Review

- Relationship between $t_{\text {mix }}$ \& $t_{\text {rel }}$

$$
\frac{1}{1-|\lambda|} \leqslant O\left(\frac{t_{\text {mix }}(\varepsilon)}{\lg \frac{1}{\varepsilon}}\right)<\begin{gathered}
\text { even for } \\
\text { nonreversible } \\
\text {-tighter as } \varepsilon \rightarrow 0
\end{gathered}
$$ $t_{\text {ref }}$ when $\lambda=\lambda_{2}$

$$
t_{\text {mix }}(\varepsilon) \leqslant O\left(t_{\text {rel }} \cdot \lg \left(\frac{1}{\varepsilon \cdot \mu_{\text {min }}}\right)\right)<\begin{aligned}
& \text { reversible } \\
& \varepsilon \lambda_{2} \geqslant\left|\lambda_{n}\right|
\end{aligned}
$$

Informally, $t_{\text {rel }}$ is the coefficient of $19 \frac{1}{\varepsilon}$

- Functional analysis:

$$
\begin{aligned}
& D_{f}(\nu \| \mu):=\underset{x-\mu}{\mathbb{E}}\left[f\left(\frac{\nu(x)}{\mu(x)}\right)\right]-f\left(\mathbb{E}_{x / \mu}^{E}\left[\frac{\nu(x)}{\mu(x)}\right]\right) \\
& * f(x)=x^{2}: \quad x^{2}(\nu \| \mu) \text { or } \operatorname{Var}_{\mu}\left[\frac{\nu}{\mu}\right] \quad \text { this is just } \sum_{x} \\
& * f(x)=x \operatorname{lv} x: D_{k c}(\nu \| \mu) \text { or } E_{n t}\left[\frac{\nu}{\mu}\right] \\
& d_{T v}(\nu, \mu) \leqslant \frac{1}{2} \sqrt{x^{2}(\nu \| \mu)} \quad d_{T v}(\nu, \mu) \leqslant \sqrt{\frac{1}{2} D_{k l}(\nu \| \mu)}
\end{aligned}
$$

- Contraction:

$$
D_{f}(\nu P \| \mu P) \leqslant(1-\rho) D_{f}(\nu \| \mu)
$$

- For any stochastic $N \in \mathbb{R}_{20} \Omega_{x} \Omega^{\prime}$ we have

$$
\sup _{\nu} \frac{x^{2}(\nu N \| \mu N)}{x^{2}(\nu \| \mu)}=\lambda_{2}\left(N N^{\circ}\right)
$$

time-reversal
contraction in $x^{2} \longleftrightarrow$ bound on spectrum

- Fourier analysis

$$
G=\mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{k}}
$$

$\stackrel{\rightharpoonup}{ }{ }^{2}$ additive group
for wist π on G we get Ahelian walk:

$$
X \xrightarrow{p} X+Z \leftarrow \text { fresh sample tron } \pi
$$

* Eigenvectors \cong characters:

$$
\begin{aligned}
& \text { vectors } \cong \text { characters. } \\
& \left.x: G \rightarrow \mathbb{C}-\Gamma_{0}\right\} \text { s.t. } x(x+y)=x(x) x(y)
\end{aligned}
$$

* There are $n_{1}-n_{k}$ of them

$$
x\left(\left(x_{1}, \neg x_{k}\right)\right)=\omega^{x_{1}}-\cdots \omega_{k}^{x_{k}}
$$

nth root of unity

Plan for Today

- Examples of Fourier analysis
- Continuous time
- Comparison method
- Trading approx for time t if time

Thu: If P is an Abelian walk, every character x is an eigenvector.

$$
\begin{aligned}
& (x P)(y)=\sum_{x \in G} x(x) P(x, y)= \\
& \quad \sum_{x \in G} x(x) \pi(y-x)=\sum_{z} \pi(z) x(y-z) \\
& =(\underbrace{\left(\sum_{z} \pi(z) u(z)^{-1}\right) x(y) .}_{\text {corresponding eigen value. }}
\end{aligned}
$$

Since there are $n_{1}-n_{k}$ many, these are an eigenbasis!

Eigenvalue for $x: \quad \operatorname{lE}[x(-z)]$

Example (Hypercube)
$G=\mathbb{Z}_{2}^{n}$

- Characters are

$$
\begin{gathered}
x\left(x_{1}, \cdots, x_{n}\right)=w_{1}^{x_{1}} \cdots w_{n}^{x_{n}} \\
w_{1}, \cdots, w_{n} \in\{ \pm 1\}
\end{gathered}
$$

- Glauber dynamics:
$Z \sim \pi$: pick ie $[n]$ war. and let $Z=e_{i}$ w.p. $\frac{1}{2}$ and O w.p. $\frac{1}{2}$
Eigenvalue: $\underset{z \sim \pi}{\mathbb{E}}[x(-2)]=\mathbb{P}_{i \sim[n]}\left[\omega_{i}=1\right]$

$$
t_{\text {rel }}=O(n) \Rightarrow t_{\text {mix }}=O\left(n^{2}\right) \leftarrow \text { not tight }
$$

