Review

- Patel-Regts trick: Coeffs of matching poly moments $\Sigma \lambda_i^{-\alpha}$ of roots of matching poly additive: f(G1+G)= f(G1)+f(G2) as Scind(Hi)) Additive funcs written Can be computed in poly(n). Δ^{O(k)} time where k = max [] Ht; R. - assuming we know how to "brute-force" f - Corollary: #matchings has FPTAS for $\Lambda = O(1)$ - Matching real-rooted -> G-concave coeffs

- HDX view: dist µ on (^{Enj}) - Noise operators: $D_{k \rightarrow l} \in \mathbb{R}^{\binom{(n)}{k} \times \binom{(n)}{l}}$ $D_{k\to k}(S,T) = \begin{cases} o & \text{if } T \neq S \\ \frac{1}{\binom{k}{2}} & \text{if } T \subseteq S \end{cases} \qquad \text{sends } S \text{ to } \text{ unif.} \\ \text{random } T \in \binom{S_k}{2} \end{cases}$ $U_{L \to \kappa} = D_{\kappa \to \ell}$ is the time-reversal (with μ) Orallow is the real down-up walk Algorithmically relevant only for l=k-OW Analytically relevant for all l! - Informal Def of HDX: D_{K-91} contracts X². - Generating poly: glz1,1-12,1= ZMLS)z monomial - Det dists: $9_{\mu} = det(z_1 A_1 + \cdots + z_n A_n)$ Example : Spanning trees with A:=Laplacian of edge i row/col

Thm: When μ is determinantal

$$g_{\mu}(z_1, -, z_n) \neq o$$
 if $Re(z_1) > o$ ti
"half-plane stability" any half-plane equiv.
Plan for today:
- Formal def of HDX
- Local-to-global: from $P_{k\to n}$ to $D_{k\to e}$
- Show det. dists are HDX ($g_{\mu} \iff HOX$)

High-Dimensional Expanders -Setup: $\mu: \begin{pmatrix} [n] \\ \mu \end{pmatrix} \longrightarrow \mathbb{R}_{\geq 0}$ Subsets of size is out of TI, - In? - For K=2, these are weighted graphs. - Hypergraph View: Example: (Spanning trees): $\mu: \begin{pmatrix} edges \\ verts - 1 \end{pmatrix} \longrightarrow \mathbb{R}_{\geq 0}$ - Many discrete distributions can be viewed this way. (even on prod spaces)

Example (Graph Coloring)
-
$$\mu$$
: [colorings] $\rightarrow \mathbb{R}_{\geq 0}$
- View colorings as
subsets of size n from
[n] $\times [q] = [1,1], -\lambda(1,q), -\lambda(n,q)]$
- Assign zero weight to invalid subsets.
HDX: $D_{k \rightarrow 1}$ contracts χ^2 and same for
conditionings of μ
This contraction is equiv. to Λ
 $\frac{1}{2}(O_{k \rightarrow 1}U_{1 \rightarrow k}) = \lambda_2(U_{1 \rightarrow k}U_{1 \rightarrow k})$
 $U_{1 \rightarrow 2}O_{2 \rightarrow 1}$ is
stay we $\frac{1}{2}$

K<>1 Walk

Even though k-l=O(1) is the algorithmically interesting case, we study the Ke->1 walk for analysis. Thm (Local-to-Global) [kaufman-Oppenheim, Alev-Lan,--- 3 If Ok-, contracts f-div for μ and links (conditionings of μ so does $\mathcal{D}_{\kappa \rightarrow \ell}$ $\left(S_{1}\right)\left(S_{2}\right)$ - - -

