starting next week

What is "Counting and Sampling"? Bit of Complexity Theory

- The class \#P

D Parsimonious reductions
Approximation
D Counting: FPTAS/FPRAS
\checkmark Sampling: FPAUS

- Equivalence

First Algorithm: DNFs

What is "Counting and Sampling"?

Bit of Complexity Theory

- The class \#P
- Parsimonious reductions

Approximation
D Counting: FPTAS/FPRAS
\checkmark Sampling: FPAUS

- Equivalence

First Algorithm: DNFs
usually finite but exp. large
Distribution μ on large Ω

Distribution μ on large Ω

D Sampling: efficiently producing sample $\omega \sim \mu$.

Distribution μ on large Ω

- Sampling: efficiently producing sample $\omega \sim \mu$.
- Counting: efficiently computing \mathbb{P}_{μ} [event] for events of interest.

Distribution μ on large Ω

D Sampling: efficiently producing sample $\omega \sim \mu$.

- Counting: efficiently computing \mathbb{P}_{μ} [event] for events of interest.

Example: \#SAT

$\phi=\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{4}\right) \wedge \cdots$
$D \Omega$ is $\{0,1\}^{n}$.
D μ is uniform over satisfying assignments.

- Sampling: efficiently producing sample $\omega \sim \mu$.
- Counting: efficiently computing \mathbb{P}_{μ} [event] for events of interest.

Example: \#SAT

$\phi=\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{4}\right) \wedge \cdots$
$D \Omega$ is $\{0,1\}^{n}$.

- μ is uniform over satisfying assignments.

Distribution μ on large Ω

- Sampling: efficiently producing sample $\omega \sim \mu$.
- Counting: efficiently computing \mathbb{P}_{μ} [event] for events of interest.

D Why is it called counting?
\checkmark Because $\mathbb{P}\left[x_{1}=1\right]=$
\#sat assignments of ϕ with $x_{1}=1$ \#sat assignments of ϕ

Example: \#SAT
$\phi=\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{4}\right) \wedge \cdots$
$D \Omega$ is $\{0,1\}^{n}$.
$D \mu$ is uniform over satisfying assignments.

Distribution μ on large Ω

- Sampling: efficiently producing sample $\omega \sim \mu$.
- Counting: efficiently computing \mathbb{P}_{μ} [event] for events of interest.

Example: \#SAT

$\phi=\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{4}\right) \wedge \cdots$
$D \Omega$ is $\{0,1\}^{n}$.

- μ is uniform over satisfying assignments.

D Why is it called counting?
\bigcirc Because $\mathbb{P}\left[\mathrm{x}_{1}=1\right]=$
\#sat assignments of ϕ with $x_{1}=1$ \#sat assignments of ϕ
\bigcirc The numerator and denominator are counts.

Distribution μ on large Ω
D Sampling: efficiently producing sample $\omega \sim \mu$.

- Counting: efficiently computing \mathbb{P}_{μ} [event] for events of interest.

Example: \#SAT

$\phi=\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{4}\right) \wedge \cdots$
$D \Omega$ is $\{0,1\}^{n}$.
D μ is uniform over satisfying assignments.
\bigcirc Why is it called counting?
\checkmark Because $\mathbb{P}\left[x_{1}=1\right]=$
\#sat assignments of ϕ with $x_{1}=1$ \#sat assignments of ϕ
\checkmark The numerator and denominator are counts.

- In fact, numerator is \#sat assignments to

$$
\phi^{\prime}=\phi \wedge x_{1}
$$

This is called "self-reducibility".
will come back to this later

Formalism

w.r.t. an easy background measure on Ω, usually counting/uniform on finite Ω

Suppose μ is an unnormalized density:

$$
\mu: \Omega \rightarrow \mathbb{R}_{\geqslant 0}
$$

Formalism

w.r.t. an easy background measure on Ω, usually counting/uniform on finite Ω

Suppose μ is an unnormalized density:

$$
\mu: \Omega \rightarrow \mathbb{R}_{\geqslant 0}
$$

Definition: sampling
Produce $\omega \in \Omega$ with

$$
\mathbb{P}[\omega] \propto \mu(\omega)
$$

Formalism

w.r.t. an easy background measure on Ω, usually counting/uniform on finite Ω

Suppose μ is an unnormalized density:

$$
\mu: \Omega \rightarrow \mathbb{R}_{\geqslant 0}
$$

Definition: sampling
Produce $\omega \in \Omega$ with

$$
\mathbb{P}[\omega] \propto \mu(\omega)
$$

Definition: counting

Compute the normalizing factor

$$
\sum_{\omega} \mu(\omega)
$$

Formalism

w.r.t. an easy background measure on Ω, usually counting/uniform on finite Ω

Suppose μ is an unnormalized density:

$$
\mu: \Omega \rightarrow \mathbb{R}_{\geqslant 0}
$$

Definition: sampling
Produce $\omega \in \Omega$ with

$$
\mathbb{P}[\boldsymbol{\omega}] \propto \mu(\boldsymbol{\omega})
$$

Definition: counting

Compute the normalizing factor

$$
\sum_{\omega} \mu(\omega)
$$

Standard assumption: μ is easy to compute for any desired point $\omega \in \Omega$.

