
1/19

CS 260: Geometry of Polynomials

in Algorithm Design

Instructor: Nima Anari

2/19

Logistics

Classroom: Wallenberg (Building 160) Room 314

Time: Tuesdays and Thursdays, 1:30-2:50pm

Office hours: Tuesdays after class and by appointment

Website: https://nimaanari.com/cs260-winter2020

Website is currently empty because of technical difficulties.

If you have not officially signed up for the class, but would like to receive

announcements, email me at anari@cs.stanford.edu.

https://nimaanari.com/cs260-winter2020
anari@cs.stanford.edu

2/19

Logistics

Classroom: Wallenberg (Building 160) Room 314

Time: Tuesdays and Thursdays, 1:30-2:50pm

Office hours: Tuesdays after class and by appointment

Website: https://nimaanari.com/cs260-winter2020
Website is currently empty because of technical difficulties.

If you have not officially signed up for the class, but would like to receive

announcements, email me at anari@cs.stanford.edu.

https://nimaanari.com/cs260-winter2020
anari@cs.stanford.edu

2/19

Logistics

Classroom: Wallenberg (Building 160) Room 314

Time: Tuesdays and Thursdays, 1:30-2:50pm

Office hours: Tuesdays after class and by appointment

Website: https://nimaanari.com/cs260-winter2020
Website is currently empty because of technical difficulties.

If you have not officially signed up for the class, but would like to receive

announcements, email me at anari@cs.stanford.edu.

https://nimaanari.com/cs260-winter2020
anari@cs.stanford.edu

3/19

Evaluation

1 Course project and presentation (teams of up to 2)

2 Brief survey of a paper/papers on a topic

3 Two sets of homework (light)

Letter Grade

One of these combinations:

1

2 + 3

CR

One of these combinations:

1

2

3

Topics for 1 or 2 : suggestions will go on the website; chat with me.

4/19

Geometry of
Polynomials

Algorithms

+ +

CombinatoricsProbability

Polynomials

x3 + 2xy+ 1
Analysis Algebra

4/19

Geometry of
Polynomials

Algorithms

+ +

CombinatoricsProbability

Polynomials

x3 + 2xy+ 1

Analysis Algebra

4/19

Geometry of
Polynomials

Algorithms

+ +

CombinatoricsProbability

Polynomials

x3 + 2xy+ 1
Analysis Algebra

4/19

Geometry of
Polynomials

Algorithms

+ +

CombinatoricsProbability

Polynomials

x3 + 2xy+ 1
Analysis Algebra

5/19

Main Paradigm

Different ways of looking at a polynomial:

g(z) = a0 + a1z+ · · ·+ adz
d

g(z) = c(z− λ1)(z− λ2) · · · (z− λd)

g : C→ C or g : R→ R

Coefficients

Roots

Function

5/19

Main Paradigm

Different ways of looking at a polynomial:

g(z) = a0 + a1z+ · · ·+ adz
d

g(z) = c(z− λ1)(z− λ2) · · · (z− λd)

g : C→ C or g : R→ R

Coefficients

Roots

Function

6/19

Example: Coin Flips↔ Univariate Polynomials

Recipe to Verify Coin Flipness

Compute the roots of g(z) and verify that
all are real (none are complex).

g(z) := 0.10+ 0.35z+ 0.40z2 + 0.15z3

g(z) can be factorized:

g(z) = (0.5z+ 0.5)︸ ︷︷ ︸
coin flip

(0.5z+ 0.5)︸ ︷︷ ︸
coin flip

(0.6z+ 0.4)︸ ︷︷ ︸
coin flip

When this happens, log(g(z))
becomes concave over R>0.

0 1 2 3

10%

35%
40%

15%

Does this look like #heads dist. in

independent coin flips?

6/19

Example: Coin Flips↔ Univariate Polynomials

Recipe to Verify Coin Flipness

Compute the roots of g(z) and verify that
all are real (none are complex).

g(z) := 0.10+ 0.35z+ 0.40z2 + 0.15z3

g(z) can be factorized:

g(z) = (0.5z+ 0.5)︸ ︷︷ ︸
coin flip

(0.5z+ 0.5)︸ ︷︷ ︸
coin flip

(0.6z+ 0.4)︸ ︷︷ ︸
coin flip

When this happens, log(g(z))
becomes concave over R>0.

