
1/20

CS 263: Counting and Sampling

Nima Anari

slides for

Introduction

2/20

Logistics

Course staff:

Nima Anari

(Instructor)

Victor Lecomte

(Course Assistant)

You:

· · ·

∼39 undergrad + masters + Ph.D.

https://cs263.stanford.edu

Lectures: Monday, Wednesday
3:00 pm - 4:20 pm (Hewlett 102)

Recorded and on Canvas

Plans to make edited recordings

public later . . .

Homework: 4 sets (20% each)

Final report: 20% of grade

Groups of 1 or 2

Survey (of > 3 papers) or
research (new progress) on

topics related to the course

Office hours: Starting next week

https://cs263.stanford.edu

2/20

Logistics

Course staff:

Nima Anari

(Instructor)

Victor Lecomte

(Course Assistant)

You:

· · ·

∼39 undergrad + masters + Ph.D.

https://cs263.stanford.edu

Lectures: Monday, Wednesday
3:00 pm - 4:20 pm (Hewlett 102)

Recorded and on Canvas

Plans to make edited recordings

public later . . .

Homework: 4 sets (20% each)

Final report: 20% of grade

Groups of 1 or 2

Survey (of > 3 papers) or
research (new progress) on

topics related to the course

Office hours: Starting next week

https://cs263.stanford.edu

2/20

Logistics

Course staff:

Nima Anari

(Instructor)

Victor Lecomte

(Course Assistant)

You:

· · ·

∼39 undergrad + masters + Ph.D.

https://cs263.stanford.edu

Lectures: Monday, Wednesday
3:00 pm - 4:20 pm (Hewlett 102)

Recorded and on Canvas

Plans to make edited recordings

public later . . .

Homework: 4 sets (20% each)

Final report: 20% of grade

Groups of 1 or 2

Survey (of > 3 papers) or
research (new progress) on

topics related to the course

Office hours: Starting next week

https://cs263.stanford.edu

2/20

Logistics

Course staff:

Nima Anari

(Instructor)

Victor Lecomte

(Course Assistant)

You:

· · ·

∼39 undergrad + masters + Ph.D.

https://cs263.stanford.edu

Lectures: Monday, Wednesday
3:00 pm - 4:20 pm (Hewlett 102)

Recorded and on Canvas

Plans to make edited recordings

public later . . .

Homework: 4 sets (20% each)

Final report: 20% of grade

Groups of 1 or 2

Survey (of > 3 papers) or
research (new progress) on

topics related to the course

Office hours: Starting next week

https://cs263.stanford.edu

2/20

Logistics

Course staff:

Nima Anari

(Instructor)

Victor Lecomte

(Course Assistant)

You:

· · ·

∼39 undergrad + masters + Ph.D.

https://cs263.stanford.edu

Lectures: Monday, Wednesday
3:00 pm - 4:20 pm (Hewlett 102)

Recorded and on Canvas

Plans to make edited recordings

public later . . .

Homework: 4 sets (20% each)

Final report: 20% of grade

Groups of 1 or 2

Survey (of > 3 papers) or
research (new progress) on

topics related to the course

Office hours: Starting next week

https://cs263.stanford.edu

2/20

Logistics

Course staff:

Nima Anari

(Instructor)

Victor Lecomte

(Course Assistant)

You:

· · ·

∼39 undergrad + masters + Ph.D.

https://cs263.stanford.edu

Lectures: Monday, Wednesday
3:00 pm - 4:20 pm (Hewlett 102)

Recorded and on Canvas

Plans to make edited recordings

public later . . .

Homework: 4 sets (20% each)

Final report: 20% of grade

Groups of 1 or 2

Survey (of > 3 papers) or
research (new progress) on

topics related to the course

Office hours: Starting next week

https://cs263.stanford.edu

2/20

Logistics

Course staff:

Nima Anari

(Instructor)

Victor Lecomte

(Course Assistant)

You:

· · ·

∼39 undergrad + masters + Ph.D.

https://cs263.stanford.edu

Lectures: Monday, Wednesday
3:00 pm - 4:20 pm (Hewlett 102)

Recorded and on Canvas

Plans to make edited recordings

public later . . .

Homework: 4 sets (20% each)

Final report: 20% of grade

Groups of 1 or 2

Survey (of > 3 papers) or
research (new progress) on

topics related to the course

Office hours: Starting next week

https://cs263.stanford.edu

4/20

What is “Counting and Sampling”?

Bit of Complexity Theory
The class #P
Parsimonious reductions

Approximation
Counting: FPTAS/FPRAS

Sampling: FPAUS

Equivalence

First Algorithm: DNFs

4/20

What is “Counting and Sampling”?

Bit of Complexity Theory
The class #P
Parsimonious reductions

Approximation
Counting: FPTAS/FPRAS

Sampling: FPAUS

Equivalence

First Algorithm: DNFs

5/20

Distribution µ on large Ω

usually finite but exp. large

Sampling: efficiently producing

sample ω ∼ µ.

Counting: efficiently computing

Pµ[event] for events of interest.

Example: #SAT

φ = (x1∨x2∨x3)∧ (x1∨x2∨x4)∧ · · ·

Ω is {0, 1}n.

µ is uniform over satisfying

assignments.

Why is it called counting?

Because P[x1 = 1] =

#sat assignments of φ with x1 = 1

#sat assignments of φ

The numerator and denominator

are counts.

In fact, numerator is #sat

assignments to

φ ′ = φ∧ x1.

This is called “self-reducibility”

will come back to this later

.

5/20

Distribution µ on large Ω

usually finite but exp. large

Sampling: efficiently producing

sample ω ∼ µ.

Counting: efficiently computing

Pµ[event] for events of interest.

Example: #SAT

φ = (x1∨x2∨x3)∧ (x1∨x2∨x4)∧ · · ·

Ω is {0, 1}n.

µ is uniform over satisfying

assignments.

Why is it called counting?

Because P[x1 = 1] =

#sat assignments of φ with x1 = 1

#sat assignments of φ

The numerator and denominator

are counts.

In fact, numerator is #sat

assignments to

φ ′ = φ∧ x1.

This is called “self-reducibility”

will come back to this later

.

5/20

Distribution µ on large Ω

usually finite but exp. large

Sampling: efficiently producing

sample ω ∼ µ.

Counting: efficiently computing

Pµ[event] for events of interest.

Example: #SAT

φ = (x1∨x2∨x3)∧ (x1∨x2∨x4)∧ · · ·

Ω is {0, 1}n.

µ is uniform over satisfying

assignments.

Why is it called counting?

Because P[x1 = 1] =

#sat assignments of φ with x1 = 1

#sat assignments of φ

The numerator and denominator

are counts.

In fact, numerator is #sat

assignments to

φ ′ = φ∧ x1.

This is called “self-reducibility”

will come back to this later

.

