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Efficient sampling/counting/inference when pairwise correlations are . . .

Negative

random spanning tree

P[tree T ] ∝ 1

Spectrally Negative

matroid

P[basis B] ∝ 1

Decaying

hardcore model

P[stable S] ∝ λ|S|

[Feder-Mihail’92, . . . ] [previous talk . . . ] [Weitz’06, . . . ]
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What kind of correlations are useful for
sampling/counting/inference?
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Example with strange correlations

Special case is mystery:

random perfect matchings.

Monomer projection

{vertex v | v 6∼ M}.

Positive correlations:

Long-range correlations:

. . .∞ ∞ ∞ ∞
Correlations are “limited” . . .

Monomer-Dimer System

P[matchingM] ∝
∏
e∈M

weight(e)·∏
v6∼M

weight(v)
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All examples have “spectrally limited” correlations.

Equivalent to “fractional log-concavity” of generating polynomial.

Efficient sampling/counting/inference:

spectrally limited correlations

⇓
fast mixing of simplicial

complex walks
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Simplicial complex walks

Canonical form

Distribution defined by

µ :

(
[n]

k

)
→ R>0

Matroids conveniently

already of this form.

Natural random walk

between
([n]

k

)
and

( [n]
k−1

)
.

size
k
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ts

. . .

size
k
−
1
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Random Walk

. . .

1 Drop an element uniformly at random.

2 Add an element with probability ∝ µ(resulting set).
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Canonical form

Hardcore model and monomers are not naturally in canonical form.

There is a canonical form with n = 2#vertices and k = #vertices.

size k

sets

size k− 1

sets

Random walk is Glauber dynamics:

1 Unmark vertex uniformly at random.
2 Make a choice for it with probability ∝ µ(resulting configuration).
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For monomers, random walk is useless.

Random walk between k-sets and (k− 2)-sets:

. . .

. . .
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Extreme random walks

Random walk between k-sets and 0-sets trivially mixes in 1 step.

Random walk between k-sets and 1-sets:

. . .

. . .

Transition probability

matrix from 1-sets to 1-sets:

1

k


... . . .

...
... PS∼µ[j ∈ S | i ∈ S]

...
... . . .

...
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Correlation matrix

How fast does the extreme random walk mix?

Look at the difference from walk that mixes in 1 step to the same

stationary distribution. Call k times this the correlation matrix:

1

k


... . . .

...
... P[j ∈ S | i ∈ S] − P[j ∈ S]

...
... . . .

...


Obtain the following for all of our examples:

λmax(correlation matrix) 6 O(1)

Show that this implies poly(k) relaxation time for the random walk between

k-sets and (k−O(1))-sets.
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Fractional log-concavity

To our distribution µ :
([n]

k

)
→ R>0 we can associate polynomial

g(z1, . . . , zn) =
∑

S∈([n]
k
)

µ(S)
∏
i∈S

zi.

Fractional Log-Concavity

We have λmax(correlation matrix) = O(1) if and only if

g(zα1 , . . . , z
α
n)

is log-concave around z1 = · · · = zn = 1 for some α = Ω(1).
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Why does fractional log-concavity imply rapid
mixing?

Local-to-global expansion phenomenon

[Kaufman-Oppenheim’17, Cryan-Guo-Mousa’19, Alev-Lau’19,

A-Liu-OveisGharan-Vinzant’19].
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Negative correlations

The `1-norm of rows of correlation

matrix:∑
f

|P[f ∈ T | e ∈ T ] − P[f ∈ T ]|.

The signs agree, except at e = f.

Without |·|, the sum is zero.

correlatione,e ∈ [0, 1].

The `1 norm of each row is O(1).

This implies λmax = O(1).

Negative Correlations

random spanning tree

P[tree T ] ∝ 1
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Matroids

Previous talk implies

λmax(correlation matrix) = O(1).

Log-Concave Polynomial

matroid

P[basis B] ∝ 1
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Hardcore Model

Given graph G = (V, E) and λ > 0,

sample a stable set S with

P[S] ∝ λ|S|.

When degrees are bounded by ∆, there is a computational threshold

λc(∆) := (∆− 1)∆−1/(∆− 2)∆ ' e/(∆− 2).

Unless NP=RP no efficient algorithm to sample when λ > λc [Sly’10].

When λ < (1− ε)λc, sampling is possible in time nO(f(ε) log∆) [Weitz’06].

Truly polynomial time algorithms when λ 6 2/(∆− 2) [Vigoda’01].

New Result [A-Liu-OveisGharan’19]

Normal Glauber dynamics mixes in time nf(ε).
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Correlation between u and v decays exponentially

|P[u | v] − P[u]| 6 e−Ω(dist(u,v)).