Example: SAT

$\phi=\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{4}\right) \wedge \cdots$
$D \Omega=\{0,1\}^{n} \longleftarrow$ assignments
D $\mu(x)=\mathbb{1}[x$ satisfies $\phi]$

Example: SAT

$\phi=\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{4}\right) \wedge \cdots$
$D \Omega=\{0,1\}^{n}$ \qquad assignments
D $\mu(x)=\mathbb{1}[x$ satisfies $\phi]$

Example: spin systems

$D \Omega=\{+,-\}^{\mathrm{V}} \longleftarrow$ could be larger
$D \mu(x)=\prod_{\mathfrak{u} \sim v} \phi\left(x_{\mathfrak{u}}, x_{v}\right)$
local interaction

Example: SAT

$\phi=\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{4}\right) \wedge \ldots$
$D \Omega=\{0,1\}^{n}$ \qquad assignments

- $\mu(x)=\mathbb{1}[x$ satisfies $\phi]$

Example: spin systems

$$
\text { graph } G=(V, E)
$$

Example: generative Al models

$D \Omega=\{$,
$D \Omega=\{$ good job, slay, sus, $\ldots\} \longleftarrow$ text We don't know μ. We learn something about it from data. What to learn is often guided by a sampling algorithm.
D Score-based models: $\nabla \log \mu$

$$
\frac{\mu(x+\Delta x)}{\mu(x)} \simeq \exp (\nabla \log \mu \cdot \Delta x)
$$

What is "Counting and Sampling"?

Bit of Complexity Theory

- The class \#P
- Parsimonious reductions

Approximation
D Counting: FPTAS/FPRAS
\checkmark Sampling: FPAUS

- Equivalence

First Algorithm: DNFs

What is "Counting and Sampling"?

Bit of Complexity Theory

- The class \#P

D Parsimonious reductions
Approximation
D Counting: FPTAS/FPRAS
\checkmark Sampling: FPAUS

- Equivalence

First Algorithm: DNFs

Poly-time nondet. Turing machine M

Example: SAT

$M_{\text {SAT }}$: $($ formula ϕ, assignment $\chi) \mapsto$
$\begin{cases}\text { Accept } & \text { if } x \text { satisfies } \phi, \\ \text { Reject } & \text { otherwise. }\end{cases}$

Poly-time nondet. Turing machine M

Example: SAT

$M_{\text {SAT }}$: (formula ϕ, assignment $\left.x\right) \mapsto$
$\begin{cases}\text { Accept } & \text { if } x \text { satisfies } \phi, \\ \text { Reject } & \text { otherwise. }\end{cases}$
mer
rex er

D NP consists of all functions

$$
x \mapsto \mathbb{1}[\exists \mathrm{y}: \mathcal{M}(\mathrm{x}, \mathrm{y})=\mathrm{Accept}] .
$$

Poly-time nondet. Turing machine M

D NP consists of all functions

$$
x \mapsto \mathbb{1}[\exists y: M(x, y)=\text { Accept }] .
$$

D \#P consists of all functions

$$
x \mapsto \mid\{y \mid M(x, y)=\text { Accept }\} \mid .
$$

Example: SAT

$M_{\text {SAT }}$: (formula ϕ, assignment $\left.x\right) \mapsto$
$\begin{cases}\text { Accept } & \text { if } x \text { satisfies } \phi, \\ \text { Reject } & \text { otherwise } .\end{cases}$

Poly-time nondet. Turing machine M

$$
x \mapsto \mathbb{1}[\exists y: M(x, y)=\text { Accept }] .
$$

D \#P consists of all functions

$$
x \mapsto \mid\{y \mid M(x, y)=\text { Accept }\} \mid
$$

- Every NP problem has a $\#$ \#P
variant.

Every NP problem has a $\#$ \#
variant. \quad not unique
D NP consists of all functions

Example: SAT

$M_{\text {SAT }}:($ formula ϕ, assignment $x) \mapsto$
$\begin{cases}\text { Accept if } x \text { satisfies } \phi, \\ \text { Reject } & \text { otherwise } .\end{cases}$

Poly-time nondet. Turing machine M

Example: SAT

$\mathrm{M}_{\mathrm{SAT}}$: $($ formula ϕ, assignment $x) \mapsto$
$\begin{cases}\text { Accept } & \text { if } x \text { satisfies } \phi, \\ \text { Reject } & \text { otherwise. }\end{cases}$

D NP consists of all functions

$$
x \mapsto \mathbb{1}[\exists y: M(x, y)=\text { Accept }] .
$$

D \#P consists of all functions

$$
x \mapsto \mid\{y \mid M(x, y)=\text { Accept }\} \mid .
$$

- Every NP problem has a $\#$ \#
variant.
not unique
D \#P-complete: Every other \#P problem poly-time reduces to it.

