CS 263: Counting and Sampling

S Stanford
University
slides for

Introduction

\Logistics

(> Course staff:

Nima Anari Victor Lecomte
(Instructor) (Course Assistant)

2/20

https://cs263.stanford.edu

\Logistics /

(> Course staff:

Nima Anari Victor Lecomte
(Instructor) (Course Assistant)

> You:
~39 undergrad + masters + Ph.D.

A
r ~

2/20

https://cs263.stanford.edu

\Logistics /

> Course staff: https://cs263.stanford.edu

Nima Anari Victor Lecomte
(Instructor) (Course Assistant)

> You:
~39 undergrad + masters + Ph.D.

A
r ~

2/20

https://cs263.stanford.edu

\Logistics /

> Course staff: https://cs263.stanford.edu

> Lectures: Monday, Wednesday
3:00 pm - 4:20 pm (Hewlett 102)
> Recorded and on Canvas
> Plans to make edited recordings
public later ...

Nima Anari Victor Lecomte
(Instructor) (Course Assistant)

> You:
~39 undergrad + masters + Ph.D.

A
r ~

2/20

https://cs263.stanford.edu

\Logistics /

https://cs263.stanford.edu

> Course staff:
> Lectures: Monday, Wednesday
3:00 pm - 4:20 pm (Hewlett 102)

> Recorded and on Canvas
> Plans to make edited recordings

public later ...

Nima Anari Victor Lecomte
(Instructor) (Course Assistant) > Homework: 4 sets (20% each)

> You:
~39 undergrad + masters + Ph.D.

A
~

r

2/20

https://cs263.stanford.edu

\Logistics /

> Course staff: https://cs263.stanford.edu

> Lectures: Monday, Wednesday
3:00 pm - 4:20 pm (Hewlett 102)
> Recorded and on Canvas
> Plans to make edited recordings
public later ...

Nima Anari Victor Lecomte
(Instructor) (Course Assistant) > Homework: 4 sets (20% each)

> You: O Final report: 20% of grade
> Groupsoflor?2
~39 undergrad imosters + Ph.D. ® Survey (of > 3 papers) or
’ s research (new progress) on
e 0 o o 0 O topics related to the course

2/20

https://cs263.stanford.edu

\Logistics /

> Course staff: https://cs263.stanford.edu

> Lectures: Monday, Wednesday
3:00 pm - 4:20 pm (Hewlett 102)
> Recorded and on Canvas
> Plans to make edited recordings
public later ...

Nima Anari Victor Lecomte
(Instructor) (Course Assistant) > Homework: 4 sets (20% each)

> You: & Final report: 20% of grade

> Groupsoflor?2
~39 undergrad imosters + Ph.D. ® Survey (of > 3 papers) or

’ s research (new progress) on

& & 6 & & & topics related to the course
> Office hours: Starting next week

2/20

https://cs263.stanford.edu

What is “Counting and Sampling™?
Bit of Complexity Theory

> The class #P
> Parsimonious reductions

Approximation

> Counting: FPTAS/FPRAS
> Sampling: FPAUS

> Equivalence

First Algorithm: DNFs

Bit of Complexity Theory
> The class #P
> Parsimonious reductions

Approximation

> Counting: FPTAS/FPRAS
> Sampling: FPAUS

> Equivalence

First Algorithm: DNFs

usually finite but exp. large

Distribution u on Icrg\e‘Q

5/20

usually finite but exp. large

Distribution u on Icrg\e‘Q

> Sampling: efficiently producing
sample w ~ .

5/20

usually finite but exp. large
Distribution 1 on large'Q
efficiently producing
sample w ~ .

efficiently computing
P, [event] for events of interest.

5/20

usually finite but exp. large

Distribution u on Icrg\e‘Q

> Sampling: efficiently producing
sample w ~ .

> Counting: efficiently computing
P, [event] for events of interest.

Example: #SAT
¢ = (x1 VX2Vx3)AXTVx2Vxg)A- -

> Qis{o, 1™
& wis uniform over satisfuing
assignments.

5/20

usually finite but exp. large

Distribution u on Icrg\e‘Q

> Sampling: efficiently producing
sample w ~ .