5/20

Distribution µ on large Ω

usually finite but exp. large

Sampling: efficiently producing

sample ω ∼ µ.

Counting: efficiently computing

Pµ[event] for events of interest.

Example: #SAT

φ = (x1∨x2∨x3)∧ (x1∨x2∨x4)∧ · · ·

Ω is {0, 1}n.

µ is uniform over satisfying

assignments.

Why is it called counting?

Because P[x1 = 1] =

#sat assignments of φ with x1 = 1

#sat assignments of φ

The numerator and denominator

are counts.

In fact, numerator is #sat

assignments to

φ ′ = φ∧ x1.

This is called “self-reducibility”

will come back to this later

.

5/20

Distribution µ on large Ω

usually finite but exp. large

Sampling: efficiently producing

sample ω ∼ µ.

Counting: efficiently computing

Pµ[event] for events of interest.

Example: #SAT

φ = (x1∨x2∨x3)∧ (x1∨x2∨x4)∧ · · ·

Ω is {0, 1}n.

µ is uniform over satisfying

assignments.

Why is it called counting?

Because P[x1 = 1] =

#sat assignments of φ with x1 = 1

#sat assignments of φ

The numerator and denominator

are counts.

In fact, numerator is #sat

assignments to

φ ′ = φ∧ x1.

This is called “self-reducibility”

will come back to this later

.

5/20

Distribution µ on large Ω

usually finite but exp. large

Sampling: efficiently producing

sample ω ∼ µ.

Counting: efficiently computing

Pµ[event] for events of interest.

Example: #SAT

φ = (x1∨x2∨x3)∧ (x1∨x2∨x4)∧ · · ·

Ω is {0, 1}n.

µ is uniform over satisfying

assignments.

Why is it called counting?

Because P[x1 = 1] =

#sat assignments of φ with x1 = 1

#sat assignments of φ

The numerator and denominator

are counts.

In fact, numerator is #sat

assignments to

φ ′ = φ∧ x1.

This is called “self-reducibility”

will come back to this later

.

5/20

Distribution µ on large Ω

usually finite but exp. large

Sampling: efficiently producing

sample ω ∼ µ.

Counting: efficiently computing

Pµ[event] for events of interest.

Example: #SAT

φ = (x1∨x2∨x3)∧ (x1∨x2∨x4)∧ · · ·

Ω is {0, 1}n.

µ is uniform over satisfying

assignments.

Why is it called counting?

Because P[x1 = 1] =

#sat assignments of φ with x1 = 1

#sat assignments of φ

The numerator and denominator

are counts.

In fact, numerator is #sat

assignments to

φ ′ = φ∧ x1.

This is called “self-reducibility”

will come back to this later

.

5/20

Distribution µ on large Ω

usually finite but exp. large

Sampling: efficiently producing

sample ω ∼ µ.

Counting: efficiently computing

Pµ[event] for events of interest.

Example: #SAT

φ = (x1∨x2∨x3)∧ (x1∨x2∨x4)∧ · · ·

Ω is {0, 1}n.

µ is uniform over satisfying

assignments.

Why is it called counting?

Because P[x1 = 1] =

#sat assignments of φ with x1 = 1

#sat assignments of φ

The numerator and denominator

are counts.

In fact, numerator is #sat

assignments to

φ ′ = φ∧ x1.

This is called “self-reducibility”

will come back to this later

.

6/20

Formalism

Suppose µ is an unnormalized density

w.r.t. an easy background measure on Ω, usually counting/uniform on finite Ω

:

µ : Ω → R>0

Definition: sampling

Produce ω ∈ Ω with

P[ω] ∝ µ(ω).

Definition: counting

Compute the normalizing factor∑
ω

µ(ω).

Standard assumption: µ is easy to compute for any desired point ω ∈ Ω.

6/20

Formalism

Suppose µ is an unnormalized density

w.r.t. an easy background measure on Ω, usually counting/uniform on finite Ω

:

µ : Ω → R>0

Definition: sampling

Produce ω ∈ Ω with

P[ω] ∝ µ(ω).

Definition: counting

Compute the normalizing factor∑
ω

µ(ω).

Standard assumption: µ is easy to compute for any desired point ω ∈ Ω.

6/20

Formalism

Suppose µ is an unnormalized density

w.r.t. an easy background measure on Ω, usually counting/uniform on finite Ω

:

µ : Ω → R>0

Definition: sampling

Produce ω ∈ Ω with

P[ω] ∝ µ(ω).

Definition: counting

Compute the normalizing factor∑
ω

µ(ω).

Standard assumption: µ is easy to compute for any desired point ω ∈ Ω.

6/20

Formalism

Suppose µ is an unnormalized density

w.r.t. an easy background measure on Ω, usually counting/uniform on finite Ω

:

µ : Ω → R>0

Definition: sampling

Produce ω ∈ Ω with

P[ω] ∝ µ(ω).

Definition: counting

Compute the normalizing factor∑
ω

µ(ω).

Standard assumption: µ is easy to compute for any desired point ω ∈ Ω.

7/20

Example: SAT

φ = (x1∨x2∨x3)∧ (x1∨x2∨x4)∧ · · ·

Ω = {0, 1}n assignments

µ(x) = 1[x satisfies φ]

Example: spin systems

+ −

− + −

graph G = (V, E)

Ω = {+,−}V could be larger

µ(x) =
∏

u∼vφ

local interaction

(xu, xv)

Example: generative AI models

Ω =
{

, , , . . .
}

images

Ω = {good job, slay, sus, . . .} text

We don’t know µ. We learn something

about it from data. What to learn is

often guided by a sampling algorithm.

Score-based models: ∇ logµ

x x+ ∆x

nearby points

µ(x+ ∆x)

µ(x)
' exp(∇ logµ · ∆x).

7/20

Example: SAT

φ = (x1∨x2∨x3)∧ (x1∨x2∨x4)∧ · · ·

Ω = {0, 1}n assignments

µ(x) = 1[x satisfies φ]

Example: spin systems

+ −

− + −

graph G = (V, E)

Ω = {+,−}V could be larger

µ(x) =
∏

u∼vφ

local interaction

(xu, xv)

Example: generative AI models

Ω =
{

, , , . . .
}

images

Ω = {good job, slay, sus, . . .} text

We don’t know µ. We learn something

about it from data. What to learn is

often guided by a sampling algorithm.

Score-based models: ∇ logµ

x x+ ∆x

nearby points

µ(x+ ∆x)

µ(x)
' exp(∇ logµ · ∆x).