Example. (Cycle)

$$
G=\mathbb{Z}_{n}
$$

- Characters are

$$
x(x)=\omega^{x} \exp \left(\frac{2 \pi i \cdot t}{n}\right)
$$

Eigenvalue: $\mathbb{E}[x(-2)]=\frac{\omega+\omega^{-1}}{2}=\cos \left(\frac{2 \pi}{n} \cdot t\right)$

Continuous time

- So far we have been running

discrete time
- We car ran a chain in continuous time too:
sta. Poisson Clock:
 unit of time
Evergtime the dock rings we take a step of P.
x_{t} : location at time t
$\mathbb{N}_{\text {makes sense }}$ for $t \in \mathbb{R}_{\geqslant 0}$

Remark. Algorithmically to simulate X_{t} we can just sample $n \sim \operatorname{Bir}(t)$ and run n steps of P.
Remand For any t, conditioned on X_{t}, past \& future are independent.
\checkmark Poisson clock is memoryless.

Remake. For any $t, X_{t} \mid X_{0}$ follows a Markov chain. Same as $X_{t+s} \backslash X_{s}$.

Thing of dividing tine into ε-sized intervals ε w.p. ε taking a P in each interval.

$$
\underbrace{((1-\varepsilon) I+\varepsilon P)^{t / \varepsilon}}_{\begin{array}{c}
\text { transition for } \\
\text { an interval }
\end{array}}=(I+\varepsilon(P-I))^{\frac{t}{\varepsilon}})_{\text {as }}{ }^{\downarrow} \varepsilon \rightarrow 0
$$

Remark. Main benefit of continuous time is "periodicity" goes away.

Ultimate lazification: $P \mapsto(1-\varepsilon) I+\varepsilon P$

Functional analysis in continuous time

- In discrete time we wanted

$$
D_{f}(\nu p \| \mu) \leqslant(1-\rho) D_{f}(\nu \| \mu)
$$

- In cont. time the analogous condition is:

$$
\begin{gathered}
\left.\frac{d}{d t} D_{f}\left(\nu_{t} \| \mu\right)\right|_{t=0} \leqslant-\rho \cdot D_{f}(\nu \| \mu) \\
\nu_{t}=\nu_{0} \cdot \exp (t \cdot(P-I))
\end{gathered}
$$

* Corollary; $D_{f}\left(\nu_{f} \| \mu\right) \leqslant e^{-t p} \cdot D_{f}(\nu \| \mu)$
- Poincare: This for x^{2}
- Modified Log-Soholev: This for DkL should be called Gross's inequality

Note, Discrete time contraction \Rightarrow cont. time If P contracts by $1-p$ then $(1-\varepsilon) I+\varepsilon p$ contracts by $1-\varepsilon \rho$.

$$
\begin{aligned}
& D_{f}((1-\varepsilon) \nu+\varepsilon \nu P \| \mu) \leqslant(1-\varepsilon) D_{f}(\nu \| \mu)+\varepsilon D_{f}(\nu P \| \mu) \\
& \leqslant((1-\varepsilon)+\varepsilon(1-\rho)) D_{f}(\nu \| \mu) \\
& \quad 1 \| \text { is on vex } \\
& \Rightarrow \frac{d}{d t} D_{f}\left(\nu_{f} \| \mu\right) \leqslant-\rho D_{f}\left(\nu_{0} \| \mu\right)
\end{aligned}
$$

Mini-proof: $e^{t \rho} \cdot D_{f}\left(v_{f} \| \mu\right) \leftarrow z_{t}$
So we again get mixing time bounds.

Remarks: In general the reverse doasn't hold "o Example, Periodic chains.

However:
For reversible 8 lazy chains in x^{2} :

$$
\begin{aligned}
& \text { say } \lambda_{n} \geqslant 0 \\
& \text { or } \lambda_{n} \geqslant-\lambda_{2}
\end{aligned}
$$

discrete time \Leftrightarrow continuous the
Sketch:

- Poincare $\longleftrightarrow 2\left(1-\lambda_{2}(P)\right)$

This is because $1-\lambda_{2}((1-\varepsilon) I+\varepsilon P)=\varepsilon\left(1-\lambda_{z}(P)\right)$
So x^{2} contracts by $\simeq 2 \varepsilon\left(1-\lambda_{2}(P)\right)$
Derivative in ε is $2\left(1-\lambda_{2}(P)\right)$

- Discrete time x^{2} contraction $\longleftrightarrow 1-\max \left(\lambda_{2_{A}}^{2}(p) \lambda_{n}^{2}(p)\right)$
by assumption this dominates

