Review

- Fourier Analysis $\quad \mathbb{Z}_{n_{1}} x-x \mathbb{Z}_{n k}$

$$
\text { eigenvectors } \leftarrow \omega_{1}^{x_{1}} \cdots \omega_{n}^{x_{k}}
$$

* Glazer on $[0,1]^{h}$ * Random wale on Cycle

- Continuous Time $\quad v_{t}=e^{t(P-I)} \cdot \nu_{0}$
- Functional Analysis in Continuous Time

$$
\frac{d}{d t} D_{f}\left(\nu_{t} \| \mu\right) \leqslant-\rho D_{f}\left(\nu_{t} \| \mu\right)
$$

* Poincare: for $x^{2} * M L S J$: for $D_{k L}$

$$
\text { Dirichleffom } \rightarrow \varepsilon\left(f^{\prime}\left(\frac{\nu}{\mu}\right), \frac{\nu}{\mu}\right) \geqslant \rho D_{f}(\nu \| \mu)
$$

- Dirichlet Form:

$$
\varepsilon(g, h):=\frac{1}{2} \Theta_{(x, y) \sim Q}[(g(x)-g(y))(h(x)-h(y))]
$$

- Comparison Method (easy)
P, P^{\prime} have same stationary
$\forall x \neq y: \quad P(x, y) \geqslant C \cdot P^{\prime}(x, y)$

$$
\begin{gathered}
P-\text { Poincare } / M L S I / \cdots \\
\text { for } P
\end{gathered} \Rightarrow \begin{gathered}
C \cdot P-\text { Poicaré } M L S I / \cdots \\
\text { for } P^{\prime}
\end{gathered}
$$

Example. Metropolis \& Glauber for q-coloring have same Poincaré/MLSII ... consts ap to $\frac{q}{q-\Delta}$.

Plan for Today

- Comparison method (hard)
- Trading time for approx
- Sampling matchings

Comparison Method

* All Chains timereversible for now.

Idea, Route ergodic flow of $P^{\prime \rightarrow}$ through that of P with low congestion and length $\Rightarrow\left(1-\lambda_{2}(P)\right) \geqslant \frac{1}{c^{c}}\left(1-\lambda_{2}\left(P^{\prime}\right)\right)$ depends on Cong. ten.

Ranting: $(S+t) \longmapsto$ convex combination of paths $s=x_{0} \sim x_{1} \sim \cdots \sim x_{e}=t$

- Easier to think in terms of flows:
Π : distribution of path if we sample $(S, L) \sim Q^{\prime}$. ergodic flow Defining constraint: endpoints ($s t t$) of of P^{\prime}. $p a t h \sim \pi$ are distributed as

$$
Q^{\prime}(s, t)=\mu(s) P^{\prime}(s, t)=\mu(t) P^{\prime}(t, s)
$$

Example. (trivial routing)

$$
(s, t) \longmapsto s=x_{0} \sim x_{1}=t
$$

Length: We only use paths of length 1 .
Congestion: $s \sim t$ has capacity $Q(s, t)$ and we route $Q^{\prime}(s i t)$ flow through it.

$$
\max \left\{\frac{Q^{\prime}(s, t)}{Q(s, t)}\right\}=\max \left\{\frac{P^{\prime}(s, t)}{P(s, t)}\right\}
$$

For colorings, $P=$ Metropolis, $P^{\prime}=G l a u b e r$, we have congestion $\leqslant \frac{q}{q-\Delta}$.
Remark. When trivial routing has low congestion we get to transfer not just spectral gap / Poincare but also MLSI, etc.