> Counting: efficiently computing
P, [event] for events of interest.

Example: #SAT
¢ = (x1 VX2Vx3)AXTVx2Vxg)A- -

> Qis{o, 1™
& wis uniform over satisfuing
assignments.

> Whyisit called counting?

5/20

usually finite but exp. large

Distribution u on Icrg\e‘Q

> Sampling: efficiently producing
sample w ~ .

> Counting: efficiently computing
P, [event] for events of interest.

Example: #SAT
¢ = (x1 VX2Vx3)AXTVx2Vxg)A- -

> Qis{o, 1™
& wis uniform over satisfuing
assignments.

> Whyisit called counting?
> Because Plx; =1] =

#sat assignments of ¢ with x; =1

#sat assignments of ¢

5/20

usually finite but exp. large

Distribution u on Icrg\e‘Q

> Sampling: efficiently producing
sample w ~ .

> Counting: efficiently computing
P, [event] for events of interest.

Example: #SAT
¢ = (x1 VX2Vx3)AXTVx2Vxg)A- -

> Qis{o, 1™
& wis uniform over satisfuing
assignments.

> Whyisit called counting?
> Because Plx; =1] =

#sat assignments of ¢ with x; =1

#sat assignments of ¢

> The numerator and denominator
are counts.

5/20

usually finite but exp. large

Distribution p on Icrg\e‘Q > Whyis it called counting?
> Because Plx; =1] =
> Sampling: efficiently producing
sample w ~ . #sat assignments of ¢ with x; =1
> Counting: efficiently computing #sat assignments of ¢
P, [event] for events of interest.

> The numerator and denominator

Example: #SAT are counts.
¢ =(x1 V2 Vx3)A KT VX2 Vxa)A--- B Infact, numerator is #sat
assignments to
o Qis{o, 1}
¢’ =dAx.

& wis uniform over satisfuing
assignments. This is called “self-reducibility”.
0
will come back to this later

5/20

\Formolism /

w.rt. an easy background measure on Q, usually counting/uniform on finite Q

v
Suppose wis an unnormalized density:

LL:Q—)R>O

6/20

\Formolism /

w.rt. an easy background measure on Q, usually counting/uniform on finite Q

v
Suppose wis an unnormalized density:

LL:Q—HR)()

Definition: sampling

Produce w € Q with

Plw] < p(w).

6/20

\Formolism /

w.rt. an easy background measure on Q, usually counting/uniform on finite Q

v
Suppose wis an unnormalized density:

n:Q — R)o
Definition: sampling Definition: counting
Produce w € Q with Compute the normalizing factor

Plw] ox (). > wlw).

6/20

\Formolism /

w.rt. an easy background measure on Q, usually counting/uniform on finite Q

v
Suppose wis an unnormalized density:

n:Q — R)o
Definition: sampiing
Produce w € Q with Compute the normalizing factor
Plw] o p(w). 3w,
w

Stondard assumption: wis easy to compute for any desired point w € Q.

6/20

Example: SAT

¢ =x1 VXZVx3)AXTVx2 VXg) A - -

G Q ={0,1}™«—— assignments
O u(x) = 1[x satisfies]

7/20

Example: SAT

¢ =x1 VXZVx3)AXTVx2 VXg) A - -

G Q ={0,1}™«—— assignments
O u(x) = 1[x satisfies]

Example: spin systems

graph G = (V, E)

C Q={+, —}V<— could be larger
D H.(X) = HuN\;(IT)(XU)XV)

local interaction

7/20

Example: SAT Example: generative Al models

¢ = VRVIAKTVV)A--- D Q={88 MW, .} images
> Q ={good job, slay, sus,...}«<— text

G Q ={0,1}™«—— assignments
O ulx) = 1[x satisfies ¢] We don’t know p. We learn something
pieg) = Llbe SEETIES ¢ about it from data. What to learn is

Example: spin systems often guided by a sampling algorithm.

