Review

- Barvinok's Method

$$
P(2)=c_{0}+C_{1} 2+\cdots+c_{n} 2^{n}
$$

* Low coifs / derivatives at 0 known
* Value at 1 wanted (approximately)

Th: If $\underbrace{\text { simply connected region } U \geqslant 0,1}_{\text {say fixed or }}$ changing controllably with n exists where $p(2) \neq 0$ on $z \in U$, $O_{i}\left(\lg \left(\frac{n}{\varepsilon}\right)\right)$ coeffs enough for (14ε)-approx. depends on region

- For $U=$ Diss centered at 0 do

Truncated Taylor Series for $\lg P(2)$

- For other U, find polynomial map ϕ $\phi(0)=0 \quad \phi(1)=1 \quad \phi($ disk of radius $1+\delta) \subseteq U$ and do the same to pod.
ϕ exists because:
- Riemann mapping gives non-poly $中$ from disk to slightly shrunk U.
- Replace by Taylor series to make poly.
- Combine with linear map to get $\phi(0)=0$ e $\phi_{(1)}=1$. k-matching
- Matching polynomial $\quad P(z)=\sum m_{k}^{k} z^{k}$

The: Roots of P_{G} are real and $\leqslant-\Omega\left(\frac{1}{\Delta}\right)$ $\Omega_{\text {max }} d e$
Today: - Trick to get FPTAS

- Real-rootedness 8 lg-concarity
- Intro to HDX view

For any fixed $z \in \mathbb{R} \geqslant 0, p(z)$ on \triangle-bounded-degree graphs has QFPTAS.

How do we remove the Q?

- Smarter hay to compute

$$
m_{k}=\# k \text {-matchings. }
$$

* Brute-force: $n^{O(k)}$

- We only go up to $k^{2}-1 g n: \circ$
- Works with
ind (H, G) : \#induced copies of fixed graph H in G.
- Example: ind $(\Omega, G)=2$ \#edges in G.

We will work with functions

$$
f_{1} \text { Graphs } \rightarrow \mathbb{C}
$$

that can be written as finite linear combination:

$$
f(G):=C_{1} \operatorname{ind}(H, G)+\cdots+C_{k} \operatorname{ind}\left(H_{k}, G\right)
$$

Example:
$-f(G)=$ \#vertices $=\operatorname{ind}(\bullet, G)$
$-f(G)=$ \#edges $=\operatorname{ind}(I, G) / 2$
$-f(G)=\# 2$-matching $=$

$$
[\operatorname{ind}(\Delta) \cdot 3+\operatorname{ind}(\Delta) \cdot 2+\cdots] / 24
$$

The space of there functions is rich.
$-f, g \longmapsto f+g$
$-f, g \longmapsto f \cdot g$
This is because

$$
\begin{aligned}
& \operatorname{ind}\left(H_{1}, G\right) \cdot \operatorname{ind}\left(H_{2}, G\right)= \\
& \left.\operatorname{Cind}\left(H_{1}>H_{2}, G\right)+C_{2} \operatorname{ind}\left(H_{1}, H_{2}\right) G\right) \pm \ldots
\end{aligned}
$$

Call a function additive if

$$
f\left(G_{1}+G_{2}\right)=f\left(G_{1}\right)+f\left(G_{2}\right) .
$$

Theorem: Additive functions only need connected graphs H_{i} in

$$
f(G)=c_{i} \text { ind }(H, G)+\cdots+c_{k}^{\operatorname{ind}}\left(H_{k}, G\right)
$$

Proof: - Note that if H is connected ind (H, \cdot) is additive.
-Suppose $f=\sum c_{i} \operatorname{ind}\left(H_{i}, G_{7}\right)$

- Pick the disconnected H_{i} with the smallest \# of edges.

-Then $f\left(H_{i}\right)-f(A)-f(B)=C_{i}-0-0$
-This means $C_{i}=0 \dot{ }$
Key Observation: If H is connected, counting ind (H, G) can be done in poly (n) $\left.\triangle O\left(1 H_{i}\right)\right)$ time.

Proof: There are $n \cdot \Delta{ }^{O(k)}$ many connected induced subgraphs 8 we can efficiently enumerate them.

