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Specirally Negotive
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random spanning tree matroid
Pltree T] < 1 P[basis B] o 1
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spectral bound on matrix of correlations = log-concave polynomial
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Efficient sampling/counting/inference when pairwise correlations are ...

Specirally Negative

& % >

random spanning tree matroid hardcore model
Pltree T] 1 P[basis B] o 1 P[stable S] x AlS!
[Feder-Mihail92, ...] [previous talk ...] [Weitz’06, ...]

Plvertex u € S| vertex v € S] ~ P[vertex u € S] for distant u,v when A < A
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What kind of correlations are useful for
sampling/counting/inference?



\Exomple with strange correlations /
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P[matching M] H weight(e)-
ecM

H weight(v)

v+/M
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\Exomple with strange correlations /

> Special case is mystery: Monomer-Dimer System
random perfect matchings.

> Monomer projection T>
{vertexv|v + M}. —

L
> Positive correlations:
o— o P[matching M] H weight(e)-
> Long-range correlations: ceM
.ﬂ.ﬁ 2.2. H weight(v)

v+/M
> Correlations are “limited” ...
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> All examples have “spectrally limited” correlations.
> Equivalent to “fractional log-concavity” of generating polynomial.
O Efficient sampling/counting/inference:

spectrally limited correlations

4

fast mixing of simplicial
complex walks



\Simplicial complex walks /

Canonical form

Distribution defined by

e (T) — R>o
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\Simpliciol complex walks /
Canonical form )j_>

Distribution defined by

e (ﬁ?) — R;o

> Matroids conveniently t/
already of this form. (
“(———I>

SEN
N ozIs

> Natural rondom walk
between () and (™).

SEN
| — oz
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\Cononicol form /

> Hardcore model and monomers are not naturally in canonical form.

> Thereis a canonical form with n = 24 vertices and k = #vertices.

.\|\ .\/T\ ./T>O Q|\ \|\Q
T —9 —e | —® —9
/ ° .//o/ ,VZ/ 3 / 4 [ /&
size k i sizek—1
sets sets

> Random walk is Glauber dynamics:

Unmark vertex uniformly at random.
Make a choice for it with probability oc p(resulting configuration).
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> For monomers, random walk is useless. @



> For monomers, random walk is useless. @
> Random walk between k-sets and (k — 2)-sets:



\Extreme random walks /

> Random walk between k-sets and 0-sets trivially mixes in 1 step.
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\Extreme random walks /

> Random walk between k-sets and 0-sets trivially mixes in 1 step.
> Random walk between k-sets and 1-sets:

Transition probability
matrix from 1-sets to 1-sets:

1.
i PsouljeSlies
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\Correlotion matrix /

> How fast does the extreme random walk mix?

> Look at the difference from walk that mixes in 1 step to the same
stationary distribution. Call k times this the correlation matrix:

11
Xl PheSlieSI—PjeSs

> Obtain the following for all of our examples:
Amax (correlation matrix) < O(1)

> Show that this implies poly(k) relaxation time for the random walk between
k-sets and (k — O(1))-sets.
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\Froctionol log-concavity

To our distribution p : ([’]2]) — R>o we can associate polynomial

g(z1y.vyzn) = Z H(S)Hzi-

se(m) ies

Fractional Log-Concavity

We have Amax(correlation matrix) = O(1) if and only if

is log-concave around z; = - -+ = z,, = 1 for some o = Q(1).
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Why does fractional log-concavity imply rapid
mixing?
Local-to-global expansion phenomenon

[Kaufman-Oppenheim7, Cryan-Guo-Mousa™9, Alev-Lau™9,
-Liu-OveisGharan-Vinzant19].
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\Negotive correlations

I\

Negative Correlations

random spanning tree
Pltree T] o< 1
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The £1-norm of rows of correlation
matrix:

D IPfeTle e TI—Plf € Tll.

f

The signs agree, except at e = f.
Without ||, the sum is zero.
correlatione . € [0, 1].

The £; norm of each row is O(1).

Negative Correlations
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\Negotive correlations /

> The £1-norm of rows of correlation

matrix: Negative Correlations

D IPfeTle e TI—Plf € Tll. ‘A/.
f

> The signs agree, except at e = f.

& Without ||, the sum is zero.

& correlatione, . € [0, 1]. random spanning tree
> The ¢; norm of each row is O(1). Pltree T] o 1

> This implies Amax = O(1).
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Log-Concave Polynomial
> 4

matroid
Plbasis B] < 1
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\Motroids /

Log-Concave Polynomial

> Previous talk implies p 4

Amax (correlation matrix) = O(1).

matroid
Plbasis B] < 1
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Given graph G = (V,E) and A > 0,
sample a stable set S with

Hardcore Model /T\.
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Given graph G = (V,E) and A > 0, ‘
sample a stable set S with \./\

P[S] o AIS!, / /.

