Review

- Path Coupling: $\quad W\left(1_{x} P, 1_{x^{\prime}} P\right) \leqslant(1-C) W\left(1_{x^{\prime}} 1_{x^{\prime}}\right)$ only adjacent states
* Coloring: $q>2 \Delta \Rightarrow t_{\text {mix }}{ }^{(\text {Metropolis })}=O_{\Delta}(n \lg n)$
- Dobrushin: μ on $\Omega_{1} x \ldots x \Omega_{n}$

$$
I[j \rightarrow i]=\max \left\{\left.\frac{d}{T V}\left(\mu_{i}\left|x_{-i}, \mu_{i}\right| x_{-i}^{\prime}\right) \right\rvert\, x \sim_{j} x^{\prime}\right\}
$$

Thu: If columns of I sum to $\leqslant 1-\delta$

$$
\Rightarrow t_{\text {mix }}(\text { Glauber })=O(n \lg n / \delta)
$$

* Coloring: $q>2 \Delta \Rightarrow t_{\text {mix }}=O_{\Delta}(n \lg n)$
* Hardcore: $\lambda \leqslant \frac{1-\delta}{\Delta} \Rightarrow t_{\text {mix }}=O_{\delta}(n \lg n)$
* Ising : $\sum_{i}\left|\beta_{i j}\right| \leqslant 1-\delta \Rightarrow t_{\text {mix }}=0_{\delta}(n \mid g n)$
- Dobrushin +t:
$c \in \mathbb{R}_{>0}^{n}$ with $c I \leqslant((1-\delta) \cdot c$

$$
\Rightarrow W\left(\nu P, \nu^{\prime} P\right) \leqslant\left(1-\frac{\delta}{n}\right) W\left(\nu, \nu^{\prime}\right)
$$

${ }^{5}$ c-weighted Hamming distance

- Spectral Analysis

-Time-Reversible: eigenvalues are real

$$
-1 \leqslant \lambda_{n} \leqslant \cdots \leqslant \lambda_{2} \leqslant \lambda_{1}=1
$$

- Spectral Gap: $1-\lambda_{2}$ or $1-\max \left(\lambda_{2}| | \lambda_{n} \mid\right)$
- Relaxation Time: $t_{r e l}:=1 / 1-\lambda_{2} \leftarrow a$ proxy for $t_{\text {mix }}$

Plan for Today

- Relationship between $t_{\text {mix }}$, $t_{\text {rel }}$
- Intro to functional analysis
- Fourier analysis

Eigenvalues \& Mixing Time
Suppose $V P=\lambda v$ for $1 \neq \lambda \in \mathbb{C}, v \in \mathbb{C}^{n}$.

$$
\begin{aligned}
\lambda v 1^{t} & =v P 1^{t}=v 1^{t} \Rightarrow v 1^{t}=0 \\
\text { Def: }\|v\|_{1} & =\sum_{i}\left(\left|\operatorname{Re}\left(v_{i}\right)\right|+\left|\operatorname{Im}\left(v_{i}\right)\right|\right)
\end{aligned}
$$

Claim: $t \geqslant t_{\text {mix }}(\varepsilon) \Rightarrow\left\|v P^{t}\right\|_{1} \leqslant O(\varepsilon) \cdot\|v\|_{1}$
Proof: Let $v:=\alpha v_{1}-\alpha v_{2}+i \beta v_{3}-i \beta v_{4}$ for

$$
v_{1} v_{2}, v_{3}, v_{4} \text { dists: } v_{i} \in \mathbb{R}_{\geqslant 0}^{n} \quad v_{i} 1^{t}=1
$$

v_{1}, v_{2} disjoint support $?$
v_{3}, v_{4} disjoint support $\} \Rightarrow\|v\|_{1}=2 \alpha+2 \beta$

$$
v p^{t}=\alpha\left(v_{1} p^{t}-v_{2}^{\mu} p^{(}\right)+i \beta\left(v_{3}^{\mu} p^{\mu}-v_{4}^{\mu} p^{\mu}\right)
$$

$$
\Rightarrow\left\|v p^{t}\right\|_{1} \leqslant \alpha \cdot O(\varepsilon)+\beta \cdot O(\varepsilon)=O(\varepsilon) \cdot\|v\|_{1}
$$