7/20

Example: SAT

φ = (x1∨x2∨x3)∧ (x1∨x2∨x4)∧ · · ·

Ω = {0, 1}n assignments

µ(x) = 1[x satisfies φ]

Example: spin systems

+ −

− + −

graph G = (V, E)

Ω = {+,−}V could be larger

µ(x) =
∏

u∼vφ

local interaction

(xu, xv)

Example: generative AI models

Ω =
{

, , , . . .
}

images

Ω = {good job, slay, sus, . . .} text

We don’t know µ. We learn something

about it from data. What to learn is

often guided by a sampling algorithm.

Score-based models: ∇ logµ

x x+ ∆x

nearby points

µ(x+ ∆x)

µ(x)
' exp(∇ logµ · ∆x).

8/20

What is “Counting and Sampling”?

Bit of Complexity Theory
The class #P
Parsimonious reductions

Approximation
Counting: FPTAS/FPRAS

Sampling: FPAUS

Equivalence

First Algorithm: DNFs

8/20

What is “Counting and Sampling”?

Bit of Complexity Theory
The class #P
Parsimonious reductions

Approximation
Counting: FPTAS/FPRAS

Sampling: FPAUS

Equivalence

First Algorithm: DNFs

9/20

Poly-time nondet. Turing machine M

M : (x

input

,y

witness/nondet. choices

) 7→ {Accept,Reject}

Example: SAT

MSAT : (formula φ,assignment x) 7→{
Accept if x satisfies φ,

Reject otherwise.

NP consists of all functions

x 7→ 1[∃y : M(x, y) = Accept] .

#P consists of all functions

x 7→ |{y | M(x, y) = Accept}|.

Every NP problem has a

not unique

#P
variant.

#P-complete: Every other #P
problem poly-time reduces to it.

Harder than NP-complete!

#SAT

#3-Colorings

#Ind. Sets

#2-SAT

#Matchings

#Trees

9/20

Poly-time nondet. Turing machine M

M : (x

input

,y

witness/nondet. choices

) 7→ {Accept,Reject}

Example: SAT

MSAT : (formula φ,assignment x) 7→{
Accept if x satisfies φ,

Reject otherwise.

NP consists of all functions

x 7→ 1[∃y : M(x, y) = Accept] .

#P consists of all functions

x 7→ |{y | M(x, y) = Accept}|.

Every NP problem has a

not unique

#P
variant.

#P-complete: Every other #P
problem poly-time reduces to it.

Harder than NP-complete!

#SAT

#3-Colorings

#Ind. Sets

#2-SAT

#Matchings

#Trees

9/20

Poly-time nondet. Turing machine M

M : (x

input

,y

witness/nondet. choices

) 7→ {Accept,Reject}

Example: SAT

MSAT : (formula φ,assignment x) 7→{
Accept if x satisfies φ,

Reject otherwise.

NP consists of all functions

x 7→ 1[∃y : M(x, y) = Accept] .

#P consists of all functions

x 7→ |{y | M(x, y) = Accept}|.

Every NP problem has a

not unique

#P
variant.

#P-complete: Every other #P
problem poly-time reduces to it.

Harder than NP-complete!

#SAT

#3-Colorings

#Ind. Sets

#2-SAT

#Matchings

#Trees

9/20

Poly-time nondet. Turing machine M

M : (x

input

,y

witness/nondet. choices

) 7→ {Accept,Reject}

Example: SAT

MSAT : (formula φ,assignment x) 7→{
Accept if x satisfies φ,

Reject otherwise.

NP consists of all functions

x 7→ 1[∃y : M(x, y) = Accept] .

#P consists of all functions

x 7→ |{y | M(x, y) = Accept}|.

Every NP problem has a

not unique

#P
variant.

#P-complete: Every other #P
problem poly-time reduces to it.

Harder than NP-complete!

#SAT

#3-Colorings

#Ind. Sets

#2-SAT

#Matchings

#Trees

9/20

Poly-time nondet. Turing machine M

M : (x

input

,y

witness/nondet. choices

) 7→ {Accept,Reject}

Example: SAT

MSAT : (formula φ,assignment x) 7→{
Accept if x satisfies φ,

Reject otherwise.

NP consists of all functions

x 7→ 1[∃y : M(x, y) = Accept] .

#P consists of all functions

x 7→ |{y | M(x, y) = Accept}|.

Every NP problem has a

not unique

#P
variant.

#P-complete: Every other #P
problem poly-time reduces to it.

Harder than NP-complete!

#SAT

#3-Colorings

#Ind. Sets

#2-SAT

#Matchings

#Trees

9/20

Poly-time nondet. Turing machine M

M : (x

input

,y

witness/nondet. choices

) 7→ {Accept,Reject}

Example: SAT

MSAT : (formula φ,assignment x) 7→{
Accept if x satisfies φ,

Reject otherwise.

NP consists of all functions

x 7→ 1[∃y : M(x, y) = Accept] .

#P consists of all functions

x 7→ |{y | M(x, y) = Accept}|.

Every NP problem has a

not unique

#P
variant.

#P-complete: Every other #P
problem poly-time reduces to it.

Harder than NP-complete!

#SAT

#3-Colorings

#Ind. Sets

#2-SAT

#Matchings

#Trees

9/20

Poly-time nondet. Turing machine M

M : (x

input

,y

witness/nondet. choices

) 7→ {Accept,Reject}

Example: SAT

MSAT : (formula φ,assignment x) 7→{
Accept if x satisfies φ,

Reject otherwise.

NP consists of all functions

x 7→ 1[∃y : M(x, y) = Accept] .

#P consists of all functions

x 7→ |{y | M(x, y) = Accept}|.

Every NP problem has a

not unique

#P
variant.

#P-complete: Every other #P
problem poly-time reduces to it.

Harder than NP-complete!

#SAT

#3-Colorings

#Ind. Sets

#2-SAT

#Matchings

#Trees

9/20

Poly-time nondet. Turing machine M

M : (x

input

,y

witness/nondet. choices

) 7→ {Accept,Reject}

Example: SAT

MSAT : (formula φ,assignment x) 7→{
Accept if x satisfies φ,

Reject otherwise.

NP consists of all functions

x 7→ 1[∃y : M(x, y) = Accept] .

#P consists of all functions

x 7→ |{y | M(x, y) = Accept}|.

Every NP problem has a

not unique

#P
variant.

#P-complete: Every other #P
problem poly-time reduces to it.

Harder than NP-complete!

#SAT

#3-Colorings

#Ind. Sets

#2-SAT

#Matchings

#Trees

9/20

Poly-time nondet. Turing machine M

M : (x

input

,y

witness/nondet. choices

) 7→ {Accept,Reject}

Example: SAT

MSAT : (formula φ,assignment x) 7→{
Accept if x satisfies φ,

Reject otherwise.

NP consists of all functions

x 7→ 1[∃y : M(x, y) = Accept] .

#P consists of all functions

x 7→ |{y | M(x, y) = Accept}|.

Every NP problem has a

not unique

#P
variant.

#P-complete: Every other #P
problem poly-time reduces to it.

Harder than NP-complete!

