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CS 260: Geometry of Polynomials

in Algorithm Design

Instructor: Nima Anari
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Logistics

Classroom: Wallenberg (Building 160) Room 314

Time: Tuesdays and Thursdays, 1:30-2:50pm

Office hours: Tuesdays after class and by appointment

Website: https://nimaanari.com/cs260-winter2020

Website is currently empty because of technical difficulties.

If you have not officially signed up for the class, but would like to receive

announcements, email me at anari@cs.stanford.edu.

https://nimaanari.com/cs260-winter2020
anari@cs.stanford.edu
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Evaluation

1 Course project and presentation (teams of up to 2)

2 Brief survey of a paper/papers on a topic

3 Two sets of homework (light)

Letter Grade

One of these combinations:

1

2 + 3

CR

One of these combinations:

1

2

3

Topics for 1 or 2 : suggestions will go on the website; chat with me.
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Geometry of
Polynomials

Algorithms

+ +

CombinatoricsProbability

Polynomials

x3 + 2xy+ 1
Analysis Algebra
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Main Paradigm

Different ways of looking at a polynomial:

g(z) = a0 + a1z+ · · ·+ adz
d

g(z) = c(z− λ1)(z− λ2) · · · (z− λd)

g : C→ C or g : R→ R

Coefficients

Roots

Function



5/19

Main Paradigm

Different ways of looking at a polynomial:

g(z) = a0 + a1z+ · · ·+ adz
d

g(z) = c(z− λ1)(z− λ2) · · · (z− λd)

g : C→ C or g : R→ R

Coefficients

Roots

Function



6/19

Example: Coin Flips↔ Univariate Polynomials

Recipe to Verify Coin Flipness

Compute the roots of g(z) and verify that
all are real (none are complex).

g(z) := 0.10+ 0.35z+ 0.40z2 + 0.15z3

g(z) can be factorized:

g(z) = (0.5z+ 0.5)︸ ︷︷ ︸
coin flip

(0.5z+ 0.5)︸ ︷︷ ︸
coin flip

(0.6z+ 0.4)︸ ︷︷ ︸
coin flip

When this happens, log(g(z))
becomes concave over R>0.

0 1 2 3

10%

35%
40%

15%

Does this look like #heads dist. in

independent coin flips?
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Motivations

Study of polynomials, their root locations, and related properties:

Statistical Mechanics: roots of polynomials↔ phase transitions

[Lee-Yang’1952, . . . ].

Control Theory: root-free regions of polynomials↔ stability of LTI

systems and differential equations [Routh’1876, Hurwitz’1895, Gårding’1959].

Continuous Optimization: hyperbolic programming.

Combinatorial Optimization: produce good-in-expectation answers and

control deviation from the expectation (e.g., TSP).

Counting and Sampling: analysis of Markov chains, variational methods,

and deterministic expansions.

Main View in this Course

Properties of Polynomials↔ Efficiency of Algorithms
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Example: Continuous Optimization

Hyperbolic polynomial g: for

some v and all u,

g(u+ tv) ∈ R[t] is real-rooted.

Important example: det for
symmetric matrices.

Hyperbolicity =⇒ region

“above” roots convex.

Barrier: log(g) is a concave
function “above” the roots.

Basis for hyperbolic

programming.

g(u+ tv)
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Example: Random Walks

For weighted graph G = (V, E), consider the degree-2 polynomial

g(zv1
, . . . , zvn) =

∑
{u,v}∈E

w(u, v)zuzv

Log-Concavity↔ Mixing

Random walk on Gmixes if and only if log g(zαv1
, . . . , zαvn

) is concave in a neigh-
borhood of (1, . . . , 1) for some α > 1/2.

Generalizes to hypergraphs; high-dimensional expanders.

Efficient algorithms for sampling from combinatorial distributions.
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Spanning Trees

uniformly at random

Stable Sets

uniformly at random

Volume Based

Prob ∝ volume
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Example: Gross Substitutes [Kelsey-Crawford’82]

Suppose an agent wants to buy some

subset of t-shirts with prices p1, p2, p3:

Rational Agent: Buy subset with most

utility. Exponentially large table.

Locally Rational Agent: Add, remove,

or replace one t-shirt at a time to

improve utility, until no more

adjustment possible.

$0
$20−p1

$10−p2

$30−p1 − p2

$10−p3

$30−p1 − p3

$10−p2 − p3

$30−p1 − p2 − p3

Gross Substitutes

Locally rational agent finds

the globally optimal subset.
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Example: Gross Substitutes + Discrete Choice

Noisily Rational Agent [Nobel Prize:

McFadden’00]: Buy S with probability:

P[S] ∝ eutility(S).

Exponentially large lookup table.

Theorem

“Random” additions, removals, replace-

ments of one item at a time converge to

the true distribution in ∼ O(n logn) steps
for gross substitutes.

$0
$20−p1

$10−p2

$30−p1 − p2

$10−p3

$30−p1 − p3

$10−p2 − p3

$30−p1 − p2 − p3
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Connection to Polynomials

The following multivariate polynomial

captures the distribution

g(z1, z2, z3) = e0+e20z1+· · ·+e30z1z2z3.

This polynomial behaves like

real-rooted univariate polynomials. In

particular log g is concave over Rn
>0.

Note: For univariate real-rooted

polynomials

log((0.5z+ 0.5)(0.5z+ 0.5)(0.6z+ 0.4)) =

log(0.5z+0.5)+log(0.5z+0.5)+log(0.6z+0.4).

$0
$20−p1

$10−p2

$30−p1 − p2
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Example: Permanent

Main Problem

Given n× nmatrixM compute:

per(M) =
∑

permutation σ

M1,σ(1)M2,σ(2) · · ·Mn,σ(n).

1 1 1

0 1 1

1 0 1


Permanent of 0/1 matrix ≡ count of bipartite perfect matchings.

#P-hard even for 0/1 matrices [Valiant’79].

When all ofM is close to 1, Barvinok’s method [on board . . . ]
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Random Spanning Tree Degrees

Shape of the Distribution

Can the dist. of deg(v) look like this?

0 1 2 3 4 5

v

Uniformly Random Spanning Tree

deg(v) = #{edges adjacent to v}

No, it has to be unimodal.

It should actually look like #heads in some number of independent

(biased) coin flips. Has to be very concentrated around the mean value.
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No, it has to be unimodal.

It should actually look like #heads in some number of independent

(biased) coin flips. Has to be very concentrated around the mean value.
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Test Your Intuition

Two Gaussians. Are mixtures unimodal? Log-concave?
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Test Your Intuition

Two generalized binomials. Are mixtures unimodal? Log-concave?
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Test Your Intuition

Two generalized binomials. Are mixtures generalized binomials?
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Mixtures of Polynomials

[Folklore, used by e.g., MSS’13]

If αg1(z) + βg2(z) is real-rooted for all

α,β > 0, then roots of g1, g2 must have

common interlacing.

Corollary: If mixtures of µ, ν are always generalized binomials, then

µ = Bernoulli(p1) + · · ·+ Bernoulli(pn),

ν = Bernoulli(q1) + · · ·+ Bernoulli(qn),

with pi, qi 6 pi+1, qi+1.

Corollary: The means of µ and ν can be off by 6 1.

|(p1 + · · ·+ pn) − (q1 + · · ·+ qn)| 6 1
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