Def: $\|v\|_{1}^{\prime}=\sum_{i}\left|v_{i}\right|_{\downarrow}^{\sqrt{R_{e}\left(v_{i}\right)^{2}+\operatorname{Im}\left(v_{i}\right)^{2}}}$ $\|v\|_{1}^{\prime} \stackrel{\sqrt{2}}{\simeq}\|v\|^{\text {but }}\|\lambda v\|_{1}^{\prime}=|\lambda|\|v\|_{1}^{\prime}$

Now if $t \geqslant t_{\text {mix }}(\varepsilon)$ we have

$$
\begin{aligned}
& |\lambda|^{t}\|v\|_{1}^{\prime}=\left\|v p^{t}\right\|_{1}^{\prime} \leqslant O(\varepsilon) \cdot\|v\|_{1}^{\prime} \\
& \Rightarrow|\lambda|^{t}=O(\varepsilon)
\end{aligned}
$$

* Corollary; $|\lambda|<1 \Leftarrow$ Holds even when for eigenvectors other than μ if ergodic.
* Corollary: $1-|\lambda| \geqslant \Omega\left(\frac{\lg \frac{1}{\varepsilon}+\text { constr }}{t_{m_{\text {ix }}}(\varepsilon)}\right)$
$|\lambda| \leqslant 1-\Omega\left(\frac{1}{t_{\text {mix }}}\right) \leftarrow$ usually not tight

Example. (Hypercube)

$$
\begin{aligned}
& t_{\text {mix }}(\varepsilon)=O\left(n \lg n+n \lg \frac{1}{\varepsilon}\right) \\
& \Rightarrow t_{\text {rel }}=O\left(\frac{n \left\lvert\, g n+n \lg \frac{1}{\varepsilon}\right.}{\text { const }+\lg \frac{1}{\varepsilon}}\right) \xrightarrow{\varepsilon \rightarrow 0} t_{\text {rel }}=O(n)
\end{aligned}
$$

Example. (Dobrushin)
Suppose $\quad \sum_{i} \mid I[j \rightarrow i| | \leqslant 1-\delta$
Glauber

$$
\begin{aligned}
& \Rightarrow t_{\text {mix }}=O\left(\frac{n \operatorname{lgn}}{\delta}+\frac{n \lg \frac{1}{\varepsilon}}{\delta}\right) \\
& \Rightarrow t_{\text {rel }}=O\left(\frac{n \operatorname{lgn} n+n \left\lvert\, s \frac{1}{\varepsilon}\right.}{\delta \cdot \lg \frac{1}{\varepsilon}}\right) \stackrel{\varepsilon \rightarrow 0}{\Longrightarrow} t_{\text {rel }}=O\left(\frac{n}{\delta}\right)
\end{aligned}
$$

HW: What happens for Dobrushint+?

$$
\lambda_{\max }(I) \leqslant 1-\delta \Rightarrow t_{\text {rel }}=O(?)
$$

Intro to Functional Analysis
Question: Can we bound $t_{\text {mix }}$ by $t_{\text {rel }}$?
Idea: Contraction of proxy for $d_{T V}$
Def: $(f$-Divergence $)$ convex function f :

$$
\begin{aligned}
& \underbrace{D_{f}(\nu \| \mu)}_{k}:=\mathbb{E}_{x \sim \mu}^{E}\left[f\left(\frac{\nu(x)}{\mu(x)}\right)\right]-\underset{\substack{x-\mu \nu}}{f\left(\frac{\mathcal{E}}{\mathcal{E}(x)}\left[\frac{\nu(x)}{\mu(x)}\right]\right)} \quad 1 \text { when } \nu \text { is dist } d_{T v}(\nu, \mu)
\end{aligned}
$$

Note: We define it for any $\nu, a \rightarrow \mathbb{R}$ where ν / μ takes values in domain of f.
Fact: f convex $\Rightarrow D_{f}(\nu \| \mu) \geqslant 0$
Proof, Jensen's inequality! \square
Remark: f strongly convex $\Rightarrow D_{f}=0 \leftrightarrow \nu=$ const. μ.

