Stochastic Localization
We have been using a "localization" process for HDD:

$$
\mu \text { on }\binom{[n]}{k}: \quad \mu=p_{1} \mu_{n}^{\mu}+\cdots+p_{n} \mu^{n}
$$

Key: Every level we have a distribution over measures.

Local-to-Glohal:

$$
\begin{aligned}
& \mathbb{E}\left[\operatorname{Var}_{\mu_{l}}[f]\right] \geqslant \rho_{0}-\rho_{l-1} \operatorname{Var}_{\mu}[f] \\
& x^{2}(\nu \| \mu)-\quad x^{2}(\nu \| \mu) \\
& x^{2}\left(\nu D_{k \rightarrow l} \|_{k \rightarrow l} \mu D_{1}\right) \\
& \mathbb{E}\left[E n t_{\mu_{l}}[f]\right] \geqslant \rho_{0}-\rho_{l-1} \operatorname{Ent}_{\mu}[f] \\
& D_{k}(\nu \| \mu)- \\
& D_{k L}\left(\nu D_{k \rightarrow \ell} \| \mu D_{k \rightarrow l}\right)
\end{aligned}
$$

[Chen-Eldan] Studied "loculizatio schemes" more generally. The equiv. notions of HDX are called conservation of variance $\&$ conservation of entropy.

Stochastic localization is a different scheme that works in continuous time:

$$
\left\{\mu_{t}\right\}_{t \in \mathbb{R}_{\geqslant 0}}
$$

(For simplicity think of μ_{t} on $\{ \pm 7\}^{n}$, but it works for μ_{t} on \mathbb{R}^{n})

The original def is to multiply a linear:

$$
d \mu_{t}(x)=\mu_{t}(x)\langle x-\operatorname{mean}\left(\mu_{t}\right), \underbrace{d W_{t}}_{t}\rangle
$$

$$
\mu_{t+d t}(x)=\mu_{t}(x)\left(1+\left\langle x-\operatorname{mean}\left(\mu_{t}\right), d w_{t}\right\rangle\right)
$$

think of $N(0,0+\mathbb{H})$

Note that $\mu_{t+d t}$ is still a distribution

$$
\begin{aligned}
& \sum_{x} \mu_{t+d t}(x)=\sum_{x} \mu_{t}(x)+ \\
& \left.\quad\left(d W_{t}\right) \sum_{x} \mu_{t}(x) x-\sum_{x} \mu_{t}(x)^{\text {mean }}\right\rangle
\end{aligned}
$$

So as long as $d W_{t}$ is infinitesimally small, so that no $\mu_{t}(x)$ becomes <0,
μ_{f} will be a distribution at all times.
What about being a martingale?

$$
\forall x
$$

$$
E_{t}\left[d \mu_{t}(x)\right]=\mu_{t}(x) \cdot\left\langle x-\operatorname{men}\left(\mu_{t}\right), \mid E_{t}\left[d w_{t}\right]\right\rangle
$$

enough to be 0
lem: As long as W_{t} is a martingale, that is $\mathbb{E}_{t}\left[d w_{t}\right]=0$, the process μ_{f} is a dist-valued martingale.:

Convenient Choice: Tare W_{t} to be
Brownian motion:

$$
d W_{t}=N(0, d t I)
$$

Four runs for μ unif on $\{ \pm 1\}$

Note that we do not have to fix W_{t} in advance. In fact we can let $d W_{t}=N\left(0, \sum \overrightarrow{N_{t}}\right)$ decide based on μ_{t}
necessary for martingale

Can we write a closed-form expression for μ_{t} ?

Claim: We always have

$$
\mu_{t}(x) \propto \mu_{0}(x) \underbrace{e^{\frac{1}{2} x^{\top} A_{t} x+\bar{h}_{t}^{\top} x}} \underbrace{}_{e_{p} \text { of quadratic }}
$$

This follows from $1 t_{0}$'s lemma: Quick aside:

Suppose we have a cont time process X_{t} that:

$$
d x_{t}=m_{t} d t+\sigma_{t} d B_{t}
$$

Such a thing is
Standard Brownian called too process motion

Then what is $Y_{t}=f\left(x_{t}\right)$ for some "nice function" f ?

Chain rule is wrong:

$$
d Y_{t} \neq f^{\prime}\left(X_{t}\right)\left(m_{t} d t+\sigma_{t} d B_{t}\right)
$$

Example.
$Y_{t+0 t}$ is on average smaller!

Hot's lemma We have

$$
d Y_{t}=f^{\prime}\left(x_{t}\right) \cdot\left(m_{t} d t+\sigma_{t} d B_{t}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{t}\right) \sigma_{t}^{2} d t
$$

This is because in Taybr series of f we have to go until second order.

$$
\begin{gathered}
f\left(x_{t}+m_{t} d t+\sigma_{t} d B_{t}\right) \simeq f\left(x_{t}\right)+f^{\prime}\left(x_{t}\right)\left(m_{t} d t+\sigma_{t} d B_{t}\right)+ \\
\frac{1}{2} f^{\prime \prime}\left(x_{t}\right)\left(m_{t} d t+\sigma_{t} d B_{t}\right)^{2}+\cdots
\end{gathered}
$$

We can drop everything of magnitude $\ll d t$ but $d B_{t}^{2}=d t$.