0 1 2 3

10%

35%
40%

15%

Does this look like #heads dist. in

independent coin flips?

6/19

Example: Coin Flips↔ Univariate Polynomials

Recipe to Verify Coin Flipness

Compute the roots of g(z) and verify that
all are real (none are complex).

g(z) := 0.10+ 0.35z+ 0.40z2 + 0.15z3

g(z) can be factorized:

g(z) = (0.5z+ 0.5)︸ ︷︷ ︸
coin flip

(0.5z+ 0.5)︸ ︷︷ ︸
coin flip

(0.6z+ 0.4)︸ ︷︷ ︸
coin flip

When this happens, log(g(z))
becomes concave over R>0.

0 1 2 3

10%

35%
40%

15%

Does this look like #heads dist. in

independent coin flips?

6/19

Example: Coin Flips↔ Univariate Polynomials

Recipe to Verify Coin Flipness

Compute the roots of g(z) and verify that
all are real (none are complex).

g(z) := 0.10+ 0.35z+ 0.40z2 + 0.15z3

g(z) can be factorized:

g(z) = (0.5z+ 0.5)︸ ︷︷ ︸
coin flip

(0.5z+ 0.5)︸ ︷︷ ︸
coin flip

(0.6z+ 0.4)︸ ︷︷ ︸
coin flip

When this happens, log(g(z))
becomes concave over R>0.

0 1 2 3

10%

35%
40%

15%

Does this look like #heads dist. in

independent coin flips?

7/19

Motivations

Study of polynomials, their root locations, and related properties:

Statistical Mechanics: roots of polynomials↔ phase transitions

[Lee-Yang’1952, . . .].

Control Theory: root-free regions of polynomials↔ stability of LTI

systems and differential equations [Routh’1876, Hurwitz’1895, Gårding’1959].

Continuous Optimization: hyperbolic programming.

Combinatorial Optimization: produce good-in-expectation answers and

control deviation from the expectation (e.g., TSP).

Counting and Sampling: analysis of Markov chains, variational methods,

and deterministic expansions.

Main View in this Course

Properties of Polynomials↔ Efficiency of Algorithms

7/19

Motivations

Study of polynomials, their root locations, and related properties:

Statistical Mechanics: roots of polynomials↔ phase transitions

[Lee-Yang’1952, . . .].

Control Theory: root-free regions of polynomials↔ stability of LTI

systems and differential equations [Routh’1876, Hurwitz’1895, Gårding’1959].

Continuous Optimization: hyperbolic programming.

Combinatorial Optimization: produce good-in-expectation answers and

control deviation from the expectation (e.g., TSP).

Counting and Sampling: analysis of Markov chains, variational methods,

and deterministic expansions.

Main View in this Course

Properties of Polynomials↔ Efficiency of Algorithms

7/19

Motivations

Study of polynomials, their root locations, and related properties:

Statistical Mechanics: roots of polynomials↔ phase transitions

[Lee-Yang’1952, . . .].

Control Theory: root-free regions of polynomials↔ stability of LTI

systems and differential equations [Routh’1876, Hurwitz’1895, Gårding’1959].

Continuous Optimization: hyperbolic programming.

Combinatorial Optimization: produce good-in-expectation answers and

control deviation from the expectation (e.g., TSP).

Counting and Sampling: analysis of Markov chains, variational methods,

and deterministic expansions.

Main View in this Course

Properties of Polynomials↔ Efficiency of Algorithms

7/19

Motivations

Study of polynomials, their root locations, and related properties:

Statistical Mechanics: roots of polynomials↔ phase transitions

[Lee-Yang’1952, . . .].

Control Theory: root-free regions of polynomials↔ stability of LTI

systems and differential equations [Routh’1876, Hurwitz’1895, Gårding’1959].

Continuous Optimization: hyperbolic programming.

Combinatorial Optimization: produce good-in-expectation answers and

control deviation from the expectation (e.g., TSP).

Counting and Sampling: analysis of Markov chains, variational methods,

and deterministic expansions.

Main View in this Course

Properties of Polynomials↔ Efficiency of Algorithms

7/19

Motivations

Study of polynomials, their root locations, and related properties:

Statistical Mechanics: roots of polynomials↔ phase transitions

[Lee-Yang’1952, . . .].

