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usually finite but exp. large

Distribution p on Icrg\e‘Q > Whyis it called counting?
> Because Plx; =1] =
> Sampling: efficiently producing
sample w ~ . #sat assignments of ¢ with x; =1
> Counting: efficiently computing #sat assignments of ¢
P, [event] for events of interest.

> The numerator and denominator

Example: #SAT are counts.
¢ =(x1 V2 Vx3)A KT VX2 Vxa)A--- B Infact, numerator is #sat
assignments to
o Qis{o, 1}
¢’ =dAx.

& wis uniform over satisfuing
assignments. This is called “self-reducibility”.
0
will come back to this later
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w.rt. an easy background measure on Q, usually counting/uniform on finite Q

v
Suppose wis an unnormalized density:

n:Q — R)o
Definition: sampiing
Produce w € Q with Compute the normalizing factor
Plw] o p(w). 3w,
w

Stondard assumption: wis easy to compute for any desired point w € Q.
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Example: SAT Example: generative Al models

¢ = VRVIAKTVV)A--- D Q={88 MW, .} images
> Q ={good job, slay, sus,...}«<— text

G Q ={0,1}™«—— assignments
O ulx) = 1[x satisfies ¢] We don’t know p. We learn something
pieg) = Llbe SEETIES ¢ about it from data. What to learn is

Example: spin systems often guided by a sampling algorithm.

> Score-based models: V log n
graph G = (V,E)

nearby points

o e
X x + Ax
C Q={+, _}V<— could be larger w(x + Ax)

G uix) = HUWCITD(xu,xv) g S oe(Vieg - Ax).

local interaction
7/20
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v 9 ©

: E [Cook-Levin] reduction o
| . | (x] VXZV - ) A

This reduction is parsimonious. There is a one-to-one correspondence:
accepting pothSstsignments
Thus #SAT is #P-complete. m-to-n is also called parsimonious

In fact, all the natural NP-complete problems we know admit parsimonious
reductions: #3-Colorings, #Hamiltonian Cycles, ...

Open problem: Do all NP-complete problems have a #P-complete variant?
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Proof of hardness: #DNF = 2™ —#CNF.
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Counting perfect matchings in bipar-
tite graphs is #P-complete. [Valiant'79]
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hard. At least as hard as NP.
> Much harder: PTHg P#P [Toda'91]. @ W
poly hierarchy: x — 1[3yvz3--- M(x,y, z,...)]
(> Even P can yield #P-complete! Counting perfect matchings in bipar-

Example: #DNF tite graphs is #P-complete. [Valiant'79]

Count sat assignments to DNF: > Reductions are not parsimonious.

() ATGAXI)V (e )V oo > Observation: efficient counting

known for only a handful of gems:

Proof of hardness: #DNF = 2™ —#CNF. spanning trees, planar perf.
matchings, EuIerionTcircuits,

will come back to them
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> Approx. counting: output Z with

Z <count< (14 ¢)Z. EPTAS

(D

Fully poly-time approx. scheme:
above with runtime pO|y(TTL, 1/¢€).

FPRAS input size

\
Fully poly rand. approx. scheme:
above but with randomness and
2/3 chance of success.

Exercise: 2/3 can be replaced by
1 — & with runtime

poly(n,1/e,log(1/8)).

> Why all €? Why not 100-approx?
> Approx. counting is all-or-nothing.

Example: #SAT

Suppose A is f(n)-approx. alg. Give
d)(])/\d)(z)/\.../\d)(ﬂ

with ¢V being disjoint copies of ¢.

v/output ~ #SAT (¢
Approx. ratio is +{/f(nt). Even for

f(n) = o enough to set t =
poly(n,1/€) to get \/f(nt) <1+ e€.

J
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\Approximotion is all-or-nothing /

> For any “tensorizable” problem,
nothing between 1+ € and
exponential.

> For “self-reducible” probs,
poly(n)-approx gives an FPRAS.

[Jerrum-Sinclair]. _
will see’ater in the course
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J

& Notion of approximation: For dists [RE 8RNI eaTt Ve lle s Ve ralge

v, Lon Q we use total variation:

drv(v,u)
= max{Py[E] —PL[E] | E C O}

=2 Y Inw) —vwll

FPAUS W€

~ _

& Fully poly approx. unif. sampler:
output distribution has dtv < 8
and runtime is poly(n, log(1/6)).

> Note: the log dependence on & is
similarly “all-or-nothing™.

For “self-reducible” problems:

approx counting = approx sampling

(FPRAS)
Exact Counting —— Approx Counting

| =]

Exact Sampling —— Approx Sampling

(FPAUS)
arrows are poly-time reductions
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Monte Carlo: Approx
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\Counting via Markov chains /

> Basis of Markov Chain
Monte Carlo: Approx
Sampler — Approx
Counter.

> A good portion of this
course will be on

sampling via Markov
chains. '

X0 —+ X1 — - —>Xt

hope this is close ton
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> Counting: FPTAS/FPRAS
> Sampling: FPAUS
> Equivalence

First Algorithm: DNFs
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> Counting: FPTAS/FPRAS
> Sampling: FPAUS
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Given DNF formula Rejection sampling
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while not accepted do >
sample x € {0, 1} v.ar.
if x sats & then > Can take along time ©
O If wis normalized, the best ¢ is
min{v(x)/u(x)}, and it takes
~ max{u(x)/v(x)} iterations.

small enough that prob is always < 1

Output is always ~ normalized u ©

| accept and return x

> This is an instance of rejection
sampling.

19/20



Given DNF formula Rejection sampling

b= AGAX)V -, We have access to sampler for v, but
want samples o w:
can we approx sample/count satisfying while not accepted do
assignments? L sample x ~ v

T w.p.
aecept we W

small enough that prob is always < 1
while not accepted do >
sample x € {0, 1} v.ar.
if x sats & then > Can take a long time @
L accept and return x O If wis normalized, the best ¢ is
min{v(x)/u(x)}, and it takes
~ max{u(x)/v(x)} iterations.
> This is an instance of rejection > Ford = (x1 Axa A Axp) it
sampling. takes 2™ tries on average. @

Output is always ~ normalized u ©
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\A better envelope [Karp-Luby] /

db=CiVCV--VCn . .
Am | &6 o & b
> Let A; ={sat assignments of Cj}. e R R el

> Wwant to sample from
ATU---UAnm. disjoint union

> Ideo: sample from A1|_|f(|_| Am Az
and rejection sample it into
AU UAm. Al

while not accepted do
samplex € Ay U---UA uar
if x is sampled from A; and > Chance of acceptance > 1/m.
x & Aj for allj < ithen > On average ~ m iterations suffice.
| accept and return x

same

C @t mmmm =
1 Same

1
1
r=="
II
~1-0-7+-@-r-~-~---~
1
1
1
1
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\A better envelope [Karp-Luby] /

db=CiVCV--VCn . .
An | © ® ® ¢
> Let Ay = {sat assignments of C;}. e R e st

ol ol ol o
> Wwant to sample from g g' g' g
AjU- - UAnm. disjoint union 8: _921___8_:__ 8:
O Idea: sample from Aﬂ_lf(l_lAm A2 A ¢ : |
and rejection sample it into ik vt S
AtU---UAn. Aq X ® o ' . !
while not accepted do I :
samplex € Ay U---UA uar
if x is sampled from A; and > Chance of acceptance > 1/m.
x & Aj for allj < ithen > On average ~ m iterations suffice.
| accept and return x > Next lecture: turning this into

approx counting.
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