Review

- Dist μ on $\binom{[n]}{k}$
$-{\underset{k}{k \rightarrow l}}_{\uparrow}(S, T)= \begin{cases}0 & \text { if } T \nsubseteq S \\ \frac{1}{(k)} & \text { if } T \leq S\end{cases}$
$-U_{l \rightarrow K}(T, S)= \begin{cases}0 & \text { if } T \nsubseteq S \\ \frac{M(S)}{\sum M\left(s^{\prime}\right)} & \text { if } T S S\end{cases}$
up operator $S^{\prime} \geq T$
- $D_{k \rightarrow l} U_{l \rightarrow k}$ i down-up wake - implementable for $k-l=0(1)$
- Dist on $\Omega_{1} x-\ldots \Omega_{n} \overleftrightarrow{\jmath}\left(\Omega_{1} \omega_{n}-\omega \Omega_{n}\right)$ down-up \equiv Glauber
- Link of μ at T_{i} \& dist on $\binom{[n]-T}{k-1+1}$
μ_{T}; Dist of $S-T$ when $S \sim \mu$ cord on $T C S$. "Often" linus belong to same family.
- Local-to-glo bal:

$$
\begin{gathered}
\forall \nu: D_{f}\left(\nu D_{k-T \mid} \rightarrow \| \mu D_{k \rightarrow 1}\right) \leqslant\left(1-\rho_{T}\right) D_{f}\left(\nu \| \mu_{T}\right) \\
\Downarrow \\
\forall \nu: D_{f}\left(\nu D_{k \rightarrow l} \| \mu D_{k \rightarrow l}\right) \leqslant(1-\gamma) D_{f}(\nu \| \mu) \\
\gamma:=\min \left\{\rho_{\phi} \rho_{\{l,\}} \rho_{\left\{e_{1}, e_{2}\right\}} \cdots \rho_{\left\{e_{1}, \cdots, \rho_{l-i\}}\right\}}\right\}
\end{gathered}
$$

- Useful instantiations:
* Spectral ind: $D_{f}=x^{2}, P_{T}=1-\frac{C}{k-T \mid}$
* Entropic ind: $D_{f}=D_{k L}, P_{T}=1-\frac{c}{k-|T|}$

$$
\gamma=\binom{k-l}{c} /\binom{k}{c} \leftarrow \text { int. } c^{k}
$$

Plan for Today

- Spectral HDX
- Geometry of polynomials

Spectral $H D X \quad\left(D_{f}=\chi^{2}\right)$
-We want $\lambda_{2}\left(U_{1 \rightarrow k} D_{k \rightarrow 1}\right)$ bounds:

bound $\lambda_{2}(M) \leqslant O(1)$
$-\lambda_{2}(M)$ is the same as

$$
\begin{aligned}
& \lambda_{\max }\left(M^{\prime}-k \cdot \frac{v v^{t}}{\|v\|^{2}}\right) \text { for } v=\text { top eig.vec. } \\
& \left(M^{\prime}=\lambda_{1} v_{1} v_{1}^{t}+\lambda_{2} v_{2} v_{2}^{t}+\cdots+\lambda_{n} v_{n} v_{n} t\right)
\end{aligned}
$$

- So spectral HDX means

$$
\lambda_{\max }\left(D^{-1 / 2} \operatorname{cov}(\mu) D^{-\frac{1}{2}}\right)=0(1)
$$

$$
\operatorname{cov}(\mu), O O(1) D^{k^{\operatorname{diag}(\mid E[T /])}}
$$

- Nonsymmetric version:

So far equiv:
$-\lambda_{2}\left(U_{1-k} D_{k \rightarrow 1}\right) \leqslant C$
$-\lambda_{\text {max }}($ correlation $) \leqslant C$
$-\operatorname{Cov}(\mu)\}, C \cdot \operatorname{diag}(\operatorname{mean}(\mu))$
How do we establish these?

- Remark: We will come to Entropic HDK and tightening of local-to-global estimates.