Control Theory: root-free regions of polynomials↔ stability of LTI

systems and differential equations [Routh’1876, Hurwitz’1895, Gårding’1959].

Continuous Optimization: hyperbolic programming.

Combinatorial Optimization: produce good-in-expectation answers and

control deviation from the expectation (e.g., TSP).

Counting and Sampling: analysis of Markov chains, variational methods,

and deterministic expansions.

Main View in this Course

Properties of Polynomials↔ Efficiency of Algorithms

7/19

Motivations

Study of polynomials, their root locations, and related properties:

Statistical Mechanics: roots of polynomials↔ phase transitions

[Lee-Yang’1952, . . .].

Control Theory: root-free regions of polynomials↔ stability of LTI

systems and differential equations [Routh’1876, Hurwitz’1895, Gårding’1959].

Continuous Optimization: hyperbolic programming.

Combinatorial Optimization: produce good-in-expectation answers and

control deviation from the expectation (e.g., TSP).

Counting and Sampling: analysis of Markov chains, variational methods,

and deterministic expansions.

Main View in this Course

Properties of Polynomials↔ Efficiency of Algorithms

7/19

Motivations

Study of polynomials, their root locations, and related properties:

Statistical Mechanics: roots of polynomials↔ phase transitions

[Lee-Yang’1952, . . .].

Control Theory: root-free regions of polynomials↔ stability of LTI

systems and differential equations [Routh’1876, Hurwitz’1895, Gårding’1959].

Continuous Optimization: hyperbolic programming.

Combinatorial Optimization: produce good-in-expectation answers and

control deviation from the expectation (e.g., TSP).

Counting and Sampling: analysis of Markov chains, variational methods,

and deterministic expansions.

Main View in this Course

Properties of Polynomials↔ Efficiency of Algorithms

8/19

Example: Continuous Optimization

Hyperbolic polynomial g: for

some v and all u,

g(u+ tv) ∈ R[t] is real-rooted.

Important example: det for
symmetric matrices.

Hyperbolicity =⇒ region

“above” roots convex.

Barrier: log(g) is a concave
function “above” the roots.

Basis for hyperbolic

programming.

g(u+ tv)

8/19

Example: Continuous Optimization

Hyperbolic polynomial g: for

some v and all u,

g(u+ tv) ∈ R[t] is real-rooted.
Important example: det for
symmetric matrices.

Hyperbolicity =⇒ region

“above” roots convex.

Barrier: log(g) is a concave
function “above” the roots.

Basis for hyperbolic

programming.

g(u+ tv)

8/19

Example: Continuous Optimization

Hyperbolic polynomial g: for

some v and all u,

g(u+ tv) ∈ R[t] is real-rooted.
Important example: det for
symmetric matrices.

Hyperbolicity =⇒ region

“above” roots convex.

Barrier: log(g) is a concave
function “above” the roots.

Basis for hyperbolic

programming.

g(u+ tv)

8/19

Example: Continuous Optimization

Hyperbolic polynomial g: for

some v and all u,

g(u+ tv) ∈ R[t] is real-rooted.
Important example: det for
symmetric matrices.

Hyperbolicity =⇒ region

“above” roots convex.

Barrier: log(g) is a concave
function “above” the roots.

Basis for hyperbolic

programming.

g(u+ tv)

9/19

Example: Random Walks

For weighted graph G = (V, E), consider the degree-2 polynomial

g(zv1
, . . . , zvn) =

∑
{u,v}∈E

w(u, v)zuzv

Log-Concavity↔ Mixing

Random walk on Gmixes if and only if log g(zαv1
, . . . , zαvn

) is concave in a neigh-
borhood of (1, . . . , 1) for some α > 1/2.

Generalizes to hypergraphs; high-dimensional expanders.

Efficient algorithms for sampling from combinatorial distributions.

9/19

Example: Random Walks

For weighted graph G = (V, E), consider the degree-2 polynomial

g(zv1
, . . . , zvn) =

∑
{u,v}∈E

w(u, v)zuzv

Log-Concavity↔ Mixing

Random walk on Gmixes if and only if log g(zαv1
, . . . , zαvn

) is concave in a neigh-
borhood of (1, . . . , 1) for some α > 1/2.