#SAT

#3-Colorings

#Ind. Sets

#2-SAT

#Matchings

#Trees

9/20

Poly-time nondet. Turing machine M

M : (x

input

,y

witness/nondet. choices

) 7→ {Accept,Reject}

Example: SAT

MSAT : (formula φ,assignment x) 7→{
Accept if x satisfies φ,

Reject otherwise.

NP consists of all functions

x 7→ 1[∃y : M(x, y) = Accept] .

#P consists of all functions

x 7→ |{y | M(x, y) = Accept}|.

Every NP problem has a

not unique

#P
variant.

#P-complete: Every other #P
problem poly-time reduces to it.

Harder than NP-complete!

#SAT

#3-Colorings

#Ind. Sets

#2-SAT

#Matchings

#Trees

9/20

Poly-time nondet. Turing machine M

M : (x

input

,y

witness/nondet. choices

) 7→ {Accept,Reject}

Example: SAT

MSAT : (formula φ,assignment x) 7→{
Accept if x satisfies φ,

Reject otherwise.

NP consists of all functions

x 7→ 1[∃y : M(x, y) = Accept] .

#P consists of all functions

x 7→ |{y | M(x, y) = Accept}|.

Every NP problem has a

not unique

#P
variant.

#P-complete: Every other #P
problem poly-time reduces to it.

Harder than NP-complete!

#SAT

#3-Colorings

#Ind. Sets

#2-SAT

#Matchings

#Trees

9/20

Poly-time nondet. Turing machine M

M : (x

input

,y

witness/nondet. choices

) 7→ {Accept,Reject}

Example: SAT

MSAT : (formula φ,assignment x) 7→{
Accept if x satisfies φ,

Reject otherwise.

NP consists of all functions

x 7→ 1[∃y : M(x, y) = Accept] .

#P consists of all functions

x 7→ |{y | M(x, y) = Accept}|.

Every NP problem has a

not unique

#P
variant.

#P-complete: Every other #P
problem poly-time reduces to it.

Harder than NP-complete!

#SAT

#3-Colorings

#Ind. Sets

#2-SAT

#Matchings

#Trees

10/20

Reductions

All NP problems reduce to SAT [Cook-Levin].

(x1 ∨ x2 ∨ · · ·)∧ · · ·
[Cook-Levin] reduction

This reduction is parsimonious. There is a one-to-one correspondence:

accepting paths↔
m-to-n is also called parsimonious

sat assignments

Thus #SAT is #P-complete.

In fact, all the natural NP-complete problems we know admit parsimonious

reductions: #3-Colorings, #Hamiltonian Cycles, . . .

Open problem: Do all NP-complete problems have a #P-complete variant?

10/20

Reductions

All NP problems reduce to SAT [Cook-Levin].

(x1 ∨ x2 ∨ · · ·)∧ · · ·
[Cook-Levin] reduction

This reduction is parsimonious. There is a one-to-one correspondence:

accepting paths↔
m-to-n is also called parsimonious

sat assignments

Thus #SAT is #P-complete.

In fact, all the natural NP-complete problems we know admit parsimonious

reductions: #3-Colorings, #Hamiltonian Cycles, . . .

Open problem: Do all NP-complete problems have a #P-complete variant?

10/20

Reductions

All NP problems reduce to SAT [Cook-Levin].

(x1 ∨ x2 ∨ · · ·)∧ · · ·
[Cook-Levin] reduction

This reduction is parsimonious. There is a one-to-one correspondence:

accepting paths↔
m-to-n is also called parsimonious

sat assignments

Thus #SAT is #P-complete.

In fact, all the natural NP-complete problems we know admit parsimonious

reductions: #3-Colorings, #Hamiltonian Cycles, . . .

Open problem: Do all NP-complete problems have a #P-complete variant?

10/20

Reductions

All NP problems reduce to SAT [Cook-Levin].

(x1 ∨ x2 ∨ · · ·)∧ · · ·
[Cook-Levin] reduction

This reduction is parsimonious. There is a one-to-one correspondence:

accepting paths↔
m-to-n is also called parsimonious

sat assignments

Thus #SAT is #P-complete.

In fact, all the natural NP-complete problems we know admit parsimonious

reductions: #3-Colorings, #Hamiltonian Cycles, . . .

Open problem: Do all NP-complete problems have a #P-complete variant?

10/20

Reductions

All NP problems reduce to SAT [Cook-Levin].

(x1 ∨ x2 ∨ · · ·)∧ · · ·
[Cook-Levin] reduction

This reduction is parsimonious. There is a one-to-one correspondence:

accepting paths↔
m-to-n is also called parsimonious

sat assignments

Thus #SAT is #P-complete.

In fact, all the natural NP-complete problems we know admit parsimonious

reductions: #3-Colorings, #Hamiltonian Cycles, . . .

Open problem: Do all NP-complete problems have a #P-complete variant?

11/20

#P-complete problems are really

hard. At least as hard as NP.

Much harder: PH
poly hierarchy: x 7→ 1[∃y∀z∃ · · ·M(x, y, z, . . .)]

⊆ P#P [Toda’91].

Even P can yield #P-complete!

Example: #DNF

Count sat assignments to DNF:

(x1 ∧ x2 ∧ x3)∨ (· · ·)∨ · · ·

Proof of hardness: #DNF = 2n−#CNF.

Example: bipartite perfect matching

Counting perfect matchings in bipar-

tite graphs is #P-complete. [Valiant’79]

Reductions are not parsimonious.

Observation: efficient counting

known for only a handful of gems:

spanning trees, planar perf.

matchings, Eulerian circuits

will come back to them

, . . .

11/20

#P-complete problems are really

hard. At least as hard as NP.
Much harder: PH

poly hierarchy: x 7→ 1[∃y∀z∃ · · ·M(x, y, z, . . .)]

⊆ P#P [Toda’91].

Even P can yield #P-complete!

Example: #DNF

Count sat assignments to DNF:

(x1 ∧ x2 ∧ x3)∨ (· · ·)∨ · · ·

Proof of hardness: #DNF = 2n−#CNF.

Example: bipartite perfect matching

Counting perfect matchings in bipar-

tite graphs is #P-complete. [Valiant’79]

Reductions are not parsimonious.

Observation: efficient counting

known for only a handful of gems:

spanning trees, planar perf.

matchings, Eulerian circuits

will come back to them

, . . .

11/20

#P-complete problems are really

hard. At least as hard as NP.
Much harder: PH

poly hierarchy: x 7→ 1[∃y∀z∃ · · ·M(x, y, z, . . .)]

⊆ P#P [Toda’91].

Even P can yield #P-complete!

Example: #DNF

Count sat assignments to DNF:

(x1 ∧ x2 ∧ x3)∨ (· · ·)∨ · · ·

Proof of hardness: #DNF = 2n−#CNF.