> Score-based models: V log n
graph G = (V,E)

nearby points

o e
X x + Ax
C Q={+, _}V<— could be larger w(x + Ax)

G uix) = HUWCITD(xu,xv) g S oe(Vieg - Ax).

local interaction
7/20

Bit of Complexity Theory
> The class #P
> Parsimonious reductions

Approximation

> Counting: FPTAS/FPRAS
> Sampling: FPAUS

> Equivalence

First Algorithm: DNFs

What is “Counting and Sampling™?

> The class #P
> Parsimonious reductions

Approximation

> Counting: FPTAS/FPRAS
> Sampling: FPAUS

> Equivalence

First Algorithm: DNFs

Poly-time nondet. Turing machine M

M }x,y}{{Accept, Reject}

input witness/nondet. choices

Example: SAT

Msat @ (formula ¢, assignment x) —

Accept if x satisfies ¢,
Reject otherwise.

9/20

Poly-time nondet. Turing machine M > NP consists of all functions

x — 13y : M(x,y) = Accept].

M }x,y}{{Accept, Reject}

input witness/nondet. choices

Example: SAT

Msat @ (formula ¢, assignment x) —

Accept if x satisfies ¢,
Reject otherwise.

9/20

Poly-time nondet. Turing machine M > NP consists of all functions

x — 13y : M(x,y) = Accept].

(}Z{:i EI > #P consists of all functions

M }x,y}{{Accept, Reject}

input witness/nondet. choices

x = lfy | M(x,y) = Accept}|.

Example: SAT

Msat @ (formula ¢, assignment x) —

Accept if x satisfies ¢,
Reject otherwise.

9/20

Poly-time nondet. Turing machine M

M }x,y}{{Accept, Reject}

input witness/nondet. choices

Example: SAT

Msat @ (formula ¢, assignment x) —

{Accept if x satisfies ¢,

Reject otherwise.

> NP consists of all functions

x — 13y : M(x,y) = Accept].
> /4P consists of all functions

x = lfy | M(x,y) = Accept}|.

> Every NP problem has (TJ #P

variant.)
not unique

9/20

Poly-time nondet. Turing machine M

M }x,y}{{Accept, Reject}

input witness/nondet. choices

Example: SAT

Msat @ (formula ¢, assignment x) —

Accept if x satisfies ¢,
Reject otherwise.

o

(B

NP consists of all functions

x — 13y : M(x,y) = Accept].

4P consists of all functions

x = lfy | M(x,y) = Accept}|.

> Every NP problem has (TJ #P

variant.)
not unique

> #P-complete: Every other #P

problem poly-time reduces to it.

9/20

Poly-time nondet. Turing machine M

M }x,y}{{Accept, Reject}

input witness/nondet. choices

Example: SAT

Msat @ (formula ¢, assignment x) —

Accept if x satisfies ¢,
Reject otherwise.

o

NP consists of all functions
x — 13y : M(x,y) = Accept].
4P consists of all functions

x = lfy | M(x,y) = Accept}|.

> Every NP problem has (TJ #P

variant.)
not unique

#P-complete: Every other #P
problem poly-time reduces to it.

Harder than NP-completel!

H#SAT #2-SAT
#3-Colorings #Matchings
#Ind. Sets #Trees

9/20

Poly-time nondet. Turing machine M > NP consists of all functions

x — 13y : M(x,y) = Accept].

E(}:Qii % > #P consists of all functions

x = lfy | M(x,y) = Accept}|.

M : (x,y) — {Accept, Reject}
) ’yl\ PhRel > Every NP problem has a #P
input witness/nondet. choices variant.))
not unique
> #P-complete: Every other #P
Example: SAT problem poly-time reduces to it.

Msat : (formula ¢, assignment x) — > Harder than NP-complete!

A ¢ oif tisfi @ #SAT #2-SAT
Céep hxsa |§ 1 0, #3-Colorings #Matchings
Reject otherwise. #Ind. Sets HTrees

9/20

Poly-time nondet. Turing machine M > NP consists of all functions

x — 13y : M(x,y) = Accept].

E(}:Qii % > #P consists of all functions

x = lfy | M(x,y) = Accept}|.

