Review

- Patel-Regts trici:
coeffs of matching poly
§polynomial maps
moments $\sum \lambda_{i}^{-\alpha}$ of roots of matching poly ^ additive: $f\left(G_{1}+G_{2}\right)=f\left(G_{1}\right)+f\left(G_{2}\right)$

Additive fancs written as $\sum C_{i}$ ind $\left(H_{i}\right)$.) can be computed in poly(n). $\Delta^{O(k)}$ time where $k=\max \{I H i\}_{-} \leftarrow$ assuming we know how to "brute-force" f

- Corollary:
\#matchings has FPTAS for $\Delta=O(1)$
Open: Remove $\Delta=O(1)$. Jerrum-Sindair's Marwor chain doesn't need it!
- Matching real-rooted \rightarrow Ig-concave coeffs
- HDX view: dist μ on $\binom{[n]}{k}$
- Noise operators: $D_{k \rightarrow l} \in \mathbb{R}_{\geqslant 0}^{\binom{[n}{k}} \times\binom{[n]}{l}$

$$
D_{k \rightarrow l}(S, T)=\left\{\begin{array}{ll}
0 & \text { if } T \nsubseteq S \\
\frac{1}{\left(\frac{k}{l}\right)} & \text { if } T C S
\end{array} \quad \text { sends } S \text { to unif } . ~ r e\binom{S}{l}\right.
$$

$U_{l \rightarrow k}=D_{k \rightarrow l} \begin{gathered}0 \\ \text { is the time-revessal } \\ \text { (w.r. }\end{gathered} \mu$)
$D_{k \rightarrow l} U_{l \rightarrow k}$ is the $k \leftrightarrow l$ down-up walk
Algorithmically relevant only for $l=k-O(1)$ Analytically relevant for all l !

- Informal Def of $H D X: D_{k \rightarrow 1}$ contracts X^{2}.
-Generating poly: $g_{\mu}\left(z_{1},-, z_{n}\right)=\sum_{s} \mu(s) z_{s}^{s}$
- Det dists: $g_{\mu}=\operatorname{det}\left(z_{1} A_{1} \ldots Z_{n} A_{n}\right)$
A_{i} rank 1 PSD.
Example: Spanning trees with $A_{i}=$ Laplacian of edge i $A_{i}=$ Laplacian of edge ${ }_{\text {a drop one }}$ row/col

Thy: When μ is determinantal

$$
\left.g_{\mu}\left(z_{1}\right)-, z_{n}\right) \neq 0 \text { if } \operatorname{Re}\left(z_{i}\right)>0 \forall i
$$

"half-plane stability" any half-plane equiv.
Plan for today.

- Formal def of HDX
- Local-to-global: from $D_{k \rightarrow 1}$ to $D_{k \rightarrow e}$
- Show det. diss are $H D X\left(g_{\mu} \leftrightarrow H D X\right)$

High-Dimensional Expanders
-Setup:

$$
\mu: \underbrace{\binom{n]}{k}}_{d} \longrightarrow R_{2} \geqslant 0
$$

Subsets of size be out of $\{1,-m\}$

- For $k=2$, these are weighted graphs.
- Hypergraph View:

Example:(Spanning trees): $\mu:\binom{$ edges }{ verth-1 }$\rightarrow \mathbb{R} \geqslant 0$

- Many discrete distributions can be viewed this way. (even on prod spaces)

Example (Graph Coloring)
$-\mu:\{$ colorings $\} \rightarrow \mathbb{R} \geqslant 0$

- View colorings as subsets of size n from

$$
[n] \times[q]=\{(1,1),-(1, q),-,(n, q)\}
$$

- Assign zero weight to invalid subsets.