Fact: Suppose $N \in \mathbb{R}_{\geqslant 0}^{\Omega \times \Omega^{\prime}}$ is row stochastic.
Then $\underbrace{D_{f}(\nu N \| \mu N) \leqslant D_{f}(\nu \| \mu)}_{\text {Data processing ineq. }}$
Proof: We apply Jensen's again: $\pi(x, y):=\mu(x) N(x, y)$ $\frac{\nu N(y)}{\mu N(y)}=\frac{\sum_{x} \nu(x) N(x, y)}{\sum_{x^{\prime}} \mu\left(x^{\prime}\right) N\left(x^{\prime}, y\right)}=\sum_{x}\left(\frac{\pi(x, y)}{\sum_{x^{\prime}} \pi\left(x^{\prime}, y\right)}\right) \frac{\nu(x)}{\mu(x)}$

$$
\begin{aligned}
& \Rightarrow f\left(\frac{\nu N(y)}{\mu N(y)}\right) \leqslant \sum_{x} \pi(x \mid y) f\left(\frac{\nu(x)}{\mu(x)}\right) \Rightarrow \\
& \mathbb{E}_{\substack{y \sim N_{N}^{N} \\
y-\text { marginal of }}}\left[f\left(\frac{\nu N(y)}{\mu N(y)}\right)\right] \leqslant \sum_{x} \underbrace{E_{y \sim \mu N}[\pi(x \mid y)] f\left(\frac{\nu(x)}{\mu(x)}\right)}_{\substack{x-\operatorname{margin\mu }(\operatorname{of} \\
\text { i.e. } \mu(x)}}= \\
& \mathbb{E}_{x \sim \mu}\left[f\left(\frac{\nu(x)}{\mu(x)}\right)\right] .
\end{aligned}
$$

Note that

$$
\begin{aligned}
& \text { Note that } \\
& E_{y \sim \mu N}\left[\frac{\nu N(y)}{\mu N(y)}\right]=\sum_{y} \nu N(y)=\sum_{x} \nu(x) \sum_{y N(x, y)^{\prime}}= \\
& E_{x \sim \mu}\left[\frac{\nu(x)}{\mu(x)}\right] .
\end{aligned}
$$

Therefore $\quad D_{f}(\nu \| \mu) \geqslant D_{f}(\nu N \| \mu N)$
Remark: This is extremely useful for Markov chains constructed as $P=N N^{0}$.
Contraction of either N or $N^{\circ} \Rightarrow$ contraction of P
In lots of scenarios N by itself easier to analyze!
Remark: We usually want ifs where $d_{T J} \leqslant$ some func of D_{f}

Popular Choice 1: $\left(f(x)=x^{2}\right)$

$$
D_{f}(\nu \| \mu)=x^{2}(\nu \| \mu) x^{2} \text {-divergence }
$$

Also called $\operatorname{Var}_{\mu}\left[\frac{\nu}{\mu}\right]$

- Note that ν can tare <o values too here.
- Alternative formula:

$$
\chi^{2}(\nu \| \mu)=\mathbb{E}_{x \sim \mu}\left[\left(\frac{\nu(x)}{\mu(x)}-\mathbb{E}_{x^{\prime} \sim \mu}\left[\frac{\nu\left(x^{\prime}\right)}{\mu\left(x^{\prime}\right)}\right)\right)^{2}\right]
$$

Thu: For ν a dist, we have

$$
d_{T V}(\nu, \mu) \leqslant \frac{1}{2} \sqrt{x^{2}(\nu \| \mu)}
$$

Proof: Apply Canchy-Schwarz :

$$
2 d(v, \mu)=\sum_{T V}|\nu(x)-\mu(x)|=\mathbb{E}_{x \sim \mu}\left[\left|\frac{v(x)}{\mu(x)}-1\right|\right] \leqslant \sqrt{x^{2}(\nu \| \mu)}
$$