Use this to bound `1 norm of columns of correlation matrix∑
v

|P[u | v] − P[u]|

Unfortunately there are (∆− 1)d nodes at distance d, so not trivial to use

decay of correlation.

Nevertheless, Weitz’s self-avoiding walk tree recursion can still be used to

show the `1 norm is Oε(1).
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Monomers

The `1-norm of rows of correlation

matrix:∑
v

|P[v ∈ S | u ∈ S] − P[v ∈ S]|.

The signs no longer agree.

Nevertheless, we will show that `1 norm

of each row is O(1).

This implies efficient sampling for the

monomer-dimer systems on planar

graphs (hardness shown by [Jerrum’97]).

Monomer Distribution

monomer distribution

P[S] ∝
#perfect matchings in Sc
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Let T be the set of positive terms in the `1 norm:∑
v

|P[v ∈ S | u ∈ S] − P[v ∈ S]|.

Look at random variable X defined by sampling S from monomer

distribution:

X = |T ∩ S|− |Tc ∩ S|.

We will show that

|E[X] − E[X | u ∈ S]| 6 O(1).

We will show that X/2 is distributed as

constant+ Bernoulli(p1) + · · ·+ Bernoulli(pm).



20/26

Let T be the set of positive terms in the `1 norm:∑
v

|P[v ∈ S | u ∈ S] − P[v ∈ S]|.

Look at random variable X defined by sampling S from monomer

distribution:

X = |T ∩ S|− |Tc ∩ S|.

We will show that

|E[X] − E[X | u ∈ S]| 6 O(1).

We will show that X/2 is distributed as

constant+ Bernoulli(p1) + · · ·+ Bernoulli(pm).



20/26

Let T be the set of positive terms in the `1 norm:∑
v

|P[v ∈ S | u ∈ S] − P[v ∈ S]|.

Look at random variable X defined by sampling S from monomer

distribution:

X = |T ∩ S|− |Tc ∩ S|.

We will show that

|E[X] − E[X | u ∈ S]| 6 O(1).

We will show that X/2 is distributed as

constant+ Bernoulli(p1) + · · ·+ Bernoulli(pm).



20/26

Let T be the set of positive terms in the `1 norm:∑
v

|P[v ∈ S | u ∈ S] − P[v ∈ S]|.

Look at random variable X defined by sampling S from monomer

distribution:

X = |T ∩ S|− |Tc ∩ S|.

We will show that

|E[X] − E[X | u ∈ S]| 6 O(1).

We will show that X/2 is distributed as

constant+ Bernoulli(p1) + · · ·+ Bernoulli(pm).



21/26

Distributions↔ Polynomials

Generalized Binomials

Compute the roots of g(z) and verify that
all are real (none are complex).

g(z) := 0.10+ 0.35z+ 0.40z2 + 0.15z3

g(z) can be factorized:

g(z) = (0.5z+ 0.5)︸ ︷︷ ︸
coin flip

(0.5z+ 0.5)︸ ︷︷ ︸
coin flip

(0.6z+ 0.4)︸ ︷︷ ︸
coin flip

Roots correspond to biases:

coin bias p ↔ 1− 1/p root of g

0 1 2 3

10%

35%
40%

15%

Does this look like #heads dist. in

independent (biased) coin flips?
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[Heilmann-Lieb’72]

If µ is a monomer distribution, the polynomial∑
S

µ(S)
∏
u∈S

zu

has no roots with ∀u : Re(zu) > 0.

Massaging this, we get that X is distributed as

constant+ Bernoulli(p1) + · · ·+ Bernoulli(pm).
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Two Gaussians. Are mixtures unimodal? Log-concave?
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Mixtures of polynomials

[Folklore, used by e.g., MSS’13]

If αg1(z) + βg2(z) is real-rooted for all

α,β > 0, then roots of g1, g2 must have

common interlacing.

Corollary: If mixtures of µ, ν are always generalized binomials, then

µ = Bernoulli(p1) + · · ·+ Bernoulli(pn),

ν = Bernoulli(q1) + · · ·+ Bernoulli(qn),

with pi, qi 6 pi+1, qi+1.

Corollary: The means of µ and ν can be off by 6 1.

|(p1 + · · ·+ pn) − (q1 + · · ·+ qn)| 6 1
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Conclusion

Matroids: Spectral negative dependence =⇒ mixing (spectral bound).

Hardcore model: Decay of correlation =⇒ mixing (`1 norm of columns).

Monomers: Root-free region =⇒ mixing (`1 norm of rows).

Question: Are there matroids where the row sums grow unboundedly?∑
i

|P[i | j] − P[i]|.

Question: What are other fractionally log-concave

sets/distributions/polynomials? Conjecture: 0/1 polytopes with

O(1)-bounded edge length.

Thank you!
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