

Remark: We just need to show HOX. Fast sampling follows because he have bounded deg spin system g lower bound on marginals: $\|P_{X \sim M} [X(v) = o] \ge \frac{1}{1+\lambda} = \Omega(v)$ $\frac{P}{\chi_{\sim\mu}} \left[\chi(v) = 1 \right] \geq \frac{\lambda}{1+\lambda} \left(\frac{1}{1+\lambda} \right)^{-1} = - \mathcal{O}_{\Lambda}(1).$ Strategy [Chen-Liu-Vigada]: - Bound ZPEJIJ-PEJIJ . i similar to not-freeness - Relate above quantity on graphs to Similar one on trees SAW tree

Proof: We sketch it for hardcore but applies to all 2-spin systems. Split: W_1 W_k W_k W_k W_k W_k Condition: $W_{1} = V_{1-1} = V_{1} = V_{1-1} = V_{1-1}$ $g_{G} = z_{v} \cdot g_{G}^{(1)} + g_{G}^{(0)} + g_{G}^{(0)} + g_{G}^{(1)} + g_{G}^{(1)}$ $g_{G_{i}} = Z_{v} \cdot g_{G_{i}}^{(v)} + g_{G_{i}}^{(o)} \longrightarrow g_{G'(v_{v})}^{(v_{v}) - v_{e}}$

Note that
$$g_{G_{i}}^{(1)} = g_{G_{iH}}^{(0)}$$

Let $q = g_{G'(V_{i} \mapsto V_{i} \neq 01 - 1)}^{(1)} G'_{V_{i} \mapsto V_{i} \neq 01 - 1)}^{(1)} G'_{U_{i} \mapsto V_{i} \neq 01 - 1}^{(1)} G'_{U_{i} \mapsto 01$

This means $g_{t_i}^{(o)} = h_i g_{G_i(w_i \neq o)}^{(o)} = h_i g_{G_i}^{(l)}$ same as setting $v_i \neq l$ So we conclude $\frac{(q \cdot TTh_{i})g_{G}}{ourh} = z_{v} \prod_{i}^{TT}(h_{i}g_{G_{i}}^{(i)}) + \prod_{i}^{TT}(h_{i}g_{G_{i}}^{(o)})$ $= z_{v} \prod_{i}^{TT}g_{t_{i}}^{(o)} + \prod_{i}^{TT}g_{t_{i}}^{=}g_{tree}$

So we proved that $g_{tree} = g_{fraph} \cdot h$. Note that the root U appears just once, So h does not contain z_v or else the z_v -degrees would at match.

Proof: In general We can compute
marginals as logarithmic derivatives.

$$\lambda \partial_{2v} g_{graph} \Big|_{z=\lambda 7} = \frac{\sum_{s:ind, S \neq v} \lambda^{|S|}}{\sum_{s:ind} \lambda^{|S|}} = IP_{graph} [v \ occ].$$

Similarly $IP_{tree} [v \ occ] = \lambda \partial_{2v} g_{tree} \Big|_{z=\lambda 1}$.
Note that $Igg_{tree} = Igg_{graph} + Igh$
So the lg-derivatives are
equal.

Another important quantity is

$$I[v \rightarrow u] = |P[u|v] - |P[u|v]]$$

$$I[v \rightarrow u] = |P[u|v] - |P[u|v]]$$

$$Utimately our goal is to show
$$V : \sum_{v} |I[v \rightarrow u]| = O(1)$$

$$V : \sum_{v} |I[v \rightarrow u]| = O(1)$$$$

Now it's easy to see

$$\begin{aligned} \|P_{graph}[u \|V] &= \lambda \frac{\partial}{\partial_{u}} \|gggh|_{2=\lambda} \\ \sum \|P_{tree}[u_{1}|V] &= \lambda \frac{\partial}{\partial_{u}} \|gg_{tree}^{(1)}\|_{2=\lambda} \\ \text{This time the above are not equal,} \\ \text{but We have} \\ \lambda \frac{\partial}{\partial_{u}} gg_{tree}^{(1)} &= \lambda \frac{\partial}{\partial_{u}} \|gg_{graph}^{(1)} + \lambda \frac{\partial}{\partial_{u}} \|gh_{tree}^{(1)}\|_{2=\lambda} \\ \text{By a similar calculation we have} \\ \|P_{graph}[u|V] &= \lambda \frac{\partial}{\partial_{u}} \|gg_{graph}^{(0)}\|_{2=\lambda} \\ \sum \|P_{tree}[u_{1}|V] &= \lambda \frac{\partial}{\partial_{u}} \|gg_{graph}^{(0)}\|_{2=\lambda} \\ \end{bmatrix}$$