Example: bipartite perfect matching

Counting perfect matchings in bipar-

tite graphs is #P-complete. [Valiant’79]

Reductions are not parsimonious.

Observation: efficient counting

known for only a handful of gems:

spanning trees, planar perf.

matchings, Eulerian circuits

will come back to them

, . . .

11/20

#P-complete problems are really

hard. At least as hard as NP.
Much harder: PH

poly hierarchy: x 7→ 1[∃y∀z∃ · · ·M(x, y, z, . . .)]

⊆ P#P [Toda’91].

Even P can yield #P-complete!

Example: #DNF

Count sat assignments to DNF:

(x1 ∧ x2 ∧ x3)∨ (· · ·)∨ · · ·

Proof of hardness: #DNF = 2n−#CNF.

Example: bipartite perfect matching

Counting perfect matchings in bipar-

tite graphs is #P-complete. [Valiant’79]

Reductions are not parsimonious.

Observation: efficient counting

known for only a handful of gems:

spanning trees, planar perf.

matchings, Eulerian circuits

will come back to them

, . . .

11/20

#P-complete problems are really

hard. At least as hard as NP.
Much harder: PH

poly hierarchy: x 7→ 1[∃y∀z∃ · · ·M(x, y, z, . . .)]

⊆ P#P [Toda’91].

Even P can yield #P-complete!

Example: #DNF

Count sat assignments to DNF:

(x1 ∧ x2 ∧ x3)∨ (· · ·)∨ · · ·

Proof of hardness: #DNF = 2n−#CNF.

Example: bipartite perfect matching

Counting perfect matchings in bipar-

tite graphs is #P-complete. [Valiant’79]

Reductions are not parsimonious.

Observation: efficient counting

known for only a handful of gems:

spanning trees, planar perf.

matchings, Eulerian circuits

will come back to them

, . . .

11/20

#P-complete problems are really

hard. At least as hard as NP.
Much harder: PH

poly hierarchy: x 7→ 1[∃y∀z∃ · · ·M(x, y, z, . . .)]

⊆ P#P [Toda’91].

Even P can yield #P-complete!

Example: #DNF

Count sat assignments to DNF:

(x1 ∧ x2 ∧ x3)∨ (· · ·)∨ · · ·

Proof of hardness: #DNF = 2n−#CNF.

Example: bipartite perfect matching

Counting perfect matchings in bipar-

tite graphs is #P-complete. [Valiant’79]

Reductions are not parsimonious.

Observation: efficient counting

known for only a handful of gems:

spanning trees, planar perf.

matchings, Eulerian circuits

will come back to them

, . . .

11/20

#P-complete problems are really

hard. At least as hard as NP.
Much harder: PH

poly hierarchy: x 7→ 1[∃y∀z∃ · · ·M(x, y, z, . . .)]

⊆ P#P [Toda’91].

Even P can yield #P-complete!

Example: #DNF

Count sat assignments to DNF:

(x1 ∧ x2 ∧ x3)∨ (· · ·)∨ · · ·

Proof of hardness: #DNF = 2n−#CNF.

Example: bipartite perfect matching

Counting perfect matchings in bipar-

tite graphs is #P-complete. [Valiant’79]

Reductions are not parsimonious.

Observation: efficient counting

known for only a handful of gems:

spanning trees, planar perf.

matchings, Eulerian circuits

will come back to them

, . . .

12/20

All hope is lost?

13/20

What is “Counting and Sampling”?

Bit of Complexity Theory
The class #P
Parsimonious reductions

Approximation
Counting: FPTAS/FPRAS

Sampling: FPAUS

Equivalence

First Algorithm: DNFs

13/20

What is “Counting and Sampling”?

Bit of Complexity Theory
The class #P
Parsimonious reductions

Approximation
Counting: FPTAS/FPRAS

Sampling: FPAUS

Equivalence

First Algorithm: DNFs

14/20

Approximation to the rescue

Approx. counting: output Z with

Z 6 count 6 (1+ ε)Z.

Fully poly-time approx. scheme:

FPTAS

above with runtime poly(n

input size

, 1/ε).

Fully poly rand. approx. scheme:

FPRAS

above but with randomness and

2/3 chance of success.

Exercise: 2/3 can be replaced by

1− δ with runtime

poly(n, 1/ε, log(1/δ)).

Why all ε? Why not 100-approx?

Approx. counting is all-or-nothing.

Example: #SAT

Suppose A is f(n)-approx. alg. Give

φ(1) ∧ φ(2) ∧ · · ·∧ φ(t)

with φ(i) being disjoint copies of φ.

t
√
output ≈ #SAT(φ).

Approx. ratio is t
√
f(nt). Even for

f(n) = 2n
0.99

, enough to set t =
poly(n, 1/ε) to get t

√
f(nt) 6 1+ ε.

14/20

Approximation to the rescue

Approx. counting: output Z with

Z 6 count 6 (1+ ε)Z.

Fully poly-time approx. scheme:

FPTAS

above with runtime poly(n

input size

, 1/ε).

Fully poly rand. approx. scheme:

FPRAS

above but with randomness and

2/3 chance of success.

Exercise: 2/3 can be replaced by

1− δ with runtime

poly(n, 1/ε, log(1/δ)).

Why all ε? Why not 100-approx?

Approx. counting is all-or-nothing.

Example: #SAT

Suppose A is f(n)-approx. alg. Give

φ(1) ∧ φ(2) ∧ · · ·∧ φ(t)

with φ(i) being disjoint copies of φ.

t
√
output ≈ #SAT(φ).

Approx. ratio is t
√
f(nt). Even for

f(n) = 2n
0.99

, enough to set t =
poly(n, 1/ε) to get t

√
f(nt) 6 1+ ε.

14/20

Approximation to the rescue

Approx. counting: output Z with

Z 6 count 6 (1+ ε)Z.

Fully poly-time approx. scheme:

FPTAS

above with runtime poly(n

input size

, 1/ε).

Fully poly rand. approx. scheme:

FPRAS

above but with randomness and

2/3 chance of success.

Exercise: 2/3 can be replaced by

1− δ with runtime

poly(n, 1/ε, log(1/δ)).

Why all ε? Why not 100-approx?

Approx. counting is all-or-nothing.

Example: #SAT

Suppose A is f(n)-approx. alg. Give

φ(1) ∧ φ(2) ∧ · · ·∧ φ(t)

with φ(i) being disjoint copies of φ.

t
√
output ≈ #SAT(φ).

Approx. ratio is t
√
f(nt). Even for

f(n) = 2n
0.99

, enough to set t =
poly(n, 1/ε) to get t

√
f(nt) 6 1+ ε.

14/20

Approximation to the rescue

Approx. counting: output Z with

Z 6 count 6 (1+ ε)Z.

