Trickle Down \& Matroids


- We showed spanning trees are
good $H D X \Rightarrow$ DU walk mixes
in $\tilde{O}(\mid$ vests $\mid)$ time.
- How about $k$-forests?
${ }^{\downarrow}$ forests with $k$ edges
even poly-time sampling was open till 2619!
- We will show $k$-forests are as good of an HDX as spanning trees ( $k=\mid$ vents $\mid-1$ )

Remark: For $k$-forests, we no longer have $g_{\mu}$ is half-plane stable!

Matroids

$$
\left([n], I \subseteq 2^{[n]}\right)
$$

"independent sets
-Axiom 1: $I \in I, J \subseteq I \Rightarrow J \in I$

- Axiom 2: $I J \in I,|U|>|I| \Rightarrow$

$$
\exists e \in d-I \text { s.t. } I \cup[e] \in I
$$

Note: Maximal sets have same size $k$. We call them bases. called rank

Example (Graphic)
$[n]=$ edges
$I=$ acyclic subsets


Axiom 1
Axiom 2: $|\mathrm{d}|>|I| \Rightarrow$ some edge of $J$ must stick out of a C.C of $I$.

Example (Linear)

$$
[n]=\text { vectors }
$$

$I=$ lin. ind subsets


Axiom 1
Anion 2: $|J|>|I| \Rightarrow$ some vector in $J$ must stick out of span I.

Lem: If we truncate matroid to sets of size $\leqslant t$ for some $t$, we still have matroid $\because$

Corollary: J matroid whose bases are $k$-forests of a graph.

The: If $\mu$ is uniform over bases of a matroid $\Rightarrow g_{\mu}$ 1-lg-conave very good HOX
[A-Lin-OveisGharantimzai] [Bräden-Huh]
Corollary: $D_{k l}(\nu \| \mu) \geqslant k \cdot D_{k l}\left(\nu D_{k \rightarrow 1} \| \mu D_{k \rightarrow 1}\right)$
Corollary: DU wale mixes in $\check{O}(k)$ time.

Strategy:

$$
\begin{aligned}
\mu_{T}= & \text { dist of } S-T \\
& \text { if } S \sim \mu \text { cold }
\end{aligned}
$$

- Prove for $k=2 \quad|T|=k-2$
- Use trickle-down for general $k$

Trickle-Down (Informal): If $\mu_{1},-, \mu_{n}$ have $x^{2}$-contraction $\Rightarrow \mu$ has $x^{2} \frac{1}{4}$ contraction.
D. $\rightarrow 1$ operator

Remark: If $\mu$ is (unit. over bases of) a matroid, so are its links $M_{T}$.

Proof: Trivial to check axioms.

Trickle Down [Opoenhein]
Let $\mu$ be dist on $\binom{[n]}{x}$ and $\mu^{\prime},-, \mu^{n}$ be $\delta \sim \mu$ cond on $(E S), n \in S$ respectively.
Let $p=\mu D_{k \rightarrow 1}$. Then

$$
\mu=P_{1} \mu^{\prime}+\cdots+P_{n} \mu^{n}
$$

decomposition of measure
Let us relate $\operatorname{cov}(\mu)=\operatorname{IE}_{s-\mu}\left[1_{s} 1_{s}^{\top}\right]-\operatorname{IE}\left[1_{s}\right] E E\left[1_{s}\right]^{\top}$ to $\operatorname{cov}\left(\mu_{1}\right), \cdots \operatorname{cov}\left(\mu_{n}\right)$.
We have