When we subtract the extra terms Cancel each other and we get $\sum \left(\left| P[u_i | v] - \left| P[u_i | \overline{v}] \right| \right) = \left| P[u | v] - \left| P[u | \overline{v}] \right|$ и; So now to prove HDX we simply need to show $\sum_{w} |J_{tree}[v \rightarrow w]| = O(1)$ $\sum_{u} [I_{graph} [v \rightarrow u]] = \sum_{u} [\sum_{u} [v \rightarrow u]] \leq$

$$\sum_{W} \left[I_{tree} \left[V \rightarrow W \right] \right]$$

Remember tree recursion:

Claim: $\frac{\partial x_v}{\partial x_u} = I[v \rightarrow u]$ Proof: First note that I[v-ru] follows chain rule, the same way derivatives du. $I[v \rightarrow n] = P[u|v] - P[u|\hat{v}] =$ IP[wIv]. IP[u]w]+ IP[wIv]IP[uIv] -P[w|v] P[u|w] - P[w|v]P[u|w] $= I[v \rightarrow w] I[w \rightarrow u]$ So we just need to show it for one level: $I[v \rightarrow u] = |P[u|v] - |P[u|\overline{v}] = o - (|-P_u|) Q^{V}$ $= P_{u} - 1 = \frac{-e^{\chi} u}{1 + e^{\chi} u} = \frac{\partial F(-1 \chi w - 1)}{\partial \chi w}$

This means $\sum_{u \text{ at level } i} \left| \left| \nabla F(F(-), -, F(-)) \right| \right|$ If we had that 11VF11, ≤1-8 then the above would be $\leq (1-8)'$. We could then sum over all levels; $\sum_{i} |I[v-ru]| \leq \sum_{i} (1-s)^{i} = O(i)$ Unfortunately we don't have 117F11<1-8. We can use the same trick as before: $G := 40F(4^{-1}(x_1), -, 4^{-1}(x_2))$ some change of variable For some appropriate 4, when $\lambda < (1-\varepsilon)\lambda_c(\Delta)$, We have 117G1,<1-8. Moreover 4 is "nice": its derivatives have bounded aspect ratio. $\|\nabla F(F(-), -, F(-))\|_{1} \leq (1-s) \cdot \frac{\max 4}{4'(x_{root})}$ OU)

D

Suppose
$$\mu$$
 is a spin system on κ verts.

$$\mu: \begin{pmatrix} Q_{1} \cup \dots & Q_{k} \\ \kappa \end{pmatrix} = R_{\geq 0}$$
From HW, we know that Dobrushin (or ++)
implies $t_{rel} = O(\kappa)$.
Thm: If $O_{k-1\kappa-1} \cup \kappa$ has $t_{rel} = O(\kappa)$ then
 $O_{\kappa-1}$ contracts π^{2} by $O(1/\kappa)$.
Proof: We need to show
 $cov(\mu) \gtrless O(1) \cdot diag(mean(\mu))$
Which means for all $V \in \mathbb{R}^{2}$
 $\sqrt{T}cov(\mu)v \leqslant O(\sqrt{T}diag(mean(\mu))v)$

.

Rowriting this : $\nabla Cov(\mu)v = \mathbb{E}\left[\left(\sum_{i \in S} i\right)^2 - \mathbb{E}\left[\sum_{s \in \mu} \sum_{i \in S} v_i\right]^2\right]$ v^Tdiag(mean(µ1))= 15 [[V;²] () So we need to show D=O(2). Note that tree = O(K) implies DK-K-1 Contracts n^2 by $1-\alpha(\frac{1}{k})$ We apply this to $\mathcal{V}(S) = \mu(S)(\sum_{i \in S} V_i)$ $\chi^{2}(\boldsymbol{y} \parallel \boldsymbol{\mu}) = \mathbb{E}_{\boldsymbol{y} \leftarrow \boldsymbol{y}} \left[\left(\sum_{i \in \boldsymbol{y}} \boldsymbol{y}_{i} \right)^{2} \right] - \mathbb{E} \left[\mathbb{E} \boldsymbol{y}_{i} \right]^{2}$ $\chi^2(\gamma || \mu) - \chi^2(\gamma 0_{k \rightarrow k-1} || \mu 0_{k \rightarrow k-1}) =$ $\mathbb{E}_{\mathsf{T}^{\mathsf{N}}} \mathbb{P}_{\mathsf{N}} = \left[\mathbb{E}_{\mathsf{S}^{\mathsf{N}}} \mathbb{E}_{\mathsf{I}^{\mathsf{N}}} \left[(\mathsf{T}^{\mathsf{N}})^{2} \right] - \mathbb{E}_{\mathsf{S}^{\mathsf{N}}} \mathbb{E}_{\mathsf{I}^{\mathsf{N}}} \left[(\mathsf{T}^{\mathsf{N}})^{2} \right] \right]$

 $= \mathbb{E} \bigcup_{T \sim \mu} \mathbb{D}_{V \rightarrow V_{-1}} \mathbb{E} [\mathbb{E} \bigcup_{i \sim \mu} \mathbb{E} \bigcup_{$ So we conclude that $\frac{1}{2}$ \mathcal{L} \mathcal{L} \mathcal{L} Which means () < 0(2)