Review

- Comparison Method

Route ergodic flow of P^{\prime} through network with capacities = ergodic flow of p.
Poincaré/LSI for $P^{\prime} \Rightarrow$ Poincaré/LSI for P. loss factor: cong len

* When len $=1$, MLSI transfers too.
* Often useful for $P^{\prime}=$ trivial/ideal chain whose ergodic flow is $Q^{\prime}(x, y)=\mu(x) \mu(y)$.
- Trading time for approx Random walk on tree with weights ALG (subprob) mixes in poly (n, α) if
 ALG is α-approx.
- Canonical Paths

For an $x \rightarrow y$ transition:

-Injective $-\mu(s) \mu(t) \leqslant C \cdot \mu(r) Q(x, y)$.
\Rightarrow congestion $\leqslant C \cdot M$.

- Matching

We an count/sample in poly (n) time. Path: Look at MBM' and traverse pathsicycles one-by-one in some prefixed order. Evading (.,\therefore, fere class)
Plan for To nay

- Matching t+
- Intro to Correlation Decay

Generalizations

- Monomer-Dimer System:

Weights λ_{e} on edges

$$
\mu(\text { matching } M)=\prod_{e \in M} \lambda_{e} \prod_{v \nsim M} \lambda_{v}
$$

dimer: matched
monomer: unmatched

* Remark: λ_{v} can be "absorbed" in λ_{e}.

$$
\text { *Thu: } \left.t_{\text {mix }}=\operatorname{poly}(n) \max \{\lambda e\}\right)<\begin{gathered}
\text { assume } \\
\lambda_{v}=1
\end{gathered}
$$

Proof:

$$
\begin{aligned}
& \text { coli: } M \\
& \left.\frac{\lambda^{\prime}}{2} \cdot \frac{\lambda^{M^{\prime}}}{2}=\frac{\min \left\{\lambda^{N}, \lambda^{N^{\prime}}\right.}{2} \cdot \frac{\lambda^{\operatorname{encoding}\left(M, M^{\prime}\right)}}{2} \cdot \lambda^{\text {few edges }} \right\rvert\,
\end{aligned}
$$

$$
\begin{aligned}
& \leq Q(N, N) \\
& \left.\mu(M) \cdot \mu\left(M^{\prime}\right) \leqslant \text { poly }(n) \cdot p o l y(\lambda) Q\left(N, N^{\prime}\right) \mu \text { encoding }\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { What if we only want perfect matching? }
\end{aligned}
$$

Idea 1: Define Metropolis Chain on

$$
\text { perfect matchings }+\underbrace{\text { near-perfect matching s }}_{\text {size }^{k} \frac{n}{2}-1}
$$

Idea 2: look at monomer-dimer with
$\lambda_{e}=\lambda$ a large number.

- With weight λ :

$$
m_{k} \longmapsto \lambda^{k} \cdot m_{k} \quad \frac{m_{n}}{m_{n}} \leqslant \frac{m_{n}-1}{m_{2}-1} \leqslant \cdots
$$

- If $\lambda>\frac{m_{n / 2-1}}{m_{n / 2}} \leftarrow$ near-perfect
by Is-concavity
then $\lambda^{\frac{n}{2}}{ }_{\frac{1}{2}} \geqslant \lambda^{\frac{n}{2}-1} m_{\frac{n}{2}-1}^{k} \geqslant \lambda_{m_{0}}$
by choice of λ
- If we sample from monomer-dimer

$$
\mathbb{P}[\text { perfect matching }] \geqslant \Omega\left(\frac{1}{n}\right)
$$

ALG: Sample es accept if PM
This is poly (n) if $\lambda=\frac{m_{n / 2}-1}{m_{n / 2}}=$ poly (n).

Remark: Same condition needed for Ideal.
\qquad
Bad Example:

- One perfect matching
- $2^{\Omega(n)}$ near-perfect matching

Thy. In bipartite graphs we can sample perfect matchings.
[Jerrum-Sinclair - Vigoda]
Open: For non-bipartite graphs \%

Idea: Renormalize weights. Let Ω_{s} be matching whose monomers are S.

$$
w(s) \propto \frac{1}{\sum_{M \in \Omega_{s}} \lambda^{M}} \quad \lambda^{M}=\prod_{e \in M} \lambda_{e}
$$

Define $\omega(M)=\omega(S) \cdot \lambda^{M}$ for $M \in \Omega_{S}$.