M : (x,y) — {Accept, Reject}
) ’yl\ PhRel > Every NP problem has a #P
input witness/nondet. choices variant.))
not unique
> #P-complete: Every other #P
Example: SAT problem poly-time reduces to it.

Msat : (formula ¢, assignment x) — > Harder than NP-complete!
. e @ #SAT #2-SAT
ACf:ept Ee sot@ﬂes b, @ #3-Colorings #Matchings
Reject otherwise. #Ind. Sets HTrees

9/20

Poly-time nondet. Turing machine M

M }x,y}{{Accept, Reject}

input witness/nondet. choices

Example: SAT

Msat @ (formula ¢, assignment x) —

otherwise.

Accept if x satisfies ¢,
Reject

o

NP consists of all functions
x — 13y : M(x,y) = Accept].
4P consists of all functions

x = lfy | M(x,y) = Accept}|.

> Every NP problem has (TJ #P

variant.)
not unique

> #P-complete: Every other #P

(B

problem poly-time reduces to it.
Harder than NP-completel!

@ #SAT #2-SAT
@ #3-Colorings #Matchings
@ #Ind. Sets #Trees

9/20

Poly-time nondet. Turing machine M

M }x,y}{{Accept, Reject}

input witness/nondet. choices

Example: SAT

Msat @ (formula ¢, assignment x) —

otherwise.

Accept if x satisfies ¢,
Reject

o

NP consists of all functions
x — 13y : M(x,y) = Accept].
4P consists of all functions

x = lfy | M(x,y) = Accept}|.

> Every NP problem has (TJ #P

variant.)
not unique

> #P-complete: Every other #P

(B

problem poly-time reduces to it.
Harder than NP-completel!

@ #SAT ® #2-SAT
@ #3-Colorings #Matchings
@ #Ind. Sets #Trees

9/20

Poly-time nondet. Turing machine M

M }x,y}{{Accept, Reject}

input witness/nondet. choices

Example: SAT

Msat @ (formula ¢, assignment x) —

otherwise.

Accept if x satisfies ¢,
Reject

o

NP consists of all functions
x — 13y : M(x,y) = Accept].
4P consists of all functions

x = lfy | M(x,y) = Accept}|.

> Every NP problem has (TJ #P

variant.)
not unique

> #P-complete: Every other #P

(B

problem poly-time reduces to it.
Harder than NP-completel!

@ #SAT ® #2-SAT
@ #3-Colorings @ #Matchings
@ #Ind. Sets #Trees

9/20

Poly-time nondet. Turing machine M > NP consists of all functions

x — 13y : M(x,y) = Accept].

E(}:Qii % > #P consists of all functions

x = lfy | M(x,y) = Accept}|.

M : (x,y) — {Accept, Reject}
) ’yl\ PhRel > Every NP problem has a #P
input witness/nondet. choices variant.))
not unique
O #P-complete: Every other #P
Example: SAT problem poly-time reduces to it.

Msat : (formula ¢, assignment x) — > Harder than NP-complete!
A . tisfi @ #SAT ® #2-SAT
{ c.cep hxsa |§ 1 0, @ #3-Colorings @ #Matchings
Reject otherwise. ® #Ind. Sets © #Trees

9/20

\Reductions /

All NP problems reduce to SAT [Cook-Levin].

| E [Cook-Levin] reduction o
B T

10/20

\Reductions /

All NP problems reduce to SAT [Cook-Levin].

: : [Cook-Levin] reduction o
: : } (X]\/Xz\/"‘)/\"‘

> This reduction is parsimonious. There is a one-to-one correspondence:
accepting pothSstsignments

m-to-n is also called parsimonious

10/20

\Reductions /

All NP problems reduce to SAT [Cook-Levin].

: E [Cook-Levin] reduction o
| . | (x] VXZV -) A

> This reduction is parsimonious. There is a one-to-one correspondence:
accepting pothSstsignments
> Thus #SAT is #P-complete. m-to-n is also called parsimonious

10/20

\Red uctions /

All NP problems reduce to SAT [Cook-Levin].

