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Recap

We studied roots of the matching polynomial for a graph G = (V, E), which is defined by

mG(z) = ∑
M matching

(−1)|M|z|V|−2|M|.

Our goal was to evaluate a similar polynomial that counts matchings

h(z) = ∑
M matching

z|M| ∝
√

z|V|mG(i/
√

z)

Because of this relation, for any root λ of mG we have a root −1/λ2 for h. We showed that h has only
nonpositive real roots, so to apply Barvinok’s method and to approximately evaluate h at z = 1 using
derivatives of h at z = 0, we simply needed to lower bound the distance of the closest root to zero.

C

roots of h

root-free region

We complemented this with an algorithm due to Patel and Regts [PR17] that can compute the coefficients
of z0, z1, . . . , zk in h in time poly(n)∆k, where ∆ is the maximum degree in G. When ∆ = O(1) and
k = O(log n), this algorithm runs in polynomial time.

To show that h has no roots close to 0, we switched to mG and showed that the maximum root of mG is
bounded by 2

√
∆− 1 [HL72]. We used the recursive definition of mG which for a vertex v gives

mG(z) = z ·mG−v(z)− ∑
u∼v

mG−u−v(z).

Our strategy was to fix a large enough value of z, and show that mG(z) > 0; to show this we inductively
showed the stronger statement: that for this fixed z, the ratio mG(z)/mG−v(z) ≥ α for some α to be fixed
later. For the induction to work, we needed

mG(z)
mG−v(z)

= z− ∑
u∼v

mG−u−v(z)
mG−v(z)

≥ z− ∆
α
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to be at least α. This was easy to satisfy when z ≥ 2
√

∆, by letting α =
√

∆. This proves that there are no
roots larger than 2

√
∆. To get the better bound of 2

√
∆− 1, we noticed that except for the first step of the

induction, we can always choose a vertex v of degree ≤ ∆− 1. In the first step though, we don’t need to
prove the ratio mG(z)/mG−v(z) is large, but rather that it is positive. Combining everything, we got

Theorem 1 ([HL72]). The matching polynomial mG(z) has no roots z > 2
√

∆− 1.

Interlacing Families

Our goal now is to use the derived bound on roots of mG to prove a result of Marcus, Spielman, and
Srivastava [MSS13] on the existence of Ramanujan graphs. These are, roughly speaking, ∆-regular graphs
that are as good of an expander as they possibly can be. If AG denotes the adjacency matrix of a graph G,
then the maximum eigenvalue of AG is

λ1(AG) = ∆.

The best expanders have the second-largest eigenvalue, λ2, bounded as far away as possible from λ1. But
there is a limit to this, known as the Alon-Bopanna bound

Theorem 2 (Alon-Bopanna Bound). In any ∆-regular graph G with n vertices

λ2(AG) ≥ 2
√

∆− 1− on(1).

For large enough n, we can only hope for λ2 to be bounded by 2
√

∆− 1. Roughly speaking, Ramanujan
graphs are the ones that achieve this.

Remark 3. To be precise, in expander graphs we sometimes also care about the magnitude of negative
eigenvalues, and so we might care that both λ2(AG) and |λn(AG)| are bounded by 2

√
∆− 1; this is the

most prevalent definition of a Ramanujan graph. Here in this note, we ignore λn, and try to only bound λ2.
In particular for just this note, Ramanujan means λ2 ≤ 2

√
∆− 1. In the end, the construction will yield

bipartite graphs, and these graphs have eigenvalues symmetric about zero. So this puts the same bound of
2
√

∆− 1 on all of |λ2|, |λ3|, . . . , |λn−1|. Note that in bipartite ∆-regular graphs, necessarily |λ1| = |λn| = ∆,
so in some sense these bipartite graphs are the best possible bipartite expanders.

We will prove the following.

Theorem 4 (Marcus, Spielman, and Srivastava [MSS13]). For any ∆, there are an infinite number of ∆-regular
bipartite graphs that satisfy the Ramanujan bound of λ2(AG) ≤ 2

√
∆− 1.