Generalizes to hypergraphs; high-dimensional expanders.

Efficient algorithms for sampling from combinatorial distributions.

9/19

Example: Random Walks

For weighted graph G = (V, E), consider the degree-2 polynomial

g(zv1
, . . . , zvn) =

∑
{u,v}∈E

w(u, v)zuzv

Log-Concavity↔ Mixing

Random walk on Gmixes if and only if log g(zαv1
, . . . , zαvn

) is concave in a neigh-
borhood of (1, . . . , 1) for some α > 1/2.

Generalizes to hypergraphs; high-dimensional expanders.

Efficient algorithms for sampling from combinatorial distributions.

9/19

Example: Random Walks

For weighted graph G = (V, E), consider the degree-2 polynomial

g(zv1
, . . . , zvn) =

∑
{u,v}∈E

w(u, v)zuzv

Log-Concavity↔ Mixing

Random walk on Gmixes if and only if log g(zαv1
, . . . , zαvn

) is concave in a neigh-
borhood of (1, . . . , 1) for some α > 1/2.

Generalizes to hypergraphs; high-dimensional expanders.

Efficient algorithms for sampling from combinatorial distributions.

10/19

Spanning Trees

uniformly at random

Stable Sets

uniformly at random

Volume Based

Prob ∝ volume

10/19

Spanning Trees

uniformly at random

Stable Sets

uniformly at random

Volume Based

Prob ∝ volume

10/19

Spanning Trees

uniformly at random

Stable Sets

uniformly at random

Volume Based

Prob ∝ volume

10/19

Spanning Trees

uniformly at random

Stable Sets

uniformly at random

Volume Based

Prob ∝ volume

10/19

Spanning Trees

uniformly at random

Stable Sets

uniformly at random

Volume Based

Prob ∝ volume

10/19

Spanning Trees

uniformly at random

Stable Sets

uniformly at random

Volume Based

Prob ∝ volume

10/19

Spanning Trees

uniformly at random

Stable Sets

uniformly at random

Volume Based

Prob ∝ volume

10/19

Spanning Trees

uniformly at random

Stable Sets

uniformly at random

Volume Based

Prob ∝ volume2

10/19

Spanning Trees

uniformly at random

Stable Sets

uniformly at random

Volume Based

Prob ∝ volume10

11/19

Example: Gross Substitutes [Kelsey-Crawford’82]

Suppose an agent wants to buy some

subset of t-shirts with prices p1, p2, p3:

Rational Agent: Buy subset with most

utility. Exponentially large table.

Locally Rational Agent: Add, remove,

or replace one t-shirt at a time to

improve utility, until no more

adjustment possible.

$0
$20−p1

$10−p2

$30−p1 − p2

$10−p3

$30−p1 − p3

$10−p2 − p3

$30−p1 − p2 − p3

Gross Substitutes

Locally rational agent finds

the globally optimal subset.

11/19

Example: Gross Substitutes [Kelsey-Crawford’82]

Suppose an agent wants to buy some

subset of t-shirts with prices p1, p2, p3:

Rational Agent: Buy subset with most

utility. Exponentially large table.

Locally Rational Agent: Add, remove,

or replace one t-shirt at a time to

improve utility, until no more

adjustment possible.

$0
$20−p1

$10−p2

$30−p1 − p2

$10−p3

$30−p1 − p3

$10−p2 − p3

$30−p1 − p2 − p3

Gross Substitutes

Locally rational agent finds

the globally optimal subset.

11/19

Example: Gross Substitutes [Kelsey-Crawford’82]

Suppose an agent wants to buy some

subset of t-shirts with prices p1, p2, p3:

Rational Agent: Buy subset with most

utility. Exponentially large table.

Locally Rational Agent: Add, remove,

or replace one t-shirt at a time to

improve utility, until no more

adjustment possible.

$0
$20−p1

$10−p2

$30−p1 − p2

$10−p3

$30−p1 − p3

$10−p2 − p3

$30−p1 − p2 − p3

Gross Substitutes

Locally rational agent finds

the globally optimal subset.