Example. (hypercube)

$$
P_{:}^{\prime} x \longmapsto y \sim \mu
$$

trivial "ideal" chain
P: Glauber dynamics

-Demand: $Q^{\prime}(s, t)=\mu(s) P^{\prime}(s, t)=\mu(s) \mu(t)$
-Rating: $\quad(s, t) \mapsto s=x^{(0)} \sim x^{(1)} \sim \ldots \sim x^{(n)} \stackrel{t}{=}$

$$
x^{(i)}=\left(t_{1}, \ldots, t_{i}, \quad s_{i+1}-, s_{n}\right)
$$

"go over bits $1,-1 n$ and change from s tot one hit at a time"

Length: n
Congestion: There are $2^{n-i} \times 2^{i-1}=2^{n-1}$ pairs of (s, t) passing through any edge.

$$
\text { congestion }=\frac{2^{n-1} \times \frac{1}{2^{n}} \times \frac{1}{2^{n}} e^{f 6 w}}{\frac{1}{2^{n}} \times \frac{1}{2^{n}} \leftarrow \text { capacity }}=O(n)
$$

Remark. When avg. length of path $\sim \pi$ is
l, it must be that congestion $\geqslant l$.
total flow $=l \quad$ total capacity $=1$
Theorem. Suppose π is a dist over paths $x_{0} \sim x_{1} \ldots x_{l}$ such that $\left(x_{0}, x_{l}\right) \sim Q^{\prime}$.
Let c be:

$$
\max \left\{\begin{array}{l}
\left.\left.\frac{\operatorname{EG}_{\text {path } \sim \pi}[\operatorname{len}(p a+h) \times 1[x \sim y \text { in path }]]}{Q(x, y)} \right\rvert\, \begin{array}{l}
x, y \in \Omega \\
x \neq y
\end{array}\right\}, ~
\end{array}\right.
$$

Then $\varepsilon_{p}(g, g) \geqslant \frac{1}{c} \cdot \varepsilon_{\substack{p}}(g, g) \sum_{\substack{\text { Dirichlet form } \\ \text { Dirichlet form }}}^{p}$
Corollary. $\left(1-\lambda_{2}(P)\right) \geqslant \frac{1}{C} \cdot\left(1-\lambda_{2}\left(P^{\prime}\right)\right)$.
Corollary. LSI for $P^{\prime} \Rightarrow$ LSI for P.
Remark. $P^{\prime}=$ ideal chain is much-used!

Proof: Let $x_{0} \sim x_{1} \sim \cdots \sim x_{l}$ be sampled $\sim \pi$:

$$
\varepsilon_{p^{\prime}}(g, g):=\frac{1}{2} \operatorname{E}\left[\left(g\left(x_{0}\right)-g\left(x_{\ell}\right)\right)^{2}\right]
$$

By Canchy_Schwarz we have

$$
\begin{aligned}
& (\underbrace{(1+\cdots+1)}_{l \text { times }}\left(l g\left(x_{0}\right)-g\left(x_{1}\right)\right)^{2}+\cdots+\left(g\left(x_{l}\right)-g\left(x_{l}\right)\right)^{2}) \geqslant \\
& \left(\left(g\left(x_{0}\right)-g\left(x_{1}\right)\right)+\cdots+\left(g\left(x_{l-1}\right)-g\left(x_{l}\right)\right)\right)^{2}=\left(g\left(x_{0}\right)-g\left(x_{l}\right)\right)^{2}
\end{aligned}
$$

Taking expectations we get

$$
\begin{aligned}
& \text { R.H.S. }=2 \varepsilon_{p}^{\prime}(g, g) \\
& \text { L.H.S. } \leqslant 2 C \cdot \varepsilon_{p}(g, g)
\end{aligned}
$$

So $\quad \varepsilon_{p}(g, g) \geqslant \frac{1}{c} \varepsilon_{p}(g, g)$.

