Review

- Spin systems:

$$
\mu(x) \propto \prod_{v} \phi_{v}\left(x_{v}\right) \cdot \prod_{u \sim v} \phi_{u v}\left(x_{w^{\prime}} x_{v}\right)
$$

μ on $[q]^{V}$
Examples: coloring, hardcore, Using,...
-Self-avoiding wale tree: $[q=2]$

special vertices: first self-intersection
set to 1 if $e d g e_{1}\left\langle e d g e_{2}\right\}$ arb. ordering set to 0 if edge $1_{1}>$ edge $\left._{2}\right\} \begin{aligned} & \text { edges arrow d } \\ & \text { each vena }\end{aligned}$
-Th: marginal of v equal in tree $\&$ graph. [works for any $q=2$ system] IN ll sketch again

- Correlation decay: (truncate the tree j it's fine)

If we condition vertices S to be σ_{1} / σ_{2}

$$
d_{T V}\left(x_{v}\left|\sigma_{1}, x_{v}\right| \sigma_{2}\right) \leqslant \operatorname{func}^{\text {a }}(d(v, j))
$$

S for weak spatial mixing ${ }^{L}$
$\left\{u \in S \mid \sigma_{1}(\omega) \neq \sigma_{2}(u)\right\}$ for strong spatial mixing

* tree equivalence means: SSM for trees \Rightarrow SSM for graphs
- In the hardcore model with $\lambda<(1-8) \frac{(A-1)^{(A-1)}}{(A-2)^{\Delta}}$ we have SSM with exponential decay.
- Weitz's ALG: use tree recursion on truncated tree
- Estimate $\mathbb{P}\left[x_{v_{i}}=0 \mid x_{v_{1}}^{*}{ }^{\prime} \cdots=x_{v_{i-1}}=0\right]$
- Multiply estimates \& invert

Depth: $O(\lg n) \quad$ Runtime: $\quad \Delta \stackrel{O(g n)}{\leftarrow} \operatorname{poly}(n)$ for $A=O(1)$
Today:

- Roots of polynomials
- Barvinor's method
$\frac{\text { Graphs } \Rightarrow \text { Trees }}{\text { [weitz used for alg.] [Godsil for matchings] }}$

set new λ s so that: $\left(\mathcal{V}_{v_{1}}^{\prime}\right) \quad G\left(G^{\prime}\right)=\lambda \lambda_{v_{k}} \leq \lambda_{v}$

$$
-\frac{\mathbb{P}_{G}[v=1]}{\mathbb{P}_{G}[v=0]}=\frac{\mathbb{P}_{G^{\prime}}\left[v_{1}=\cdots=v_{n}=1\right]}{\mathbb{P}_{G^{\prime}}\left[v_{1}=\cdots=v_{n}=0\right]}
$$

- Define G_{i} :

$$
\frac{\mathbb{P}_{G}[v=1]}{\mathbb{P}_{G}[v=0]}=\prod_{i=1}^{k} \frac{\mathbb{P}_{G_{i}}\left[v_{i}=1\right]}{\mathbb{P}_{G_{i}}\left[v_{i}=0\right]}=\prod_{i} \frac{\mathbb{P}_{G_{1}}\left[\tilde{w_{1}}[11+10-0]\right.}{\mathbb{P}_{G^{\prime}}[11-100-0]}
$$

$$
\Rightarrow \mathbb{P}_{G}[v=0]=1 /\left(1+\Pi_{i} \frac{\mathbb{P}_{G_{i}}\left[v_{i}=1\right]}{\mathbb{P}_{G_{i}}\left[v_{i}=0\right]}\right)
$$

But note that

$$
\begin{array}{r}
\frac{\mathbb{P}_{G_{i}}\left[v_{i}=1\right]}{\mathbb{P}_{G_{i}}\left[v_{i}=0\right]}=\frac{\mathbb{P}_{G_{i}}\left[v_{i}=1 \mid w_{i}=0\right]}{\mathbb{P}_{G_{i}}\left[v_{i}=0 \mid w_{i}=0\right]} \cdot \frac{\mathbb{P}\left[w_{i}=0 \mid v_{i}=0\right]}{\mathbb{P}_{G_{i}}\left[w_{i}=0 \mid v_{i}=1\right]} \\
=\lambda_{v_{i}} \cdot \mathbb{P}_{G_{i}}\left[w_{i}=0 \mid v_{i}=0\right]=\lambda_{v_{i}} \mathbb{P}_{G_{i}}\left[w_{i}=0\right]
\end{array}
$$

So we get recursive formula

$$
\mathbb{P}_{G}[v=0]=\frac{1}{\left.1+\left(ग_{i}\right)^{\lambda} v_{i}\right) \prod_{i} P_{G_{i}-v_{i}}\left[w_{i}=0\right]}
$$

- This is the same as tree recursion.
- We do the same thing for each $G_{i}-v_{i}$ by expanding the vertex w_{i} and so on...
- If we come back to some y_{j} it is conditioned the correct way in tree.

