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Classroom: Wallenberg (Building 160) Room 314
Time: Tuesdays and Thursdays, 1:30-2:50pm
Office hours: Tuesdays after class and by appointment
Website: https://nimaanari.com/cs260-winter2020
Website is currently empty because of technical difficulties. @

If you have not officially signed up for the class, but would like to receive
announcements, email me at anari@cs.stanford.edu.
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\Evoluotion /

Course project and presentation (teams of up to 2)
Brief survey of a paper/papers on a topic
Two sets of homework (light)

e One of these combinations:
One of these combinations:

> @ E
> @+0) .-

Topics for (1) or (2): suggestions will go on the website; chat with me.
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\Moin Paradigm

Different ways of looking at a polynomial:

(D 9(2)=ao+a1z+...+adzd
> g(z) =clz—M)(z—A2) - (z— Aa)
G g:C—=Corg:R—R
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Different ways of looking at a polynomial:
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Roots
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Does this look like #heads dist. in
independent coin flips?
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Recipe to Verify Coin Flipness

Compute the roots of g(z) and verify that
all are real (none are complex).

g(z) := 0.10 + 0.35z 4 0.40z% + 0.1523

> g(z) can be factorized:

o T T T T T
g(z) = (0.5z+0.5) (0.5z + 0.5) (0.6z + 0.4) 0o 1 2 3

coin flip coin flip coin flip Does this look like #heads dist. in
> When this happens, log(g(z)) independent coin flips?

becomes concave over Rx,.
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Study of polynomials, their root locations, and related properties:
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Statistical Mechanics: roots of polynomials <» phase transitions
[Lee-Yang1952,...].

Control Theory: root-free regions of polynomials <« stability of LTI
systems and differential equations [Routh1876, Hurwitz1895, Garding1959].

Continuous Optimization: hyperbolic programming.

Combinatorial Optimization: produce good-in-expectation answers and
control deviation from the expectation (e.g., TSP).

Counting and Sampling: analysis of Markov chains, variational methods,
and deterministic expansions.

Main View in this Course

Properties of Polynomials < Efficiency of Algorithms
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> Hyperbolic polynomial g: for glu+tv)
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\Exomple: Continuous Optimization

> Hyperbolic polynomial g: for
some v and all u,
g(u+ tv) € RIt] is real-rooted.

& Important example: det for
symmetric matrices.

> Hyperbolicity = region
“above” roots convex.

> Barrier: log(g) is a concave
function “above” the roots.
Basis for hyperbolic
programming.

\
T~
§
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For weighted graph G = (V, E), consider the degree-2 polynomial

g(zf\n yoo -)z’vn) = Z w(u,v)zuz,\,
{u,v}€E
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\Exomple: Random Walks /

For weighted graph G = (V, E), consider the degree-2 polynomial

g(z\,] ye- -)Z’vn) = Z w(u,v)zuz\,
{u,v}€E

Log-Concavity < Mixing
Random walk on G mixes if and only if log g(zy, . .., 2y ) is concave in a neigh-
borhood of (1,...,1) for some o > 1/2.

> Generdlizes to hypergraphs; high-dimensional expanders.
O Efficient algorithms for sampling from combinatorial distributions.
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\EXOmple: Gross Substitutes [Kelsey-Crawford’82]

Suppose an agent wants to buy some
subset of t-shirts with prices p1,p2, ps:

{

e
STANFORD
S

|

T

1 4}
@

[
e
e@

$0

$20*p]

$10*p2

$30-p1 o
$10*p3

$30-p1 —ps
$10-p> —ps
$30-p1 P2 ps
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\EXOmple: Gross Substitutes [Kelsey-Crawford’82] /

Suppose an agent wants to buy some
subset of t-shirts with prices p1,p2, ps:

(=
STANFORD
S

{

> Rational Agent: Buy subset with most
utility. Exponentially large table. @

> Locally Rational Agent: Add, remove,
or replace one t-shirt at a time to
improve utility, until no more
adjustment possible.