11/19

Example: Gross Substitutes [Kelsey-Crawford’82]

Suppose an agent wants to buy some

subset of t-shirts with prices p1, p2, p3:

Rational Agent: Buy subset with most

utility. Exponentially large table.

Locally Rational Agent: Add, remove,

or replace one t-shirt at a time to

improve utility, until no more

adjustment possible.

$0
$20−p1

$10−p2

$30−p1 − p2

$10−p3

$30−p1 − p3

$10−p2 − p3

$30−p1 − p2 − p3

Gross Substitutes

Locally rational agent finds

the globally optimal subset.

12/19

13/19

Example: Gross Substitutes + Discrete Choice

Noisily Rational Agent [Nobel Prize:

McFadden’00]: Buy S with probability:

P[S] ∝ eutility(S).

Exponentially large lookup table.

Theorem

“Random” additions, removals, replace-

ments of one item at a time converge to

the true distribution in ∼ O(n logn) steps
for gross substitutes.

$0
$20−p1

$10−p2

$30−p1 − p2

$10−p3

$30−p1 − p3

$10−p2 − p3

$30−p1 − p2 − p3

13/19

Example: Gross Substitutes + Discrete Choice

Noisily Rational Agent [Nobel Prize:

McFadden’00]: Buy S with probability:

P[S] ∝ eutility(S).

Exponentially large lookup table.

Theorem

“Random” additions, removals, replace-

ments of one item at a time converge to

the true distribution in ∼ O(n logn) steps
for gross substitutes.

$0
$20−p1

$10−p2

$30−p1 − p2

$10−p3

$30−p1 − p3

$10−p2 − p3

$30−p1 − p2 − p3

14/19

Connection to Polynomials

The following multivariate polynomial

captures the distribution

g(z1, z2, z3) = e0+e20z1+· · ·+e30z1z2z3.

This polynomial behaves like

real-rooted univariate polynomials. In

particular log g is concave over Rn
>0.

Note: For univariate real-rooted

polynomials

log((0.5z+ 0.5)(0.5z+ 0.5)(0.6z+ 0.4)) =

log(0.5z+0.5)+log(0.5z+0.5)+log(0.6z+0.4).

$0
$20−p1

$10−p2

$30−p1 − p2

$10−p3

$30−p1 − p3

$10−p2 − p3

$30−p1 − p2 − p3

14/19

Connection to Polynomials

The following multivariate polynomial

captures the distribution

g(z1, z2, z3) = e0+e20z1+· · ·+e30z1z2z3.

This polynomial behaves like

real-rooted univariate polynomials. In

particular log g is concave over Rn
>0.

Note: For univariate real-rooted

polynomials

log((0.5z+ 0.5)(0.5z+ 0.5)(0.6z+ 0.4)) =

log(0.5z+0.5)+log(0.5z+0.5)+log(0.6z+0.4).

$0
$20−p1

$10−p2

$30−p1 − p2

$10−p3

$30−p1 − p3

$10−p2 − p3

$30−p1 − p2 − p3

14/19

Connection to Polynomials

The following multivariate polynomial

captures the distribution

g(z1, z2, z3) = e0+e20z1+· · ·+e30z1z2z3.

This polynomial behaves like

real-rooted univariate polynomials. In

particular log g is concave over Rn
>0.

Note: For univariate real-rooted

polynomials

log((0.5z+ 0.5)(0.5z+ 0.5)(0.6z+ 0.4)) =

log(0.5z+0.5)+log(0.5z+0.5)+log(0.6z+0.4).

$0
$20−p1

$10−p2

$30−p1 − p2

$10−p3

$30−p1 − p3

$10−p2 − p3

$30−p1 − p2 − p3

15/19

Example: Permanent

Main Problem

Given n× nmatrixM compute:

per(M) =
∑

permutation σ

M1,σ(1)M2,σ(2) · · ·Mn,σ(n).

1 1 1

0 1 1

1 0 1


Permanent of 0/1 matrix ≡ count of bipartite perfect matchings.

#P-hard even for 0/1 matrices [Valiant’79].

When all ofM is close to 1, Barvinok’s method [on board . . .]

15/19

Example: Permanent

Main Problem

Given n× nmatrixM compute:

per(M) =
∑

permutation σ

M1,σ(1)M2,σ(2) · · ·Mn,σ(n).

