Review

- Spectral HDX: $D_{k \rightarrow 1}$ contracts x^{2} by $\frac{C}{k}$
* $\lambda_{2}[\mathbb{P}[j \mid i]]_{i, j} \leqslant C$.
* $\lambda_{\max }[\mathbb{P}[j \mid i]-\mathbb{P}[j]]_{i, j} \leqslant C$.
* $\operatorname{cov}(\mu) \leqslant C \cdot \operatorname{diag}(\operatorname{mean}(\mu))$.
* $\quad g_{\mu}\left(z_{1}^{\frac{1}{c}},-, z_{n}^{\frac{1}{c}}\right) \quad \lg$-concave at $z=1$.

-Gäding: if $g_{\mu} \neq 0$ for $\operatorname{Re}\left(z_{i}\right)>0$ $<c=1$

$$
\Rightarrow g_{\mu}\left(z_{1},-, z_{n}\right) \quad \text { Ig-concave. }
$$

- Spanning trees q PPs are HDX \Rightarrow dawn-up walk has relaxation time $O(k)$

Plan for Today:

- Monomer dist is $H D X \leftarrow C=2$
- Stability \Rightarrow HDD
- From x^{2} to $D_{k L}$
$C-19$-concavity $\in C>1$
Example. (Monomers)
Take a graph (possibly weighted) and the monomer-dimer system on it.
μ : dist of just monomers $\mu(S) \propto \#$ PMS on G-S

Thai [Heilmann-Lieb] The monomer dist has $g_{\mu}\left(z_{1},-, z_{n}\right)=1 E_{S M \mu}\left[\prod_{i \in S} z_{i}\right]$ stable in $\{z \mid \operatorname{Re}(z)>0\}$. not ham.
no longer equiv to all halt planes

Corollary: Hom poly $z_{1}^{\prime} \cdots z_{n}^{\prime} g_{\mu}\left(\frac{z_{1}}{z_{1}^{\prime}},-, \frac{z_{n}}{z_{n}^{\prime}}\right)$ is stable in sector of aperture $\frac{\pi}{2}$:

$$
z_{z^{S} z^{\prime}}^{S}[n] \cdot S
$$

This is the generating poly of equiv dist

$$
\text { on }\binom{V \times\{0,1\}}{|V|}
$$

Corollary: Two-block dynamics on μ has spectral gap $\geqslant 1 /|\mathrm{V}|^{2} \leftarrow\left[A-I v_{k} v v\right]$ I will show 4-ig-concave instead of 2 .
Application: Sampling/counting monomerdimer on planar graphs. \leftarrow have orade for M. .)

Proof of Heilmann-Lieb:

$$
g=E_{\text {matching }}\left[z^{\text {monomers }(M)}\right]
$$

only odd leven degree monomials

- Equivalently:

$$
\begin{aligned}
& h=\mathbb{E}_{\text {matching } M}\left[z^{\text {matched }(M)}\right] \\
& h=z_{1} \cdots z_{n} g\left(\frac{1}{z_{1}},-, \frac{1}{z_{n}}\right)
\end{aligned}
$$

- h has only even degree terms
- Suppose $h(a+i b)=0 \quad a \in \mathbb{R}_{>0}^{n}, b \in \mathbb{R}^{n}$.
-This means $h(t a+i b)$ has root $t=1$.
- Claim: Roots of $h(+a+i b)$ are on imaginary axis.

$$
q_{G}(t):=h_{G}(t a+i b)
$$

Note: q takes real values on Am axis, because of even degree.