$0
| $20*p1
‘n $10—p2
.ﬁ $30*p1 — P2
@ | s10
tﬂ $30*p] —P3
®@ | 510 . s
BE@ | 530 p—pops

Gross Substitutes

Locally rational agent finds
the globally optimal subset.
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\Exomple: Gross Substitutes + Discrete Choice /

> Noisily Rational Agent [Nobel Prize:

McFadden’00]: Buy S with probability:

]P)[S] o eUtilitg(S) .

Exponentially large lookup table. @

e

| ()
e
eEe

$0

$20*p]

$10*pz

$30-p1 — 2
$10*p\-’,

$30-p; —p3
$10-p> —ps
$30-p1 — 1213
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\Exomple: Gross Substitutes + Discrete Choice

> Noisily Rational Agent [Nobel Prize:
McFadden’00]: Buy S with probability:

]P)[S] o eUtilitg(S) .

Exponentially large lookup table. @

“Random” additions, removals, replace-
ments of one item at a time converge to
the true distribution in ~ O(nlogn) steps
for gross substitutes.

1 4}

| ()
e
eEe

$0

$20*p]

$10—p2

$30-p1 12
$10*p3

$30-p1 —ps
$10-p> —ps
$30-p1 P2 ps
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\Connection to Polynomials /

$0

' $20*p]

ﬂ $]0—p2

T® | 330 p 1>

n $]0*p3

@ | $30-p; p;
@ 5109, p;
@ | 830 ppps
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\Connection to Polynomials

> The following multivariate polynomial
captures the distribution

g(z1,22,23) = e®+e20z+ - +e302 z723.

e

| ()
&
L (]

$0

$20*p]

$]O*p2

$30-p1 2
$]0*p3

$30-p1 s
$10-p> — ps
$30-p1 — 123
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\Connection to Polynomials

> The following multivariate polynomial
captures the distribution

g(z1,22,23) = e®+e20z+ - +e302 z723.

|

> This polynomial behaves like T
real-rooted univariate polynomials. In e
particular log g is concave over Rgo. -

> Note: For univariate real-rooted 00
polynomials T80
log((0.52 4 0.5)(0.52 +0.5)(0.62+04)) =  WRE@

log(0.5z+0.5)+log(0.5240.5)+log(0.62+0.4).

$0

$20-p;

$10-p>

$30-p1 2
$10*p3

$30-p1 — s
$10-p> — ps
$30- 11 —po s
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\ Example: Permanent /

Main Problem

Given n x n matrix M compute:

per(M) = Z M1 o(1)M2.62) - Mn, o(n)-

permutation o
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\ Example: Permanent /

Main Problem

Given n x n matrix M compute:

per(M) = Z M1 o(1)M2.62) - Mn, o(n)-

permutation o

11
01
(D0 1

> Permanent of 0/1 matrix = count of bipartite perfect matchings.
> #P-hard even for 0/1 matrices [Valiant'79].

> When all of M is close to 1, Barvinok’s method [on board ... ]
15/19
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Uniformly Random Spanning Tree
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\Rondom Spanning Tree Degrees /

Can the dist. of deg(v) look like this? T\

—

Uniformly Random Spanning Tree

S —— deg(v) = #{edges adjacent to v}
012345
> No, it has to be unimodal.

> It should actually look like #heads in some number of independent

(biased) coin flips. Has to be very concentrated around the mean value.
16/19
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> Two Gaussians. Are mixtures unimodal? Log-concave?
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\Mixtures of Polynomials /

[Folklore, used by e.g., MSS*13]

If «gi(z) + Bg2(z) is real-rooted for all
«,p > 0, then roots of g7,g> must have
common interlacing.
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\Mixtures of Polynomials /

[Folklore, used by e.g., MSS*13]

If «g1(z) + Bgz2(z) is real-rooted for all
«,p > 0, then roots of g7,g> must have
common interlacing.

> Corollary: If mixtures of u,v are always generalized binomials, then

w = Bernoulli(py) + - - - 4+ Bernoulli(pn ),
v = Bernoulli(qq) + - - - + Bernoulli(qn ),

With pi, qi < Pit1,qit1.
> Corollary: The means of pand v can be off by < 1.

(p1 4+ +pn)— (g1 +--+qn)l <1

19/19
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