Poly-time nondet. Turing machine M

Example: SAT

M $_{\text {SAT }}$: (formula ϕ, assignment $\left.x\right) \mapsto$
$\begin{cases}\text { Accept } & \text { if } x \text { satisfies } \phi, \\ \text { Reject } & \text { otherwise. }\end{cases}$

D NP consists of all functions

$$
x \mapsto \mathbb{1}[\exists y: M(x, y)=\text { Accept }]
$$

D \#P consists of all functions

$$
x \mapsto|\{y \mid M(x, y)=A c c e p t\}|
$$

\bigcirc Every NP problem has a $\#$ \#
not unique
D \#P-complete: Every other \#P problem poly-time reduces to it.
D Harder than NP-complete!
\#SAT
\#2-SAT
\#3-Colorings \#Matchings \#Ind. Sets

Poly-time nondet. Turing machine M

$M:(x, y) \mapsto\{$ Accept, Reject $\}$
input witness/nondet. choices

Example: SAT

M $_{\text {SAT }}$: (formula ϕ, assignment $\left.x\right) \mapsto$
$\begin{cases}\text { Accept } & \text { if } x \text { satisfies } \phi, \\ \text { Reject } & \text { otherwise } .\end{cases}$

D NP consists of all functions

$$
x \mapsto \mathbb{1}[\exists \mathrm{y}: \mathcal{M}(\mathrm{x}, \mathrm{y})=\text { Accept }] .
$$

D \#P consists of all functions

$$
x \mapsto \mid\{y \mid M(x, y)=\text { Accept }\} \mid .
$$

- Every NP problem has a $\# P-$
variant.
not unique
D \#P-complete: Every other \#P problem poly-time reduces to it.
D Harder than NP-complete!
: \#SAT
\#2-SAT
\#3-Colorings \#Matchings
\#Ind. Sets

Poly-time nondet. Turing machine M

Example: SAT

M $_{\text {SAT }}$: (formula ϕ, assignment $\left.x\right) \mapsto$
$\begin{cases}\text { Accept } & \text { if } x \text { satisfies } \phi, \\ \text { Reject } & \text { otherwise } .\end{cases}$

D NP consists of all functions

$$
x \mapsto \mathbb{1}[\exists y: M(x, y)=\text { Accept }]
$$

D \#P consists of all functions

$$
x \mapsto \mid\{y \mid M(x, y)=\text { Accept }\} \mid .
$$

- Every NP problem has a $\# P-$
variant.
not unique
D \#P-complete: Every other \#P problem poly-time reduces to it.
D Harder than NP-complete!
: \#SAT \#2-SAT
: \# \#-Colorings \#Ind. Sets \#Matchings \#Trees

Poly-time nondet. Turing machine M

Example: SAT

M $_{\text {SAT }}$: (formula ϕ, assignment $\left.x\right) \mapsto$
$\begin{cases}\text { Accept } & \text { if } x \text { satisfies } \phi, \\ \text { Reject } & \text { otherwise } .\end{cases}$

D NP consists of all functions

$$
x \mapsto \mathbb{1}[\exists y: M(x, y)=\text { Accept }]
$$

D \#P consists of all functions

$$
x \mapsto \mid\{y \mid M(x, y)=\text { Accept }\} \mid
$$

\bigcirc Every NP problem has a $\#$ \#
not unique
D \#P-complete: Every other \#P problem poly-time reduces to it.
D Harder than NP-complete!
: \#SAT \#2-SAT
: \# 3-Colorings
\#Matchings
: \# Ind. Sets

Poly-time nondet. Turing machine M

Example: SAT

$M_{\text {SAT }}$: (formula ϕ, assignment $\left.x\right) \mapsto$
$\begin{cases}\text { Accept } & \text { if } x \text { satisfies } \phi, \\ \text { Reject } & \text { otherwise } .\end{cases}$

D NP consists of all functions

$$
x \mapsto \mathbb{1}[\exists y: M(x, y)=\text { Accept }]
$$

D \#P consists of all functions

$$
x \mapsto \mid\{y \mid M(x, y)=\text { Accept }\} \mid .
$$

- Every NP problem has a $\# P-$
variant.
not unique
D \#P-complete: Every other \#P problem poly-time reduces to it.
\checkmark Harder than NP-complete!
: \# \#SAT
: \# 2-SAT
: \# \#-Colorings \#Matchings
: \# Ind. Sets

Poly-time nondet. Turing machine M

Example: SAT

$M_{\text {SAT }}$: (formula ϕ, assignment $\left.x\right) \mapsto$
$\begin{cases}\text { Accept } & \text { if } x \text { satisfies } \phi, \\ \text { Reject } & \text { otherwise } .\end{cases}$

D NP consists of all functions

$$
x \mapsto \mathbb{1}[\exists \mathrm{y}: M(\mathrm{x}, \mathrm{y})=\text { Accept }]
$$

D \#P consists of all functions

$$
x \mapsto \mid\{y \mid M(x, y)=\text { Accept }\} \mid
$$

\bigcirc Every NP problem has a $\#$ \#
not unique
D \#P-complete: Every other \#P problem poly-time reduces to it.
\checkmark Harder than NP-complete!
: \#SAT
: \#2-SAT
: \# $\#$-Colorings
: \#Matchings
: \# Ind. Sets

