Limited Correlations, Fractional Log-Concavity, and Fast Mixing

Nima Anari

Stanford University

based on joint works with

Kuikui Shayan Cynthia Liu OveisGharan Vinzant


```
[Feder-Mihail'92, ...]
```

```
\mathbb{P}[\text{edge } e \in \mathsf{T} \,|\, \text{edge } f \in \mathsf{T}] \leqslant \mathbb{P}[\text{edge } e \in \mathsf{T}] \text{ for } e \neq \mathsf{f}
```


spectral bound on matrix of correlations \equiv log-concave polynomial

 $\mathbb{P}[\text{vertex } u \in S \mid \text{vertex } v \in S] \simeq \mathbb{P}[\text{vertex } u \in S] \text{ for distant } u, v \text{ when } \lambda < \lambda_c$

What kind of correlations are useful for sampling/counting/inference?

Special case is mystery: random perfect matchings.

- Special case is mystery: random perfect matchings.
- ▷ Monomer projection

{vertex $v \mid v \not\sim M$ }.

Monomer-Dimer System

- Special case is mystery: random perfect matchings.
- ▷ Monomer projection

{vertex $v | v \neq M$ }.

Positive correlations:

- Special case is mystery: random perfect matchings.
- ▷ Monomer projection

{vertex $v \mid v \not\sim M$ }.

Positive correlations:

▷ Long-range correlations:

Monomer-Dimer System

- Special case is mystery: random perfect matchings.
- ▷ Monomer projection

{vertex $v \mid v \not\sim M$ }.

▷ Positive correlations:

Long-range correlations:

 \triangleright Correlations are "limited" ...

Monomer-Dimer System

 \triangleright All examples have "spectrally limited" correlations.

- ▷ All examples have "spectrally limited" correlations.
- ▷ Equivalent to "fractional log-concavity" of generating polynomial.

- ▷ All examples have "spectrally limited" correlations.
- ▷ Equivalent to "fractional log-concavity" of generating polynomial.
- ▷ Efficient sampling/counting/inference:

Simplicial complex walks

Canonical form

Distribution defined by

$$\mu : \binom{[n]}{k} \to \mathbb{R}_{\geqslant 0}$$

Simplicial complex walks

Canonical form

Distribution defined by

$$\mu : \binom{[n]}{k} \to \mathbb{R}_{\geqslant 0}$$

Matroids conveniently already of this form.

Simplicial complex walks

Canonical form

Distribution defined by

$$\mu:\binom{[n]}{k}\to\mathbb{R}_{\geqslant0}$$

- Matroids conveniently already of this form.
- $\begin{tabular}{l} $$ Natural random walk$ between <math>\binom{[n]}{k}$ and $\binom{[n]}{k-1}$.

1 Drop an element uniformly at random.

1 Drop an element uniformly at random.

- 1 Drop an element uniformly at random.
- 2 Add an element with probability $\propto \mu$ (resulting set).

- 1 Drop an element uniformly at random.
- 2 Add an element with probability $\propto \mu$ (resulting set).

Canonical form

 \triangleright Hardcore model and monomers are not naturally in canonical form.

Canonical form

- ▷ Hardcore model and monomers are not naturally in canonical form.
- \triangleright There is a canonical form with n = 2#vertices and k = #vertices.

Canonical form

 \triangleright Hardcore model and monomers are not naturally in canonical form.

 \triangleright There is a canonical form with n = 2#vertices and k = #vertices.

- \triangleright Random walk is Glauber dynamics:
 - 1 Unmark vertex uniformly at random.
 - 2 Make a choice for it with probability $\propto \mu$ (resulting configuration).

▷ For monomers, random walk is useless. 😕

- ▷ For monomers, random walk is useless. 😕
- \triangleright Random walk between k-sets and (k-2)-sets:

 \triangleright Random walk between k-sets and 0-sets trivially mixes in 1 step.

Extreme random walks

 \triangleright Random walk between k-sets and 0-sets trivially mixes in 1 step.

Random walk between k-sets and 1-sets:

Extreme random walks

Random walk between k-sets and 0-sets trivially mixes in 1 step.

Random walk between k-sets and 1-sets:

Transition probability matrix from 1-sets to 1-sets:

$$\frac{1}{k} \begin{bmatrix} \vdots & \dots & \vdots \\ \vdots & \mathbb{P}_{S \sim \mu} [\mathfrak{j} \in S \, | \, \mathfrak{i} \in S] & \vdots \\ \vdots & \dots & \vdots \end{bmatrix}$$

 \triangleright How fast does the extreme random walk mix?