- Proof similar to real-rootedness of univariate matching polynomial:

$$
q_{G}=\alpha q_{G-u}^{+} \sum_{v \sim u} \beta_{u v}\left(+a_{u}+i b_{u}\right)\left(t a_{v}+i b_{v}\right) q_{G-u-v}
$$

Stronger Claim: Roots of q_{G} and $\left(t a_{u}+i b_{u}\right) q_{G-u}$ are imaginary ${ }^{G}$ and interlace. $t=\frac{-b_{u} i}{a_{u}}$

This shows that g has no roots in

Which means the generating poly of μ viewed on $\binom{V \times\{0,1\}}{|V|}$
has no roots in

- roots of q_{G-a}
\therefore root of $\left(+a_{u}+i b_{u}\right)$, ie., $-\frac{i b_{u}}{a_{u}} \square$

Remark: Alternatively we can look at $\mid=$ We will show l_{1} (each row) $\leqslant O$ (1). monomer dist condo on \#monomess=k.

That dist is also $\frac{\pi}{2}$-sector stable 8 hence 2-1g-concave.

The: (Stability $\Rightarrow H D X)$

We want to bound $\lambda_{\text {max }}$ of We will show stronger:

$$
\underset{\text { matrix }}{\text { correlation }}\left[\begin{array}{ccc}
\mathbb{P}[|\mid 1]-\mathbb{P}[1] & \cdots & \mathbb{P}[n \mid 1]-\mathbb{P}[n] \\
\vdots & \mathbb{P}[j \mid i]-\mathbb{P}[i] & \vdots \\
\mathbb{P}[|\mid n]-\mathbb{P}[1] & \cdots & \mathbb{P}[n \mid n]-\mathbb{P}[n]
\end{array}\right]
$$

This is stronger because

$$
\forall_{j}: \quad \mathbb{P}[j]=\underset{k}{p} \mathbb{P}[j \mid i]+(1-P) \mathbb{P}[j \mid \bar{i}]
$$

-Let $g_{\mu}=z_{i} g_{1}+g_{0} \quad g_{1}, g_{0}$ don't depend - Enough to show - Let $\quad s_{j}=\operatorname{sign}(\mathbb{P}[j \mid i]-\mathbb{P}[j \mid \bar{i}])$
-Now define

$$
P_{0} P_{1}=g_{0}, g_{1}\left(z^{s_{1}}, \varepsilon^{s_{2}}, \ldots, z^{s_{1}}\right)
$$

If $z \in$ region $\Rightarrow z^{S_{j}} \in$ region
w.lo.g. region closed under $z \mapsto z^{-1}$
-This means $\frac{P_{1}(2)}{P_{0}(2)} \notin \mathbb{R}_{\leq 0} \quad P_{0}+z_{i} i_{1} \neq 0$

- Claim:

$$
\begin{aligned}
& \frac{P_{P_{1}^{\prime}}(1)}{P_{1}(1)}=\sum_{j \neq i} s_{j} \mathbb{P}[j \mid i] \\
& \left.\frac{P_{0}^{\prime}(1)}{P_{0}(1)}=\sum_{j \neq 1} s_{j} \right\rvert\, \mathbb{P}[j \mid \bar{i}]
\end{aligned}
$$

$$
\left|\frac{p_{1}^{\prime}}{P_{1}}-\frac{P_{0}^{\prime}}{P_{0}}\right|=O(1) 火^{k^{\text {extra term for }}}
$$

- Since $\frac{P_{1}}{P_{0}} \phi R_{\leqslant 0}$ in region, we can define a branch of lg :

$$
\phi(z)=\lg \left(\frac{P_{1}(z)}{P_{0}(z)}\right)
$$

and $\phi^{\prime}(1)=\sum_{j \neq i}|\mathbb{P}[j \mid i]-\mathbb{P}[j \mid i]|$

derivative at $11<\sigma(1)$
for any such map (Schwartz Lemma)

$f_{1}: \quad 2 \longmapsto 1+\alpha z$
$f_{2}: \quad Z \longmapsto z-\phi(1)$
$f_{3}: z \longmapsto \frac{e^{z / 2}-1}{e^{z / 2}+1}$
$\begin{aligned} f_{3} \circ f_{2} \circ \phi \circ f_{1}: \text { Disk } & \longmapsto \text { Disk } \\ 0 & \longmapsto \Delta\end{aligned}$