The doubled tree is Euterian: Four of length $2(k-1)$.
\Rightarrow conn ind subgraphs \subseteq subgraphs induced by vertices of length $2(k-1)$ walks.

$$
\# \leqslant n \cdot \Delta^{2(k-1)}=n \cdot \Delta^{d} O(k)
$$

Thu Additive $f=\sum c_{i}$ ind $(H ; G)$ with $k=\max \left|H_{i}\right|$. Naive ALG computes f on G of size $\leqslant k$.

$$
\Rightarrow \exists A L G^{\prime} \text { for } f(G) \cdot \text { runtime }=n \cdot \Delta^{O(k)}
$$

Proof: We can ignore all Hi not subgraph of G. Enumerate all induced subgraphs H_{1}, \cdots, H_{m}. Sort from fewest to most \#elges. $\leqslant n \cdot \Delta^{d}(n)$

$$
\begin{aligned}
& C_{1}=f\left(H_{1}\right) \\
& C_{2}=f\left(H_{2}\right)-C_{1} \text { ind }\left(H_{1}, H_{2}\right) \\
& C_{3}=f\left(H_{3}\right)-C_{1} \text { ind }\left(H_{1}, H_{3}\right)-C_{2} \text { ind }\left(H_{2}, H_{3}\right)
\end{aligned}
$$

Once we know all C_{i}, we simply compute ind $\left(H_{i}, G\right)$ and take

$$
f(G)=c_{1} \operatorname{ind}\left(H_{1}, G\right)+\cdots+c_{m} \operatorname{ind}\left(H_{m}, G\right) \text {. }
$$

How to use for \#k-matchings?

$$
t_{\text {not additive }}
$$

Key Idea, The matching poly is multiplicative.

$$
\begin{aligned}
& m_{k}\left(G_{1}+G_{2}\right)= \\
& m_{0}\left(G_{1}\right) m_{k}\left(G_{2}\right)+m_{1}\left(G_{1}\right) m_{k-1}\left(G_{2}\right)+\cdots m_{k}\left(G_{1} m_{0}\left(G_{2}\right)\right. \\
\Rightarrow & P_{G_{1}+G_{2}}(2)=P_{G_{1}}(2) \cdot P_{G_{2}}(2)
\end{aligned}
$$

So root moments are additive

$$
\begin{array}{r}
\left.G \mapsto \lambda_{1}^{\alpha}+\cdots+\lambda_{h}^{\alpha}\right)_{\text {with }\left\{\lambda_{i}\right\}=\text { roots }}^{\text {for any fixed } \alpha .}
\end{array}
$$

Newton's Identities: Moments $\alpha=0,-1, \ldots,-k$ are polynomials of $p^{(0)}(0) 1, p^{(k)}(0)$ and vice versa.
$\sum \lambda_{i}^{0}=n$
$\sum \lambda_{1}^{-1}=\frac{\left.-p^{(1}\right)_{0)}}{p^{(0)}(0)}=-p^{(1)}(0)$
$\sum \lambda_{i}^{-2}=\left(\sum \lambda_{i}^{-1}\right)^{2}-2 \sum_{i<j} \lambda_{i} \lambda_{j}=\left(p^{(1)}(0)\right)^{2}-2 p^{(2)}(0)$

ALG:

- Compute $\alpha=-k,-10$ moments of G.
* Bach only needs s size $O(k) H$;
* Each is additive
- Use reverse Newton identities to get first k coeffs.

For $k \simeq \lg \left(\frac{n}{\varepsilon}\right)$ takes time poly $(n) \cdot \Delta^{\lg \left(\frac{n}{\varepsilon}\right)}$, so FPTAS. ت

Real-Rootedness \& Log-Concavity
We saw P_{G} has real roots.
$y_{\text {matching poly }}$
Th: $m_{k}^{2} \geqslant m_{k-1} m_{k+1}$ we needed this $\begin{aligned} & \text { before, remember? }\end{aligned}$
Proof:

$$
P \text { fical-rooted } \Rightarrow\left[\begin{array}{l}
p^{\prime} \text { real-rooted } k^{\text {mean-vachee }} \\
z^{d^{k}} \boldsymbol{c} \text { degree } \\
\left(\frac{1}{2}\right) \text { reat-rooted } \\
\text { roots inverted }
\end{array}\right.
$$

$$
p \Rightarrow q:=p^{(k-1)} \Rightarrow r=2^{d} q\left(\frac{1}{2}\right) \Rightarrow
$$

$$
s=r^{(d-2)}=a+b z+c z^{2}
$$

$$
a=m_{k+1} \cdot \frac{(k+1)!}{2} \cdot(d-2)!
$$

$$
b=m_{k} \cdot k!\cdot(d-1)!
$$

$c=m_{k-i}(k-1)!\cdot d!/ 2$

$$
\begin{aligned}
b^{2} \geqslant & 4 a c \Rightarrow \\
& m_{k}^{2} \geqslant m_{k-1} \cdot m_{k+1} \cdot \frac{d}{d-1} \cdot \frac{k+1}{k}
\end{aligned}
$$

Remark: One can see this is proving if $C_{0}+C_{1} 2+\cdots+C_{n} 2^{n}$ is reat-rooted, then $\frac{c_{0}}{\binom{n}{0}}, \frac{c_{1}}{\binom{n}{1}},-\frac{c_{n}}{\binom{n}{n}}$ is $1 g$-concave.
Remark The reverse is false.
We now study another reat-rooted poly. this time multivariate

Real-rootedness is the "dream" in counting e sampling.