- \triangleright How fast does the extreme random walk mix?
- Look at the difference from walk that mixes in 1 step to the same stationary distribution. Call k times this the correlation matrix:

$$\frac{1}{k} \begin{bmatrix} \vdots & \dots & \vdots \\ \vdots & \mathbb{P}[j \in S \mid i \in S] - \mathbb{P}[j \in S] & \vdots \\ \vdots & \dots & \vdots \end{bmatrix}$$

- \triangleright How fast does the extreme random walk mix?
- Look at the difference from walk that mixes in 1 step to the same stationary distribution. Call k times this the correlation matrix:

$$\frac{1}{k} \begin{bmatrix} \vdots & \dots & \vdots \\ \vdots & \mathbb{P}[j \in S \mid i \in S] - \mathbb{P}[j \in S] & \vdots \\ \vdots & \dots & \vdots \end{bmatrix}$$

 \triangleright Obtain the following for all of our examples:

 $\lambda_{\text{max}}(\text{correlation matrix}) \leqslant O(1)$

- \triangleright How fast does the extreme random walk mix?
- Look at the difference from walk that mixes in 1 step to the same stationary distribution. Call k times this the correlation matrix:

$$\frac{1}{k} \begin{bmatrix} \vdots & \dots & \vdots \\ \vdots & \mathbb{P}[j \in S \mid i \in S] - \mathbb{P}[j \in S] & \vdots \\ \vdots & \dots & \vdots \end{bmatrix}$$

 \triangleright Obtain the following for all of our examples:

 $\lambda_{\text{max}}(\text{correlation matrix}) \leqslant O(1)$

Show that this implies poly(k) relaxation time for the random walk between k-sets and (k - O(1))-sets.
Fractional log-concavity

To our distribution $\mu : {[n] \choose k} \to \mathbb{R}_{\geqslant 0}$ we can associate polynomial

$$g(z_1,\ldots,z_n)=\sum_{S\in \binom{[n]}{k}}\mu(S)\prod_{i\in S}z_i.$$

Fractional Log-Concavity

We have $\lambda_{\text{max}}(\text{correlation matrix}) = O(1)$ if and only if

$$g(z_1^{\alpha},\ldots,z_n^{\alpha})$$

is log-concave around $z_1 = \cdots = z_n = 1$ for some $\alpha = \Omega(1)$.

Why does fractional log-concavity imply rapid mixing?

Local-to-global expansion phenomenon

[Kaufman-Oppenheim'17, Cryan-Guo-Mousa'19, Alev-Lau'19, A-Liu-OveisGharan-Vinzant'19].

$$\sum_{f} |\mathbb{P}[f \in T \mid e \in T] - \mathbb{P}[f \in T]|.$$

The l_1 -norm of rows of correlation matrix:

$$\sum_{f} |\mathbb{P}[f \in T \mid e \in T] - \mathbb{P}[f \in T]|.$$

 \triangleright The signs agree, except at e = f.

$$\sum_{f} |\mathbb{P}[f \in T \mid e \in T] - \mathbb{P}[f \in T]|.$$

- \triangleright The signs agree, except at e = f.
- \triangleright Without $|\cdot|$, the sum is zero.

$$\sum_{f} |\mathbb{P}[f \in T \mid e \in T] - \mathbb{P}[f \in T]|.$$

- \triangleright The signs agree, except at e = f.
- \triangleright Without $|\cdot|$, the sum is zero.
- \triangleright correlation_{*e*,*e*} \in [0, 1].

$$\sum_{f} |\mathbb{P}[f \in T \mid e \in T] - \mathbb{P}[f \in T]|.$$

- \triangleright The signs agree, except at e = f.
- \triangleright Without $|\cdot|$, the sum is zero.
- \triangleright correlation_{*e*,*e*} \in [0, 1].
- \triangleright The ℓ_1 norm of each row is O(1).

$$\sum_{f} |\mathbb{P}[f \in T \mid e \in T] - \mathbb{P}[f \in T]|.$$

- \triangleright The signs agree, except at e = f.
- \triangleright Without $|\cdot|$, the sum is zero.
- \triangleright correlation_{*e*,*e*} \in [0, 1].
- \triangleright The ℓ_1 norm of each row is O(1).
- \triangleright This implies $\lambda_{max} = O(1)$.