\VAV,

: E [Cook-Levin] reduction o
| . | (x] VXZV -) A

This reduction is parsimonious. There is a one-to-one correspondence:
accepting pothSstsignments
Thus #SAT is #P-complete. m-to-n is also called parsimonious

In fact, all the natural NP-complete problems we know admit parsimonious
reductions: #3-Colorings, #Hamiltonian Cycles, ...

10/20

\Red uctions

All NP problems reduce to SAT [Cook-Levin].

v 9 ©

: E [Cook-Levin] reduction o
| . | (x] VXZV -) A

This reduction is parsimonious. There is a one-to-one correspondence:
accepting pothSstsignments
Thus #SAT is #P-complete. m-to-n is also called parsimonious

In fact, all the natural NP-complete problems we know admit parsimonious
reductions: #3-Colorings, #Hamiltonian Cycles, ...

Open problem: Do all NP-complete problems have a #P-complete variant?

10/20

> #P-complete problems are really
hard. At least as hard as NP.

1/20

> #P-complete problems are really
hard. At least as hard as NP.

> Much harder: PTHQ P#P [Toda'91]. @
poly hierarchy: x — 1[3yvz3--- M(x,y, z,...)]

1/20

> #P-complete problems are really
hard. At least as hard as NP.

> Much harder: PTHQ P#P [Toda'91]. @
poly hierarchy: x — 1[3yvz3--- M(x,y, z,...)]

> Even P can yield #P-complete!

1/20

> #P-complete problems are really
hard. At least as hard as NP.

> Much harder: PTHQ P#P [Toda'91]. @
poly hierarchy: x — 1[3yvz3--- M(x,y, z,...)]

> Even P can yield #P-complete!

Example: #DNF
Count sat assignments to DNF:

(x1 AZAX3)V (-)V -

Proof of hardness: #DNF = 2™ —#CNF.

1/20

> #P-complete problems are really
hard. At least as hard as NP.

> Much harder: PTHQ P#P [Toda'91]. @
poly hierarchy: x — 1[3yvz3--- M(x,y, z,...)]

> Even P can yield #P-complete!

Example: #DNF
Count sat assignments to DNF:

(x1 AZAX3)V (-)V -

Proof of hardness: #DNF = 2™ —#CNF.

Example: bipartite perfect matching

et

Counting perfect matchings in bipar-
tite graphs is #P-complete. [Valiant'79]

1/20

> #P-complete problems are really 3y el At N e e eiae)

hard. At least as hard as NP.
> Much harder: PTHg P#P [Toda'91]. @ W
poly hierarchy: x — 1[3yvz3--- M(x,y, z,...)]
(> Even P can yield #P-complete! Counting perfect matchings in bipar-

Example: #DNF tite graphs is #P-complete. [Valiant'79]

Count sat assignments to DNF: > Reductions are not parsimonious.

(x1 AZAX3)V (-)V -

Proof of hardness: #DNF = 2™ —#CNF.

1/20

> #P-complete problems are really 3y el At N e e eiae)

hard. At least as hard as NP.
> Much harder: PTHg P#P [Toda'91]. @ W
poly hierarchy: x — 1[3yvz3--- M(x,y, z,...)]
(> Even P can yield #P-complete! Counting perfect matchings in bipar-

Example: #DNF tite graphs is #P-complete. [Valiant'79]

Count sat assignments to DNF: > Reductions are not parsimonious.

() ATGAXI)V (e)V oo > Observation: efficient counting

known for only a handful of gems:

Proof of hardness: #DNF = 2™ —#CNF. spanning trees, planar perf.
matchings, EuIerionTcircuits,

will come back to them

1/20

All hope is lost?

12/20

What is “Counting and Sampling™?

> The class #P
> Parsimonious reductions

Approximation

> Counting: FPTAS/FPRAS
> Sampling: FPAUS

> Equivalence

First Algorithm: DNFs

What is “Counting and Sampling™?
Bit of Complexity Theory

> The class #P
> Parsimonious reductions

> Counting: FPTAS/FPRAS
> Sampling: FPAUS
> Equivalence

First Algorithm: DNFs

\Approximotion to the rescue /

> Approx. counting: output Z with

Z <count< (14 ¢)Z.