HDD via Geometry of Polys
The: $\quad \operatorname{cov}(\mu), \frac{1}{\alpha} \operatorname{diag}(\operatorname{mean}(\mu))$ i) $\alpha \in[0,1]$

at $z=1$

$$
\begin{array}{r}
g_{\mu}(z) \propto \mathbb{E}_{S \mu \mu}\left[\prod_{i, G} z_{i}\right] \\
z_{i} \partial_{i} g_{\mu}=\mathbb{E}_{S-\pi}\left[z_{j}\{[i \in S]\}\right.
\end{array}
$$

Proof: Let $Z=\operatorname{diag}\left(z, 2, z_{n}\right)$
$* Z \nabla g / g=\mathbb{E}\left[1_{s}\right] \quad$ at $z=1$
$* \frac{2 \nabla^{2} g z}{g}=\mathbb{E}\left[1 s t_{s}^{t}\right]-\operatorname{diag}(\mathbb{E}[7])$
$\mathbb{P}[i \in S]$

Let $f=g_{\mu}\left(z^{\alpha}\right)$
$* \nabla f=\alpha \cdot z^{\alpha-1} \cdot \nabla g_{\mu}\left(z^{\alpha}\right)$

* $\frac{z \nabla f}{f}=\alpha \cdot \mathbb{E}\left[1_{s}\right] \quad$ at $z=1$
$* \nabla^{2} f=$

$$
\begin{aligned}
& \alpha^{2} \cdot z^{\alpha-1} \nabla_{g}^{2}\left(z^{\alpha}\right) \cdot z^{\alpha-1}+\alpha(\alpha-1) z^{\alpha-2} \operatorname{diag}\left(\nabla g_{n}\left(z^{\alpha}\right)\right. \\
& \begin{array}{r}
\frac{2 \nabla^{2} f z}{f}=\alpha^{2}\left(\mathbb{E}\left[11_{s}^{t}\right]\right)-\alpha \cdot \operatorname{diag}(\operatorname{EE}[1 / s]) \\
\\
- \text { diag (tITs) } \quad \text { at } z=1
\end{array} \\
& *\left(\frac{2 \nabla^{2} f z}{f}\right)-\left(\frac{2 \nabla f}{f}\right)\left(\frac{2 \nabla f}{f}\right)^{t}= \\
& \alpha^{2}\left(\operatorname{cov}(\mu)-\frac{1}{\alpha} \cdot \operatorname{diag}(\text { mean }(\mu))\right)
\end{aligned}
$$

* So spectral $H D X \Longleftrightarrow \frac{\nabla^{2} f}{f}-\frac{\nabla f \cdot \nabla f^{t}}{f^{2}}$,

$$
\nabla^{2} \lg f=\frac{\nabla^{2} f}{f}-\frac{\nabla f \cdot \nabla f^{t}}{f^{2}}
$$

Summary: $\operatorname{Cov}(\mu)\} C \cdot \operatorname{diag}($ mean $(\mu))$ iff $\left.\lg g_{\mu}\left(z_{1}^{\frac{1}{c}}, \ldots, z_{n}^{\frac{1}{c}}\right)\right)$ concave at $z=1$.

Def: When $\lg g_{\mu}\left(z^{\frac{1}{C}}\right)$ concave at all z we call it c-lg-concave.
$\left[\begin{array}{ll}\text { Alimohammadi-A- } \\ \text { Shiragur-viong }\end{array}\right] \quad \begin{array}{ll}\text { also called } \\ \text { fractionally } 1 g \text {-concave }\end{array}$
$C=1$: Simply "Lg-concave"
Benefit of all 2 : Links

$$
\begin{array}{r}
g_{\mu}=\lim _{\substack{z \rightarrow \infty \\
\text { for BeT }}} \frac{g_{\mu}(z)}{\prod_{i \in T} z_{i}} \in E_{S}\left[z^{S} / z^{T}\right] \\
=\text { limit } \text { Closed under this }
\end{array}
$$

Remare: Glg-concave is the clean case. For many dists, we do not have all z.

The: If g_{μ} half-plane-stable ${ }^{\text {En }}$ roots in half thane

$$
\Rightarrow \quad l g \text {-concave }
$$

[Girding]
sector-stable
The: If g_{μ} has no roots in sector ${ }^{k}$ $\Rightarrow C-\lg$-concave

$$
[A-[\text { ikov }]
$$

Tho: If g_{μ} has no roots in

$$
\mathbb{R}_{>0} \cup D(1, \Omega(1))
$$

$\Rightarrow O(1)-\lg$-concave at $z=1$
[Alimohammadi-A-Shingar-Vnong]
$[$ chen-Liu-Vigoda $] \leftarrow$ Replaced $\mathbb{R}>0$ with extra assumptions on μ.

Garding's Theorem and >0 on $\mathbb{R}_{>0}^{n}$

Thun: If $p \neq 0$ when $\operatorname{Re}\left(z_{i}\right)>0 \quad \forall i$ and P is ham $\Rightarrow P$ is $1 g$-concave!

