Stochastic Localization We have been using a "localization" process for HIDX: μ on $\binom{\lceil n \rceil}{\kappa}$; $\mu = \rho_1 \mu^1 + \cdots + \rho_n \mu^n$ $\mu^{1} \qquad \mu^{2} \qquad \mu^{n} \qquad \mu^{n$ Key: Every level we have a distribution over measures. $t=o \left[\mathbb{E} \left[Vas_{\mu} \left[f \right] \right] = \chi^{2} \left(\nu \| \mu \right) - \chi^{2} \left(\nu \right) \left[\nu \right] \left[\nu \right] \left[\eta \right] \left[\nu \right] \right] = \chi^{2} \left(\nu \| \mu \right) - \chi^{2} \left(\nu \right) \left[\nu \right] \right] = \chi^{2} \left(\nu \| \mu \right) - \chi^{2} \left(\nu \right) \left[\nu \right] \left[\nu \right]$

So if we think of a measure-valued random process; $\mu = \mu \longrightarrow \mu_1 \longrightarrow \mu_2 \longrightarrow \cdots \longrightarrow \mu_k$ Where to get Mtr, we condition Mt on a new element e w.p. & marginals of link. Then the process is a martingale:
$$\begin{split} & |\mathcal{E}\left[\mu_{t+1} \mid \text{past up to t}\right] = \mu_t \\ & \land \\ & \text{this of as vectors} \\ & |-\alpha(\frac{1}{2}) \\ & \text{HDX:} (\nu = f \cdot \mu) \\ \end{split}$$
It [Var [f]]> & Var [f] $E_{t}[E_{nt}[f]] > P_{t} = E_{nt}[f]$

Local-to-Glohal -

$$\begin{split} & \mathbb{E}\left[\operatorname{Var}_{\mu_{e}}(f]\right] \geqslant \mathcal{P}_{o} - \mathcal{P}_{e-i} \operatorname{Var}_{\mu_{i}}(f) \\ & \mathcal{N}^{2}(\mathbb{V} \| \mathcal{M}) - \mathcal{N}^{2}(\mathbb{V} \| \mathcal{M}) \\ & \mathcal{N}^{2}(\mathbb{V} \mathbb{P}_{k-ne}) \\ & \mathbb{E}\left[\operatorname{Ent}_{\mu_{e}}(f)\right] \geqslant \mathcal{P}_{o} - \mathcal{P}_{e-i} \operatorname{Ent}_{\mu_{i}}(f) \\ & \mathcal{P}_{k}(\mathbb{V} \| \mathcal{M}) - \mathcal{P}_{k}(\mathbb{V} \| \mathcal{M}) \\ & \mathcal{P}_{k}(\mathbb{V} \mathbb{P}_{k-ne} \| \mathbb{W} \mathbb{P}_{k-ne}) \end{split}$$

[Chen-Eldan] Studied "localizatio schemes" more generally. The equiv. notions of HDX are called conservation of variance & Conservation of entropy. Stochastic localization is a different scheme that works in continuous time:

(For simplicity think of My on T±73", but it vones for M_{+} on \mathbb{IR}^{n}) The original def is to multiply a linear: $d\mu_{t}(x) = \mu_{t}(x) \langle x - mean(\mu_{t}), dW_{t} \rangle$ -this is a random Alternative : Vector $\mu_{t+dt}^{(x)} = \mu_{t}(x) \left(1 + \langle x - mean(\mu_{t}), dw_{t} \rangle \right)$ think of No, dfl) Note that M_{t+dt} is still a distribution

$$\sum_{x} \mu_{t+dt}(x) = \sum_{x} \mu_{t}(x) + \frac{mean}{(dW_{t}) \sum_{x} \mu_{t}(x)x} - \sum_{x} \mu_{t}(x)mean}$$

So as long as dW_{t} is infinitesimally small, so that no $M_{t}(x)$ becomes $< \circ$, M_{t} will be a distribution at all times.

What about being a martingale? $\forall x$ $H_{t} [d\mu_{t}(x)] = \mu_{t}(x) \cdot (x - menn[\mu_{t})) |t_{t}[d\mu_{t}]$ enough to be 0 Lem: As long as W_{\pm} is a martingale, that is $IE_{\pm}[dW_{\pm}]=0$, the process M_{\pm} is a dist-valued martingale.

Convenient Choice: Tane W₁ to be Brownian motion:

Note that we do not have to fix

$$W_{\pm}$$
 in advance. In fact we can
let $dW_{\pm} = \mathcal{N}(o, \Sigma_{\pm})^{-1}$ decide based on M_{\pm}
 $Iet dW_{\pm} = \mathcal{N}(o, \Sigma_{\pm})^{-1}$
necessary for martingale
Can we write a closed-form
expression for M_{\pm} ?
Claim: We always have
 $\mu_{\pm}(x) \propto \mu_{0}(x) e^{\frac{1}{2}x} A_{\pm} + \overline{h_{\pm}} \times \mu_{\pm}(x) = \mu_{0}(x) e^{\frac{1}{2}x} A_{\pm} + \overline{h_{\pm}} \times \mu_{\pm}(x) \propto \mu_{0}(x) e^{\frac{1}{2}x} A_{\pm} + \overline{h_{\pm}} \times \mu_{\pm}(x) = \mu_{0}(x) e^{\frac{1}{2}x} A_{\pm} + \overline{h_{\pm}} \times \mu_{\pm}(x) = \mu_{0}(x) e^{\frac{1}{2}x} A_{\pm} + \overline{h_{\pm}} + \mu_{\pm}(x) = \mu_{0}(x) e^{\frac{1}{2}x} + \mu_{\pm}(x) = \mu_{0}(x) e^{\frac$