Poly-time nondet. Turing machine M

Example: SAT

$M_{\text {SAT }}$: (formula ϕ, assignment $\left.x\right) \mapsto$
$\begin{cases}\text { Accept } & \text { if } x \text { satisfies } \phi, \\ \text { Reject } & \text { otherwise } .\end{cases}$

D NP consists of all functions

$$
x \mapsto \mathbb{1}[\exists \mathrm{y}: M(\mathrm{x}, \mathrm{y})=\text { Accept }]
$$

D \#P consists of all functions

$$
x \mapsto \mid\{y \mid M(x, y)=\text { Accept }\} \mid
$$

\bigcirc Every NP problem has a $\#$ \#
not unique
D \#P-complete: Every other \#P problem poly-time reduces to it.
\checkmark Harder than NP-complete!
: \#SAT
: \#2-SAT
: \# \#-Colorings
: \#Matchings
: \# Ind. Sets
;) \#Trees

Reductions

All NP problems reduce to SAT [Cook-Levin].

Reductions

All NP problems reduce to SAT [Cook-Levin].

\checkmark This reduction is parsimonious. There is a one-to-one correspondence: accepting paths \leftrightarrow sat assignments
m -to- n is also called parsimonious

Reductions

All NP problems reduce to SAT [Cook-Levin].

\checkmark This reduction is parsimonious. There is a one-to-one correspondence: accepting paths \leftrightarrow sat assignments
\bigcirc Thus \#SAT is \#P-complete. m-to- n is also called parsimonious

Reductions

All NP problems reduce to SAT [Cook-Levin].

D This reduction is parsimonious. There is a one-to-one correspondence: accepting paths \leftrightarrow sat assignments
\bigcirc Thus \#SAT is \#P-complete. m-to- n is also called parsimonious
D In fact, all the natural NP-complete problems we know admit parsimonious reductions: \#3-Colorings, \#Hamiltonian Cycles, ...

Reductions

All NP problems reduce to SAT [Cook-Levin].

[Cook-Levin] reduction $\left(x_{1} \vee \overline{x_{2}} \vee \cdots\right) \wedge \cdots$
D This reduction is parsimonious. There is a one-to-one correspondence: accepting paths \leftrightarrow sat assignments
\bigcirc Thus \#SAT is \#P-complete. m-to- n is also called parsimonious
D In fact, all the natural NP-complete problems we know admit parsimonious reductions: \#3-Colorings, \#Hamiltonian Cycles, ...
D Open problem: Do all NP-complete problems have a \#P-complete variant?

- \#P-complete problems are really hard. At least as hard as NP.
- \#P-complete problems are really hard. At least as hard as NP.
- Much harder: PH \subseteq P\#P [Toda'91]. :
poly hierarchy: $x \mapsto \mathbb{1}[\exists y \forall z \exists \cdots M(x, y, z, \ldots)]$

D \#P-complete problems are really hard. At least as hard as NP.
\bigcirc Much harder: $\mathrm{PH} \subseteq \mathrm{P}^{\# \mathrm{P}}$ [Toda'91]. :
poly hierarchy: $x \mapsto \mathbb{\mathbb { 1 }}[\exists y \forall z \exists \cdots M(x, y, z, \ldots)]$
\checkmark Even P can yield \#P-complete!

D \#P-complete problems are really hard. At least as hard as NP.
\bigcirc Much harder: $\mathrm{PH} \subseteq \mathrm{P}^{\# \mathrm{P}}$ [Toda'91]. :
poly hierarchy: $x \mapsto \mathbb{\mathbb { 1 }}[\exists y \forall z \exists \cdots M(x, y, z, \ldots)]$
\checkmark Even P can yield \#P-complete!

Example: \#DNF

Count sat assignments to DNF:

$$
\left(x_{1} \wedge \overline{x_{2}} \wedge x_{3}\right) \vee(\cdots) \vee \cdots
$$

Proof of hardness: \#DNF $=2^{n}-\# C N F$.

D \#P-complete problems are really hard. At least as hard as NP.
\bigcirc Much harder: $\mathrm{PH} \subseteq \mathrm{P}^{\# \mathrm{P}}$ [Toda'91]. : poly hierarchy: $x \mapsto \mathbb{\square}[\exists y \forall z \exists \cdots M(x, y, z, \ldots)]$

D Even P can yield \#P-complete!

Example: \#DNF

Count sat assignments to DNF:

$$
\left(x_{1} \wedge \overline{x_{2}} \wedge x_{3}\right) \vee(\cdots) \vee \cdots
$$

Proof of hardness: \#DNF $=2^{n}-\# C N F$.

Example: bipartite perfect matching

Counting perfect matchings in bipartite graphs is \#P-complete. [Valiant'79]

D \#P-complete problems are really hard. At least as hard as NP.
\bigcirc Much harder: $\mathrm{PH} \subseteq \mathrm{P}^{\# \mathrm{P}}$ [Toda'91]. : poly hierarchy: $x \mapsto \mathbb{\square}[\exists y \forall z \exists \cdots M(x, y, z, \ldots)]$

D Even P can yield \#P-complete!