$$
\begin{aligned}
& \mathbb{E}_{\mu}\left[1_{s}\right]=P_{1} \mathbb{R}_{\mu}\left[1_{s}\right]+\cdots P_{n} \mathbb{E}_{\mu \mu}\left[1_{s}\right] \\
& \mathbb{E}_{\mu}\left[1_{s} T_{s}^{T}\right]=p_{1} \mathbb{E}_{\mu}\left[1_{s} T_{s}^{T}\right]+\operatorname{Pr}_{n} \mathbb{E}_{\mu^{\mu}}\left[1_{s}^{1} 1_{s}^{T}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{cov}(\mu)-\mathbb{E}_{i \cup p}\left[\operatorname{cov}\left(\mu^{i}\right)\right]= \\
& \quad \sum_{i} P_{i} \mathbb{E}_{\mu}\left[1_{s}\right] \mathbb{R}_{\mu}\left[1_{s}\right]^{\top}-\mathbb{E}_{\mu}\left[1_{s}\right] \mathbb{E}_{\mu}\left[1_{s}\right]^{\top}
\end{aligned}
$$

Claim: This is $\frac{1}{k^{2}} \operatorname{cov}(\mu) \operatorname{diag}(p)^{-1} \operatorname{cov}(\mu)$ !


$$
\mathbb{E}_{\mu^{i}}\left[1_{s}\right]=\frac{M_{i}}{k P_{i}} N_{\text {colum 1 row } i}
$$

So we have

$$
\sum_{i} P_{i} \mathbb{E}_{\mu i}\left[T_{s}\right] \mathbb{E} \mathbb{E}_{\mu i}\left[1_{s}\right]^{\top}=\sum P_{i} \frac{M_{i}}{k P_{i}} \cdot \frac{M_{i}^{\top}}{k P_{i}}=
$$

$\frac{1}{k^{2}} M \operatorname{diag}(p)^{-1} M$. We now compute

$$
\begin{aligned}
& \operatorname{cov}(\mu)=M-k^{2} P P^{\top} \Rightarrow \\
& \frac{1}{k^{2}} \operatorname{cov}(\mu) \operatorname{diag}(p)^{-1} \operatorname{cov}(\mu)= \\
& \frac{1}{k^{2}} M \operatorname{diag}(p)^{-1} M^{T}-p\left(\left.p^{\top} \operatorname{diag}(p)^{-1} M\right|^{k^{2} p^{\top}}\right. \\
& -\underbrace{M \operatorname{diag}(P)^{-1}}_{k^{2} p} P^{\top}+k^{2} P \underbrace{P^{T} \operatorname{diag}(P)^{-1}} P P^{T} \\
& =\frac{1}{k^{2}} M \operatorname{diag}(P)^{-1} M^{\top}-\underbrace{k^{2} P P^{\top}}_{11} \\
& \mathbb{E}_{\mu}\left[U_{s}\right] \mathbb{E}_{\mu}\left[1_{s}\right]^{\top}
\end{aligned}
$$

So we have the recurrence

$$
\begin{array}{r}
\cos (\mu)=\mathbb{E}_{i \sim p}\left[\operatorname{cov}\left(\mu^{i}\right)\right]+ \\
\frac{\operatorname{cov}(\mu) \operatorname{diag}(p)^{-1} \operatorname{cov}(\mu)}{k^{2}}
\end{array}
$$

Now suppose each $\mu^{i}$ is a good HDX: | So if we all

$$
\left.\operatorname{cov}_{\left(\mu^{i}\right)}^{i}\right)<C \operatorname{diag}\left(\underset{\delta_{S \sim \mu^{\prime}}}{\mathbb{E}}\left[1_{S-i}\right]\right)
$$

row $i=c \cos i=0$
Important: we can dispi
Then we get

$$
\left.\begin{array}{l}
\operatorname{Cov}(\mu),\} C \cdot \mathbb{E}_{i \sim p}\left[\operatorname{diag}\left(\mathbb{E}_{\mu^{-}}\left[1_{s-i}\right]\right)\right]+ \\
\left.\operatorname{cor}(\mu) \operatorname{diag}(p)^{-1} \operatorname{cov} \mid \mu\right) \\
k^{2}
\end{array}\right] \begin{aligned}
& \mathbb{E}_{\text {imp }}\left[\operatorname{diag}\left(\mathbb{E}_{\mu^{i}}\left[1_{S}\right]\right)\right]=k \operatorname{diag}(p) \\
& \Rightarrow \mathbb{E}_{i \sim p}\left[\operatorname{diag}\left(\mathbb{E}_{\mu^{i}}\left[1_{S-i}\right]\right)\right]=(k-1) \operatorname{diag}(p)
\end{aligned}
$$

$$
x=\frac{1}{k} \operatorname{diag}(p)^{-\frac{1}{2}} \operatorname{cov}(\mu) \operatorname{diag}(p)^{-\frac{1}{2}}
$$