Fully poly-time approx. scheme:

FPTAS

above with runtime poly(n

input size

, 1/ε).

Fully poly rand. approx. scheme:

FPRAS

above but with randomness and

2/3 chance of success.

Exercise: 2/3 can be replaced by

1− δ with runtime

poly(n, 1/ε, log(1/δ)).

Why all ε? Why not 100-approx?

Approx. counting is all-or-nothing.

Example: #SAT

Suppose A is f(n)-approx. alg. Give

φ(1) ∧ φ(2) ∧ · · ·∧ φ(t)

with φ(i) being disjoint copies of φ.

t
√
output ≈ #SAT(φ).

Approx. ratio is t
√
f(nt). Even for

f(n) = 2n
0.99

, enough to set t =
poly(n, 1/ε) to get t

√
f(nt) 6 1+ ε.

14/20

Approximation to the rescue

Approx. counting: output Z with

Z 6 count 6 (1+ ε)Z.

Fully poly-time approx. scheme:

FPTAS

above with runtime poly(n

input size

, 1/ε).

Fully poly rand. approx. scheme:

FPRAS

above but with randomness and

2/3 chance of success.

Exercise: 2/3 can be replaced by

1− δ with runtime

poly(n, 1/ε, log(1/δ)).

Why all ε? Why not 100-approx?

Approx. counting is all-or-nothing.

Example: #SAT

Suppose A is f(n)-approx. alg. Give

φ(1) ∧ φ(2) ∧ · · ·∧ φ(t)

with φ(i) being disjoint copies of φ.

t
√
output ≈ #SAT(φ).

Approx. ratio is t
√
f(nt). Even for

f(n) = 2n
0.99

, enough to set t =
poly(n, 1/ε) to get t

√
f(nt) 6 1+ ε.

14/20

Approximation to the rescue

Approx. counting: output Z with

Z 6 count 6 (1+ ε)Z.

Fully poly-time approx. scheme:

FPTAS

above with runtime poly(n

input size

, 1/ε).

Fully poly rand. approx. scheme:

FPRAS

above but with randomness and

2/3 chance of success.

Exercise: 2/3 can be replaced by

1− δ with runtime

poly(n, 1/ε, log(1/δ)).

Why all ε? Why not 100-approx?

Approx. counting is all-or-nothing.

Example: #SAT

Suppose A is f(n)-approx. alg. Give

φ(1) ∧ φ(2) ∧ · · ·∧ φ(t)

with φ(i) being disjoint copies of φ.

t
√
output ≈ #SAT(φ).

Approx. ratio is t
√
f(nt). Even for

f(n) = 2n
0.99

, enough to set t =
poly(n, 1/ε) to get t

√
f(nt) 6 1+ ε.

14/20

Approximation to the rescue

Approx. counting: output Z with

Z 6 count 6 (1+ ε)Z.

Fully poly-time approx. scheme:

FPTAS

above with runtime poly(n

input size

, 1/ε).

Fully poly rand. approx. scheme:

FPRAS

above but with randomness and

2/3 chance of success.

Exercise: 2/3 can be replaced by

1− δ with runtime

poly(n, 1/ε, log(1/δ)).

Why all ε? Why not 100-approx?

Approx. counting is all-or-nothing.

Example: #SAT

Suppose A is f(n)-approx. alg. Give

φ(1) ∧ φ(2) ∧ · · ·∧ φ(t)

with φ(i) being disjoint copies of φ.

t
√
output ≈ #SAT(φ).

Approx. ratio is t
√
f(nt). Even for

f(n) = 2n
0.99

, enough to set t =
poly(n, 1/ε) to get t

√
f(nt) 6 1+ ε.

15/20

Approximation is all-or-nothing

For any “tensorizable” problem,

nothing between 1+ ε and

exponential.

For “self-reducible” probs,

poly(n)-approx gives

will see later in the course

an FPRAS.

[Jerrum-Sinclair].

15/20

Approximation is all-or-nothing

For any “tensorizable” problem,

nothing between 1+ ε and

exponential.

For “self-reducible” probs,

poly(n)-approx gives

will see later in the course

an FPRAS.

[Jerrum-Sinclair].

16/20

Approximate sampling

Notion of approximation: For dists

ν, µ on Ω we use total variation:

dTV(ν, µ)

= max{Pν[E] − Pµ[E] | E ⊆ Ω}

=
1

2

∑
ω∈Ω

|µ(ω) − ν(ω)|.

Fully poly approx. unif. sampler:

FPAUS

output distribution has dTV 6 δ

and runtime is poly(n, log(1/δ)).
Note: the log dependence on δ is

similarly “all-or-nothing”.

Theorem [Jerrum-Valiant-Vazirani]

For “self-reducible” problems:

approx counting ≡ approx sampling

Exact Counting Approx Counting

(FPRAS)

Exact Sampling Approx Sampling

(FPAUS)

if F
PT
AS

arrows are poly-time reductions

16/20

Approximate sampling

Notion of approximation: For dists

ν, µ on Ω we use total variation:

dTV(ν, µ)

= max{Pν[E] − Pµ[E] | E ⊆ Ω}

=
1

2

∑
ω∈Ω

|µ(ω) − ν(ω)|.

Fully poly approx. unif. sampler:

FPAUS

output distribution has dTV 6 δ

and runtime is poly(n, log(1/δ)).

Note: the log dependence on δ is

similarly “all-or-nothing”.

Theorem [Jerrum-Valiant-Vazirani]

For “self-reducible” problems:

approx counting ≡ approx sampling

Exact Counting Approx Counting

(FPRAS)

Exact Sampling Approx Sampling

(FPAUS)

if F
PT
AS

arrows are poly-time reductions

16/20

Approximate sampling

Notion of approximation: For dists

ν, µ on Ω we use total variation:

dTV(ν, µ)

= max{Pν[E] − Pµ[E] | E ⊆ Ω}

=
1

2

∑
ω∈Ω

|µ(ω) − ν(ω)|.

Fully poly approx. unif. sampler:

FPAUS

output distribution has dTV 6 δ

and runtime is poly(n, log(1/δ)).
Note: the log dependence on δ is

similarly “all-or-nothing”.

Theorem [Jerrum-Valiant-Vazirani]

For “self-reducible” problems:

approx counting ≡ approx sampling

Exact Counting Approx Counting

(FPRAS)

Exact Sampling Approx Sampling

(FPAUS)

if F
PT
AS

arrows are poly-time reductions

16/20

Approximate sampling

Notion of approximation: For dists

ν, µ on Ω we use total variation:

dTV(ν, µ)

= max{Pν[E] − Pµ[E] | E ⊆ Ω}

=
1

2

∑
ω∈Ω

|µ(ω) − ν(ω)|.

Fully poly approx. unif. sampler:

FPAUS

output distribution has dTV 6 δ

and runtime is poly(n, log(1/δ)).
Note: the log dependence on δ is

similarly “all-or-nothing”.