HDD: $D_{k \rightarrow 1}$ contracts x^{2} and same for This contraction is equiv. to \uparrow $\lambda_{2}\left(D_{k \rightarrow 1} U_{1 \rightarrow k}\right)=\lambda_{2}(\underbrace{U_{1 \rightarrow k} D_{k \rightarrow 1}}_{n \times n})$
Example. $(k=2$, graphs) $U_{1 \rightarrow 2} D_{2 \rightarrow 1}$ is stay w.plary random walk! Stay wp $\frac{1}{2}$

Down -Up Random Walks
To sample from $\mu_{i}\binom{[n]}{k} \rightarrow \mathbb{R}_{\geqslant 0}$,

- Start from $S \in\binom{[r}{k}$,
- Drop u.a.r. elem i to get $S-1$
- Add elem j wp. $\alpha \mu(S-i+j)$
- Repeat

Generalization: Drop $k-l$ and add $k-l$

$$
D_{k \rightarrow l} \cup_{l \rightarrow k}
$$

$k \longleftrightarrow 1$ Walk

Even though $k-l=O(1)$ is the algorithmically interesting case, we study the $k \longleftrightarrow 1$ walk for analysis.
The (Local-to-Global) [kaufman-Oppenheim, Alev-Lan,... $\}$
If $D_{k \rightarrow 1}$ contracts f-div for μ and links/conditionings of μ so does $D_{k} \rightarrow e$

HDX framewone for $M C$ analysis:
(1) Somehow show \leftarrow today based on half_plane stability

$$
D_{f}\left(\nu D_{k \rightarrow 1} \| \mu D_{k \rightarrow 1}\right) \leqslant \frac{C_{k}}{D_{f}}(\nu \| \mu)
$$

Standard is x^{2}

* $c=1$ for today
(2) Conclude same for conds of μ

A usually automatic
(3) By local-to-global get

$$
O_{f}\left(\nu D_{k \rightarrow \ell} \| \mu D_{k \rightarrow \ell}\right) \leqslant\left(1-\frac{\binom{k-\ell}{c}}{(k)}\right) D_{f}(\nu \| \mu)
$$

^assuming C int. similar for $C \not C \mathbb{Z}$
Remark: Need $k-l \geqslant C$.
In that case contraction $\simeq 1-1 /{ }_{k} c$
\Rightarrow relaxation time $=O\left(k_{\uparrow}{ }^{C}\right)$
Remark. Step 1 is difficult! good when $C=O(1)$.

Conditionings/links: Given T of size $\leqslant k$ μ / T is dist of $S \sim \mu$ cold on $T \subseteq S$. We call dist of S-T line of μ at T and denote it by $\mu_{T}:\binom{[n]-T}{k-T T)} \rightarrow(R \geqslant 0$

Thu (Local-to-Global)
Suppose $D_{(k-|T|) \rightarrow 1}$ has $1-P_{T}$ contraction of f-div w.r.t. μ_{T}. Then

$$
\begin{aligned}
& D_{f}\left(\nu D_{k \rightarrow l} \| \mu D_{k \rightarrow l}\right) \leqslant(1-\gamma) D_{f}(\nu \| \mu) \\
& \gamma:=\min \left\{P_{\phi} P_{\left\lceil e_{1}\right\}} \cdots \rho_{\left\{e_{1},-r e_{l-1}\right\}}\right\}
\end{aligned}
$$

Corollary:
Suppose $P_{T}=1-\frac{C}{k-|T|}$. Then

$$
\begin{aligned}
\gamma & =\left(1-\frac{c}{k}\right)\left(1-\frac{c}{k-1}\right) \cdots\left(1-\frac{c}{k-l+1}\right) \\
& =\frac{k-c}{k} \cdot \frac{k-c-1}{k-1}-6-\frac{k-l+1-c}{k-l+1}=\frac{\binom{k-l}{c}}{\binom{k}{c}}
\end{aligned}
$$

Corollary: For $C=1$ this is $(k-l) / k$

Example(uniform)
$-\mu$ unit on $\binom{[n]}{k} \Rightarrow \mu_{T}$ unit on $\binom{[n]-T}{k-T T}$