We can use 1 to to understand $\lg \left(\mu_{t}(x)\right)$ in stochastic localization.

$$
\begin{aligned}
& x_{t}=\mu_{t}(x)
\end{aligned}
$$

$$
\begin{aligned}
& Y_{t}=\lg \mu_{t}(x) \text { then } \quad \lg (z)=\frac{1}{2} \\
& d Y_{t}=\underbrace{\left\langle x-\operatorname{mean}\left(\mu_{t}\right) / d W_{t}\right.}\rangle+ \\
& \lg ^{\prime \prime}(z)=\frac{-1}{z^{2}} \\
& \text { chain uk part }, \sum_{t} \\
& \underbrace{-\frac{d t}{2 x_{t}^{2}}}_{\frac{1}{2} f^{\prime \prime}\left(x_{t}\right)} \cdot x_{t}^{2} \cdot \underbrace{\left(x-\operatorname{mean}\left(\mu_{t}\right)\right)^{\top} \cdot \underbrace{C_{C_{t}^{\top}}^{t}(x-\operatorname{mear}(\mu))}_{t-1}}_{\text {Variance }}
\end{aligned}
$$

So $d Y_{t}=-\frac{1}{2} x^{T} \sum_{t} x d t+\langle$ somenting $x\rangle+$ Coaching

This means that we always have

$$
\begin{aligned}
& \mu_{t}(x) \propto \mu_{0}(x) e^{x^{\top} A_{t} x+h_{t}^{\top} x} \text { and } \\
& A_{t}=-\frac{1}{2} \int_{0}^{t} \sum_{t} d t \begin{array}{l}
I[i \rightarrow j] \\
\leqslant\left|J_{i j}\right| \\
J \rightarrow J_{+} C I
\end{array}
\end{aligned}
$$

This is very convenient when μ_{0} itself is $\exp ($ quadratic $)$.
[Eldan-Koehler-Zeitouni]
Thai Suppose $\mu(x) \propto \exp \left(\frac{1}{2} x^{\top} d x+h_{x}^{\top}\right)$ on $\{ \pm 1\}^{n}$. This is an Using model. Then if 0,$\} \int\{(1-\delta) I$, Glauber dynamics on μ mixes rapidly $\left(t_{\text {rel }}=O_{\delta}(n)\right)$

- We also know MISI [A-Lin-Kenke-Pham-hoed]

Proof: Suppose we run stochastic localization
Then we have

$$
\begin{aligned}
& \mu_{t}(x) \propto \exp \left(\frac{1}{2} x^{\top} d_{t} x+h_{t}^{\top} x\right) \\
& J_{t}=J-\int_{0}^{t} \sum_{t} d t
\end{aligned}
$$

We will make sure that $\partial_{t} \varepsilon_{0}$.
What wed like to show is that for

$$
\nu=f \mu
$$

we have

$$
\varepsilon(f, f) \geqslant \Omega_{\delta}\left(\frac{1}{n}\right) \operatorname{Var}_{\mu}[f]
$$

dirichlet form of Glawher dynamics

Luckily the dirichlet form is a supermartingate.

$$
\begin{aligned}
& \mathbb{E}\left[d \varepsilon_{\mu_{t}}(f, f)\right] \leqslant 0 \\
& \sum_{x \rightarrow y} Q^{Q}(x, y)(f(x)-f(y))^{2}
\end{aligned}
$$

on hypercube \downarrow

$$
\frac{1}{n} \cdot \frac{\mu_{t}(x) \mu_{t}(y)}{\mu_{t}(x)+\mu_{t}(y)}
$$

this is a Harmonic mean

Exercise: Because $\mu_{t}(x), \mu_{t}(y)$ are martineter their harmonic mean is supermuntigale.

- So the Dirichlet form only decreases over time (on average)
- If we could prove $\operatorname{Var}_{\mu}[f]$ stags the same or increases, we could then pull back a Poincare inequality for μ_{t} to a Poincare inequality for μ_{c}.
-Note that $\operatorname{Var}_{\mu_{t}}[f]=\underbrace{\mathbb{E}_{x \vee \mu_{t}}[f(x)]^{2}}_{\begin{array}{l}\mathbb{E}_{\text {this stull }}\left[f(x)^{2}\right] \\ \text { on avg. the same }\end{array}}$
- So it is enough to mace sure that
$\mathbb{E}[f(x)]^{2}$ stays the same on avg. We will show with prob 1!

Let's keep $\mid E_{\mu_{t}}[f(x)]$ the same a.s.

$$
\begin{aligned}
& d t_{\mu_{t}}[f(x)]=\sum_{x} f(x) d \mu_{t}(x) \\
&=\left\langle\sum_{x} \sum_{x} \mu_{t}(x) f(x) x-\sum_{x} \mu_{t}(x) \operatorname{men}\left(\mu_{t}\right)\right. \\
&
\end{aligned}
$$

As long as we choose $d w_{f}$ orthogonal to this vector we are fine.

Constraint: $\Sigma_{t} V_{t}=0$

$$
\operatorname{span}\left(\Sigma_{t}\right) \subseteq \operatorname{span}\left(J_{t}\right)
$$

$$
\text { to mare sure } \partial_{t} \varepsilon_{0}^{k}
$$

This has a nonzero solution as long as rank $J_{t}>1$.

So we run the process and reduce d_{t} until it becomes rank 1 .
The: If J_{t} is rank 1 and 0$\} J_{t}\{(1-\delta) I$ then it has $\Omega_{\delta}\left(\frac{1}{n}\right)$ Poincare.
Proof: Follows from Dobrushin +t.

$$
\begin{array}{ll}
J_{+}=u u^{\top} & \|u\|^{2} \leqslant 1-\delta \\
u_{i}^{\prime}=\left|u_{i}\right| & \left\|u^{\prime}\right\|^{2}=\|u\|^{2}<1-\delta
\end{array}
$$

influence $\left.\leqslant u^{\prime} u^{\top}\right\}(1-\delta) I$