Theorem [Jerrum-Valiant-Vazirani]

For “self-reducible” problems:

approx counting ≡ approx sampling

Exact Counting Approx Counting

(FPRAS)

Exact Sampling Approx Sampling

(FPAUS)

if F
PT
AS

arrows are poly-time reductions

17/20

Counting via Markov chains

Basis of Markov Chain

Monte Carlo: Approx

Sampler → Approx

Counter.

A good portion of this

course will be on

sampling via Markov

chains.

x0 → x1 → · · · →xt

hope this is close to µ

17/20

Counting via Markov chains

Basis of Markov Chain

Monte Carlo: Approx

Sampler → Approx

Counter.

A good portion of this

course will be on

sampling via Markov

chains.

x0 → x1 → · · · →xt

hope this is close to µ

18/20

What is “Counting and Sampling”?

Bit of Complexity Theory
The class #P
Parsimonious reductions

Approximation
Counting: FPTAS/FPRAS

Sampling: FPAUS

Equivalence

First Algorithm: DNFs

18/20

What is “Counting and Sampling”?

Bit of Complexity Theory
The class #P
Parsimonious reductions

Approximation
Counting: FPTAS/FPRAS

Sampling: FPAUS

Equivalence

First Algorithm: DNFs

19/20

Given DNF formula

φ = (x1 ∧ x2 ∧ x3)∨ · · · ,

canwe approx sample/count satisfying

assignments?

Naïve attempt

while not accepted do

sample x ∈ {0, 1}n u.a.r.

if x sats φ then

accept and return x

This is an instance of rejection

sampling.

Rejection sampling

We have access to sampler for ν, but

want samples ∝ µ:

while not accepted do

sample x ∼ ν

accept w.p. c

small enough that prob is always 6 1

µ(x)/ν(x)

Output is always ∼ normalized µ

Can take a long time

If µ is normalized, the best c is

min{ν(x)/µ(x)}, and it takes

' max{µ(x)/ν(x)} iterations.
For φ = (x1 ∧ x2 ∧ · · ·∧ xn) it
takes 2n tries on average.

19/20

Given DNF formula

φ = (x1 ∧ x2 ∧ x3)∨ · · · ,

canwe approx sample/count satisfying

assignments?

Naïve attempt

while not accepted do

sample x ∈ {0, 1}n u.a.r.

if x sats φ then

accept and return x

This is an instance of rejection

sampling.

Rejection sampling

We have access to sampler for ν, but

want samples ∝ µ:

while not accepted do

sample x ∼ ν

accept w.p. c

small enough that prob is always 6 1

µ(x)/ν(x)

Output is always ∼ normalized µ

Can take a long time

If µ is normalized, the best c is

min{ν(x)/µ(x)}, and it takes

' max{µ(x)/ν(x)} iterations.
For φ = (x1 ∧ x2 ∧ · · ·∧ xn) it
takes 2n tries on average.

19/20

Given DNF formula

φ = (x1 ∧ x2 ∧ x3)∨ · · · ,

canwe approx sample/count satisfying

assignments?

Naïve attempt

while not accepted do

sample x ∈ {0, 1}n u.a.r.

if x sats φ then

accept and return x

This is an instance of rejection

sampling.

Rejection sampling

We have access to sampler for ν, but

want samples ∝ µ:

while not accepted do

sample x ∼ ν

accept w.p. c

small enough that prob is always 6 1

µ(x)/ν(x)

Output is always ∼ normalized µ

Can take a long time

If µ is normalized, the best c is

min{ν(x)/µ(x)}, and it takes

' max{µ(x)/ν(x)} iterations.
For φ = (x1 ∧ x2 ∧ · · ·∧ xn) it
takes 2n tries on average.

19/20

Given DNF formula

φ = (x1 ∧ x2 ∧ x3)∨ · · · ,

canwe approx sample/count satisfying

assignments?

Naïve attempt

while not accepted do

sample x ∈ {0, 1}n u.a.r.

if x sats φ then

accept and return x

This is an instance of rejection

sampling.

Rejection sampling

We have access to sampler for ν, but

want samples ∝ µ:

while not accepted do

sample x ∼ ν

accept w.p. c

small enough that prob is always 6 1

µ(x)/ν(x)

Output is always ∼ normalized µ

Can take a long time

If µ is normalized, the best c is

min{ν(x)/µ(x)}, and it takes

' max{µ(x)/ν(x)} iterations.
For φ = (x1 ∧ x2 ∧ · · ·∧ xn) it
takes 2n tries on average.

19/20

Given DNF formula

φ = (x1 ∧ x2 ∧ x3)∨ · · · ,

canwe approx sample/count satisfying

assignments?

Naïve attempt

while not accepted do

sample x ∈ {0, 1}n u.a.r.

if x sats φ then

accept and return x

This is an instance of rejection

sampling.

Rejection sampling

We have access to sampler for ν, but

want samples ∝ µ:

while not accepted do

sample x ∼ ν

accept w.p. c

small enough that prob is always 6 1

µ(x)/ν(x)

Output is always ∼ normalized µ

Can take a long time

If µ is normalized, the best c is

min{ν(x)/µ(x)}, and it takes

' max{µ(x)/ν(x)} iterations.
For φ = (x1 ∧ x2 ∧ · · ·∧ xn) it
takes 2n tries on average.

19/20

Given DNF formula

φ = (x1 ∧ x2 ∧ x3)∨ · · · ,

canwe approx sample/count satisfying

assignments?

Naïve attempt

while not accepted do

sample x ∈ {0, 1}n u.a.r.

if x sats φ then

accept and return x

This is an instance of rejection

sampling.

Rejection sampling

We have access to sampler for ν, but

want samples ∝ µ:

while not accepted do

sample x ∼ ν

accept w.p. c

small enough that prob is always 6 1

µ(x)/ν(x)

Output is always ∼ normalized µ

Can take a long time

If µ is normalized, the best c is

min{ν(x)/µ(x)}, and it takes

' max{µ(x)/ν(x)} iterations.
For φ = (x1 ∧ x2 ∧ · · ·∧ xn) it
takes 2n tries on average.

19/20

Given DNF formula

φ = (x1 ∧ x2 ∧ x3)∨ · · · ,

canwe approx sample/count satisfying

assignments?

Naïve attempt

while not accepted do

sample x ∈ {0, 1}n u.a.r.

if x sats φ then

accept and return x

This is an instance of rejection

sampling.

Rejection sampling

We have access to sampler for ν, but

want samples ∝ µ:

while not accepted do

sample x ∼ ν

accept w.p. c

small enough that prob is always 6 1

µ(x)/ν(x)

Output is always ∼ normalized µ

Can take a long time

If µ is normalized, the best c is

min{ν(x)/µ(x)}, and it takes

' max{µ(x)/ν(x)} iterations.