14/20

\Approximotion to the rescue

> Approx. counting: output Z with

Z<count < (T+e)Z. e

& Fully poly-time approx. scheme:
above with runtime poly(TTL, 1/¢€).

input size

14/20

\Approximotion to the rescue /

> Approx. counting: output Z with

Z<count < (T+e)Z. e
& Fully poly-time approx. scheme:
above with runtime poly(TTL, 1/¢€).
FPRAS input size

\
& Fully poly rand. approx. scheme:
above but with randomness and
2/3 chance of success.

14/20

\Approximotion to the rescue

> Approx. counting: output Z with

Z<count < (T+€)Z. pppe

& Fully poly-time approx. scheme:
above with runtime pO|y(TTL, 1/¢€).

FPRAS input size

\
& Fully poly rand. approx. scheme:
above but with randomness and
2/3 chance of success.

> Exercise: 2/3 can be replaced by
1 — & with runtime

poly(n,1/e,log(1/8)).

14/20

\Approximotion to the rescue /

> Approx. counting: output Z with > Why all €? Why not 100-approx?

Z <count< (14 ¢)Z. EPTAS

& Fully poly-time approx. scheme:

above with runtime pO|y(TTL, 1/¢€).
FPRAS ~ input size

& Fully poly rand. approx. scheme:

above but with randomness and
2/3 chance of success.

> Exercise: 2/3 can be replaced by
1 — & with runtime

poly(n,1/e,log(1/8)).

14/20

\Approximotion to the rescue /

> Approx. counting: output Z with > Why all €? Why not 100-approx?

> Approx. counting is all-or-nothing,
* FPTAS

Z<count< (14+¢€)Z

& Fully poly-time approx. scheme:
above with runtime pO|y(TTL, 1/¢€).

FPRAS ~ input size
& Fully poly rand. approx. scheme:

above but with randomness and
2/3 chance of success.

> Exercise: 2/3 can be replaced by
1 — & with runtime

poly(n,1/e,log(1/8)).

14/20

\Approximotion to the rescue

> Approx. counting: output Z with

Z <count< (14 ¢)Z. EPTAS

(D

Fully poly-time approx. scheme:
above with runtime pO|y(TTL, 1/¢€).

FPRAS input size

\
Fully poly rand. approx. scheme:
above but with randomness and
2/3 chance of success.

Exercise: 2/3 can be replaced by
1 — & with runtime

poly(n,1/e,log(1/8)).

> Why all €? Why not 100-approx?
> Approx. counting is all-or-nothing.

Example: #SAT

Suppose A is f(n)-approx. alg. Give
d)(])/\d)(z)/\.../\d)(ﬂ

with ¢V being disjoint copies of ¢.

v/output ~ #SAT (¢
Approx. ratio is +{/f(nt). Even for

f(n) = o enough to set t =
poly(n,1/€) to get \/f(nt) <1+ e€.

J

14/20

\Approximotion is all-or-nothing /

> For any “tensorizable” problem,
nothing between 1+ € and
exponential.

15/20

\Approximotion is all-or-nothing /

> For any “tensorizable” problem,
nothing between 1+ € and
exponential.

> For “self-reducible” probs,
poly(n)-approx gives an FPRAS.

[Jerrum-Sinclair]. _
will see’ater in the course

15/20

\Approximote sampling

& Notion of approximation: For dists
v, Lon Q we use total variation:

drv(v,u)
= max{Py[E] —PL[E] | E C O}

=2 Y Inw) —vwll

we

16/20

\Approximote sampling /

& Notion of approximation: For dists
v, Lon Q we use total variation:

drv(v,u)
= max{Py[E] —PL[E] | E C O}

=2 Y Inw) —vwll
FPAUS W€

\ .
& Fully poly approx. unif. sampler:
output distribution has dtv < 8
and runtime is poly(n, log(1/6)).

16/20

\Approximote sampling /

& Notion of approximation: For dists
v, Lon Q we use total variation:

drv(v,u)
= max{Py[E] —PL[E] | E C O}

=2 Y @) V().
FPAUS weQ
~ _

& Fully poly approx. unif. sampler:
output distribution has dtv < 8
and runtime is poly(n, log(1/6)).