Example: \#DNF

Count sat assignments to DNF:

$$
\left(x_{1} \wedge \overline{x_{2}} \wedge x_{3}\right) \vee(\cdots) \vee \cdots
$$

Proof of hardness: \#DNF $=2^{n}-\# C N F$.

Example: bipartite perfect matching

Counting perfect matchings in bipartite graphs is \#P-complete. [Valiant'79]
D Reductions are not parsimonious.

D \#P-complete problems are really hard. At least as hard as NP.
\bigcirc Much harder: $\mathrm{PH} \subseteq \mathrm{P}^{\# \mathrm{P}}$ [Toda'91]. : poly hierarchy: $x \mapsto \mathbb{\mathbb { 1 }}[\exists y \forall z \exists \cdots M(x, y, z, \ldots)]$

D Even P can yield \#P-complete!

Example: \#DNF

Count sat assignments to DNF:

$$
\left(x_{1} \wedge \overline{x_{2}} \wedge x_{3}\right) \vee(\cdots) \vee \cdots
$$

Proof of hardness: \#DNF $=2^{n}-\# C N F$.

Example: bipartite perfect matching

Counting perfect matchings in bipartite graphs is \#P-complete. [Valiant'79]
D Reductions are not parsimonious.
D Observation: efficient counting known for only a handful of gems: spanning trees, planar perf. matchings, Eulerian circuits, ... will come back to them

All hope is lost?

What is "Counting and Sampling"?

Bit of Complexity Theory

- The class \#P

D Parsimonious reductions
Approximation
D Counting: FPTAS/FPRAS
\checkmark Sampling: FPAUS

- Equivalence

First Algorithm: DNFs

What is "Counting and Sampling"? Bit of Complexity Theory
\checkmark The class \#P
D Parsimonious reductions
Approximation
D Counting: FPTAS/FPRAS
\checkmark Sampling: FPAUS

- Equivalence

First Algorithm: DNFs

Approximation to the rescue
Approx. counting: output Z with

$$
Z \leqslant \text { count } \leqslant(1+\epsilon) Z .
$$

Approximation to the rescue

\checkmark Approx. counting: output Z with

$$
Z \leqslant \text { count } \leqslant(1+\epsilon) Z . \text { FPTAS }
$$

D Fully poly-time approx. scheme: above with runtime poly $(\underset{\uparrow}{n}, 1 / \epsilon)$.
input size

Approximation to the rescue

D Approx. counting: output Z with

$$
Z \leqslant \text { count } \leqslant(1+\epsilon) Z . \text { FPTAS }
$$

D Fully poly-time approx. scheme: above with runtime poly $(\underset{\uparrow}{n}, 1 / \epsilon)$. FPRAS
input size
D Fully poly rand. approx. scheme: above but with randomness and $2 / 3$ chance of success.

Approximation to the rescue

D Approx. counting: output Z with

$$
Z \leqslant \text { count } \leqslant(1+\epsilon) Z .
$$

D Fully poly-time approx. scheme: above with runtime $\operatorname{poly}(\underset{\uparrow}{n}, 1 / \epsilon)$. FPRAS
input size
D Fully poly rand. approx. scheme: above but with randomness and $2 / 3$ chance of success.
D Exercise: $2 / 3$ can be replaced by $1-\delta$ with runtime $\operatorname{poly}(n, 1 / \epsilon, \log (1 / \delta))$.

Approximation to the rescue

D Approx. counting: output Z with

D Fully poly-time approx. scheme:
above with runtime $\operatorname{poly}(\underset{\uparrow}{n}, 1 / \epsilon)$. FPRAS
input size

- Fully poly rand. approx. scheme: above but with randomness and $2 / 3$ chance of success.
\checkmark Exercise: $2 / 3$ can be replaced by $1-\delta$ with runtime $\operatorname{poly}(n, 1 / \epsilon, \log (1 / \delta))$.
rand. approx
D 1 - δ with runtime poly(n,1/e,log(1/8).
$Z \leqslant$ count $\leqslant(1+\epsilon) Z$. FPTAS

$$
Z \leqslant \text { count } \leqslant(1+\epsilon) Z . \text { FPTAS }
$$

D Why all ϵ ? Why not 100-approx?
,
\square

Approximation to the rescue

© Approx. counting: output Z with

$$
Z \leqslant \text { count } \leqslant(1+\epsilon) Z .
$$

D Fully poly-time approx. scheme: above with runtime $\operatorname{poly}(\underset{\uparrow}{n}, 1 / \epsilon)$. FPRAS
input size
\bigcirc Fully poly rand. approx. scheme: above but with randomness and $2 / 3$ chance of success.
D Exercise: $2 / 3$ can be replaced by $1-\delta$ with runtime $\operatorname{poly}(n, 1 / \epsilon, \log (1 / \delta))$.
D Why all ϵ ? Why not 100-approx?
D Approx. counting is all-or-nothing.