For φ = (x1 ∧ x2 ∧ · · ·∧ xn) it
takes 2n tries on average.

19/20

Given DNF formula

φ = (x1 ∧ x2 ∧ x3)∨ · · · ,

canwe approx sample/count satisfying

assignments?

Naïve attempt

while not accepted do

sample x ∈ {0, 1}n u.a.r.

if x sats φ then

accept and return x

This is an instance of rejection

sampling.

Rejection sampling

We have access to sampler for ν, but

want samples ∝ µ:

while not accepted do

sample x ∼ ν

accept w.p. c

small enough that prob is always 6 1

µ(x)/ν(x)

Output is always ∼ normalized µ

Can take a long time

If µ is normalized, the best c is

min{ν(x)/µ(x)}, and it takes

' max{µ(x)/ν(x)} iterations.
For φ = (x1 ∧ x2 ∧ · · ·∧ xn) it
takes 2n tries on average.

20/20

A better envelope [Karp-Luby]

φ = C1 ∨ C2 ∨ · · ·∨ Cm

Let Ai = {sat assignments of Ci}.

Want to sample from

A1 ∪ · · · ∪Am.

Idea: sample from A1t

disjoint union

· · · tAm

and rejection sample it into

A1 ∪ · · · ∪Am.

while not accepted do

sample x ∈ A1 t · · · tAm u.a.r.

if x is sampled from Ai and

x /∈ Aj for all j < i then

accept and return x

A1

A2

...

Am

s
a
m
e

s
a
m
e

s
a
m
e

s
a
m
e

Chance of acceptance > 1/m.

On average ' m iterations suffice.

Next lecture: turning this into

approx counting.

20/20

A better envelope [Karp-Luby]

φ = C1 ∨ C2 ∨ · · ·∨ Cm

Let Ai = {sat assignments of Ci}.

Want to sample from

A1 ∪ · · · ∪Am.

Idea: sample from A1t

disjoint union

· · · tAm

and rejection sample it into

A1 ∪ · · · ∪Am.

while not accepted do

sample x ∈ A1 t · · · tAm u.a.r.

if x is sampled from Ai and

x /∈ Aj for all j < i then

accept and return x

A1

A2

...

Am

s
a
m
e

s
a
m
e

s
a
m
e

s
a
m
e

Chance of acceptance > 1/m.

On average ' m iterations suffice.

Next lecture: turning this into

approx counting.

20/20

A better envelope [Karp-Luby]

φ = C1 ∨ C2 ∨ · · ·∨ Cm

Let Ai = {sat assignments of Ci}.

Want to sample from

A1 ∪ · · · ∪Am.

Idea: sample from A1t

disjoint union

· · · tAm

and rejection sample it into

A1 ∪ · · · ∪Am.

while not accepted do

sample x ∈ A1 t · · · tAm u.a.r.

if x is sampled from Ai and

x /∈ Aj for all j < i then

accept and return x

A1

A2

...

Am

s
a
m
e

s
a
m
e

s
a
m
e

s
a
m
e

Chance of acceptance > 1/m.

On average ' m iterations suffice.

Next lecture: turning this into

approx counting.

20/20

A better envelope [Karp-Luby]

φ = C1 ∨ C2 ∨ · · ·∨ Cm

Let Ai = {sat assignments of Ci}.

Want to sample from

A1 ∪ · · · ∪Am.

Idea: sample from A1t

disjoint union

· · · tAm

and rejection sample it into

A1 ∪ · · · ∪Am.

while not accepted do

sample x ∈ A1 t · · · tAm u.a.r.

if x is sampled from Ai and

x /∈ Aj for all j < i then

accept and return x

A1

A2

...

Am

s
a
m
e

s
a
m
e

s
a
m
e

s
a
m
e

Chance of acceptance > 1/m.

On average ' m iterations suffice.

Next lecture: turning this into

approx counting.

20/20

A better envelope [Karp-Luby]

φ = C1 ∨ C2 ∨ · · ·∨ Cm

Let Ai = {sat assignments of Ci}.

Want to sample from

A1 ∪ · · · ∪Am.

Idea: sample from A1t

disjoint union

· · · tAm

and rejection sample it into

A1 ∪ · · · ∪Am.

while not accepted do

sample x ∈ A1 t · · · tAm u.a.r.

if x is sampled from Ai and

x /∈ Aj for all j < i then

accept and return x

A1

A2

...

Am

s
a
m
e

s
a
m
e

s
a
m
e

s
a
m
e

Chance of acceptance > 1/m.

On average ' m iterations suffice.

Next lecture: turning this into

approx counting.

20/20

A better envelope [Karp-Luby]

φ = C1 ∨ C2 ∨ · · ·∨ Cm

Let Ai = {sat assignments of Ci}.

Want to sample from

A1 ∪ · · · ∪Am.

Idea: sample from A1t

disjoint union

· · · tAm

and rejection sample it into

A1 ∪ · · · ∪Am.

while not accepted do

sample x ∈ A1 t · · · tAm u.a.r.

if x is sampled from Ai and

x /∈ Aj for all j < i then

accept and return x

A1

A2

...

Am

s
a
m
e

s
a
m
e

s
a
m
e

s
a
m
e

Chance of acceptance > 1/m.

On average ' m iterations suffice.

Next lecture: turning this into

approx counting.

20/20

A better envelope [Karp-Luby]

φ = C1 ∨ C2 ∨ · · ·∨ Cm

Let Ai = {sat assignments of Ci}.

Want to sample from

A1 ∪ · · · ∪Am.

Idea: sample from A1t

disjoint union

· · · tAm

and rejection sample it into

A1 ∪ · · · ∪Am.

while not accepted do

sample x ∈ A1 t · · · tAm u.a.r.

if x is sampled from Ai and

x /∈ Aj for all j < i then

accept and return x

A1

A2

...

Am

s
a
m
e

s
a
m
e

s
a
m
e

s
a
m
e

Chance of acceptance > 1/m.

On average ' m iterations suffice.

Next lecture: turning this into

approx counting.

20/20

A better envelope [Karp-Luby]

φ = C1 ∨ C2 ∨ · · ·∨ Cm

Let Ai = {sat assignments of Ci}.

Want to sample from

A1 ∪ · · · ∪Am.

Idea: sample from A1t

disjoint union

· · · tAm

and rejection sample it into

A1 ∪ · · · ∪Am.

while not accepted do

sample x ∈ A1 t · · · tAm u.a.r.

if x is sampled from Ai and

x /∈ Aj for all j < i then

accept and return x

A1

A2

...

Am

s
a
m
e

s
a
m
e

s
a
m
e

s
a
m
e

Chance of acceptance > 1/m.

On average ' m iterations suffice.

Next lecture: turning this into

approx counting.