Popular Choice $21(f(x)=x \lg x$ for $x \geqslant 0)$

$$
D_{f}(\nu \| \mu)=D_{k L}(\nu \| \mu)
$$

Also called Ant $\left[\frac{\nu}{\mu}\right]$ entropy

- Note that v can take $\geqslant 0$ values but doesn't next to sum to 1.
- Formula for dist v: $\eta_{K_{l}}(\nu \| \mu)=E_{x^{\sim} \sim \nu}\left[\lg \left(\frac{\nu(x)}{m(x)}\right)\right]$

Thm (Pinsker's): For v a dist, we have

$$
d_{T V}(\nu, \mu) \leqslant \sqrt{\frac{1}{2} D_{k L}(\nu \| \mu)} .
$$

Proof: Define noise operator that maps x to - if $\nu(x) \geqslant \mu(x)$ and 1 if $\nu(x)<\mu(x)$.

$$
d_{T V}(\nu N, \mu N)=d_{T V}(\nu, \mu), \quad D_{K}(\nu N \| \mu N) \leqslant O_{k L}(\nu \| \mu) .
$$

\Rightarrow Enough to prove on $\Omega=\{0,1\}$ The rest on HW.

Functional Analysis:
Show contraction of some D_{f} :

$$
\begin{aligned}
& D_{f}(\nu P \| \mu)=D_{f}(\nu P \| \mu P) \leqslant(1-\rho) D_{f}(\nu \| \mu) \\
& \Rightarrow D_{f}\left(\nu P^{t} \| \mu\right) \leqslant(1-P)^{t} D_{f}(\nu \| \mu)
\end{aligned}
$$

Variance $/ x^{2}$

Entropy / $D_{k L}$ $t \geq \frac{\lg \left(D_{k L}\left(v_{0} \| \mu\right) / \varepsilon^{2}\right)}{\rho}$

$$
\Rightarrow d_{T V}\left(v_{0} P^{t}, \mu\right) \leqslant \varepsilon
$$

How large can $D_{k c}\left(v_{0} \| \mu\right)$
be? $\lg \frac{\nu_{0}(r)}{\mu(x)} \leqslant \lg \frac{1}{\mu_{\text {min }}}$
$t_{\text {mix }}=0\left(\frac{\lg \lg \left(\frac{1}{\mu_{\text {min }}}\right)}{\rho}\right)$

These inequalities are related to Poincare \& MLSI
future: cont. time

Spectral gap \Leftrightarrow Contraction of x^{2}
Suppose $N \in \mathbb{R}_{\geqslant 0}^{\Omega \times \Omega^{\prime}}$ is row-stochastic and μ dist on Ω. Let $\mu^{\prime}=\mu N$ and N^{0} be time-reversal of N wind M.
D_{μ} : diagonal matrix D_{μ} : diagonal matrix μ on diag. with μ^{\prime} on diag.

$$
D_{\mu} N^{0}=\left(D_{\mu} N\right)^{\top}=N^{\top} D_{\mu}
$$

Formula for x^{2} : Suppose ν sums to 0 .

$$
x^{2}(\nu \| \mu)=\left\|\nu D_{\mu}^{-\frac{1}{2}}\right\|_{2}^{2}
$$

For such a ν we have $(\nu N) t^{t}=0$ too, Proof. Let $\nu=\nu D_{\mu}^{-1 / 2} \leftarrow$ change of variable
so $\quad u^{2}(\nu N \| \mu N)=\left\|\nu N D_{\mu^{2}}^{-\frac{1}{2}}\right\|_{2}^{2}$.
What is

$$
\sup \left\{\frac{\left\|\nu N D_{\mu^{\prime}}^{-\frac{1}{2}}\right\|_{2}^{2}}{\left.\left.\| \nu D_{\mu}^{-\frac{1}{2} \|_{2}^{2}} \right\rvert\, \nu 1^{t}=0\right\} ? ~ ? ~ ? ~}\right.
$$

This is equal to $\lambda_{2}\left(N N^{0}\right)$
[if time ...]
Contraction for arbitrary $\nu \ll$ Contraction for $\nu l_{=0}^{t}$

$$
P_{\text {variance }}=1-\lambda_{2}\left(N N^{\circ}\right)
$$

Corollary, Time-reversible :

$$
\lambda_{2}\left(P^{2}\right)=\max \left(\lambda_{2}(N)^{2}, \lambda_{n}(N)^{2}\right)
$$

