CS 263: Counting 8 Sampling

- Aero $\&$ Astro
- Applied Physics undergrad +
- Computer Science
- ICME
- Mathematics

Logistics
Lecture: Mon, Wed 1:30pm-2:50pm (best-effort recorded)

Website: cs263.stanford.edu Office hours: Starts next week

Homework: 4 sets (20% each)
Final report: 20% of grade

- Solo or groups of 2
- Research: new progress on a problem relevant to the course or
- Survey: choose $\geqslant 3$ papers on a common problem/topic and survey them

Plan:

- What is "Counting \& Sampling"?
- A bit of complexity theory
don't worry, this is almost all the complexity theory you'l see in this class
- Approximate notions of counting \& sampling
$\bar{\tau}$ First algorithms: Monte Carlo + Rejection Sampling if time

What is "Sampling \& Counting"?

Distribution μ on large $\Omega \leftarrow$ finite but exp. large in most of

- Sampling: efficient alg. to thiscoure produce sample $\omega \sim \mu$.
- Counting: compute $P_{\mu}[$ event $]$ for various events of interest.

Example: \#SAT
Input: $\phi=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee x_{4}\right) \wedge \cdots$
$\Omega: \quad\{0,1\}^{n} \leftarrow$ assignments to n vars
μ : uniform over satisfying assignments

Why is it called Counting?
Let us compute $p_{x \sim \mu}\left[x_{1}=1\right]=$
$\frac{\text { \# sat. assignments of } \phi \text { with } x_{1}=1}{\text { \#sat assignments of } \phi}$ so is this
this is a count
Clever observation:
numerator $=\#$ sat assignments to

$$
\phi^{\prime}:=\left(\phi \wedge x_{1}\right)
$$

- This sort of thing is called "self-reducibility"

Formalism

Suppose μ is "unnormalized" density: $\mu: \Omega \longrightarrow \mathbb{R}_{\geqslant}$
wort. an easy background measure on Ω finite a usually has uniform background

- Sampling: Efficiently produce ω with $P[\omega] \propto \mu(\omega)$
- Counting: Compute the normalizing factor $\sum_{\omega \in \Omega} \mu(\omega)$

Partition Function
Standard Assumption,
μ is easy to compute for every point $\omega \in \Omega$.

Example. \#SAT
Input: $\phi=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee x_{4}\right) \wedge \cdots$
$\Omega:\{0, i\}^{n} \in$ assignments
$\mu: \Omega \rightarrow\{\sigma, 1\}$

$$
\mu(x)=1\left[\begin{array}{ll}
x & \text { sats } \phi
\end{array}\right]
$$

Example. Spin systems

graph

$$
G=(V, E)
$$

I: $\underbrace{\{+1-\}^{V}}_{\text {could be larger domain }}$

$$
\mu(X)=\prod_{(u, v) \in E} \Phi\left(x_{u}, x_{v}\right)
$$

local interaction

Example. Generative ML models
Ω : all raw $n \times n$ images
$\mu: \overline{Q_{\square}} \longmapsto$ "realism of image"

1. We don't know μ. We learn something about it from data. Score-based models: learn approx. $\nabla \lg \mu$

$$
\begin{gathered}
\dot{x} \dot{\sim}^{x} \uparrow_{\text {nearby points }}^{x+\Delta x} \\
\frac{\mu(x+\Delta x)}{\mu(x)} \simeq \exp (\nabla \lg \mu(x) \cdot \Delta x)
\end{gathered}
$$

Bit of Complexity Theory
Example. Poly -time nondet.
Turing machine M.

$$
M:(x, y) \longmapsto\{\text { Accept, Reject }\}
$$

ar
if
itcepb=1
Reject
input Egg.

$$
\left.\begin{array}{rl}
M_{\text {SAT }}: & \left(\begin{array}{l}
\text { formula } \phi \text {, assignment } x) \mapsto \\
\\
\end{array} \begin{array}{l}
\text { Accept if } x \text { salts } \phi \\
\text { Reject } 0 . w
\end{array}\right. \\
N P=\{x \mapsto|\{\exists y: M(x, y)]| M\}
\end{array}\right\}
$$

Every NP problem has a \#P variant. not unique
\#P-complete: Every other \#P prob. poly-time reduces to it.