Example. (hyercube)
Ideal chain mixes in 1 step. In fact P^{\prime} is rank 1 so

$$
\begin{aligned}
\lambda_{1}\left(P^{\prime}\right)=1 \geqslant 0= & \lambda_{2}\left(P^{\prime}\right)=\cdots=\lambda_{n}\left(P^{\prime}\right) \\
\Rightarrow\left(1-\lambda_{2}(\text { Glauber })\right) \geqslant & \Omega\left(\frac{1}{n \times n}\right) \cdot 1=\Omega\left(\frac{1}{n^{2}}\right) \\
& \text { length } \frac{n^{\prime}}{\text { Congestion not tight }}
\end{aligned}
$$

Example. (random walk on path)
P^{\prime} : ideal chain

P : Metropolis with $\mu=$ uniform
Routing: $(S, t) \mapsto$ subpath from s to t.
Length: $O(n)$
Congestion: $\leqslant \frac{n^{2} \times \frac{1}{n} \times \frac{1}{n}}{\frac{1}{n} \times \frac{1}{2}}=O(n)$
$\Rightarrow\left(1-\lambda_{2}(\rho)\right) \geqslant \Omega\left(\frac{1}{n^{2}}\right) \leftarrow$ this is tight!

Trading time for approx [Jerrum-Sinclair]
Suppose we have α-approx counting ALG for self-reducible problem.
$\Rightarrow(1+\varepsilon)$-approx in time poly $\left(n, \alpha, \frac{1}{\varepsilon}\right)$
Corollary. $\alpha=p o l y(n) \Longrightarrow$ FPRAS approx counting is all-or.nothing

Example. (colored spanning trees) Count spanning trees with n_{1} black, n_{2} blue, n_{3} orange, ..

Thu: $\exists_{2} \widetilde{O}(1$ palette $)$-approx ALG

self-reducibility tree
Idea: Define $\mu^{\prime}($ subproblem $) \propto A L G$ (subproblem)
 If we sample $\sim \mu^{\prime}$:

$$
\mathbb{P}[\text { base case }] \geqslant \frac{1}{\alpha \cdot \operatorname{depth}}=\frac{1}{\alpha \cdot p o l y(n)} \text {. }
$$

If we sample base case, we can rejection sample into μ with $\mathbb{P}[$ accept $] \geqslant \frac{1}{\alpha}$.

Question: How to sample subproblem w.p.

$$
\propto A L G \text { (subproblem) }
$$

Idea: Random walk on tree.
a put Metropol is filter to get α ALG as Stationary dist

Claim: $t_{\text {mix }}=p o l y(n, \alpha)$.
Proof We compare with ideal chain.
Routing: We route (s, t) demand on the unique tree path.

$$
\begin{aligned}
\text { Length: } \quad \begin{aligned}
2 \cdot d e p t h & =\operatorname{poly}(n) \cdot \quad 1 \\
\sum_{\text {sis in }} \mu^{\prime}(s) \mu^{\prime}(t) & =\sum_{s}^{\prime}\left(\mu^{\prime}(s) \sum_{t} \mu^{\prime}(t)\right.
\end{aligned}
\end{aligned}
$$

Congestion:

$$
\sum_{\substack{s_{1}+}} \mu^{\prime}(s) \mu^{\prime}(t)=: F
$$

routed through $x \sim y$ or $y \sim x$

$$
\begin{aligned}
& F \leqslant O\left(\sum_{z \in \text { subtree of } y}^{\mu^{\prime}(z)}\right)=\frac{\sum_{z \in y-\text { subtle }} A \operatorname{lon}(z)}{\sum_{z^{\prime} \in \text { tree }} A L G(z)}= \\
& O(\alpha \cdot \text { depth }) \cdot \frac{\mu(y)}{\mu(r o 0 t)}=O(\alpha \cdot p o l y(n)) \frac{\mu(y)}{\mu(r o o t)} \\
& Q(x, y)=Q(y, x) \geqslant \mu^{\prime}(y) \cdot \frac{1}{\alpha \cdot \operatorname{poly}(n)} \\
& \Rightarrow \text { congestion }=\operatorname{poly}(n, \alpha)
\end{aligned}
$$