> Note: the log dependence on § is
similarly “all-or-nothing™.

16/20

\Approximote sampling

J

& Notion of approximation: For dists [RE 8RNI eaTt Ve lle s Ve ralge

v, Lon Q we use total variation:

drv(v,u)
= max{Py[E] —PL[E] | E C O}

=2 Y Inw) —vwll

FPAUS W€

~ _

& Fully poly approx. unif. sampler:
output distribution has dtv < 8
and runtime is poly(n, log(1/6)).

> Note: the log dependence on & is
similarly “all-or-nothing™.

For “self-reducible” problems:

approx counting = approx sampling

(FPRAS)
Exact Counting —— Approx Counting

| =]

Exact Sampling —— Approx Sampling

(FPAUS)
arrows are poly-time reductions

16/20

\Counting via Markov chains /

> Basis of Markov Chain
Monte Carlo: Approx
Sampler — Approx
Counter.

@"’@

17/20

\Counting via Markov chains /

> Basis of Markov Chain
Monte Carlo: Approx
Sampler — Approx
Counter.

> A good portion of this
course will be on

sampling via Markov
chains. '

X0 —+ X1 — - —>Xt

hope this is close ton

17/20

What is “Counting and Sampling™?
Bit of Complexity Theory

> The class #P
> Parsimonious reductions

> Counting: FPTAS/FPRAS
> Sampling: FPAUS
> Equivalence

First Algorithm: DNFs

What is “Counting and Sampling™?
Bit of Complexity Theory

> The class #P
> Parsimonious reductions

Approximation

> Counting: FPTAS/FPRAS
> Sampling: FPAUS

> Equivalence

Given DNF formula
b =x1 AXTAX3)V -+,

can we approx sample/count satisfying
assignments?

19/20

Given DNF formula
b =1 AXZAX3)V -+,

can we approx sample/count satisfying
assignments?

Naive attempt

while not accepted do
sample x € {0, 1} v.ar.
if x sats ¢ then
| accept and return x

19/20

Given DNF formula
b =1 AXZAX3)V -+,

can we approx sample/count satisfying
assignments?

Naive attempt

while not accepted do
sample x € {0, 1} v.ar.
if x sats ¢ then
| accept and return x

> This is an instance of rejection
sampling.

19/20

Given DNF formula Rejection sampling
b= (x1 AXTAX3) V- We have access to sampler for v, but
)

want samples o w:

can we approx sample/count satisfying while not accepted do
assignments? L sample x ~ v

T w.p.
aecept we W

while not accepted do
sample x € {0, 1} v.ar.
if x sats ¢ then
| accept and return x

small enough that prob is always < 1

> This is an instance of rejection
sampling.

19/20

Given DNF formula Rejection sampling

b=0aqg AZAX)V -, We have access to sampler for v, but
want samples o w:

can we approx sample/count satisfying while not accepted do

assignments? L sample x ~ v

T w.p.
aecept we W

while not accepted do
sample x € {0, 1} v.ar.
if x sats ¢ then
| accept and return x

small enough that prob is always < 1

> Output is always ~ normalized p ©

> This is an instance of rejection
sampling.

19/20

Given DNF formula Rejection sampling

b=0aqg AZAX)V -, We have access to sampler for v, but
want samples o w:
can we approx sample/count satisfying while not accepted do
assignments? L sample x ~ v

T w.p.
aecept we W

while not accepted do

sample x € {0, 1} v.ar.
if x sats ¢ then > Can take a long time ©

small enough that prob is always < 1

> Output is always ~ normalized p ©

| accept and return x

> This is an instance of rejection
sampling.

19/20

Given DNF formula Rejection sampling

b=0aqg AZAX)V -, We have access to sampler for v, but
want samples o w:
can we approx sample/count satisfying while not accepted do
assignments? L sample x ~ v

T w.p.
aecept we W

while not accepted do >
sample x € {0, 1} v.ar.
if x sats & then > Can take along time ©
O If wis normalized, the best ¢ is
min{v(x)/u(x)}, and it takes
~ max{u(x)/v(x)} iterations.

small enough that prob is always < 1

Output is always ~ normalized u ©

| accept and return x

> This is an instance of rejection
sampling.