- We have $\left(U_{1 \rightarrow k} D_{k \rightarrow 1}\right)=$ similar

$$
\begin{aligned}
& \frac{1}{k}\left[\begin{array}{cccc}
1 & \frac{k-1}{n-1} & \cdots & \frac{k-1}{n-1} \\
\frac{k-1}{n-1} & & & \vdots \\
\vdots & & \vdots & \vdots \\
\frac{k-1}{n-1} & \cdots & 1
\end{array}\right]= \\
& \frac{1}{k}\left(\frac{k-1}{n-1} j^{\text {allones }}+\left(1-\frac{k-1}{n-1}\right) I\right)^{\text {identity }} \\
\Rightarrow & \lambda_{2} \leqslant \frac{1-\frac{k-1}{n-1}}{k} \leqslant \frac{1}{k} \leftarrow c=1
\end{aligned}
$$

- $D_{k \rightarrow \ell}$ contracts x^{2} divergence by l / k.

Proof of Local-to-Global:

- Fix f-div.

$$
D_{f}(\nu \| \mu)=\left[E_{S \sim \mu}\left[f\left(\frac{\nu|s|}{\mu(s)}\right)\right]-f\left(\mathbb{E}\left[\frac{\nu(s)}{\mu(s)}\right]\right)\right.
$$

abuse of

- For a set T of size t define notation

$$
\nu(T)=\nu D_{k \rightarrow t}(T), \mu(T)=\mu D_{k \rightarrow t}(T)
$$

- Then

$$
D_{f}(v \| \mu)=G_{S \sim \mu}\left[f\left(\frac{\nu(s)}{\mu(s)}\right)\right]-f\left(\frac{\nu(\phi)}{\mu(\phi)}\right)
$$

- Key: Think of sampling $S \sim \mu$ and unit randomly permuting its elements to get $X_{1},-1 X_{k}$.
$f\left(\frac{\nu\left(s_{t}\right)}{\overline{\mu\left(s_{f}\right)}}\right)$
-Then $\underbrace{\left\{x, 1 \rightarrow x_{t}\right\}} \sim \mu D_{k \rightarrow t}$
- We have

$$
D_{f}(\nu \| \mu)=\| E\left[f\left(\frac{\nu\left(S_{k}\right)}{\mu\left(S_{v}\right)}\right)-f\left(\frac{\nu\left(\delta_{0}\right)}{\mu\left(S_{0}\right)}\right)\right]
$$

- What about $D_{f}\left(\nu D_{k \rightarrow e^{\prime \prime}} \mu D_{k \rightarrow \ell}\right)$?

$$
16\left[f\left(\frac{\nu\left(S_{l}\right)}{\mu\left(S_{l}\right)}\right)-f\left(\frac{\nu(\phi)}{\mu(\not \partial}\right)\right]
$$

- Let $z_{t}=f\left(\frac{\nu\left(s_{t}\right)}{\mu\left(s_{t}\right)}\right)$

$$
\begin{aligned}
& D_{f}(\nu \| \mu)=\mathbb{E}\left[z_{k}-z_{0}\right] \\
& D_{f}\left(\nu D_{k \rightarrow l} \| \mu D_{k \rightarrow l}\right)=\mathbb{E}\left[z_{l}-z_{0}\right]
\end{aligned}
$$

want to show small

- We know $\mathbb{E}\left[z_{1}-z_{0}\right] \leqslant\left(1-\rho_{\phi}\right) \cdot\left(E\left[z_{k}-z_{0}\right]\right.$

Claim: We also have (from links):

$$
\mathbb{E}\left[z_{t+1}-z_{t} \mid s_{t}\right] \leqslant\left(1-\rho_{s_{t}}\right) \in\left[z_{k}-z_{t} \mid s_{t}\right]
$$

Proof of Claim: conditioned on S_{t}

- Dist of $X_{t+1} 1-, X_{k}{ }^{\text {r }}$ 'is the same permutation process applied to $\mu_{s_{t}} \varepsilon^{l i n n}$.
- $\frac{\nu(T)}{\mu(T)}$ for $T \geq S_{t}$ is the same as

$$
\frac{\nu_{S_{t}}\left(T-S_{t}\right)}{\mu_{S_{t}}\left(T-S_{t}\right)}
$$

We know that

$$
\begin{gathered}
\mathbb{E}\left[z_{t+1}-z_{t} \mid s_{t}\right] \leqslant\left(1-\rho_{s_{t}} \mid \mathbb{E}\left[z_{k}-z_{t} \mid s_{t}\right]\right. \\
\mathbb{U}\left[z_{k}-z_{t+1} \mid s_{t}\right] \geqslant \rho_{s_{t}}-\mathbb{E}\left[z_{k}-z_{t} \mid s_{t}\right]
\end{gathered}
$$