Approximation to the rescue

D Approx. counting: output Z with

$$
Z \leqslant \text { count } \leqslant(1+\epsilon) Z . \text { FPTAS }
$$

- Fully poly-time approx. scheme: above with runtime $\operatorname{poly}(\underset{\uparrow}{ }, 1 / \epsilon)$. FPRAS
input size
\bigcirc Fully poly rand. approx. scheme: above but with randomness and $2 / 3$ chance of success.
- Exercise: $2 / 3$ can be replaced by $1-\delta$ with runtime $\operatorname{poly}(n, 1 / \epsilon, \log (1 / \delta))$.

D Why all ϵ ? Why not 100-approx?
D Approx. counting is all-or-nothing.

Example: \#SAT

Suppose A is $f(n)$-approx. alg. Give

$$
\phi^{(1)} \wedge \phi^{(2)} \wedge \cdots \wedge \phi^{(t)}
$$

with $\phi^{(i)}$ being disjoint copies of ϕ.

$$
\sqrt[t]{\text { output }} \approx \# S A T(\phi)
$$

Approx. ratio is $\sqrt[t]{f(n t)}$. Even for $f(n)=2^{n^{0.99}}$, enough to set $t=$ $\operatorname{poly}(n, 1 / \epsilon)$ to get $\sqrt[t]{f(n t)} \leqslant 1+\epsilon$.

D For any "tensorizable" problem, nothing between $1+\epsilon$ and exponential.

D For any "tensorizable" problem, nothing between $1+\epsilon$ and exponential.
D For "self-reducible" probs, poly(n)-approx gives an FPRAS. [Jerrum-Sinclair].
will see later in the course

Approximate sampling

D Notion of approximation: For dists
ν, μ on Ω we use total variation:

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{TV}}(\nu, \mu) \\
& =\max \left\{\mathbb{P}_{\nu}[\mathrm{E}]-\mathbb{P}_{\mu}[\mathrm{E}] \mid \mathrm{E} \subseteq \Omega\right\} \\
& =\frac{1}{2} \sum_{\omega \in \Omega}|\mu(\omega)-v(\omega)| .
\end{aligned}
$$

Approximate sampling

\bigcirc Notion of approximation: For dists
ν, μ on Ω we use total variation:

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{TV}}(\nu, \mu) \\
& =\max \left\{\mathbb{P}_{\nu}[\mathrm{E}]-\mathbb{P}_{\mu}[\mathrm{E}] \mid \mathrm{E} \subseteq \Omega\right\} \\
& =\frac{1}{2} \sum_{\omega \in \Omega}|\mu(\omega)-v(\omega)| . \\
& \text { D Fully poly approx. unif. sampler: } \\
& \text { output distribution has } \mathrm{d}_{\mathrm{TV}} \leqslant \delta \\
& \text { and runtime is poly }(n, \log (1 / \delta)) \text {. }
\end{aligned}
$$

Approximate sampling

D Notion of approximation: For dists ν, μ on Ω we use total variation:

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{TV}}(\nu, \mu) \\
& \quad=\max \left\{\mathbb{P}_{\nu}[\mathrm{E}]-\mathbb{P}_{\mu}[\mathrm{E}] \mid \mathrm{E} \subseteq \Omega\right\}
\end{aligned}
$$

$$
=\frac{1}{2} \sum_{\omega \in \Omega}|\mu(\omega)-v(\omega)|
$$

\checkmark Fully poly approx. unif. sampler: output distribution has $\mathrm{d}_{\mathrm{TV}} \leqslant \delta$ and runtime is poly $(\mathrm{n}, \log (1 / \delta))$.
\bigcirc Note: the log dependence on δ is similarly "all-or-nothing".

Approximate sampling

\bigcirc Notion of approximation: For dists ν, μ on Ω we use total variation:

$$
\begin{aligned}
& \mathrm{d}_{\operatorname{TV}}(\nu, \mu) \\
& \quad=\max \left\{\mathbb{P}_{\nu}[\mathrm{E}]-\mathbb{P}_{\mu}[\mathrm{E}] \mid \mathrm{E} \subseteq \Omega\right\}
\end{aligned}
$$

$$
=\frac{1}{2} \sum_{\omega \in \Omega}|\mu(\omega)-v(\omega)|
$$

D Fully poly approx. unif. sampler: output distribution has $\mathrm{d}_{\mathrm{TV}} \leqslant \delta$ and runtime is poly $(n, \log (1 / \delta))$.
\bigcirc Note: the log dependence on δ is similarly "all-or-nothing".

Theorem [Jerrum-Valiant-Vazirani]
For "self-reducible" problems:
approx counting \equiv approx sampling
(FPRAS)
Exact Counting \longrightarrow Approx Counting

Exact Sampling \longrightarrow Approx Sampling (FPAUS)
arrows are poly-time reductions

Counting via Markov chains

- Basis of Markov Chain Monte Carlo: Approx Sampler \rightarrow Approx Counter.