Then

$$
X ; \frac{k-1}{k} C \cdot I+\frac{x^{2}}{k}
$$

Note that eigenvalues of $X$ satisfy the same inequality.
For $c=1$, this means $\lambda \leqslant \frac{k-1}{k}+\frac{\lambda^{2}}{k}$
$\Rightarrow \lambda$ is either $\leqslant 1$ or $\underbrace{\geqslant k-1}_{\downarrow}$.
this means disconnect
cannot happen for $\rightarrow \mu=\mu^{\prime}+\mu^{\prime \prime}$ matrices different ground sets


Conclusion: If $C=1$ for linus $E$ "no disconnect" then $C=1$ for $\mu$.

Remark: For larger $C$, the bound We get for $\mu$ is worse than the bound for links.

Open: Can we mace it lossless in certain settings beyound matroids?

Since we can go from links to $\mu$
$\Rightarrow$ enough to show top links $\mu_{T}$ for $|T|=k-2$ are good $H D X$.

Question: Why are matrons of rank 2 good HDX?

Answer: They are complete multipartite graphs.


Proof: Ignore isolated vets. Forbidden config:
This means "not having edge" is an equivalence relationship.
 By axiom 2. Equivalence classes: pats of partite graph.

So $g_{\mu}(z) \propto z^{\top} A_{2}$ where $A=\operatorname{adj}$.

$$
A=\left[\begin{array}{c|c}
0 & 1 \\
\hline & 0 \\
1 & \\
& \\
\hline & 0
\end{array}\right]
$$

Claim: $\lambda_{2}(A) \leqslant 0$.
Proof:

Claim: $g_{\mu}(z)$ is half-plane-stable \& thus 19-concave.
Proof: Suppose $(u+i v)^{\top} A(u+i v)=0$ with $u \in R_{>0}^{n}$. Then

$$
u^{\top} A u=v^{\top} A v \text { and } u^{\top} A v=0
$$

Consider the $2 \times 2$ matrix

$$
B=\left[\begin{array}{cc}
u^{\top} A u & u^{\top} A v \\
v^{\top} A u & v^{\top} A v
\end{array}\right]=\left[\begin{array}{l}
u^{\top} \\
v^{\top}
\end{array}\right] A\left[\begin{array}{ll}
u & v
\end{array}\right]
$$

$-B$ has at most $\leqslant 1$ positive dig.
$-B$ has at least $\geqslant 1$ positive cig.

$$
\Rightarrow \operatorname{det}(B) \leqslant 0 \Rightarrow\left(u^{\top} A u\right)\left(v^{\top} A v\right) \leqslant\left(u^{\top} A v\right)^{2} \cdot \dot{X} \cdot
$$

So we proved that if $\mu$ is a matroid $\mu_{T}$ for "top links $T$ " are nalf-plane-stable \& thus 1-Ig-concave.
$\Rightarrow$ By trickle down

$$
\operatorname{cov}(\mu) \leqslant \operatorname{diag}(\operatorname{mean}(\mu))
$$

How about full Ig-ornavity?
We need to show for $\lambda \in \mathbb{R}_{>0}^{n}$ if we look at $\lambda * \mu$ :

$$
\lambda * \mu(s) \propto\left(\prod_{i \in S} \lambda_{i}\right) \mu(S)
$$

It also has

$$
\operatorname{cov}(\lambda * \mu), \delta \operatorname{diag}(\operatorname{mear}(\lambda * \mu))
$$

But rote that $\left(\lambda * \mu_{T}\right)^{\prime} \lambda^{\prime} * \mu_{T}$. Half-plane-stable $\Rightarrow$ half-plane-stable So we can apply trickle down to $\lambda * \mu$.

