
CS 263 : Counting 2- Sampling Logistics

Instructor (me )
Lecture : Mon / Wed 1:30pm - 2:50pm

6 (best -effort recorded)
CA →

Website : CS263. Stanford .edu

Nina Anami Ryan Cooper office hours ; starts next week

Homework : 4 sets 120% each )
0 a 0

Final report : 20% of grade

=30#you - solo or groups of 2

- Research : new progress on a

- Aero & Astro problem relevant to the course

- Applied Physics undergrad + or

- Survey : choose ≥ 3 papers on
- Computer Science masters +

a common problem /topic and
- ICME

Ph.D . survey them
- Mathematics



Plan :

- What is " counting & Sampling
" ?

- A bit of complexity theory
don't worry , this is almost

all the complexity theory
you'll see in this class

- Approximate notions of counting & sampling
- First algorithms : Monte Carlo + Rejection sampling
if time



What is
"

sampling 8 Counting
"

? Why is it called counting ?

Distribution µ on large I.←finite but let us compute P×~µ[ ✗ 1--1] :
exp. large
in most of

- Sampling : efficient alg .
to this course #sat . assignments of # with 4--1

↑produce sample W ~ µ . . #sat assignments of

so is this
- Counting : compute Pm[event] this is a count

for various events of interest .
Clever observation :

Example :#SAT numerator =# sat assignments to

: = (011×1)
Input : 4=4 , VIV ✗3)NIV ✗zv ✗4) r - - -

- This sort of thing is called
R : {on }

"
← assignments to nvars " self- reducibility "

☒ will comeµ i uniform over satisfying assignments
pace later



Formalism Example . #SAT

Input: 4=4 , VIV ✗3) 1(Fivxzvxir - - -suppose µ is "

unnormalized
"

hi. {a > i}
"

← assignments
density : Mil- IR≥◦↑ Mir→ So , ifWirt . an easy background measure on -52

finite R usually has uniform background MCM =/ [ × Sats &]
- Sampling: Efficiently produce w Example . Spin systems

with PCW] ✗ Mcw) ⊕ D-
graph

- Counting : Compute the normalizing G- (VE)
factor [ Mcw) ⊖ ⊕

wer

Ri 5-1 , - }
"

Partition Function
cÑbe larger domain

standard Assumption '
MCX ) = IT (Xuixv)

µ is easy to compute for CUIVIGE Ryan interaction
every point wed .



Bit of Complexity TheoryExample . Generative ML models

Example . Poly-time nondet .

R : all raw nxn images
Turing machine M .

M :

☐
↳

"

realism of image
"

M :( × >g) ↳ {Accept , Reject }
! We don't know µ .

We learn ↑
our M input witness

/nondet choices
something about it from data . if Accept-_ I

Reject-0

E.g.
Score - based models :

Msa,:(formula$, assignment ×) ↳learn approx . 719M {Accept if ✗ Sats to

•

• I Reject our
✗

✗+ Ax

☒ ↑ NP={xi→1§y : Mlxiy)] / M }
nearby points * p={ ✗↳#$ : May )} / M}

MIX-11×1
Every NP problem has a #P variant .

* cexpltlgmkl.BY ↑
not unique



#P- complete : Every other #P prob .

poly-time reduces to it .

Examples of #P problems :

-✓#SAT Poll if time :

# Hamiltonian cycles } Which ones are

# 3-colorings of Graph TFP- complete ?

¥ # spanning Trees in Graph
# Bipartite Perfect Matchings
# Stable Matchings

-
. _

.



Reductions In fact
,
all natural NP-complete

problems we know have parsimonious

All NP probs reduce to SAT . reductions :

◦→
→Accept #3-colorings # Hamiltonian paths

↳o 1- Hiiiii
-11 - - -

L [Coon- Levin]
- -

.

Reject M

Open problem : Do all NP-complete
his reduction is parsimonious .

problems have a #P- complete
one -one

accepting paths sat assignments variant?
↑

m -to-n also called #P - complete i really , really hard
parsimonious

Obvious: NP-hard

corollary : A-SAT is #P- complete .

*da] : Bly Hierarchy E- p
#P

↓
Vx]-yV-z]- - - - MKAY >2, _ .)



Counting variants of NP-complete casual observation : Efficient counting
problems are hopeless • known for only a handful of

interesting problems .

But even P problems could become - #spanning trees
- # planar perfect matchings

#P- complete . ••- -# directed Eulerian circuits
Example .

Count sat assignments to §- Determinantat point processes
DNF formula : (x,n✗jmg)Vl . _. )V - - - Common feature : all reducible to

matrix determinants .

Proof : #DNF = 2h_ #CNF ☐

Example [Valiant ' >9] . Given bipartite

graph , counting perfect matchings
All hope is lost ?

is #P- complete !