> When degrees are bounded by A, there is a computational threshold

Hardcore Model /.\.

A(A):=(A=1)2"T/(A=2)2 ~e/(A—2).

(> Unless NP=RP no efficient algorithm to sample when A > A. [Sly10].

> When A < (1 —e)Ac, sampling is possible in time nC(f(ellog A) rweitz06].

> Truly polynomial time algorithms when A < 2/(A — 2) [Vigoda'01].

New Result [A-Liu-OveisGharan’19]

Normal Glauber dynamics mixes in time nf(e).
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Correlation between u and v decays exponentially
P |v] — Plu]| < e~ dstluv)),
Use this to bound £; norm of columns of correlation matrix

> [Pl |v]— Pl

> Unfortunately there are (A — 1) nodes at distance d, so not trivial to use

decay of correlation.

Nevertheless, Weitz’s self-avoiding walk tree recursion can still be used to
show the £; normis O¢(1).
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Monomer Distribution

=z

monomer distribution
PIS]
#perfect matchings in S¢
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\Monomers /

The £1-norm of rows of correlation T
> mctri;' Monomer Distribution

Z|IP’[veS|ueS]—IP’[v€S]I- /T\.

monomer distribution
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#perfect matchings in S¢
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\Monomers /

> The £3-norm of rows of correlation

-
matrix: ®
Y [PlveS|ues —Phve s /‘\.
A%

> The signs no longer agree.
> Nevertheless, we will show that £; norm
of each row is O(1). monomer distribution
P[S] o
#perfect matchings in S¢
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\Monomers

(B

\VAV,

The £1-norm of rows of correlation
matrix:

Y [PlveS|ueS]—PeS].

The signs no longer agree.

Nevertheless, we will show that ¢; norm
of each row is O(1).

This implies efficient sampling for the
monomer-dimer systems on planar

graphs (hardness shown by [Jerrum’97)).

Monomer Distribution

T

monomer distribution
PIS]
#perfect matchings in S¢

J
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> Let T be the set of positive terms in the £; norm:

Y IPveS|ue S —PeS.
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> Let T be the set of positive terms in the £; norm:

Y IPveS|ue S —PeS.

> Look at random variable X defined by sampling S from monomer
distribution:
X=[TNS [T NS

> We will show that
[EX] —E[X|ueS] <O0(1).

> We will show that X/2 is distributed as

constant 4+ Bernoulli(py) + - - - + Bernoulli(pm).
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\Distributions + Polynomials

o 1 2 3
Does this look like #heads dist. in
independent (biased) coin flips?
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\Distributions + Polynomials /

Compute the roots of g(z) and verify that
all are real (none are complex).

g(z) := 0.10 + 0.35z 4 0.40z% + 0.1523

C g(z) can be factorized:

g(z) = (0.5z+0.5) (0.5z + 0.5) (0.6z + 0.4) ————1

coiFlrfIip coin flip coin flip o 1 2 3
' Does this look like #heads dist. in
B Roots correspond to biases: independent (biased) coin flips?

coin biasp <» 1 —1/p root of g

21/26



[Heilmann-Lieb’72]

If wis a monomer distribution, the polynomial

> uS) ]z
S

ues

has no roots with Yu : Re(z,,) > 0.
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[Heilmann-Lieb’72]
If wis a monomer distribution, the polynomial

> uS) ]z
S

ues

has no roots with Yu : Re(z,,) > 0.
Massaging this, we get that X is distributed as

constant 4+ Bernoulli(py) + - - - + Bernoulli(pm ).

22/26



\Test your intuition /

> Two Gaussians. Are mixtures unimodal? Log-concave?
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\Mixtures of polynomials /

[Folklore, used by e.g., MSS*13]

If «gi(z) + Bg2(z) is real-rooted for all
«,p > 0, then roots of g7,g>, must have
common interlacing.
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\Mixtures of polynomials /

[Folklore, used by e.g., MSS*13]

If «g1(z) + Bgz2(z) is real-rooted for all
«,p > 0, then roots of g7,g>, must have
common interlacing.

> Corollary: If mixtures of u,v are always generalized binomials, then

w = Bernoulli(py) + - - - + Bernoulli(pn),
v = Bernoulli(qy) + - - - + Bernoulli(qn),

With pi, qi < Pit1,qit1.
> Corollary: The means of pand v can be off by < 1.

(p1 4+ +pn)— (g1 +--+qn)l <1
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\Conclusion /

\Y

Matroids: Spectral negative dependence =— mixing (spectral bound).
Hardcore model: Decay of correlation = mixing (¢; norm of columns).
Monomers: Root-free region = mixing ({1 norm of rows).

Question: Are there matroids where the row sums grow unboundedly?

> IPLi|j] —PLll.

Question: What are other fractionally log-concave
sets/distributions/polynomials? Conjecture: 0/1 polytopes with

O(1)-bounded edge length.
Thank youl
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