1 1 1

0 1 1

1 0 1


Permanent of 0/1 matrix ≡ count of bipartite perfect matchings.

#P-hard even for 0/1 matrices [Valiant’79].

When all ofM is close to 1, Barvinok’s method [on board . . .]

15/19

Example: Permanent

Main Problem

Given n× nmatrixM compute:

per(M) =
∑

permutation σ

M1,σ(1)M2,σ(2) · · ·Mn,σ(n).

1 1 1

0 1 1

1 0 1


Permanent of 0/1 matrix ≡ count of bipartite perfect matchings.

#P-hard even for 0/1 matrices [Valiant’79].

When all ofM is close to 1, Barvinok’s method [on board . . .]

15/19

Example: Permanent

Main Problem

Given n× nmatrixM compute:

per(M) =
∑

permutation σ

M1,σ(1)M2,σ(2) · · ·Mn,σ(n).

1 1 1

0 1 1

1 0 1


Permanent of 0/1 matrix ≡ count of bipartite perfect matchings.

#P-hard even for 0/1 matrices [Valiant’79].

When all ofM is close to 1, Barvinok’s method [on board . . .]

15/19

Example: Permanent

Main Problem

Given n× nmatrixM compute:

per(M) =
∑

permutation σ

M1,σ(1)M2,σ(2) · · ·Mn,σ(n).

1 1 1

0 1 1

1 0 1


Permanent of 0/1 matrix ≡ count of bipartite perfect matchings.

#P-hard even for 0/1 matrices [Valiant’79].

When all ofM is close to 1, Barvinok’s method [on board . . .]

15/19

Example: Permanent

Main Problem

Given n× nmatrixM compute:

per(M) =
∑

permutation σ

M1,σ(1)M2,σ(2) · · ·Mn,σ(n).

1 1 1

0 1 1

1 0 1


Permanent of 0/1 matrix ≡ count of bipartite perfect matchings.

#P-hard even for 0/1 matrices [Valiant’79].

When all ofM is close to 1, Barvinok’s method [on board . . .]

15/19

Example: Permanent

Main Problem

Given n× nmatrixM compute:

per(M) =
∑

permutation σ

M1,σ(1)M2,σ(2) · · ·Mn,σ(n).

1 1 1

0 1 1

1 0 1


Permanent of 0/1 matrix ≡ count of bipartite perfect matchings.

#P-hard even for 0/1 matrices [Valiant’79].

When all ofM is close to 1, Barvinok’s method [on board . . .]

16/19

Random Spanning Tree Degrees

Shape of the Distribution

Can the dist. of deg(v) look like this?

0 1 2 3 4 5

v

Uniformly Random Spanning Tree

deg(v) = #{edges adjacent to v}

No, it has to be unimodal.

It should actually look like #heads in some number of independent

(biased) coin flips. Has to be very concentrated around the mean value.

16/19

Random Spanning Tree Degrees

Shape of the Distribution

Can the dist. of deg(v) look like this?

0 1 2 3 4 5

v

Uniformly Random Spanning Tree

deg(v) = #{edges adjacent to v}

No, it has to be unimodal.

It should actually look like #heads in some number of independent

(biased) coin flips. Has to be very concentrated around the mean value.

16/19

Random Spanning Tree Degrees

Shape of the Distribution

Can the dist. of deg(v) look like this?

0 1 2 3 4 5

v

Uniformly Random Spanning Tree

deg(v) = #{edges adjacent to v}

No, it has to be unimodal.

It should actually look like #heads in some number of independent

(biased) coin flips. Has to be very concentrated around the mean value.

16/19

Random Spanning Tree Degrees

Shape of the Distribution

Can the dist. of deg(v) look like this?

0 1 2 3 4 5

v

Uniformly Random Spanning Tree

deg(v) = #{edges adjacent to v}

No, it has to be unimodal.

It should actually look like #heads in some number of independent

(biased) coin flips. Has to be very concentrated around the mean value.

16/19

Random Spanning Tree Degrees

Shape of the Distribution

Can the dist. of deg(v) look like this?

0 1 2 3 4 5

v

Uniformly Random Spanning Tree

deg(v) = #{edges adjacent to v}

No, it has to be unimodal.