Schwartz Lemme $\mid\left(f_{3} \circ f_{2} \circ \text { 中०f } f_{1}\right)^{\prime}(0) \mid \leqslant 1$
But this is

$$
\begin{gathered}
f_{3}^{\prime}(0) \cdot f_{2}^{\prime}(\phi(1)) \cdot \phi^{\prime}(1) \cdot f_{1}^{\prime}(0) \\
1 / 4 \\
\Rightarrow \\
\Rightarrow \\
\left|\phi^{\prime}(1)\right| \leqslant O(1 / \alpha)=\partial(1)
\end{gathered}
$$

Note: When domain of ϕ is a sector we can find easier/tighter maps.
Proof of Schwartz: If f_{i}^{*} Disk \rightarrow Disk, $f(0)=0$ then $|f(0)| \leqslant 1$.
-Define $h(z)=f(z) / z$ for $z \neq 0$ and $h(0)=f^{\prime}(0)$. - h is holomorphic. (Taylor series shifted by 1)

- The max of $|h|$ obtained on boundary

$$
|h(0)| \leqslant \max \{|h(z)|| | z \mid=1\} \leqslant 1
$$

Summary: Stability in

$\Rightarrow H D X$, i.e., contraction of x^{2} under $D_{k \rightarrow 1}$ for μ

Note: Also for links of μ because $\infty \in \overline{\text { region }} \&$ links obtained by taking limits of $z_{i} \rightarrow \infty$.

Note: For sector of aperture $\frac{\pi}{C}$ the argument shows $O(C)-1 g$-concavity.

$$
\begin{aligned}
& g\left(z_{1},-, z_{n}\right) \stackrel{\forall \alpha \in R_{0}^{n}}{\longrightarrow} g\left(\alpha_{1},-1 \alpha_{n} z_{n}\right) \\
& \text { Stable }{ }^{2} \text { in } D \text { sk } U \| R_{>0} \\
& \downarrow \downarrow
\end{aligned}
$$

$O(c)-19$-concave $\Longleftarrow O(c)-1 g$-concave at at all z.

$$
z=1
$$

Note: Diff arg gives aperture π / c sector

$$
\Rightarrow C-1 g \text {-concave }[A-[\text { nov }] \text {. }
$$

Note: When region $\not \equiv \mathbb{R}_{>0}$, $[$ Chen-Liu-Vigoda $]$ showed with extra assumptions on marginals of μ, argument still works.

$$
x^{2} \longrightarrow D_{K L}
$$

So far we have studied spectral $H D x$. To get tight mixing one often needs entropic notions, like contraction of $D_{k i}$
Q: Does x^{2} contraction imply $D_{k c}$ contraction?
A : No without other assumptions.
Expander $\Rightarrow x^{2}$ contracts \Rightarrow O(19n) mixing by constant But $\lg n$ is tight l

Constant $D_{k L}$ contraction would imply $O(1 g \mid s n)$ mixing which is false.

Note: In general ρ-Poincare implies
γ-LSI 8 thus γ-MLSI with

Entropic Independence
What does $D_{k L}$ contraction by $D_{k \rightarrow 1}$ mem?

- No longer a simple $n \times n$ matrix to analyze:
- Fortunately still easy to describe via $g_{\mu}=$
Lem [A-Jain-Koehter-Phar-Uuong]
We have $D_{k L}\left(\nu D_{k \rightarrow 1} \| \mu D_{k \rightarrow 1}\right) \leqslant \frac{C}{k} D_{k L}(\nu \| \mu)$ if and only if $\lg g_{\mu}$ is upperbounded by its tangent at $z=1$:

$$
\begin{array}{r}
\lg _{\mu}\left(\frac{i}{2}\right) \leqslant \lg _{\mu}(1)+\nabla \lg _{\mu}(1) \cdot\left(2^{\frac{1}{2}-1}\right) \\
\forall z \in \mathbb{R} \lambda_{0}^{n}
\end{array}
$$

