Review

- Spectral HDX: D_{k-1} contracts χ^2 by $\frac{C}{k}$ * $\lambda_2 \left[P[j] \right] \leq C$ $* \lambda_{max} [IP[j|i]-P[j]] \leq C$ * $COV(\mu) \ \exists C \cdot diag(mean(\mu))$. $\star g_{\mu}(z_{\perp}^{\perp}, -, z_{\perp}^{\perp})$ Ig-concave at z=1. Spectral HDX more? Correlation geometry of decay Polynomiak : Obbrushin / trickle down metric contraction

- Garding: if ghto for Ret;)>0 $\Rightarrow g_{\mu}(z_{i},-iz_{n})$ Ig-concave - Spanning trees Z DPPs are HDX =>down-up walk has relaxation time O(k) Plan for Today: - Monomer dist is HDX - C=2 - Stability => HDX - From X2 to Dy,

Example (Monomers) Take a graph (possibly weighted) and the monomer-dimer system on it. μ: dist of just monomers μ(s) x # PMs on G-S Thm: [Heilmann-Lieb] The monomer dist has $g_{\mu}(z_1, -, z_n) = |\mathbb{E}_{s \sim \mu}[\prod_{i \in S} z_i]$ stable in { z | Re(z)>0 }. Not hom. no longer equiv to all helf planes

Corollary: How poly $z'_{1} - z'_{n} = g_{\mu} \left(\frac{z_{1}}{z_{1}} - \frac{z_{n}}{z_{1}} \right)$ is stable in sector of aperture $\frac{1}{2}$: This is the generating poly of equiv dist on (VXE0713). Corollary: Two-block dynamics on ph has Spectral gap > 1/112. [A-IVKOV] I will show 4-1g-conrave instead of 2. Application: Sampling/counting monomer-dimer on planar graphs. - have oracle for M.)

-This means h(ta+ib) has noot t=1.
- Claim: Roots of h(tatib) are on
imaginary axis
Q(t) := h(ta+ib)
Note: 2 taxes real values on Im axis,
because of even degree.
- Proof similar to real-rootedness of univariate
matching polynomial:
$Q_{G} = \alpha Q_{G'u} \sum_{v \sim u} \beta_{uv} (a_{v} \beta_{uv} > 0)$
Stronger Claim: Roots of 9, and
(tautibu) 9 gra are imaginary and interlace
t = -bu

which means the generating poly of

$$\mu$$
 viewed on $\begin{pmatrix} V \times \{0,1\} \\ |V| \end{pmatrix}$

-Let
$$g_{\mu} = z_i g_i + g_i$$
 $g_i g_i don't dependenton z_i .
-Let $s_i = sign(IP[j]I] - IP[j]I]$
-Now define
 $P_0 P_1 = g_0 g_i(z^{s_1}, z^{s_2}, \dots, z^{s_n})$
If $z \in region \implies z^{s_j} \in region$
W.I.o.g. region closed under $z \mapsto z^{-1}$
-This means $\frac{P_i(z)}{P_0(z)} \notin IR_{\leq 0}$ $P_0 + z_i P_i \neq 0$
- Claim:
 $\frac{P_0(1)}{P_0(1)} = \sum_{j \neq 1} s_j IP[j]I]$
 $\frac{P_0(1)}{P_0(1)} = \sum_{j \neq 1} s_j IP[j]I]$$

- Enough to show

$$\left| \frac{P_{i}'}{P_{i}} - \frac{P_{o}'}{P_{o}} \right| = O(1) \xrightarrow{\text{exta term for}} j=i \text{ absorbed}$$
- Since $\frac{P_{i}}{P_{o}} \notin IP_{\leq o}$ in region, we an
define a branch of $lg:$
 $\#(z) = lg\left(\frac{P_{i}(z)}{P_{o}(z)}\right)$
and $\#(1) = \sum_{j \neq i} \left| IP_{j}[i] - IP_{j}[i] \right|$
 $\#: \frac{1}{\sqrt{2}} \xrightarrow{\text{exta term for}} = \frac{1}{\sqrt{2}} \frac{IP_{o}[i] - IP_{o}[i]}{P_{o}(z)}$
Iderivative at $1 < O(1)$
for any such map (schwartz Lemma)

Schwartz Lemme: ((fzofzo pof,)'(o)) < 1 But this is $f'_{3}(0) \cdot f'_{2}(\varphi(1)) \cdot \varphi(1) \cdot f'_{1}(0)$ $\Rightarrow |\varphi'(n)| \leq O(1/\alpha) = O(1).$ Note: When domain of op is a sector we can find easier/tighter maps. Proof of Schwartz: If f: Disk -> Disk, f(0)=0 then 15(0) \$1. -Define $h(z) = \frac{f(z)}{z}$ for $z \neq 0$ and h(0) = f'(0). - h is holomorphic . (Taylor series shifted by 1) - The max of 141 obtained on boundary $|h(g)| \leq \max \{|h(z)| \mid |z|=1\} \leq 1$

Summary: Stability in

$$\Rightarrow$$
 HDX, i.e., contraction of χ^2
under D_{k-1} for M
Note: Also for links of μ because
 $\infty \in \overline{region} \in \lim_{x \to 1} because$
 $\infty \in \overline{region} \in \lim_{x \to 1} because$
 $\infty \in \overline{region} \in \lim_{x \to 1} because$
Note: For sector of aperture \underline{T} the
argument shows $O(c) - ig - concavity$.
 $g(z_{1}, -, z_{n}) \xrightarrow{\forall \alpha d \mathbb{R}_{2}^{n}} g(\alpha_{1}z_{1}, -, \alpha_{n}z_{n})$
 $\int d\alpha_{1}z_{1}, -, \alpha_{n}z_{n}$
 $\int d\alpha_{1}z_{1}, -, \alpha_{n}z_{n}$
 $\int d\alpha_{1}z_{1}, -, \alpha_{n}z_{n}$

Note: Diff ary gives aperture TT/C sector ⇒ C-1g-concave [A-IvKov]. Note: When region 7 12,0, [Chen-Liu-Vigoda] showed with extra assumptions on marginals of M, argument still works.

$$\chi^2 \longrightarrow \mathcal{D}_{\mu}$$

But Ign is tight!

So far we have studied spectral HDX. To get tight mixing one often needs entropic notions, like contraction of Dri Q: Does N2 contraction imply Ou contraction? A: No without other assumptions. Expander $\Rightarrow \chi^2$ contracts =>Olign) mixing by Constant (Inj)

constant-deg expander

- --

Entropic Independence What does PKL contraction by D menn? -No longer a simple nxn matrix to analyze 📜 - Fortunately still easy to describe viu gµ℃ Lem [A-Jain-Koehler-Phan-Unons] We have $\mathcal{O}_{kl}(\mathcal{V}\mathcal{O}_{k-1}||\mu\mathcal{O}_{k-1}) \leq \frac{C}{\kappa}\mathcal{O}_{\kappa}(\mathcal{V}||\mu)$ if and only if 1gg, is upperbounded by its tangent at z=1:

 $199_{\mu}(z) \leq 199_{\mu}(1) + \nabla 199_{\mu}(1) \cdot (z-1)$

ASER J