Spanning Tree Polynomial

$$
\begin{aligned}
& p_{4}\left(z_{1}, z_{2}, z_{3}\right)= \\
& z_{1} z_{2} z_{3}+z_{2} z_{3} z_{4}+z_{3} z_{4} z_{1}+z_{4} z_{1} z_{2}
\end{aligned}
$$

each term a spanning tree
$-P_{G}$ is homogeneous of deg $=n-1$

- It has m variables

The: $P_{G}=\operatorname{det}\left(z_{L} L_{1}+\cdots+z_{m} L_{m}\right)$ where
L_{i} is the Laplacian of edge i with row/col n removed.

Proof: This is the matrix-tree the. Think of z_{i} as an integer counting parallel edges.

More generally look at

$$
p:=\operatorname{det}\left(z_{1} A_{1}+\cdots+z_{n} A_{n}\right)
$$

where $A_{i} \xi_{0}$. These define for rane-1 A_{i} determinantal point processes (DPs). ${ }^{\text {d}}$ technically a special case of DPPS.

$$
p=\sum_{s} \mu(s) \prod_{i \in s} z_{i}
$$

$$
\mu(s) \propto \operatorname{vol}\left(\left\{v_{i}\right\}_{i \in s}\right)^{2} \text { for }|s|=k
$$

Thu: Whenever $\operatorname{Re}\left(z_{i}\right)>0$ we have

$$
\operatorname{det}\left(\sum z_{i} A_{i}\right) \neq 0
$$

Note: Any half-plane equivalent.

We will show a standard Markov Chain called down-up walk mixes rapidly for DPPS \& half-plane-stable dists. High Dimensional Expanders (HDX)

We will study these in detail, but for now a distribution μ on

$$
\binom{[n]}{k}
$$

think weighted hypergraph

- Spanning trees: $n=H$ edges in G

$$
k=\# \text { versts }-1 \text { in } G
$$

- Noise operator $D \in \mathbb{R}^{\binom{n}{k} \times\binom{ n}{k-1}}$ down $D(S, T)= \begin{cases}0 & \text { if } T \not \subset S \\ \frac{1}{k} & \text { if } T C S\end{cases}$
- We call the time-reversal D° the up operator U.
- Down-up wale: $D D^{\circ}=D U$.

$\left(s-i_{1}+j_{1} s-i_{1}+j_{2}\right.$
U : add elem w.p. $\alpha \mu(\cdot)$
- More generally $D_{k \rightarrow l} \in \mathbb{R}^{\binom{n}{k} \times\binom{ n}{l}}$ maps $S \in\binom{n /}{k}$ to unif. random $T \in\binom{S}{l}$. - We call $D_{k \rightarrow l}{ }_{0}$ alternatively $U_{l \rightarrow k}<\mu$-specific

Inf. Def. μ is HDX when $D_{k \rightarrow 1}$ contracts x^{2}-divergence.

Plan: $\mu=$ DPs / spanning trees
(1) $P_{\mu}\left(z_{1},-, z_{n}\right) \neq 0$ for $\operatorname{Re}\left(z_{i}\right)>0$.
(2) Show μ is an HDX.
(3) Conclude fast mixing of DU.

The - For any $p:=\operatorname{det}\left(\sum z_{i} A_{i}\right)$ with $A_{i} \xi_{i}$ we have $p \neq 0$ for $\operatorname{Re}\left(z_{i}\right)>0$

Proof: We take $A_{j} \varepsilon_{0}$ and take limits.
Assume $z_{j}=a_{j}+i \cdot b_{j}$. Then

$$
\sum z_{i} A_{i}=(\underbrace{\sum a_{j} A_{j}}_{A})+i(\underbrace{\sum b_{j} A_{j}}_{B})
$$

A is symmetric PS.D. is symmetric PS.D.
$\operatorname{det}(A+i B)=\operatorname{det}(A) \cdot \operatorname{det}\left(I+i A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right) \quad$ Any $Z \notin l R_{\leqslant 0}$ lies in a half $\xrightarrow{-\rho l a n e ~ w i t h ~} 1$.
$=i^{k} \operatorname{det}(A) \operatorname{det}\left(A^{-1 / 2} B A^{-1 / 2}-i I\right)$
For this to be zero i has to be
 Symmetric matrices have real eigs.

For Fun Corollary:
Let $a_{k}=\# s$ trees with $\operatorname{deg}(v)=k$.
Then a_{k} is kg -concave:

$$
a_{k}^{2} \geqslant a_{k-1} \cdot a_{k+1}
$$

Proof: Plug $z e^{\leftarrow z}$ for $e \sim v$ and $z e^{*}$ for $E M V$. We get real-rooted poly.