So we just proved:
The: Matroids are 1-lg-concave.

Coupling from the Dost
We saw techniques for set counting $\Rightarrow$ exact sampling!
Question: Can we use Markov chains to sample perfectly?
[Propp-Wilson]' Use coupling from the past.
Note that we cannot stop a chain at a deterministic time 8 hope we are fine.

Idea: What if we "pretend" chain has been running for a really long time $\varepsilon$ we just compute current state without simulating all history?
Def (Grand Coupling)
Suppose $P$ is a Marker chain on $\Omega$.
A distribution $\pi$ on functions $f: \Omega \rightarrow \Omega$ is a grand coupling if $\forall x, y$

$$
\mathbb{P}_{f \cup \pi}[f(x)=y]=P(x, y)
$$

Note that $f$ itself is deterministic once we sample it.

Example (Goring ):
We sample $v, C$ and let $f$ tace configuration $\sigma$ to $\sigma^{\prime}$ where

$$
\begin{aligned}
& \sigma^{\prime}(w)=\sigma(w) \quad \forall w \neq v \\
& \sigma^{\prime}(v)= \begin{cases}c & \text { if } c \text { is valid } \\
\sigma(v) & \text { if not }\end{cases}
\end{aligned}
$$

Once we sample $V, C, f$ is fixed \& deterministic.

Grand coupling for Metropolis

Example (ferro Using)
Let $\mu$ on $\bar{I} \pm \eta^{n}$ be $\alpha \beta \sum_{u_{u v}}^{x_{u} x_{v}}$, for some $\beta>1$


We sample $v$ uniformly \& $q \in[0,1]$ uniformly. Let $x_{+1}>x_{-1}$ be configs where $x_{v}$ is replaced with $+11-1$ resp.
$f$ maps $x$ to either $x_{+1}$ or $x_{-1}$ based on

$$
a \leqslant \frac{\mu\left(x_{+1}\right)}{\mu\left(x_{1+}\right)+\mu\left(x_{-1}\right)}
$$

Grand coupling for Glauber.

Coupling from the past:
Let us sample i.i.d.
$f_{-1}, f_{-2}, f_{-3}, \ldots$ from
grand coupling and form

$$
g_{T}=f_{-1} \circ f_{-2} \circ \cdots \circ f_{-T} \quad \text { if }
$$

$g_{T}(\Omega)$ is a singleton we output it.

Note: $g_{T}(\Omega)=\{\times\} \rightarrow g_{T+1}(\Omega)=\{\times\}$,
so the time $T$ doesn't have to be the first.

Note: The last property is why we go to the past \& not fwd.

Tho: Suppose coalescence happens w.p. 1.
Then the output follows stationary dist.
Proof: Note that $f_{-2}$ of $-30-(\Omega)$ is identically distributed to the output of the alg. (it's just shift by one).
So if $X$ is this singleton we have $f_{-1}(x)$ is identically distributed as $x$.
The dist of $x=\nu \Rightarrow \nu=\nu P$

Although coupling form the past is very neat it is hard to check coalescence.

$$
\text { ( } \Omega \text { is exp. large) }
$$

But there are tricks:
Monotone coupling: Take grand coupling for Clamber dynamics on ferrol IrVing.

Exercise: Because of ferro all $f$ are monotone: $x \geqslant y \Rightarrow f(x) \geqslant f(y)$.

So to check coalescence, we simply need to check

$$
g_{T}(41,-,+1)=g_{T}(-1,-,-1)
$$

The: In $t_{m i \alpha} \cdot \lg n$ we coalesce with prob $\geqslant \frac{1}{2}$.

This was your HW.