Examples of \#p problems:

\#spanning Trees in Graph
\# Bipartite Perfect Matchings - \# Stable Matchings

Poll if time:
Which ones are \#P-complete?

Reductions

All NP proms reduce to SAT.

This reduction is parsimonious.

$m-t o-n$ also called parsimonious

Corollary: \#SAT is \#P-complete.

In fact, all natural NP-complete problems we know have parsimonious reductions:
\#3-colorings \#Hamiltorian paths

Open problem: Do all NP-complete problems have a \#P-complete variant?
\#P-complete: really, really hard Obvious: NP-hard
[Joda]: Poly Hierarchy $\in P^{\# P}$

$$
\forall x \exists y \forall z \exists \cdots M(x, y, z, \cdots)
$$

Counting variants of NP-complete problems are hopeless."

But even P problems could become \#p-complete
Example. Count sat assignments to DNF formula: $\left(x_{1} \wedge \bar{x}_{2} \wedge x_{3}\right) \vee(\cdots) \vee \cdots$
Proof: \#DNF $=2^{n}-\# C N F$
Example [valiant' 79]. Given bipartite graph, counting perfect matching is \#P-complete!

Note these reductions are not parsimonious!

Casual observation: Efficient counting known for only a handful of interesting problems.
[- \#spanning trees

- planar perfect matchings
- directed Bulerian circuits
- Determinantal point processes

Common feature: all reducible to matrix determinants.

All hope is lost?

Approximation to the rescue

- Approximate counting:

Output Z with count $\in[Z,(1+\varepsilon) z]$

- Fully Poly-Time Approx. Scheme: Above with runtime poly $\left(n, \frac{1}{\varepsilon}\right)$

Abbr: FPTAS

- Fully Poly-Time Rand. Approx. Scheme: Above but with randomness and $\frac{2}{3}$ chance of success.
Abbr: FPRAS
HW: $\frac{2}{3}$ can be replaced with $1-\delta$ and runtime \leqslant poly $\left(n, \frac{1}{\varepsilon}, 19 \frac{1}{\delta}\right)$.

Question: Why all ε ? Why not 100 -approx?
Answer: Approx counting is altor-nothing.
Example: \#SAT
Suppose $f(n)$-approx alg A.
Give $A \quad \phi^{(1)} \wedge \phi^{(2)} \wedge \cdots \wedge \phi^{(t)}$
for disjoint copies of Φ.
output $\stackrel{f(n t)}{\sim}$ \#SAT($中)^{t}$
Ul

$$
\sqrt[t]{\text { output }} \stackrel{f(n t)^{\frac{1}{t}}}{\simeq} \text { \#SAT (申) }
$$

Say for $f(n)=2^{n 0.99}$ we have $f(n t)^{\frac{1}{t}}=2^{n^{0.99}} / t^{0.01}$, so let $t=\left(\frac{n}{\varepsilon}\right)^{100} \Rightarrow f(n t)^{\frac{1}{t}} \leqslant 2^{\varepsilon} \simeq 1+\varepsilon$ Applies to "tensorizable" problems
[Jerrum-Sinclair] Any "self-reducible" problem with poly(n)-approx alg has an FPRAS.

We will see this later in the course.

- Approximate Sampling:

For diss ν, μ on Q define

$$
\begin{aligned}
d_{T_{V}}(\nu, \mu) & \left.=\max \left\{P_{\nu} E B\right]-P_{\mu}[B] \mid \text { event } B\right\} \\
& =\frac{1}{2} \sum_{\omega \in \Omega}|\mu(\omega)-v(\omega)|
\end{aligned}
$$

- Fully Poly -Time Approx. On form Sampler.

For δ output ω in time poly $\left(n, \lg \frac{1}{\delta}\right)$ Sit. $d_{T V}$ (dist of ω, normalized $\left.\mu\right) \leqslant \delta$.
Abbr: FPAUS

For "self_reducible" problems
Counting 三 Sampling

Arrow: poly-time reduction.
We will prove these next class.

Aside: Most important direction is Approx Sampler \longrightarrow Approx Counter

A lot of this class will be about sampling via Markov Chains.

hope this is close to μ
\#DNF

Input: DNF formula

$$
\left(x_{1} \wedge \bar{x}_{2} \wedge x_{3}\right) \vee
$$

Can we approx. Sample/count satisfying assignments?