Matroids

Matroids

\triangleright Previous talk implies

 $\lambda_{\text{max}}(\text{correlation matrix}) = O(1).$

Given graph G = (V,E) and $\lambda > 0$, sample a stable set S with

 $\mathbb{P}[S] \propto \lambda^{|S|}.$

Given graph G = (V,E) and λ > 0, sample a stable set S with

 $\mathbb{P}[S] \propto \lambda^{|S|}.$

 \triangleright When degrees are bounded by Δ , there is a computational threshold

$$\lambda_{c}(\Delta) := (\Delta - 1)^{\Delta - 1} / (\Delta - 2)^{\Delta} \simeq e / (\Delta - 2).$$

Given graph G = (V,E) and $\lambda > 0$, sample a stable set S with

 $\mathbb{P}[S] \propto \lambda^{|S|}.$

 \triangleright When degrees are bounded by Δ , there is a computational threshold

$$\lambda_{c}(\Delta) := (\Delta - 1)^{\Delta - 1} / (\Delta - 2)^{\Delta} \simeq e / (\Delta - 2).$$

 \triangleright Unless NP=RP no efficient algorithm to sample when $\lambda > \lambda_c$ [Sly'10].

Given graph G = (V,E) and λ > 0, sample a stable set S with

 $\mathbb{P}[S] \propto \lambda^{|S|}.$

 \triangleright When degrees are bounded by Δ , there is a computational threshold

$$\lambda_{c}(\Delta) := (\Delta - 1)^{\Delta - 1} / (\Delta - 2)^{\Delta} \simeq e / (\Delta - 2).$$

 $\begin{array}{l} & \square \\ & \square$

Given graph G = (V,E) and λ > 0, sample a stable set S with

 $\mathbb{P}[S] \propto \lambda^{|S|}.$

 \triangleright When degrees are bounded by Δ , there is a computational threshold

$$\lambda_{c}(\Delta) := (\Delta - 1)^{\Delta - 1} / (\Delta - 2)^{\Delta} \simeq e / (\Delta - 2).$$

Given graph G=(V,E) and $\lambda>$ 0, sample a stable set S with

 $\mathbb{P}[S] \propto \lambda^{|S|}.$

 \triangleright When degrees are bounded by Δ , there is a computational threshold

$$\lambda_{c}(\Delta) := (\Delta - 1)^{\Delta - 1} / (\Delta - 2)^{\Delta} \simeq e / (\Delta - 2).$$

New Result [A-Liu-OveisGharan'19]

Normal Glauber dynamics mixes in time $n^{f(\varepsilon)}$.

 \triangleright Correlation between u and v decays exponentially

$$|\mathbb{P}[\mathfrak{u} | \nu] - \mathbb{P}[\mathfrak{u}]| \leqslant e^{-\Omega(\mathsf{dist}(\mathfrak{u}, \nu))}.$$

 \triangleright Use this to bound ℓ_1 norm of columns of correlation matrix

$$\sum_{\nu} |\mathbb{P}[\mathfrak{u} \mid \nu] - \mathbb{P}[\mathfrak{u}]|$$

- \triangleright Unfortunately there are $(\Delta-1)^d$ nodes at distance d, so not trivial to use decay of correlation.
- \triangleright Nevertheless, Weitz's self-avoiding walk tree recursion can still be used to show the ℓ_1 norm is $O_\varepsilon(1).$

Monomer Distribution

 \triangleright The ℓ_1 -norm of rows of correlation matrix:

$$\sum_{\nu} |\mathbb{P}[\nu \in S \mid u \in S] - \mathbb{P}[\nu \in S]|.$$

The l_1 -norm of rows of correlation matrix:

$$\sum_{\nu} |\mathbb{P}[\nu \in S \mid u \in S] - \mathbb{P}[\nu \in S]|.$$

 \triangleright The signs no longer agree.

The l_1 -norm of rows of correlation matrix:

$$\sum_{\nu} |\mathbb{P}[\nu \in S \mid u \in S] - \mathbb{P}[\nu \in S]|.$$

 \triangleright The signs no longer agree.

The l_1 -norm of rows of correlation matrix:

$$\sum_{\nu} |\mathbb{P}[\nu \in S \mid u \in S] - \mathbb{P}[\nu \in S]|.$$

 \triangleright The signs no longer agree.