Matching Polynomial
Note: Polys and their roots show up a lot!

Counting goal: we know FPRAS
Estimate $P_{G}(1)^{\text {\& for this [Jerrum-Sinclair] }}$ What we can do:

Compute $m_{k}(G)$ in ${ }^{\star}{ }^{\star}(k)$ time!
Barvinok's method:
Estimate $P_{G}(1)$ using just $m_{0}, \cdots, m_{O(1 g n)}$ when $A=O(1)$
$A_{\text {max }}$ degree

Note: This only gives $n^{O(\lg n)}$-time algs. Brick that makes it poly (n) [Patel-Regts] if time
Note, Correlation decay also wonks
[Bayati-Gamamnie-Katz-Nair-Tetali]
What is special about matchings?

- Roots of $P_{G} \leftarrow$ this is the only thing Barvinok's method needs

Thu: P_{G} has negative real roots and will prove they are $\Omega\left(\frac{1}{\Delta}\right)$ in magnitude! today

Open: Deterministic without $A=021$

Barvinok's Method

- Goal: estimate $p(1)$
- Assume: we know $p^{(i)}(0)$ for small i.

simply connected root-free region 00,1
\Rightarrow Estimate $p(1)$ using $p^{(i)} l_{0}$ for $i \leqslant O\left(\mathrm{ign}^{\circ}\right)$
Idea:
Truncate Taylor series of $\lg (p)$ around 0 .

$$
\begin{aligned}
& \lg p(z)=a_{0}+a_{1} z+\cdots+a_{k} z^{k}+\cdots \\
& k^{\prime} \cdot a_{k}=\left.\frac{d^{k}}{d z^{k}}(\lg p)\right|_{z=0}=\operatorname{func}_{\text {By }}\left(p(0), \cdots, p^{(k)}(0)\right)
\end{aligned}
$$

What's the error in truncation?

- Complex analysis fact: zeros of p
Distance to nearest singularity $=$ Radius of convergence
- The error can only be bounded if zero-free region $=\underbrace{\text { disk of radius }}$
- We will see how to go beyond disks.

The: For disks approx to $\lg p(1)$ has additive error $\leqslant \frac{2 e^{-\delta k}}{\delta} \times n$ for k-truncation

Corollary: When $\delta=$ const, enough to take $k \simeq \lg n / \varepsilon$ to $\operatorname{get}(1+\varepsilon)$-approx to $p(1)$.

Proof:

$$
\begin{gathered}
p=b\left(z-\lambda_{1}\right) \cdots\left(z-\lambda_{n}\right)=c\left(1-\frac{z}{\lambda_{1}}\right) \cdots\left(1-\frac{z}{\lambda_{n}}\right) \\
\text { roots }
\end{gathered}
$$

$$
\lg p=\lg c+\lg \left(1-\frac{z}{\lambda_{1}}\right)+\cdots+\lg \left(1-\frac{2}{\lambda_{n}}\right)
$$

$$
\operatorname{Taylor}_{k}(\lg p)=\lg c+\sum_{i} \operatorname{Taylor}_{k}\left(\lg \left(1-\frac{2}{\lambda_{i}}\right)\right)
$$

enough to bound additive error of each term

Taylor series for $\lg (1-x)$: (valid for $|x|<1$)

$$
-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4} \cdots
$$

Error of Taylor k :

$$
\leqslant \sum_{i=k+1}^{\infty} \frac{|k|}{i} \leqslant \sum_{i=k+1}^{\infty}|x|^{i} \leqslant \frac{|x|^{k}}{1-|x|}
$$

For $x=\frac{1}{\lambda_{i}}$ we have $|x|<e^{-\delta}$ so

$$
\frac{|x|^{k}}{1-|x|} \leqslant \frac{e^{-\delta k}}{\delta / 2} \simeq \frac{2 e^{-\delta k}}{\delta}
$$

Since there are n terms in sum overall error $\leqslant \frac{2 e^{-\delta k}}{\delta} \times n$

Extending beyond disks
Idea: Find polynomial \& st.
$-\phi(0)=0$

- $\phi(1)=1$
- $\phi($ disk of radius $1+\delta) \subseteq$ zero-free region
- deg not too large

Apply the Taylor series method to pod.
Exercise: Still $p o \Phi^{(i)}(0)=f u n c\left(p^{(0)},-, p^{(i)}(0)\right)$
＊How to design 中：
Riemann Mapping：
＂biholomorphic＂ϕ from $D(0,1+c)$ to any＂hol efree＂region．

Take polynomial approximating this ϕ and manipulate it a bit．

For matching polynomial：

$$
\begin{gathered}
\cdots \Omega\left(\frac{1}{\Delta}\right) \\
-2
\end{gathered}
$$

Tare ϕ＇s Taybr approx ${ }^{30}$ and ${ }^{\text {deg }} O(\Delta)$ Combine with linear map that sends $中_{\text {approà }}(0), 中_{\text {approx }}(1)$ to 091.