Toy Case: Suppose p is univariate poly with roots $\in \mathbb{R}_{\leq 0}$. Then lg P is concave over $\mathbb{R}_{>0}$

$$
\lg p=c+\lg \left(2+\lambda_{1}\right)+\cdots+\lg \left(2+\lambda_{n}\right)
$$

each one concave
Exercise: univariate with roots $\in \mathbb{R}_{\leqslant 0} \Leftrightarrow$
$a_{n} 2^{n}+\cdots a_{0} \stackrel{\text { bivariate Mom. half-plane-stable }}{\leftrightarrow} a_{n} 2^{n}+\cdots+a_{0} 2^{n}$
Note: This is not $1 g$-concavity of coeffs of P, but it is related!

General Case [Gadding]
Take $a_{1} b \in \mathbb{R}_{>0}^{n}$. Enough to prove

$\underbrace{q(s, t)}_{\text {only two variables now }}:=p(s a+t b)$
$-q$ is also homogeneous of deg k

- $\operatorname{Re}(s), \operatorname{Re}(t)>0 \Rightarrow q(s, t) \neq 0$.

$$
\operatorname{Re}(s a+t b)=\operatorname{Re}(s) a+\operatorname{Re}(t) b
$$

same with every half-plane

$$
q=c_{0} s^{0} t^{k}+c_{1} s^{1} t^{k-1}+\cdots+c_{k} s^{k} t^{0}
$$

The univariate $q(s, 1)$ must have roots in $\mathbb{R}_{\leqslant 0}$ Otherwise $s_{i} \mid \in$ half-plane for every $S \notin \mathbb{R}_{\leq 0}$!
By factorizing q we get

$$
q=\left(d, s+e_{1} t\right) \cdots\left(d_{k} s+e_{k} t\right)
$$

real positive $\left.d_{i}\right) e_{i}$
Exercire: Check that $\lg \left(d_{i} s_{+} e_{i} t\right)$ is concave in sit over $\mathbb{R}_{>0}^{2}$.

$$
\lg q=\sum \lg \left(d_{i} s+e_{i} t\right)
$$

Corollary: The PPD dist defined by $v_{1}-, v_{n} \in \mathbb{R}^{k}$ with

$$
\mu(s) \propto \operatorname{det}^{2}\left(\left[v_{i}\right]_{i \in s}\right)
$$

has \lg-concave poly \Rightarrow HDX \Rightarrow DU walk has spectral gap $\geqslant \frac{1}{k}$

Corollary: The spanning tree dist on $\binom{$ edges }{ Iverts-1-1 } has \lg-concave poly \Rightarrow DO walk has spectral gap $\geqslant \frac{1}{\text { \#veas }-1}$. $t_{\text {mix }} \leqslant O(|v| \cdot \lg \#$ Streses $)=O\left(|v|^{2}|g| v \mid\right)$
Reman: We will show how to get MLSF 8 tighter mixing time.

What about other regions $\subseteq \mathbb{C}$?
Example (Monomers)
Take a graph (possibly weighted) and the monomer-dimer system on it.
μ : dist of just monomers $\mu(S) \propto \#$ PMs on G-S

Thai [Heilmann-Lieb] The monomer dist has $\left.g_{\mu}\left(z_{1}\right)-, z_{n}\right)=1 E_{S \sim \mu}\left[\prod_{i \in S} z_{i}\right]$ stable in $\{z \mid \operatorname{Re}(z)>0\}$. not ham.
no longer equiv to all hat plans

Corollary: Hom poly $z_{1}^{\prime}-z_{n}^{\prime} g_{\mu}\left(\frac{z_{1}}{z_{1}^{\prime}},-, \frac{z_{n}}{z_{n}^{\prime}}\right)$ is stable in sector of aperture $\frac{\pi}{2}$:

$$
\begin{aligned}
& z^{S} \rightarrow[n]-S \\
& z^{S} z^{\prime}
\end{aligned}
$$

This is the generating poly of equiv dist

$$
\text { on }\binom{V \times\{01\}}{|V|} \text {. }
$$

Corollary: Two-block dynamics on μ has spectral gap $\geqslant 1 /|v|^{2} \in[A$-Ivkov $]$ I will show 4-Ig-conrave instead of 2 .
Application: Sampling(counting monomerdimer on planar graphs. \leftarrow have orade for $M \cdot$)