K <>1 Walk

HDX Framewore for MC analysis: Demehow show today based on half-plane stability $P_{f}(\nu D_{k \rightarrow 1} || \mu D_{k \rightarrow 1}) \leq \frac{C}{k} O_{f}(\nu || \mu)$ Standard is χ^{2} (c=1 for today)2) Conclude same for conds of M A asually automatic by self-reducibility 3) By local-to-global get $O_{f}(vO_{k \rightarrow \ell} \parallel \mu O_{k \rightarrow \ell}) \leq \left(I - \frac{\binom{k-\ell}{C}}{\binom{k}{C}}\right) D_{f}(v \parallel \mu)$ Rassuming C int. similar for CAZ Remark: Need K-L>C. In that case contraction $\simeq 1 - V_{\mu}c$ \Rightarrow relaxation time = $O(\mu^{C})$ Remark Step 1 is difficult! good when <= 0(1)

Conditionings/links: Given T of size $\leq k$ $\mu|T$ is dist of $S \sim \mu$ cond on TCS. We call dist of S-T line of μ at T and denote it by $\mu_T: \begin{pmatrix} Cn3-T \\ \kappa-ITI \end{pmatrix} \rightarrow k_{\geq 0}$

Thus
$$\left(\log_{1} - \log_{1} - \frac{1}{2} \log_{1} \right)$$

Suppose $D_{(k-1T1] \rightarrow 1}$ has $1 - P_{T}$ contraction
of f -div w.r.t. μ_{T} . Then
 $P_{f}(v D_{k \rightarrow \ell} \parallel \mu D_{k \rightarrow \ell}) \leq (1 - \delta) D_{f}(v \parallel \mu)$
 $\delta := \min \int P_{0} P_{[e_{1}} \cdots P_{[e_{l} - re_{l-1}]}^{2} \left(1 - \delta \right) D_{f}(v \parallel \mu)$
 $\delta := \min \int P_{0} P_{[e_{1}} \cdots P_{[e_{l} - re_{l-1}]}^{2} \left(1 - \delta \right) D_{f}(v \parallel \mu)$
 $\delta := \min \int P_{0} P_{[e_{1}} \cdots P_{[e_{l} - re_{l-1}]}^{2} \left(1 - \delta \right) D_{f}(v \parallel \mu)$
 $\delta := (1 - \frac{C}{k}) \left(1 - \frac{C}{k-1} \right) \cdots \left(1 - \frac{C}{k-\ell+1} \right)$
 $= \frac{k-C}{k} \cdot \frac{k-C(1)}{k-1} \cdots \left(1 - \frac{C}{k-\ell+1} \right) \left(\frac{k-\ell}{k} \right) \left(\frac{C}{k} \right)$
Grollary: For C=1 this is $(k-\ell)_{k}$

Proof of Local-to-Global:
- Fix f-div.

$$D_{f}(v | l | \mu) = |E_{Sr}[f(\frac{v|s}{\mu | s)}] - f(|E[\frac{v(s)}{\mu | s]}])$$

- For a set T of size t define notation
 $v(T) = v D_{k \rightarrow t}(T), \mu(T) = \mu D_{k \rightarrow t}(T)$
- Then
 $D_{f}(v | l | \mu) = |E_{Sr}[f(\frac{v(s)}{\mu | s]})] - f(\frac{v(\ell)}{\mu | \ell s]})$
- Key: Think of Sampling S- μ and unit
randomly permuting its elements
to get $X_{1}, -r X_{k}$.
- Then $\{X_{1}, -r X_{k}\} = \mu D_{k \rightarrow t}(T)$
- Then $\{X_{1}, -r X_{k}\} = \mu D_{k \rightarrow t}(T)$

- We have

$$D_{f}(\nu||\mu) = |E\left[f(\frac{\nu(s_{w})}{\mu(s_{w})}) - f(\frac{\nu(s_{w})}{\mu(s_{w})})\right]$$
- What about $D_{f}(\nu D_{k-re} + \mu D_{k-re})$?

