Review

- Monomer - Dimer
* λ_{v} can he absorbed

$$
\text { [Jerrum-Sindair] } \mu(\text { matching } M)=\prod_{e \in M} \lambda_{e} \prod_{V \nsim M} \lambda_{V}
$$

The: Metropolis relaxes in $p o l y\left(n, \max \left\{\lambda_{e}\right\}\right)$. Corollary, when $\frac{P M}{\text { near-pm }}>\frac{1}{\text { Porgy }(n)}$ we can sample $P M$ s in poly (n) time.

- Bipartite perfect matchingsi

Let $\Omega_{S}=\{$ matching with monomers $=S\}$.
[Jerrum-Sinclair-vigoda]
The: Metropolis on $\Omega=\Omega_{\phi} \cup \bigcup_{a, b} \Omega_{a, b}$ with $\mu(M) \propto \operatorname{weight}(M) / \sum_{M_{\in}^{\prime} \in \Omega_{S}}$ weight $\left(M^{\prime}\right)$ for $M \in \Omega_{S}$ an he approx. $m_{E} l_{s}$ relaxes in poly (n) time for bipartite graphs.
-The $\hat{\#}_{\pi}^{a}+O$ problem: $\sum_{M^{\prime} \in \Theta_{S}}$ weight $\left(M^{\prime}\right)$!
Solution: Pick approx weights w :

$$
\text { weight }(M)=\lambda^{M} \cdot w(S) \text { for } M \in \Omega_{S} \text {. }
$$

$\lambda_{0}, w_{0} \leftarrow k_{n, n}$ with all edges of weight 1 .

Plan for Today
Break from Markov chains:

- Correlation decay
- Weitz's algorithm for the hardcore model

Hardcore Model

$$
\mu(s) \propto \begin{cases}0 & \text { if } s \text { not ind. } \\ \lambda^{|s|} & \text { if } s \text { ind. }\end{cases}
$$

we can have different λ_{v} more generally

The: $\lambda<\frac{1}{\Delta} \Rightarrow$ Dobrushin \Rightarrow fast mixing [Wert] of Glauber
The: When $\lambda<(1-\delta) \lambda_{c}(\Delta) \Rightarrow$ FPTAS

$$
\lambda_{C}(\Delta)=\frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \simeq \frac{e}{\Delta}
$$

Note: This doesn't imply Glauber mixes fast \because We will prove this later in the course.
[sly]
The: For $\lambda>(1+\delta)-\lambda_{c}(\Delta)$, FPRAS is NP-hard.

Question: Where is $\lambda_{c}(A)$ coming from?
(A-1)-branching trees
except for root, all nodes have

$$
\operatorname{deg}=A
$$

Suppose we have one of these trees of large height. How much do leaves influence the root?

$$
\left.\begin{array}{l}
d V\left(\begin{array}{c}
\text { root } 1 \\
\text { root } 1 \\
\text { leaves in config in config }
\end{array}\right)
\end{array}\right)=?
$$

Correlation Decay: As height $\rightarrow \infty$, the $d_{T V} \rightarrow 0$.
This happens when $\lambda<\lambda_{c}(\Delta)$.
[Weitz]i
Correlation decay on (A-1)-branching tree
\Rightarrow FPTAS on all graphs with deg $\leqslant \Delta$. $\varkappa_{\text {no }}$ MCMC, deterministic

Note: This has been generalized to anti-ferromagnetic two-spin systems egg. Ising model

Algorithm: (thine of m on $\{0,1\}^{n}$)

- Approx $\mathbb{P}\left[x_{v_{1}}=0\right] \leftarrow$ we will show how
- Approx $\mathbb{P}\left[x_{v_{2}}=0 \mid x_{v_{1}}=0\right] \leftarrow$ these are similar
- Approx $\mathbb{P}\left[x_{v_{n}}=0 \mid x_{v_{1}}=\cdots=x_{v_{n-1}}=0\right]^{\downarrow}$
- Multiply everything together and invert!
[Weitz]: Marginals can be estimated well from local neighborhood!

Correlation Deay on Trees
$P_{v}: \mathbb{P}\left[X_{v}=0\right]$ in v 's subtree

Claim: $P_{\text {root }}=\frac{1}{1+\lambda \pi P_{\text {child }}}$
Proof:

$$
-P_{\text {root }}=\frac{1}{1+\frac{\mathbb{P}[\text { root }=1]}{\mathbb{P}[\text { root }=0]}}
$$

cone. ind.

$$
\begin{aligned}
& \left\{\begin{array}{l}
\mathbb{P}[\text { children }=0 \mid \text { root }=0]=\pi P_{\text {child }} \\
\mathbb{P}[\text { children }=0 \mid \text { root }=1]=1 \\
\frac{\mathbb{P}[\text { root }=1 \mid \text { children }=0]}{\mathbb{P}[\text { root }=0 \mid \text { children =0 }]}=\lambda
\end{array}\right\} \Rightarrow \\
& \frac{\mathbb{P}[\text { root }=1]}{\mathbb{P}[\text { root }=0]}=\lambda . \pi P_{\text {child }}
\end{aligned}
$$