Let $A=D_{\mu}^{\frac{1}{2}} N D_{\mu^{\prime}}^{-\frac{1}{2}}$. Then

$$
\sup \left\{\left.\frac{v A A^{\top} V^{\top}}{v V^{\top}} \right\rvert\, v D_{\mu}^{\frac{1}{2}} 1^{t}=0\right\}
$$

Note that

$$
\begin{aligned}
& \text { ore that } \\
& A A^{\top}=D_{\mu}^{\frac{1}{2}} N \underbrace{D_{\mu^{\prime}}^{-1} N^{\top} D_{\mu} D_{\mu}^{-\frac{1}{2}}=D_{\mu}^{\frac{1}{2}} N N^{0} D_{\mu}^{-\frac{1}{2}}}_{N^{0}} \text { sa symmetric matrix and similar to }
\end{aligned}
$$

is a symmetric matrix and similar to $N N^{\circ}$, so has same eigenvalues.

$$
A A^{\top} D_{\mu}^{\frac{1}{2}} 1^{t}=D_{\mu}^{\frac{1}{2}} 1^{t} \leftarrow \begin{array}{r}
\text { eigenvector for } \\
\text { eigenvalue } 1
\end{array}
$$

So we are looking at

$$
\begin{aligned}
& \sup \left\{\frac{v A A^{\top} v}{v v^{\top}} \left\lvert\, \begin{array}{c}
\text { orthogonal to top } \\
\text { eigenvector }
\end{array}\right.\right\} \\
& =\lambda_{2}\left(A A^{T}\right)=\lambda_{2}\left(N N^{\circ}\right)
\end{aligned}
$$

Fourier Analysis
Finite Abelian group: $G=\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \ldots \times \mathbb{Z}_{n_{k}}$. with t : component wise addition. \bmod

Take dist π over G.
think sparse support.

We get an Abelian walk:

Example. $\quad G=\mathbb{Z}_{2}^{n}$

This is Glauber dynamics.

Example. (Cycle)
$\pi:\left\{\begin{array}{l}\text { wp. } \frac{1}{2} \text { choose }+1 \\ \text { wp } \frac{1}{2} \text { choose - }\end{array}\right.$

Fact 1: $\mu=$ uniform always stationary
Fact $2 i \quad \pi$ symmetric \Longleftrightarrow time-reversible

$$
\pi(2)=\pi(-2)
$$

Fact 3: support Π generate $G \Leftrightarrow$ irreducible.

Thy: Regardless of π, eigenvectors are fixed; they are characters of G.
Def: (Character): $X: G \rightarrow \mathbb{Q}^{*}$ s.t.

$$
\mathcal{U (x + y) =} \mathcal{U (x)} \mathcal{U (y)}
$$

Example. $\left(\mathbb{Z}_{n}\right)$:
Pick $\omega \in \mathbb{4}$ sit. $\omega^{n}=1$.
Then $x(x)=\omega^{x}$ is well-defined.

$$
x(x)=\exp \left(\frac{2 \pi i \cdot t x}{n}\right)=\omega_{n}^{t x}
$$

Characters of $\mathbb{Z}_{n_{1}} x-x \mathbb{Z}_{n_{k}}$

$$
x\left(x_{1},-, x_{k}\right)=\omega_{n_{1}}^{t_{1} x_{1}} \ldots \omega_{n_{k}}^{t_{k} x_{k}}
$$

There are exactly n_{1} - n_{k} such characters.

The: If P is an Abelian walk, every character x is an eigenvector.

$$
\begin{aligned}
& \left(\chi(P)(y)=\sum_{x \in G} x(x) P(x, y)=\right. \\
& \quad \sum_{x \in G} x(x) \pi(y-x)=\sum_{z} \pi(z) x(y-z) \\
& =\left(\sum_{z}^{\left(\sum_{z} \pi(z) u(z)^{-1}\right)} x(y) .\right. \\
& \quad \text { corresponding eigenvalue. }
\end{aligned}
$$

Since there are $n_{1}-n_{k}$ many, these are an eigenbasis!

$$
\operatorname{EE}[x(-z)]
$$