19/20

Given DNF formula Rejection sampling

b= AGAX)V -, We have access to sampler for v, but
want samples o w:
can we approx sample/count satisfying while not accepted do
assignments? L sample x ~ v

T w.p.
aecept we W

small enough that prob is always < 1
while not accepted do >
sample x € {0, 1} v.ar.
if x sats & then > Can take a long time @
L accept and return x O If wis normalized, the best ¢ is
min{v(x)/u(x)}, and it takes
~ max{u(x)/v(x)} iterations.
> This is an instance of rejection > Ford = (x1 Axa A Axp) it
sampling. takes 2™ tries on average. @

Output is always ~ normalized u ©

19/20

\A better envelope [Karp-Luby] /

db=CiVCV--VCn

20/20

\A better envelope [Karp-Luby] /

d=Ci1VCV---VCiy

> Let Ay = {sat assignments of C;}.

20/20

\A better envelope [Karp-Luby]

d=Ci1VCV---VCiy

> Let Ay = {sat assignments of C;}.

> Wwant to sample from
AtU---UAn

20/20

\A better envelope [Karp-Luby]

(D

d=Ci1VCV---VCiy

Let A; = {sat assignments of Ci}.

> Wwant to sample from

AU UAnm. disjoint union

O Idea: sample from A1|_|f(|_l Am

and rejection sample it into
AtU---UAn.

20/20

\A better envelope [Karp-Luby] /

db=CiVCV--VCn . .
An | & & & b
> Let Ay = {sat assignments of Ci}. R e R R

> Wwant to sample from GE)E £ E £ E £ E
AjU--UAnm. disjoint union 9: _931___8_:__‘8:
O Idea: sample from A1|_|f(|_| Am A2 E I + + : E
and rejection sample it into ik vt S
AjU--UAn. Ai e e 5

while not accepted do
samplex € Ay U---UA uar
if x is sampled from A; and
x & Aj for allj < ithen
| accept and return x

20/20

\A better envelope [Karp-Luby] /

db=CVCV---VCy --r a
An | © ® ® ¢
> Let Ay = {sat assignments of C;}. e R e st

> Wwant to sample from GE)E £ E £ E £ E
AjU--UAnm. disjoint union 9: _931___8_:__‘8:
O Idea: sample from A1|_|f(|_| Am A2 E I + + : E
and rejection sample it into ik vt S
AjU--UAn. Ai e e 5

while not accepted do

samplex € Ay U---UA uar
if x is sampled from A; and > Chance of acceptance > 1/m.

x & Aj for allj < ithen
| accept and return x

20/20

\A better envelope [Karp-Luby] /

db=CiVCV--VCn . .
Am | &6 o & b
> Let A; ={sat assignments of Cj}. e R R el

> Wwant to sample from
ATU---UAnm. disjoint union

> Ideo: sample from A1|_|f(|_| Am Az
and rejection sample it into
AU UAm. Al

while not accepted do
samplex € Ay U---UA uar
if x is sampled from A; and > Chance of acceptance > 1/m.
x & Aj for allj < ithen > On average ~ m iterations suffice.
| accept and return x

same

C @t mmmm =
1 Same

1
1
r=="
II
~1-0-7+-@-r-~-~---~
1
1
1
1

20/20

\A better envelope [Karp-Luby] /

db=CiVCV--VCn . .
An | © ® ® ¢
> Let Ay = {sat assignments of C;}. e R e st

ol ol ol o
> Wwant to sample from g g' g' g
AjU- - UAnm. disjoint union 8: _921___8_:__ 8:
O Idea: sample from Aﬂ_lf(l_lAm A2 A ¢ : |
and rejection sample it into ik vt S
AtU---UAn. Aq X ® o ' . !
while not accepted do I :
samplex € Ay U---UA uar
if x is sampled from A; and > Chance of acceptance > 1/m.
x & Aj for allj < ithen > On average ~ m iterations suffice.
| accept and return x > Next lecture: turning this into

approx counting.

20/20