Counting via Markov chains

- Basis of Markov Chain Monte Carlo: Approx Sampler \rightarrow Approx Counter.
- A good portion of this course will be on sampling via Markov chains.

$$
\begin{aligned}
x_{0} \rightarrow x_{1} & \rightarrow \cdots \rightarrow x_{t} \\
& \text { hope this is close to } \mu
\end{aligned}
$$

What is "Counting and Sampling"? Bit of Complexity Theory
\checkmark The class \#P
D Parsimonious reductions
Approximation
D Counting: FPTAS/FPRAS
\checkmark Sampling: FPAUS

- Equivalence

First Algorithm: DNFs

What is "Counting and Sampling"? Bit of Complexity Theory
\checkmark The class \#P
D Parsimonious reductions
Approximation
D Counting: FPTAS/FPRAS
\checkmark Sampling: FPAUS

- Equivalence

First Algorithm: DNFs

Given DNF formula

$$
\phi=\left(x_{1} \wedge \overline{x_{2}} \wedge x_{3}\right) \vee \cdots,
$$

can we approx sample/count satisfying assignments?

Given DNF formula

$$
\phi=\left(x_{1} \wedge \overline{x_{2}} \wedge x_{3}\right) \vee \cdots,
$$

can we approx sample/count satisfying assignments?

Naïve attempt

while not accepted do
sample $x \in\{0,1\}^{n}$ u.a.r.
if x sats ϕ then
accept and return x

Given DNF formula

$$
\phi=\left(x_{1} \wedge \overline{x_{2}} \wedge x_{3}\right) \vee \cdots,
$$

can we approx sample/count satisfying assignments?

Naïve attempt

while not accepted do
sample $x \in\{0,1\}^{n}$ u.a.r.
if x sats ϕ then
accept and return x

- This is an instance of rejection sampling.

Given DNF formula

$$
\phi=\left(x_{1} \wedge \overline{x_{2}} \wedge x_{3}\right) \vee \cdots,
$$

can we approx sample/count satisfying assignments?

Naïve attempt

while not accepted do
sample $x \in\{0,1\}^{n}$ u.a.r. if x sats ϕ then
\lfloor accept and return x

Rejection sampling

We have access to sampler for v, but want samples $\propto \mu$:
while not accepted do
sample $x \sim v$ accept w.p. $c \mu(x) / v(x)$
small enough that prob is always $\leqslant 1$
D This is an instance of rejection sampling.

Given DNF formula

$$
\phi=\left(x_{1} \wedge \overline{x_{2}} \wedge x_{3}\right) \vee \cdots,
$$

can we approx sample/count satisfying assignments?

Naïve attempt

while not accepted do
sample $x \in\{0,1\}^{n}$ u.a.r. if x sats ϕ then
\lfloor accept and return x

Rejection sampling

We have access to sampler for v, but want samples $\propto \mu$:
while not accepted do
sample $x \sim v$ accept w.p. $c \mu(x) / v(x)$
small enough that prob is always $\leqslant 1$
\bigcirc Output is always \sim normalized μ;

D This is an instance of rejection sampling.

Given DNF formula

$$
\phi=\left(x_{1} \wedge \overline{x_{2}} \wedge x_{3}\right) \vee \cdots,
$$

can we approx sample/count satisfying assignments?

Naïve attempt

while not accepted do
sample $x \in\{0,1\}^{n}$ u.a.r.
if x sats ϕ then
\lfloor accept and return x

Rejection sampling

We have access to sampler for v, but want samples $\propto \mu$:
while not accepted do
sample $x \sim v$ accept w.p. $c \mu(x) / v(x)$
small enough that prob is always $\leqslant 1$
\bigcirc Output is always ~normalized μ;
\bigcirc Can take a long time :

- This is an instance of rejection sampling.

Given DNF formula

$$
\phi=\left(x_{1} \wedge \overline{x_{2}} \wedge x_{3}\right) \vee \cdots,
$$

can we approx sample/count satisfying assignments?

Naïve attempt

while not accepted do
sample $x \in\{0,1\}^{n}$ u.a.r. if x sats ϕ then
\lfloor accept and return x

Rejection sampling

We have access to sampler for v, but want samples $\propto \mu$:
while not accepted do
sample $x \sim v$ accept w.p. $c \mu(x) / v(x)$
small enough that prob is always $\leqslant 1$
D Output is always ~normalized μ;
\bigcirc Can take a long time :
D If μ is normalized, the best c is $\min \{v(x) / \mu(x)\}$, and it takes $\simeq \max \{\mu(x) / \nu(x)\}$ iterations.

- This is an instance of rejection sampling.

Given DNF formula

$$
\phi=\left(x_{1} \wedge \overline{x_{2}} \wedge x_{3}\right) \vee \cdots,
$$

can we approx sample/count satisfying assignments?

Naïve attempt

while not accepted do
sample $x \in\{0,1\}^{n}$ u.a.r. if x sats ϕ then
Laccept and return x

- This is an instance of rejection sampling.