 \triangleright The ℓ_1 -norm of rows of correlation matrix:

$$\sum_{\nu} |\mathbb{P}[\nu \in S \mid u \in S] - \mathbb{P}[\nu \in S]|.$$

- \triangleright The signs no longer agree.
- \triangleright Nevertheless, we will show that ℓ_1 norm of each row is O(1).

$$\sum_{\nu} |\mathbb{P}[\nu \in S \mid u \in S] - \mathbb{P}[\nu \in S]|.$$

- \triangleright The signs no longer agree.
- \triangleright Nevertheless, we will show that ℓ_1 norm of each row is O(1).
- This implies efficient sampling for the monomer-dimer systems on planar graphs (hardness shown by [Jerrum'97]).

$$\sum_{v} |\mathbb{P}[v \in S \mid u \in S] - \mathbb{P}[v \in S]|.$$

$$\sum_{\mathbf{v}} |\mathbb{P}[\mathbf{v} \in S \mid \mathbf{u} \in S] - \mathbb{P}[\mathbf{v} \in S]|.$$

Look at random variable X defined by sampling S from monomer distribution:

$$X = |T \cap S| - |T^c \cap S|.$$

$$\sum_{v} |\mathbb{P}[v \in S \mid u \in S] - \mathbb{P}[v \in S]|.$$

Look at random variable X defined by sampling S from monomer distribution:

$$\mathbf{X} = |\mathbf{T} \cap \mathbf{S}| - |\mathbf{T}^{\mathbf{c}} \cap \mathbf{S}|.$$

 \triangleright We will show that

 $|\mathbb{E}[X] - \mathbb{E}[X \mid u \in S]| \leqslant O(1).$

$$\sum_{v} |\mathbb{P}[v \in S \mid u \in S] - \mathbb{P}[v \in S]|.$$

Look at random variable X defined by sampling S from monomer distribution:

$$\mathbf{X} = |\mathbf{T} \cap \mathbf{S}| - |\mathbf{T}^{\mathbf{c}} \cap \mathbf{S}|.$$

 \triangleright We will show that

$$|\mathbb{E}[X] - \mathbb{E}[X \mid \mathfrak{u} \in S]| \leqslant O(1).$$

 \triangleright We will show that X/2 is distributed as

 $constant + Bernoulli(p_1) + \cdots + Bernoulli(p_m).$

Distributions ↔ Polynomials

Does this look like #heads dist. in independent (biased) coin flips?
Distributions ↔ Polynomials

Generalized Binomials

Compute the roots of g(z) and verify that all are real (none are complex).

 $g(z) := 0.10 + 0.35z + 0.40z^2 + 0.15z^3$

Does this look like #heads dist. in independent (biased) coin flips?

Distributions ↔ Polynomials

Generalized Binomials

Compute the roots of g(z) and verify that all are real (none are complex).

 $g(z) := 0.10 + 0.35z + 0.40z^2 + 0.15z^3$

 $\triangleright g(z)$ can be factorized:

$$g(z) = \underbrace{(0.5z + 0.5)}_{\text{coin flip}} \underbrace{(0.5z + 0.5)}_{\text{coin flip}} \underbrace{(0.6z + 0.4)}_{\text{coin flip}}$$

Does this look like #heads dist. in independent (biased) coin flips?

Distributions \leftrightarrow Polynomials

Generalized Binomials

Compute the roots of g(z) and verify that all are real (none are complex).

 $g(z) := 0.10 + 0.35z + 0.40z^2 + 0.15z^3$

 $\triangleright g(z)$ can be factorized:

$$g(z) = \underbrace{(0.5z + 0.5)}_{\text{coin flip}} \underbrace{(0.5z + 0.5)}_{\text{coin flip}} \underbrace{(0.6z + 0.4)}_{\text{coin flip}}$$

Roots correspond to biases:

coin bias $p \leftrightarrow 1-1/p$ root of g

Does this look like #heads dist. in independent (biased) coin flips?

[Heilmann-Lieb'72]

If $\boldsymbol{\mu}$ is a monomer distribution, the polynomial

$$\sum_{S} \mu(S) \prod_{u \in S} z_u$$

has no roots with $\forall u : \operatorname{Re}(z_u) > 0$.