$$IE\left[f(\frac{\nu(s_{e})}{\mu(s_{e})}) - f(\frac{\nu(\phi)}{\mu(\phi)})\right]$$
- Let $Z_{t} = f\left(\frac{\nu(s_{t})}{\mu(s_{t})}\right)$

$$D_{f}(\nu|\mu) = |E[Z_{k} - Z_{0}]$$

$$Q_{f}(\nu D_{k-re} + \mu D_{k-re}) = |E[Z_{k} - Z_{0}]$$
Want to show small
- We know $|E[Z_{1} - Z_{0}] \leq (1 - P_{0}) \cdot |E[Z_{k} - Z_{0}]$

$$IE[Z_{t+1} - Z_{t}] \leq 1 \leq (1 - P_{s+1}) |E[Z_{k} - Z_{1}] \leq 1$$

Proof of Claim: conditioned on St - Dist of X +1, -, X is the same permutation process applied to notine $-\frac{y(T)}{M(T)}$ for $T \ge S_t$ is the same as $\nu_{S_{L}}(T-S_{L})$ $M_{S_1}(T-S_t)$ \square We know that $\mathbb{E}\left[Z_{t+1} - Z_{t}|S_{t}\right] \leq (1 - p_{s_{t}})\mathbb{E}[Z_{k} - Z_{t}|S_{t}]$ $\mathbb{E}[z_{\mu}-z_{t+1} \mid S_{t}] \geqslant P_{S_{t}} \mid \mathbb{E}[z_{\mu}-z_{t} \mid S_{t}]$

This means ZL-ZL $Y_{+} = \frac{1}{P_{s}P_{s} - P_{s+1}}$ is a Gubmatingate: $\mathbb{E}[Y_{t+1} \mid S_t] \ge \mathbb{E}[Y_t \mid S_t]$ So $\mathbb{E}[Y_0] \ge \mathbb{E}[Y_0] = \mathcal{O}_{\mathcal{L}}(\mathcal{V} || \mu)$ and $IE[Y_{e}] \leq \frac{IE[Z_{k}-Z_{e}]}{\min\{P_{p}|_{fe,i}^{2}-P_{fe,i}-ie_{i}\}} \in \mathcal{X}$ $\implies \mathbb{B}[z_{k}-z_{0}] \geq \mathbb{V} \cdot \mathbb{B}[z_{k}-z_{0}]$ $\implies \mathbb{E}[z_e - z_o] \leq (1 - \delta) \mathbb{E}[z_e - z_o]$ Q(1)(p) $O_{\mathcal{L}}(\mathcal{V})_{\mathcal{V}}(\mathcal{V})_{\mathcal{V}}(\mathcal{V})$

So far:

 μ and links have D_{f} -contracting $D_{,\rightarrow 1}$ μ has D_{f} -contracting $D_{k\rightarrow 1}$

Useful specialization:

$$D_{k\to 1} \text{ contracts by } \frac{C}{k}$$

$$\implies D_{k\to 1} \text{ contracts by } 1 - \frac{\binom{k-1}{C}}{\binom{k}{C}}$$

- Spectral Independence: This for X² and (=06) - Entropic Independence: This for O_{KL} and (=0(1)

$$\Rightarrow$$
 Poly-time sampling via $Q_{k \rightarrow k-O(l)}$

How to prove O wontracts?) This is the difficult part. We will see many techniques for it. forday; -In the x2 case we want to half-plane stahility bound $\lambda_2(U_{1-\mu}D_{\kappa-1}):$ lP[jeslies] KR Convenient the matrix we need to analyze

- Let
$$\psi_{ij} := \operatorname{IP}[j]$$
 in diagonal.

Claim:
$$\lambda_{2}(q) \leq c$$
 if and only if
 $\lg g_{\mu}(z_{1}^{\perp 2}, -, z_{n}^{\perp 2})$ is concave at z=1.
 $\left(\nabla^{2} \lg g_{\mu}(z_{1}^{\perp 2}, -, z_{n}^{\perp 2})\right)\Big|_{z=1}$ to
 $\left(\nabla^{2} \lg g_{\mu}(z_{1}^{\perp 2}, -, z_{n}^{\perp 2})\right)\Big|_{z=1}$