Attempt \#1 (naive Monte Carlo):
Sampler:
Sample u.r. $x \sim\{0,1\}^{n}$ if x is sat Accept and return x else Reject and bry again

This is an instance of rejection sampling.

Rejection Sampling
We can sample from ν but want to sample $\alpha \mu$.

Loop:
Sample $x \sim \nu^{\text {choose }}$ so prob $b 1$ Accept wop. $\frac{C^{\prime} \cdot \mu(x)}{\nu(x)}$ If reject, loop again...

Good: Output ~ normalized μ
Bad: Can take a long time:

$$
P[\text { Accept }]=C \cdot\left(\sum_{x} \mu(x)\right)
$$

For DNFs, $C=\frac{1}{2^{n}}$, so $P[A$ capt $]=\frac{\text { \# sat }}{2^{n}}$ This can be small: $\left(x_{1} \wedge x_{2} \wedge \cdots \wedge x_{n}\right)$

Attempt \#2 [karp-Lubby]:

$$
\begin{gathered}
\phi=C_{1} \vee C_{2} \vee \ldots V C_{m} \\
L \\
\text { each clause with } k \text { vars has } \\
2^{n-k} \text { sat assignments }
\end{gathered}
$$

$-A_{i}=\{$ sat assignments of clause $i\}$

- We want to sample from

$$
A_{1} \cup A_{2} \cup \cdots \cup A_{m}
$$

Main Idea: Sample from

$$
A_{1} \sqcup A_{2} L \cdots L A_{m}
$$

and rejection-sample it into $A_{1} O \cdots A_{m}^{\prime}$

$$
\begin{aligned}
\left|A_{1} \sqcup-\sqcup A_{m}\right| & =\sum\left|A_{i}\right| \leqslant \\
m \cdot \max \left|A_{i}\right| & \leqslant m \cdot\left|A_{1} \cup \cdots A_{m}\right|
\end{aligned}
$$

Alg: Loop

$$
\begin{aligned}
\operatorname{Pr}[\text { Accept }] \geqslant \frac{1}{m} \Rightarrow \begin{array}{c}
\text { expected loops } \\
=O(m)
\end{array}
\end{aligned}
$$

If we want to stop early we can pay $\left(1-\frac{1}{m}\right)^{t}$ in d_{+V} and output garbage if we reject for trounds

$$
t \geqslant m \lg \frac{1}{\delta} \Rightarrow\left(1-\frac{1}{m}\right)^{t} \leqslant e^{-\frac{t}{m}} \leqslant \delta
$$

Approx Counting of DNFS
Idea (Naive Monte Carlo):

$$
\operatorname{Pr}\left[A_{\text {crept }}\right]=\frac{\left|A_{1} U-U A_{m}\right|}{\left|A_{1} \sqcup-U A_{m}\right|}
$$

estimate this we know this

Estimation: try t times

$$
\frac{1[\text { Accept in try } 1]+\cdots+1[\text { Accept in try } t]}{t}
$$

The: when $t>\frac{3}{\varepsilon^{2} P \text { [accept] }}$ this gives a $(1+\varepsilon)$ approx to P [accept] w. prob $\geqslant \frac{2}{3}$.
Open Problem: Is there FPTAS?
Best known result due to [Gopalan-Mera-Reing6ld] has time $\simeq n^{\tilde{O}}(\lg \lg n)$

Proof: $\quad x_{i}=1$ [accept in try i]

$$
P=P[\text { accept }]
$$

$$
x=\frac{x_{1}+\cdots+x_{t}}{t}
$$

$$
-E[x]=p
$$

$$
-\operatorname{Var}\left(x_{i}\right)=p(1-p) \leqslant p
$$

$$
-\operatorname{Var}(x) \leqslant \frac{p}{t}
$$

By Chebyshevl's ineq:

$$
\begin{aligned}
& \operatorname{Pr}[x \notin[p-\varepsilon p, p+\varepsilon p]] \leqslant \frac{\frac{p}{t}}{(\varepsilon p)^{2}} \\
& =\frac{1}{t \cdot p \cdot \varepsilon^{2}}
\end{aligned}
$$

So if $t>3 / \varepsilon^{2} p$ then $P[$ failure $]<\frac{1}{3}$.