This means
$Y_{t}:=\frac{Z_{k}-Z_{t}}{P_{s_{0}} \rho_{s_{1}} \cdots \rho_{s_{t-1}}}$
is a submastingate:

$$
\mathbb{E}\left[Y_{t+1} \mid s_{t}\right] \geqslant \mathbb{E}\left[Y_{t} \mid s_{t}\right]
$$

So $\mathbb{E}\left[Y_{l}\right] \geqslant \mathbb{E}\left[Y_{0}\right]=D_{f}(\nu \| \mu)$
and

$$
\begin{aligned}
& \mathbb{E}\left[Y_{l}\right] \leqslant \frac{\mathbb{E}\left[z_{k}-z_{l}\right]}{\left.\min \left\{\rho_{p} \rho_{\left\{e_{l}\right.}\right]-\rho_{\left\{e_{1}-1, l_{l}\right\}}\right)} \in \gamma \\
& \Rightarrow \mathbb{E}\left[z_{k}-z_{l}\right] \geqslant \gamma \cdot \mathbb{E}\left[z_{k}-z_{0}\right] \\
& \Rightarrow \mathbb{E}\left[z_{l}-z_{0}\right] \leqslant(1-\gamma) \mathbb{E}\left[z_{k}-z_{0}\right] \\
& D_{f}\left(\nu D_{k+l} \| \mu D_{k \rightarrow l}\right) \quad D_{f}(\nu \| \mu)
\end{aligned}
$$

So far:
μ and links have D_{f}-contracting $D_{\rightarrow 1}$

μ has D_{f}-contracting $D_{k \rightarrow \ell}$
Useful specialization:

$$
D_{0 \rightarrow 1} \text { contracts by } \frac{C}{k}
$$

$$
\Rightarrow D_{k \rightarrow l} \text { contracts by } 1-\frac{\binom{k-l}{c}}{\binom{k}{c}}
$$

- Spectral Independence: This for x^{2} and $\left(=0 a_{1}\right)$
- Entropic Independence: This for $D_{k L}$ and $C=0(1)$
\Rightarrow Poly-time sampling via $D_{k \rightarrow k-O(1)}$

How to prove $D . \rightarrow 1$ contracts?
This is the difficult part.
We will see many techniques for it.
\uparrow

- In the x^{2} case we want to bound half-plane stability

- Let $\varphi_{i j}:=\mathbb{P}[j \mid i]$
r_{1} ion diagonal.
Claim: $\lambda_{2}(\psi) \leqslant c$ if and only if $\lg g_{\mu}\left(z_{1}^{\frac{1}{c}},-, z_{n}^{\frac{1}{c}}\right)$ is concave at $z=1$. $\left.\left(\nabla^{2} \lg g_{\mu}\left(2_{2}^{L_{c}^{C}},-12_{n}^{\frac{1}{L}}\right)\right)\right|_{z=1} \leqslant 0$
Proof: Homework calculations.
We will prove g_{μ} is half-plane-stable
$\Rightarrow \lg g_{\mu}$ is concave over $\mathbb{R}_{>0}^{n}$.
[Gadding]
Lg-concave polynomial: $\lg q_{\mu}$ concave over $\mathbb{R}_{3_{0}}^{n}$ another name: Lorentzian

Toy Case: Suppose p is univariate poly with roots $\in \mathbb{R}_{<_{0}}$. Then lg P is concave over $\mathbb{R}_{>0}$

$$
\lg p=c+\lg \left(2+\lambda_{1}\right)+\cdots+\lg \left(2+\lambda_{n}\right)
$$ "each one concave

Note: This is not 1 -concavity of coeffs of P, but it is related!