This follows from Ito's lemma: Quice aside: Suppose we have a cont. time process X+ that: $dX_t = m_t dt + 6_t dB_t$ such a thing is Standard Brownian motion Called Ito process Then what is $Y_1 = f(X_t)$ for some "nice function" f? Chain rule is wrong: $dY_{\pm} \neq f(X_{\pm})(m_{dt} + q_{d}B_{\pm})$

We	can	use	ltō	to	unders	tand	Ь(Ц(x))
in	Stoc	hasti	ic lo	icali.	zation		Nlos If
	χ ¹ =	μ(;	()		7	dWf =	$\zeta_1 \cdot dB_2$
c	1 X ₄ =	μ(x) (-MCAI	n(M),qm		N-dim Bournian
	Y _t =	lg M	(x) t	th	en	١	$g(z) = \frac{1}{z}$
l	dY_ =	: <×-	-mea	n(M _t)	,dwt>	+	$ g''(z) = \frac{1}{z^2}$
	·	۹	(Chain	rule pag	ե	Σt
	$-\frac{dt}{2x}$	2	X2.	(x-n	$nean(\mu_{t}))$		T(X-mean(H))
	<u>ب</u> بر بر	<u>+</u>) ५)				Varia	ince
50	d Y ₄ =	= -;	<u>ι</u> χΣ	-xdt	+ <som< td=""><td>ethiogy ></td><td>(> + something)</td></som<>	ethiogy >	(> + something)

This means that we always have $\mu_{t}(x) \propto \mu(x) e^{x^{T}Ax + h_{t}^{T}x}$ and $A_{t} = -\frac{1}{2} \int_{a}^{t} \sum_{t} dt \qquad \begin{bmatrix} I [i-i] \\ \leq i \\ \leq i \end{bmatrix}$ This is very convenient when M itself is exp(quadratic). [Eldan-Koehler-Zeitowni] Thm: Suppose $\mu(x) \approx exp(\frac{1}{2}x^T J x + h^T x)$ on F±13ⁿ. This is an Ising model. Then if oscill-s) I, Glauber dynamics on μ mixes rapidly $(+_{rel} = O_s(n))$

- We also know MISI [Adin-Kachker-Phan-shood] Proof: Suppose we run stochastic localization Then we have $\mu(x) \propto \exp(\frac{1}{2}x^T d_t x + h_t^T x)$ $J_{t} = J - \int_{t}^{t} \sum_{t} dt$ We will make sure that J_t & o. What we'd like to show is that for $\gamma = f\mu$ $E_{x} [f(x)] = 2$ we have $E(f,f) \neq I_{s}(\frac{1}{n}) \operatorname{Var}_{M}[f]$ dirichlet form of Glauber dynamics Luckily the dirichlet form is a supermartingate. $\mathbb{E}\left[d \in \mathcal{E}_{\mu_{4}}(f,f)\right] \leq 0$ on hypercube \mathcal{L} $\frac{1}{n} \cdot \frac{\mu_{t}(x) + \mu_{t}(y)}{\mu_{t}(x) + \mu_{t}(y)}$ this is a this is a Hannonic mean Exercise: Because M(x), M(y) are martingates their harmonic mean is supermaningate.

-So the Dirichlet form only decreases over -time (on average) - If we could prove Var[f] stays the same or increases, we could then pull back a Poincaré inequality for My to a Poincaré inequality for M. -Note that $Var_{M_{1}}[f] = i \mathbb{E} [f(x)^{2}] - i \mathbb{E} [f(x)]^{2}$ this stays on avg. the same - So it is enough to make sure that IE[f(x)] stays the same on avg. We will show with prob 1!

etts keep
$$I \underset{M_{+}}{\vdash} [f(x)]$$
 the same a.s.
 $d I \underset{M_{+}}{\vdash} [f(x)] = [f(x) d \underset{M_{+}}{\downarrow} (x) \underset{S(x) \ mean (M_{+})}{=} (\sum_{x \ u} (x) f(x) \times - \sum_{x \ u} (x) , d W_{+})$
 $= (\sum_{x \ u} (x) f(x) \times - \sum_{x \ u} (x) , d W_{+})$
Some vector V_{+}
As long as we choose $d W_{+}$ orthogonal
to this vector we are fine.
Constraint: $Z_{+} V_{+} = 0$
 $Span(Z_{+}) \subseteq Span(J_{+})$
to make sure $J_{+} \gtrsim 0$

This has a nonzero solution as long as rank J,>1. So we run the process and reduce of until it becomes rank 1. Thm: If of is rank 1 and of of f(1-8) I then it has \mathcal{L}_{h}^{\perp} Poincaré. Proof : Follows from Dobrushin++. $J_{1} = uuT$ $||u||^{2} \leq |-\delta|$ $u'_{1} = |u_{1}|$ $||u'||^{2} = ||u||^{2} < 1-5$ influence & www 3 (1-S) I