What happens for the symmetric case? -When fixed point is attractive, the

$$
\begin{aligned}
P_{\text {child } i} & =P_{\text {child } j} \\
p \stackrel{f}{\longmapsto} & \frac{1}{1+\lambda_{p}^{d}}
\end{aligned}
$$

$\lambda(\Delta)$: when \mid derivative $\mid=1$ at fixed point!
HW: Show this happens for $\lambda(A)=\frac{(\Delta-1)^{\Delta-1}}{(A-2)} \Delta$
For $\lambda<\lambda(\Delta)$ we have Iderivativel <1 ! For $\lambda>\lambda_{c}(\Delta) \quad \cdots \quad \mid$ derivative $\mid>1$!
marginal of root converges to a unique distribution as height $\rightarrow \infty$. \mid derivative $\mid<1 \Rightarrow \exists$ basin of attraction In this case basin of attraction = everywhere

- When fixed point is repulsive, the marginal of root oscillates based on height parity.

$$
f(f(x))=x
$$

This is related to uniqueness of Gibbs measure on infinite trees.

There is a transformation $\underline{\Psi}_{N u c h}^{\text {such }}$ that $4 \circ f \circ \psi^{-1}$ has (derivative] bounded by 1-4everywhere.

$$
\begin{aligned}
& f(x)=\frac{1}{1+x x^{d}} \\
& \psi\left(f\left(4^{-1}(x)\right)\right)=x \\
& \psi^{-1}(x) \text { fp. off } \\
& g(x)=4 \circ f \circ \psi^{-1} \leftarrow \begin{array}{c}
\text { absolute } \\
\text { contract }
\end{array} \\
& f \circ f \circ \ldots \circ f(x)=\psi^{-1} \circ g \circ g \circ \ldots \circ g \circ \psi(x) \\
& g \text { is a controctior }
\end{aligned}
$$

Note: In two-spin systems a similar calculation defines uniqueness threshold on trees.

Open Problem: For \mid spins $\mid>2$, e.g., coloring, everything is harder and in many cases open.

General Trees

$$
P_{\text {root }}=f_{d}\left(P_{\text {child }}, P_{\text {child }}, \cdots, P_{\text {child }}\right)_{\text {multi-variate }} \text { version of } f .
$$

Using the same transformed iteration

$$
g_{d}:=\psi \circ f_{d}\left(\psi^{-1}\left(x_{1}\right), \psi^{-1}\left(x_{2}\right),-, \psi^{-1}\left(x_{d}\right)\right)
$$

Then g_{d} is still a contraction.
$\left\|\nabla g_{d}\right\|,<1-\varepsilon$ at all points

- This implies that if

$$
\begin{gathered}
\left\|P_{\text {leaves }}-P_{\text {leaves }}^{\prime}\right\|_{\infty}<C \Rightarrow \\
\left\|P_{\text {root }}-P_{\text {root }}\right\|_{\infty}<(1-\delta)^{\text {height }}<C \\
g_{d}(x)-g_{d}\left(x^{\prime}\right)=\int_{0}^{1}\left\langle\nabla g_{d}\left(t x^{\prime}+(1-t) x\right), x-x\right\rangle d t \\
\leqslant \int\left\|\nabla g_{d}\right\| \cdot\left\|x_{1}^{\prime}-x\right\|_{\infty} d t \leqslant \max \left[\|\nabla g\|_{1}\right\} \cdot\left\|x^{\prime}-x\right\|_{\infty}
\end{gathered}
$$

- Regardless of how we set leaves the root converges exponentially fast to the same marginal.
- So far: If $\lambda<\lambda_{c}(\Delta)$ then tres have correlation decay
- Question: How do we go from tres to general graphs?

Self-Avoiding Walk Tree
Graph:

Tree:

Weitz: The marginal - Every node except those
of v on graph highlighted represents a path from v that doesn't intersect itself.

Spatial Mixing
Let us condition a subset $S \subseteq V$ of vertices to have σ_{1}, σ_{2} values.

Weak Spatial Mixing:

$$
d_{T V}\left(\operatorname{root} \mid \sigma_{1}, \text { root } \mid \sigma_{2}\right) \leqslant \underset{\text { exponentially decay }}{\operatorname{func}}(\operatorname{dist}(\text { root, } S))
$$

Strong Spatial Mixing:

$$
d_{T V}\left(\operatorname{root}\left|\sigma_{1}, \operatorname{root}\right| \sigma_{2}\right) \leqslant \operatorname{func}(\operatorname{dist}(\operatorname{root}, s))
$$

$$
\text { where } S^{\prime}=\left\{v \mid \sigma_{1}(v) \neq \sigma_{2}(v)\right\}
$$

Strong Spatial Mixing allows us to condition on nearby vertices, as long as we do so consistently.