We conclude $1-\lambda_{2}(p) \geqslant 1 / \operatorname{poly}(n, \alpha)$
If we start at root, we get

$$
\begin{aligned}
& \lg X^{2}\left(\operatorname{root} \| \mu^{\prime}\right) \leqslant \operatorname{polylg}(n, \alpha) . \\
& \Rightarrow t_{\text {mix }}(p, 000 t, \delta)=\operatorname{poly}\left(n, \alpha, \lg \frac{1}{\delta}\right)
\end{aligned}
$$

Canonical Paths
Suppose we have determinist routing and want.
congestion $(x \sim y)$
specific to $x-y$
Encoding: A map from

$$
\{(s, t) \mid x \times y \in s+p a t h\} \longmapsto \Omega \times[M]
$$

that's injective 8 if
$(s, t) \longmapsto(r, j u n k)$ we have

$$
\mu(s) \mu(t) \leqslant C \cdot \mu(r) Q(x, y)
$$

\Rightarrow congestion $\leqslant C \cdot M$ because

$$
\sum_{S_{1} t} \mu(s) \mu(t) \leqslant C \cdot \sum_{r \in \Omega} \sum_{\substack{\operatorname{jin} x \\ \in[M]}} \mu(r), Q(x, y)
$$

passing through xuy

Example. (hypercube)
Suppose $x \sim y$
\rightarrow differ in cord i
Encoding:

$$
(s, t) \longmapsto r:=\left(s_{1}, \ldots, s_{i}, t_{i+1},-, t_{n}\right)
$$

Injective because knowing y\& r we can recover both s \& t !

$$
\mu(s) \mu(t) \leqslant O(n)-\mu(r) \frac{\mu(x) P(x, y)}{Q(x, y)}
$$

Note: In general for uniform μ we only need $P(x, y) \geqslant \frac{1}{\text { poly (n) }}$ \& infective!

Markov Chain for Matchings

- Goal: Given unweighted graph G, count/sample its matchings.
not necessarily perfect matchings
- Markov Chain $\left[\begin{array}{l}\text { proposed by Broder, } \\ \text { analyzed by Jeroum-Sinclair }\end{array}\right]$

Move from $M \rightarrow M^{\prime}$ by

* Removing edge
* Adding edge
* Exchanging edge
necessary

Details are unimportant, as long as $P\left(M, M^{\prime}\right) \geqslant \frac{1}{\operatorname{Poly}(n)}$ for every valid move from M to M^{\prime}.

We will design paths for every M to $M^{\prime} \&$ use infective encoding! enough hecause miform

$$
\mu(M) \mu\left(M^{\prime}\right) \leqslant \operatorname{poly}(n) \cdot \mu(\text { (encoding }) Q(\text { transition })
$$

this is automatic

Paths: Consider matchings M, M^{\prime}. If we look at $M \oplus_{\text {kor }} M^{\prime}$, we get Collection of paths + cycles.

- Path from M to M^{\prime} : Arb. let. order over possible paths/cycles \& arb choice of starting endpoint/vertex.

Go over paths/cycles in this order \& unravel one-by-one.

Example:

unravel first unravel second

Encoding: For the $N \sim N^{\prime}$ transition we
can encode
$\left(M, M^{\prime}\right) \longmapsto\left(M \oplus M^{\prime} \oplus N-\right.$ few edges, few edges $)$ there might be two edges around current vertex junk part technically
Example.

Encoding, $\cdot \cdots$, few edges $)$

Claim: Injective!
Proof:

- We can recover $M \oplus M^{\prime}$ from encoding $\& N$.
- We know what path/cycle we are unraveling by $N \sim N^{\prime}$
- We can rewind unravel starting from N / N to recover M.
- We can continue unravel from N / N^{\prime} to recover M^{\prime}.

The: $1-\lambda_{2}($ chain $) \geqslant \frac{1}{\operatorname{poly}(n)} \quad 0$
Corollary: $t_{\text {mix }}=\operatorname{polg}(n) \leftarrow$ Open: fast algs!