- By this choice we have $\omega\left(\Omega_{s}\right)=\omega\left(\Omega_{S^{\prime}}\right)$

The: Suppose we run Metropolis on
perfect + near-perfect matchings in

$$
|s| \in\{0,2\}
$$

a bipartite graph. Then

$$
1-\lambda_{2}(P) \geqslant \frac{1}{p o l y(n)} \text { < poly-time mixing } \begin{aligned}
& \text { if we start from } \\
& \operatorname{argmax} \omega(.) .
\end{aligned}
$$

The

problem

- How do we come up with w(s)? this is counting!
- Idea: The the still holds if $\omega(s)$ are approx $\underbrace{\alpha}_{\sim} 1 / \sum_{m \in \Omega_{s}} \lambda^{M}$
say up to factor 10 .
- Start with a symmetric easy graph, egg. $K_{n, n / 2}$ with $\lambda_{e}=1$, \& slowly change ${ }^{2} \lambda_{e} \leftarrow$ by $1+\frac{1}{n}$ factor
- Use Manor chain to sample \& set

Sketch of Mixing Proof:

- For simplicity $\underbrace{\text { we use }}_{\substack{\text { everything } \\ \text { approx } ~}}$ exact $w(S)$.
- Enough to route flow from near-perfect $M \in \Omega_{a, b} \rightarrow M \in \Omega_{\phi}$ perfect with low congestion.

* Earivalently: To route from $\Omega_{a, b}$ to $\Omega_{c i d}$ we first pick a random intermediate

$$
m^{\prime \prime} \Omega_{\varnothing}
$$

- Routing: $M \oplus M^{\prime}$ is one altemating path and some cycles. We always traverse alternating path first \& then the cycle.

Encoding: Same as before (for $N \rightarrow N^{\prime}$ transition) ($M \oplus M^{\prime} \oplus N$ - few edges, side info)

Issue: Note that encoding might not be perfect / near-perfect. It might have 4 monomers. $\omega($ encoding $)=\lambda^{M} \cdot \omega^{\left(u u^{2}\right.}$

This is fine! Even though encoding $\in \Omega_{a, b x e d}$

$$
\left.\omega(M) \omega\left(M^{\prime}\right) \leqslant \frac{\operatorname{polg}(n) \cdot \min \left\{w(N) w\left(N^{\prime}\right)\right\}}{\simeq Q\left(N, N^{\prime}\right)}\right\} \omega(\text { eacaiiig })
$$

Because the map is still injective

Main Inequality:

$$
\omega(M) \omega\left(M^{\prime}\right) \leqslant \operatorname{poly}(n) \cdot \min \left\{\omega(N), \omega\left(N^{\prime}\right)\right\} \omega(\text { encoding })
$$

It's a bit of case analysis but let me show you the hardest case!

encoding:

Note that

$$
\begin{aligned}
& \lambda^{M} \cdot \lambda^{M^{\prime}}=\lambda^{N} \cdot \lambda^{\operatorname{encoding}} \cdot \lambda_{e} \cdot \lambda_{f} \\
& \lambda^{M} \cdot \lambda^{M^{\prime}}=\lambda^{N^{\prime}} \cdot \lambda^{\text {encoding }} \lambda_{e} \cdot \lambda_{g}
\end{aligned}
$$

To prove inequality we need to show $\omega(\varnothing) \omega(a, b) \leqslant \omega(a, b, c, d) \cdot \frac{1}{\lambda_{e}} \cdot \frac{w\left(c^{\prime}, d^{\prime}\right)}{\lambda f} \cdot p_{0}(\operatorname{ly}(n)$
$\omega(\varnothing) \omega(a, b) \leqslant w(a, b, c, d) \cdot \frac{1}{\lambda_{e}} \cdot \frac{\omega\left(c^{\prime}, d^{\prime \prime}\right)}{\lambda_{g}} \cdot p o l g(n)$

$$
\omega(\varnothing) \omega(a, b) \leqslant \omega(a, b, c, d) \cdot \frac{1}{\lambda_{e}} \cdot \frac{\omega^{\prime}\left(c^{\prime}, d^{\prime \prime}\right)}{\lambda_{g}} \cdot p o l g(m)
$$

Proof: Equivalent to show
$\lambda\left(\Omega_{\not D}\right) \Omega\left(\Omega_{a, b}\right) \geqslant \frac{1}{\text { Poly (n) }} \cdot \lambda_{e} \cdot \lambda_{f} \lambda\left(\Omega_{c, d}\right) \lambda\left(\Omega_{a, b)}\right)$
Idea: Construct maps from $M \in \Omega_{\text {Cid }^{\prime}}$ and $M^{\prime} \in \Omega_{a_{1} b, c_{1} d}$ to $\Omega_{\varnothing} \times \Omega_{a_{1 b}}$ that are few-to-one \& include e \& f.

HW problem

Intro to Correlation Decay
Hardcore model:

$$
\mu(\text { ind. set S }) \propto \lambda^{|S|}
$$

The if $\lambda \leqslant \frac{1}{\Delta} \Rightarrow$ Dobrushin!
The: When $\lambda<\lambda_{c}(\Delta) \cdot(1-\delta)$ with
$\lambda_{c}(\Delta)=\frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \simeq \frac{e}{\Delta}$ then
we can still sample/ count.
[Weitz: Correlation Decay]
Later in the Course we will see Glanber dynamics works! $T \mathrm{~mm}\left[\mathrm{SI}_{1}\right]$] NP-hard for $\lambda>\lambda_{C}(\mathrm{~A})-(1+\delta)$