- Self-Avoiding Walk Representation: If trees have strong spatial mixing \Rightarrow graphs have SSM.
- The tree analysis (recursion $+\|\nabla g\|_{1}$) actually shows strong spatial mixing.

Strong Spatial Mixing \Rightarrow Approx

- To compute marginal of v :
- Construct SAW tree, truncated at depth $O(\lg n)$.
- Assign arbitrary boundary conditions to free leaves.
- Use recursion to compute marginals error $\leqslant(1-\delta)^{\lg n}=\frac{1}{\operatorname{pob}(n)}$

Weitz's Algorithm

- For vertex v, form the truncated self-avoiding walk tree.

- Fir leaves arbitrarily.
- Recursively compute $\operatorname{Pr}\left[x_{v}\right]$ in tree.

Analysis: - Truncate in $O(\lg n)$ depth.

- Approximation error $\leqslant(1-\delta)^{\sigma(1 g n)}=\frac{1}{p o \lg (n)}$
- Time: Size of tree $\simeq(\Delta-1)^{O(19 n)}=$ assuming this $\quad O(\lg \Delta)=\operatorname{poly}(n)$

Graphs \Rightarrow Trees
[Weitz used for alg.] [Godsil for matching]

set new λ s so that: $\left(G_{v_{1}}\right)^{\prime} G^{\prime}\left(G^{\prime}\right)=\lambda \lambda_{v_{k}} \leq \lambda_{v}$

$$
-\frac{\mathbb{P}_{G}[v=1]}{\mathbb{P}_{G}[v=0]}=\frac{\mathbb{P}_{G^{\prime}}\left[v_{1}=\cdots=v_{n}=1\right]}{\mathbb{P}_{G^{\prime}}\left[v_{1}=\cdots=v_{n}=0\right]}
$$

- Define G_{i} :

$$
\begin{aligned}
& \begin{array}{ll}
v_{1} \\
w_{1}
\end{array} b_{1}^{v_{i-1}} q_{0}^{v_{i}} \phi_{0}^{v_{i+1}} b_{0}^{k_{0}} \cdots 0^{v_{k}}{ }_{0} G_{i} \\
& \frac{\mathbb{P}_{G}[v=1]}{\mathbb{P}_{G}[v=0]}=\prod_{i=1}^{k} \frac{\mathbb{P}_{G_{i}}\left[v_{i}=1\right]}{\mathbb{P}_{G_{i}}\left[v_{i}=0\right]}=\prod_{\mathbb{P}_{G^{\prime}}}^{[\sqrt{11 \cdot+10-0}]} \frac{\mathbb{P}_{G^{\prime}}[\underbrace{[11-100 \ldots 0}_{v_{i} s}]}{} \\
& \Rightarrow P_{G}[v=0]=1 /\left(1+\Pi_{i} \frac{\mathbb{P}_{G^{2}}\left[v_{i}=1\right]}{\mathbb{P}_{G_{i}}\left[v_{i}=0\right]}\right)
\end{aligned}
$$

But note that

$$
\begin{array}{r}
\frac{\mathbb{P}_{G_{i}}\left[v_{i}=1\right]}{\mathbb{P}_{G_{i}}\left[v_{i}=0\right]}=\frac{\mathbb{P}_{G_{i}}\left[v_{i}=1 \mid w_{i}=0\right]}{\mathbb{P}_{G_{i}}\left[v_{i}=0 \mid w_{i}=0\right]} \cdot \frac{\mathbb{P}\left[w_{i}=0 \mid v_{i}=0\right]}{\mathbb{P}_{G_{i}}\left[w_{i}=0 \mid v_{i}=1\right]} \\
=\lambda_{v_{i}} \cdot \mathbb{P}_{G_{i}}\left[w_{i}=0 \mid v_{i}=0\right]=\lambda_{-} \mathbb{P}_{v_{i}}\left[w_{i}=w_{i}=0\right]
\end{array}
$$

So we get recursive formula

$$
\mathbb{P}_{G}[v=0]=\frac{1}{\left.1+\left(T_{i}\right)^{\lambda} / v_{i}\right) \prod_{i} P_{G_{i}-w_{i}}\left[w_{i}=0\right]}
$$

- This is the same as tree recursion.
- We do the same thing for each $G_{i}-v_{i}$ by expanding the vertex w_{i} and so on...

Note: When we come back to a copy of v, say v_{j}, if $j<i$ We have set that copy in G; to 1, and if $j>i$, we have set it to 0 . This is why the special conditioning happens.