Rejection sampling

We have access to sampler for v, but want samples $\propto \mu$:
while not accepted do
sample $x \sim v$ accept w.p. $c \mu(x) / v(x)$
small enough that prob is always $\leqslant 1$
D Output is always ~normalized μ;
\bigcirc Can take a long time :
D If μ is normalized, the best c is $\min \{v(x) / \mu(x)\}$, and it takes $\simeq \max \{\mu(x) / \nu(x)\}$ iterations.
\triangle For $\phi=\left(x_{1} \wedge x_{2} \wedge \cdots \wedge x_{n}\right)$ it takes 2^{n} tries on average. $:$

A better envelope [Karp-Luby]

$$
\phi=C_{1} \vee C_{2} \vee \cdots \vee C_{m}
$$

A better envelope [Karp-Luby]

$$
\phi=C_{1} \vee C_{2} \vee \cdots \vee C_{m}
$$

D Let $A_{i}=\left\{\right.$ sat assignments of $\left.C_{i}\right\}$.

A better envelope [Karp-Luby]

$$
\phi=C_{1} \vee C_{2} \vee \cdots \vee C_{m}
$$

D Let $A_{i}=\left\{\right.$ sat assignments of $\left.C_{i}\right\}$.

- Want to sample from

$$
A_{1} \cup \cdots \cup A_{m}
$$

A better envelope [Karp-Luby]

$$
\phi=C_{1} \vee C_{2} \vee \cdots \vee C_{m}
$$

D Let $A_{i}=\left\{\right.$ sat assignments of $\left.C_{i}\right\}$.

- Want to sample from
$A_{1} \cup \cdots \cup A_{m}$. disjoint union
\bigcirc Idea: sample from $A_{1} \sqcup \ldots \sqcup A_{m}$ and rejection sample it into $A_{1} \cup \cdots \cup A_{m}$.

A better envelope [Karp-Luby]

$$
\phi=C_{1} \vee C_{2} \vee \cdots \vee C_{m}
$$

D Let $A_{i}=\left\{\right.$ sat assignments of $\left.C_{i}\right\}$.

- Want to sample from $A_{1} \cup \cdots \cup A_{m}$.
disjoint union
\bigcirc Idea: sample from $A_{1} \sqcup \ldots \sqcup A_{m}$ and rejection sample it into $A_{1} \cup \cdots \cup A_{m}$.
while not accepted do sample $x \in A_{1} \sqcup \cdots \sqcup A_{m}$ u.a.r. if x is sampled from A_{i} and $x \notin A_{j}$ for all $j<i$ then
accept and return x

$$
A_{m}
$$

$$
A_{2}
$$

A better envelope [Karp-Luby]

$$
\phi=C_{1} \vee C_{2} \vee \cdots \vee C_{m}
$$

D Let $A_{i}=\left\{\right.$ sat assignments of $\left.C_{i}\right\}$.

- Want to sample from $A_{1} \cup \cdots \cup A_{m}$.

disjoint union

\bigcirc Idea: sample from $A_{1} \sqcup \ldots \sqcup A_{m}$ and rejection sample it into $A_{1} \cup \cdots \cup A_{m}$.
while not accepted do sample $x \in A_{1} \sqcup \cdots \sqcup A_{m}$ u.a.r. if x is sampled from A_{i} and $x \notin A_{j}$ for all $j<i$ then
accept and return x

$$
A_{m}
$$

$$
A_{2}
$$

A_{1}

D Chance of acceptance $\geqslant 1 / \mathrm{m}$.

A better envelope [Karp-Luby]

$$
\phi=C_{1} \vee C_{2} \vee \cdots \vee C_{m}
$$

D Let $A_{i}=\left\{\right.$ sat assignments of $\left.C_{i}\right\}$.

- Want to sample from $A_{1} \cup \cdots \cup A_{m}$.
\bigcirc Idea: sample from $A_{1} \sqcup \digamma \sqcup A_{m}$ and rejection sample it into $A_{1} \cup \cdots \cup A_{m}$.
while not accepted do sample $x \in A_{1} \sqcup \cdots \sqcup A_{m}$ u.a.r. if x is sampled from A_{i} and $x \notin A_{j}$ for all $j<i$ then accept and return x

A_{m}

$$
A_{2}
$$

A_{1}

D Chance of acceptance $\geqslant 1 / \mathrm{m}$.
D On average $\simeq \mathfrak{m}$ iterations suffice.

A better envelope [Karp-Luby]

$$
\phi=C_{1} \vee C_{2} \vee \cdots \vee C_{m}
$$

D Let $A_{i}=\left\{\right.$ sat assignments of $\left.C_{i}\right\}$.

- Want to sample from $A_{1} \cup \cdots \cup A_{m}$.
disjoint union
\triangle Idea: sample from $A_{1} \sqcup \ldots \sqcup A_{m}$ and rejection sample it into $A_{1} \cup \cdots \cup A_{m}$.
while not accepted do sample $x \in A_{1} \sqcup \cdots \sqcup A_{m}$ u.a.r. if x is sampled from A_{i} and $x \notin A_{j}$ for all $j<i$ then L accept and return x
A_{m}
A_{2}
A_{1}
- Chance of acceptance $\geqslant 1 / \mathrm{m}$.
D On average $\simeq m$ iterations suffice.
D Next lecture: turning this into approx counting.