It should actually look like #heads in some number of independent

(biased) coin flips. Has to be very concentrated around the mean value.

17/19

Test Your Intuition

Two Gaussians. Are mixtures unimodal? Log-concave?

17/19

Test Your Intuition

Two Gaussians. Are mixtures unimodal? Log-concave?

17/19

Test Your Intuition

Two Gaussians. Are mixtures unimodal? Log-concave?

17/19

Test Your Intuition

Two Gaussians. Are mixtures unimodal? Log-concave?

18/19

Test Your Intuition

Two generalized binomials. Are mixtures unimodal? Log-concave?

18/19

Test Your Intuition

Two generalized binomials. Are mixtures unimodal? Log-concave?

18/19

Test Your Intuition

Two generalized binomials. Are mixtures unimodal? Log-concave?

18/19

Test Your Intuition

Two generalized binomials. Are mixtures unimodal? Log-concave?

18/19

Test Your Intuition

Two generalized binomials. Are mixtures generalized binomials?

19/19

Mixtures of Polynomials

[Folklore, used by e.g., MSS’13]

If αg1(z) + βg2(z) is real-rooted for all

α,β > 0, then roots of g1, g2 must have

common interlacing.

Corollary: If mixtures of µ, ν are always generalized binomials, then

µ = Bernoulli(p1) + · · ·+ Bernoulli(pn),

ν = Bernoulli(q1) + · · ·+ Bernoulli(qn),

with pi, qi 6 pi+1, qi+1.

Corollary: The means of µ and ν can be off by 6 1.

|(p1 + · · ·+ pn) − (q1 + · · ·+ qn)| 6 1

19/19

Mixtures of Polynomials

[Folklore, used by e.g., MSS’13]

If αg1(z) + βg2(z) is real-rooted for all

α,β > 0, then roots of g1, g2 must have

common interlacing.

Corollary: If mixtures of µ, ν are always generalized binomials, then

µ = Bernoulli(p1) + · · ·+ Bernoulli(pn),

ν = Bernoulli(q1) + · · ·+ Bernoulli(qn),

with pi, qi 6 pi+1, qi+1.

Corollary: The means of µ and ν can be off by 6 1.

|(p1 + · · ·+ pn) − (q1 + · · ·+ qn)| 6 1

19/19

Mixtures of Polynomials

[Folklore, used by e.g., MSS’13]

If αg1(z) + βg2(z) is real-rooted for all

α,β > 0, then roots of g1, g2 must have

common interlacing.

Corollary: If mixtures of µ, ν are always generalized binomials, then

µ = Bernoulli(p1) + · · ·+ Bernoulli(pn),

ν = Bernoulli(q1) + · · ·+ Bernoulli(qn),

with pi, qi 6 pi+1, qi+1.

Corollary: The means of µ and ν can be off by 6 1.

|(p1 + · · ·+ pn) − (q1 + · · ·+ qn)| 6 1

	anm3:
	3.49:
	3.48:
	3.47:
	3.46:
	3.45:
	3.44:
	3.43:
	3.42:
	3.41:
	3.40:
	3.39:
	3.38:
	3.37:
	3.36:
	3.35:
	3.34:
	3.33:
	3.32:
	3.31:
	3.30:
	3.29:
	3.28:
	3.27:
	3.26:
	3.25:
	3.24:
	3.23:
	3.22:
	3.21:
	3.20:
	3.19:
	3.18:
	3.17:
	3.16:
	3.15:
	3.14:
	3.13:
	3.12:
	3.11:
	3.10:
	3.9:
	3.8:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	anm2:
	2.49:
	2.48:
	2.47:
	2.46:
	2.45:
	2.44:
	2.43:
	2.42:
	2.41:
	2.40:
	2.39:
	2.38:
	2.37:
	2.36:
	2.35:
	2.34:
	2.33:
	2.32:
	2.31:
	2.30:
	2.29:
	2.28:
	2.27:
	2.26:
	2.25:
	2.24:
	2.23:
	2.22:
	2.21:
	2.20:
	2.19:
	2.18:
	2.17:
	2.16:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	anm1:
	1.49:
	1.48:
	1.47:
	1.46:
	1.45:
	1.44:
	1.43:
	1.42:
	1.41:
	1.40:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