Exercise：This works！

Roots of matching polynomial
Recursive formula for P_{G} ：

$$
\begin{aligned}
& \left.P_{G}(z)=P_{G-u}(z)+2 \sum_{v \sim u} P G-u-v\right) \\
& u \text { unmatched } \\
& \text { Claim: Roots of } P_{G} \text { and } P_{G-u} \\
& \text { real and inched } \\
& \text { one between every two }
\end{aligned}
$$

one between every two

Proof: We use induction.

$$
\begin{array}{llllll}
P_{G-u-v_{1}} & \ldots & + & + & + & + \\
P_{G-u-v_{2}} & \ldots & + & & + & + \\
& + & + & & + &
\end{array}
$$

$$
P_{G}-u-v_{k} \ldots+-\quad+\quad+
$$

root here
too by parity
if deg larger

$$
P_{G}=Q_{G-u}+2 \sum_{v-u} \nabla_{G-u-v}
$$

How to show roots $\leqslant-\Omega\left(\frac{1}{\Delta}\right)$?
Take $z \in\left(-\frac{1}{4 \Delta}, 0\right]$. We will
show inductively that

$$
\begin{gathered}
0<P_{G-u}(z)<2 P_{G}(z) \\
P_{G}(z)=P_{G-u}(z)+2 \cdot \sum_{V \sim u}^{k} P_{G-u-v}^{\text {negative }}(z) \\
\geqslant P_{G-u}(z)+2 z \sum_{V \sim u} P_{G-u}(z) \\
=(1+22 \Delta) P_{G-u}(z) \geqslant \frac{1}{2} P_{G-u}(z)>0
\end{gathered}
$$

This means no roots $\in\left(-\frac{1}{4 \Delta}, 0\right]$

For any fixed $z \in \mathbb{R} \geqslant 0, p(z)$ on \triangle-bounded-degree graphs has QFPTAS.

How do we remove the Q?

- Smarter hay to compute

$$
m_{k}=\# k \text {-matching. }
$$

* Brute-force: $n^{O(k)}$
* [Patel-Regts]: $\operatorname{poly}(n) \cdot A^{O(u) \text {. }}$
- We only go up to $k^{2} \lg n: \circ$
- Works with
ind (H, G) : \#induced copies of fixed graph $\quad H$ in G.
- Example: ind $(\Omega, G)=2$ \#edges in G.

We will work with functions

$$
f_{1} \text { Graphs } \rightarrow \mathbb{C}
$$

that can be written as finite linear combination:

$$
f(G):=C_{1} \operatorname{ind}\left(H_{1}, G\right)+\cdots+C_{k} \operatorname{ind}\left(H_{k}, G\right)
$$

Example:
$-f(G)=$ \#vertices $=\operatorname{ind}(\bullet, G)$
$-f(G)=$ \#edges $=$ ind $(I, G) / 2$
$-f(G)=\# 2$-matching $=$

$$
\left[\operatorname{ind}\left(M_{6}\right) \cdot 3+\operatorname{ind}\left(S_{0}\right) \cdot 2+\cdots\right] / 24
$$

The space of these functions is rich.
$-f, g \longmapsto f+g$
$-f, g \longmapsto f . g$
This is because

$$
\begin{aligned}
& \operatorname{ind}\left(H_{1}, G\right) \cdot \operatorname{ind}\left(H_{2}, G\right)= \\
& C_{1}\left(H_{1}>H_{2}, G\right)+C_{2}\left(H_{1} \times H_{2}, G\right) \pm \ldots
\end{aligned}
$$

Call a function additive if

$$
f\left(G_{1}+G_{2}\right)=f\left(G_{1}\right)+f\left(G_{2}\right)
$$

Theorem: Additive functions only need connected graphs H_{i} in

$$
f(G)=c_{1} \text { ind }(H, G)+\cdots+c_{k} \text { ind }\left(H_{k}, G\right)
$$

Proof: - Note that if H is connected ind (H, \cdot) is additive.
-Suppose $f=\sum c_{i} \operatorname{ind}\left(H_{j}, G_{7}\right)$

- Pick the disconnected H_{i} with the smallest $\#$ of edges.

-Then $f\left(H_{i}\right)-f(A)-f(B)=C_{i}-0-0$
-This means $C_{i}=0$
Key Observation: If H is connected, counting ind (H, G) can be done in poly (n) $\left.\triangle O\left(1 H_{i}\right)\right)$ time.