[Heilmann-Lieb'72]

If $\boldsymbol{\mu}$ is a monomer distribution, the polynomial

$$\sum_{S} \mu(S) \prod_{u \in S} z_u$$

has no roots with $\forall u : \operatorname{Re}(z_u) > 0$.

Massaging this, we get that X is distributed as

constant + Bernoulli (p_1) + · · · + Bernoulli (p_m) .

▷ Two generalized binomials. Are mixtures generalized binomials?

Mixtures of polynomials

[Folklore, used by e.g., MSS'13]

If $\alpha g_1(z) + \beta g_2(z)$ is real-rooted for all $\alpha, \beta > 0$, then roots of g_1, g_2 must have common interlacing.

Mixtures of polynomials

[Folklore, used by e.g., MSS'13]

If $\alpha g_1(z) + \beta g_2(z)$ is real-rooted for all $\alpha, \beta > 0$, then roots of g_1, g_2 must have common interlacing.

 \triangleright Corollary: If mixtures of μ, ν are always generalized binomials, then

$$\begin{split} \mu &= \mathsf{Bernoulli}(p_1) + \cdots + \mathsf{Bernoulli}(p_n), \\ \nu &= \mathsf{Bernoulli}(q_1) + \cdots + \mathsf{Bernoulli}(q_n), \end{split}$$

with $p_i, q_i \leqslant p_{i+1}, q_{i+1}$.

Mixtures of polynomials

[Folklore, used by e.g., MSS'13]

If $\alpha g_1(z) + \beta g_2(z)$ is real-rooted for all $\alpha, \beta > 0$, then roots of g_1, g_2 must have common interlacing.

 \triangleright Corollary: If mixtures of μ, ν are always generalized binomials, then

$$\mu = \text{Bernoulli}(p_1) + \dots + \text{Bernoulli}(p_n),$$

$$\nu = \text{Bernoulli}(q_1) + \dots + \text{Bernoulli}(q_n),$$

with $p_i, q_i \leq p_{i+1}, q_{i+1}$.

 \triangleright Corollary: The means of μ and ν can be off by \leqslant 1.

$$|(p_1 + \dots + p_n) - (q_1 + \dots + q_n)| \leq 1$$

 \triangleright Matroids: Spectral negative dependence \implies mixing (spectral bound).

 \triangleright Matroids: Spectral negative dependence \implies mixing (spectral bound).

 \triangleright Hardcore model: Decay of correlation \implies mixing (ℓ_1 norm of columns).

- \triangleright Matroids: Spectral negative dependence \implies mixing (spectral bound).
- \triangleright Hardcore model: Decay of correlation \implies mixing (l_1 norm of columns).
- \triangleright Monomers: Root-free region \implies mixing (ℓ_1 norm of rows).

- \triangleright Matroids: Spectral negative dependence \implies mixing (spectral bound).
- \triangleright Hardcore model: Decay of correlation \implies mixing (l_1 norm of columns).
- \triangleright Monomers: Root-free region \implies mixing (ℓ_1 norm of rows).
- \triangleright Question: Are there matroids where the row sums grow unboundedly?

$$\sum_{i} |\mathbb{P}[i \mid j] - \mathbb{P}[i]|.$$

- \triangleright Matroids: Spectral negative dependence \implies mixing (spectral bound).
- \triangleright Hardcore model: Decay of correlation \implies mixing (ℓ_1 norm of columns).
- \triangleright Monomers: Root-free region \implies mixing (ℓ_1 norm of rows).
- \triangleright Question: Are there matroids where the row sums grow unboundedly?

$$\sum_{i} |\mathbb{P}[i \mid j] - \mathbb{P}[i]|.$$

Question: What are other fractionally log-concave sets/distributions/polynomials? Conjecture: 0/1 polytopes with O(1)-bounded edge length.

- \triangleright Matroids: Spectral negative dependence \implies mixing (spectral bound).
- \triangleright Hardcore model: Decay of correlation \implies mixing (ℓ_1 norm of columns).
- \triangleright Monomers: Root-free region \implies mixing (ℓ_1 norm of rows).
- \triangleright Question: Are there matroids where the row sums grow unboundedly?

$$\sum_{i} |\mathbb{P}[i \mid j] - \mathbb{P}[i]|.$$

Question: What are other fractionally log-concave sets/distributions/polynomials? Conjecture: 0/1 polytopes with O(1)-bounded edge length.