Dirichlet form
Convenient to write $\frac{d}{d t} D_{f}\left(\nu_{+} \| \mu\right)$ in terms of quantity called Dirichlet form. * Assume time-reversible

$$
\begin{gathered}
\nu_{d t} \simeq(1-d t) \nu+d t \cdot \nu P=\nu+d t \cdot \nu(P-I) \\
\left.\left.\frac{d}{d t} E_{\mu}\left[f\left(\frac{v_{d t}}{\mu}\right)\right]\right|_{t=0}=\mathbb{E}_{\mu}\left[f^{\prime}\left(\frac{\nu}{\mu}\right) \cdot \frac{\left.\frac{d}{d t} v_{t}\right|_{t=0}}{\mu}\right]\right]^{\nu(P-I)} \\
-\frac{1}{2} \sum_{x, y} Q(x, y)\left(f^{\prime}\left(\frac{\nu(x)}{\mu(x)}\right)-f^{\prime}\left(\frac{\nu(y)}{\mu(y)}\right)\right)\left(\frac{\nu(x)}{\mu(x)}-\frac{v(y)}{\mu(y)}\right) \\
\text { ergodic flow: } \mu(x) P(x, y)=\mu(y) P(y, x)
\end{gathered}
$$

Dirichlet form:

$$
\begin{aligned}
& \mathcal{E}(g, h)=\frac{1}{2} \in_{(x, y) \cup Q}[(g(x)-g(y))(h(x)-h(y))] \\
& \left.\sum Q(x)\right]
\end{aligned}
$$

- For x^{2}, we get

$$
\begin{aligned}
& \frac{d}{d t}\left(u^{2}\left(v_{t} \| \mu\right)\right)=-2 \varepsilon\left(\frac{v_{t}}{\mu}, \frac{v_{t}}{\mu}\right) \\
& \text { Poincare: } 2 \varepsilon\left(\frac{v_{t}}{\mu}, \frac{v_{t}}{\mu}\right) \geqslant \rho \operatorname{Var}_{\mu}\left[\frac{v_{t}}{\mu}\right]
\end{aligned}
$$

- For $D_{x L}$, we get $f(x)=x \lg x$

$$
\begin{aligned}
& \frac{d}{d t}\left(D_{k}\left(\nu_{t} \| \mu\right)\right)=-\varepsilon\left(\frac{\nu_{t}}{\mu}, \lg \frac{\nu_{t}}{\mu}\right) \\
& \text { MLSI: } \varepsilon\left(\frac{\nu_{+}}{\mu}, \lg \frac{\nu_{t}}{\mu}\right) \geqslant \rho \operatorname{Ent}_{\mu}\left[\frac{\nu_{t}}{\mu}\right]
\end{aligned}
$$

Remark: There is something called LSI too:

$$
\mathcal{E}\left(\sqrt{\frac{\nu_{t}}{\mu}}, \sqrt{\frac{v_{t}}{\mu}}\right) \geqslant \rho \operatorname{Ent}_{\mu}\left[\frac{\nu_{t}}{\mu}\right]
$$

The: LSI $\Rightarrow M L S I \leftarrow H W$

Remake: For continuous-space MLSI \Leftrightarrow SI, but absolutely NOT in discrete space.

Comparison of Markov chains
Suppose we have two chains P, P^{\prime} that "look similar" and have same Stationary dist μ, but we can only analyze P. How do we transfer to P^{\prime}.
Example. (Coloring) Metropolis \longleftrightarrow Glauber Idea 1: Suppose $\quad P(x, y) \xrightarrow[c^{<} \text {multiplicative }]{\simeq} P^{\prime}(x, y)$ for $x \neq y$. For colorings $\frac{1}{q_{n}} \simeq \frac{x^{\text {up }} \text { to }^{q} \frac{q}{q-i}}{n \cdot(q-t)}-$ Glauber

Comparison method (easy version)

$$
\begin{aligned}
& \varepsilon\left(f^{\prime}\left(\frac{\nu}{\mu}\right), \frac{\nu}{\mu}\right)= \\
& \frac{1}{2} \sum_{x, y} Q(x, y) \underbrace{\left(f^{\prime}\left(\frac{\nu(x)}{\mu(x)}\right)-f^{\prime}\left(\frac{\nu(y)}{\mu(y)}\right)\right)\left(\frac{\nu(x)}{\mu(x)}-\frac{\nu(y)}{\mu(y)}\right)} \underbrace{}_{f^{\prime} \text { because monotone }}
\end{aligned}
$$

The: If $P \simeq{ }^{C} P^{\prime}$ and P, P^{\prime} have the same stationary dist, for any D_{f},

$$
\rho(p) \stackrel{c}{\curvearrowleft} \rho\left(P^{\prime}\right)
$$

continuous time contraction factors

Comparison method (hard version)
What if P, P^{\prime} are not this similar?
Routing: Suppose we have dist π over paths $x_{0} \sim x_{1} \sim x_{2} \sim \cdots \sim x_{l}$, st. $\left(x_{0}, x_{l}\right) \sim Q$
"ergodic flow for F
We call π a routing.
Congestion: $\frac{\mathbb{P}_{\text {path } \sim \pi}[x \sim y \text { in path }]}{Q^{\prime}(x, y)}$
Length: Maximum l.
Low congestion + Low length \Rightarrow

$$
c \cdot \varepsilon_{p}(g, g) \leqslant \varepsilon_{p^{\prime}}(g, g)
$$