Note , these reductions are not parsimonious!



Approximation to the rescue Question : Why all E? Why not 100-approx?

Answer : Approx counting is all-or-nothing .

Approximate counting : Example : #SAT

output 2 with Count c-[2,11+42] Suppose fcn)-approx alg A .

Give A ☒plan - - - not"- Fully Poly -Time Approx . Scheme :
"Above with runtime polygon,£ )

for disjoint copies of 01 .

input size output_%^ᵗ)#SAT (D)+
Abbr: FPTAS
- Fully Poly-Time Rand . Approx . Scheme: fcn¥É
Above but with randomness and trout ≈ #SAT (A)

§ chance of success .

Say for fcn, = 2
n°99

we have

Abbr : FPRAS fcnt)É= 2 n°%t°"°
'

,
so let

HW : } can be replaced with 1-8 t = (G)
'◦◦

⇒ fent)¥≤ ZE He .

and runtime ≤ poly (niet > 19£) . Appliesto "tensorizable " problems



[Jerrum- Sinclair] Any "
self- reducible

" For
"

self - reducible
"

problems

problem with polycn) - approx alg
counting ≤ Samplinghas an FPRAS .

We will see this later in the course .

.

Exact counting→ Approx counting
-

"

Approximate sampling :

,

EPI
#-

(FPRAS )

For dits 4th on R define Ferrum-Valiant.Hirani ]
-
-
.

dafviml-max-%EE3-pml.ES/ event E} Exact sampling → Approx sampling
≤{[ / MCW) - VCW) ) (FPAUS)

WER →
because #P

- Fully Poly -Time Approx . UÑfrm Sampler
.

Arrow : poly- time reduction .

For S output w in time polyln, Igt) We will prove these next class .

5.tdpvldistofw , normalized µ) ≤ 8 .

Abbr : FPAUS



Aside : Most important direction is #DNF

Approx Sampler→ Approx Counter Input : DNF formula

A lot of this class will be about 1×11×-21×3) V - - -

sampling via Markov chains .

Can we approx . Sample /count

satisfying assignments?

①•§↑%• Attempt #1 ( naive Montecarlo ) :
sampler :

sample u.ir . ✗To > I}
"

× is sat
Accept and return ✗

✗
◦

¥"

?
, %ʰP✗z→ - - - → ✗ +

↑
e↳e
Reject and try again

hope this is close
to µ This is an instance of rejection

sampling .



Rejection Sampling Attempt #2 [Karp -Luby] :

☆ = C
,
V Czv - - - Vcm

We can sample from 2 but
↓

each clause with
K vars has

want to sample ✗ µ .

2ⁿᵈ sat assignments
Loop i

choose so prob≤ I
_ A ; = { sat assignments of clause i}

[
ample ✗nv

Accept w -

p . ¢%¥- - We want to sample from
If reject , loop again

_ _
.

A ,UAzU - - - 0AM .

Good : Output ~ normalized µ Main Idea : Sample from disjoint
6 union

Bad : Can take a long time : AW Azw - - - WAM

P[Accept] = C. ( Email ) and rejection - sample it into AN
- - - VAN!

✗

For DNA , G- In , so Pfpfccept] _#{ IAN -
- WAM / = [ I Ail ≤

m
.
max /Ail ≤ m. / A ,U - - - UAMIThis can be small :(xinxzr - - - rxn)



Pr [Accept ] ≥ Im ⇒ expected 100ps

A#t =0cm)

1
A =itA• If we want to stop early we can

2 / pay ( I -1m)ᵗ in dtv and output

Az d- / garbage if we reject for
1- rounds

i •
i / / t ≥ migts⇒ 4-tm)ᵗ≤e- ±m≤s.AT#Reje-Reje-Approx counting of DNFS

game
same Idea (Naive Montecarlo) :

Alg : Loop pr[Accept] = !ff_%m#m\Sample ✗GAN -WAN ↑
If ✗ sampled from Ai and estimate this

we know this

no Aj with jai has ×
Accept ↳

↓

multiply together .!
henwise

, try again .



Estimation : try 1- times Proof : Xi =L [accept in try i]
p p[accept]

/ [Accept in try 1) + - - -11 [Accept intryt]
✗ = Xi--te-

- E[× ] =p
3 - Varlxi )=p4-p) ≤ p

-1hm : when tqpaaeptg this
_ varlx ) ≤ %

gives a (1+8) approx to Pallett] By Chebyshev 's ineqi
w. prob ≥ } . Pr [✗ ∅ [ p - Ep )p+EP] )≤-pp

Open Problem : Is there FPTAS ?
= t¥q2

Best known result due to
so if t > 3/gfp then[Gopalan - Mera-Reingold ] has

time ± n°71919 n) P [failure] < § .