The proof uses the concept of a 2-lift, an operation with roots in algebraic topology. For a graph G = (V, E),
a 2-lift is another graph H on twice as many vertices. For each vertex v of G we make two copies v1, v2 in
H. For each edge (u, v), we introduce two edges in H:

• either (u1, v1) and (u2, v2), or

• (u1, v2) and (u2, v1).

u v

u1

u2

v1

v2

u1

u2

v1

v2or⇒

Note that a separate choice is to be made for each edge of G, and any collection of these choices results in
one 2-lift H. The adjacency matrix of H has a block form

AH =

[
B C
C B

]
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where B indicates the edges for which we made a choice of (u1, v1), (u2, v2), and C indicates the other edges.
In particular, B + C = AG. To analyze the eigenvalues of this matrix, it is more convenient to transform it
first:

1
2

[
I I
−I I

]
·
[

B C
C B

]
·
[

I −I
I I

]
=

[
B + C 0

0 B− C

]
=

[
AG 0
0 B− C

]
The above shows that the matrix AH is similar to the matrix on the r.h.s. This means that their eigenvalues
are the same, and conveniently the r.h.s. has a block form. So the eigenvalues of AH are the union of
eigenvalues of AG and the matrix B− C. The matrix B− C is a signed version of AG, where we replace
some of the 1s by −1.

Definition 5. D is a signing of the adjacency matrix AG, if it is a symmetric matrix that can be obtained by
replacing some of the 1s with −1 in AG.

Signings of the adjacency matrix are exactly the set of matrices we can get as B− C in the 2-lift. So, we
obtain the following convenient statement:

Proposition 6. If G is a ∆-regular Ramanujan graph, i.e., λ2(AG) ≤ 2
√

∆− 1, and D is a signing of its adjacency
matrix with λ1(D) ≤ 2

√
∆− 1, then the 2-lift corresponding to D is still a ∆-regular Ramanujan graph.

So in order to grow an infinite family of ∆-regular Ramanujan graphs, it is enough to start with one, and
each time find a “good” signing of its adjacency matrix. This is what we will prove next

Theorem 7 (Marcus, Spielman, and Srivastava [MSS13]). For every ∆-regular graph G, there is a signing D of
the adjacency matrix such that λ1(D) ≤ 2

√
∆− 1.

Over the years there have been many proposals on how to construct these signings. Signing each edge
uniformly and independently at random is a pretty good choice, and one might be tempted to analyze
E[λ1(D)] over these random signings D. This quantity however can become close to ∆ � 2

√
∆− 1 as n

grows. Think of a graph that is a disjoint union of many constant-sized ∆-regular graphs. In a random
signing, at least one component will be signed positive with high probability, and this will produce an
eigenvalue of λ1(D) = ∆. So with very high probability we will have λ1(D) = ∆.

Even though on average the maximum root does not follow the right bound, Marcus, Spielman, and
Srivastava [MSS13] showed that the average polynomial does! For each signing, we can look at the
characteristic polynomial χD(z) = det(zI − D), whose maximum root is λ1(D). The unexpected revelation
is that ED[χD(z)] ends up being a polynomial with real roots whose maximum root is ≤ 2

√
∆− 1. Moreover,

this average polynomial’s roots end up really being in the middle of the roots of χDs, that is

∃ signing D : max-root(χD) ≤ max-root(ED[χD])

We will prove these in Lemmas 8 and 9. Together these lemmas imply that if we start with any regular
Ramanujan graph, we can grow an infinite family of them. It is an easy exercise to check that the complete
bipartite graph K∆,∆ is a Ramanujan graph (its second eigenvalue is 0); so we can always start growing the
Ramanujan family from it.

We will first prove the bound on the maximum root of the average polynomial, by showing that the average
polynomial is actually the matching polynomial of the graph.

Lemma 8. For every graph G = (V, E), the average characteristic polynomial over signings is the matching
polynomial:

ED[det(zI − D)] = mG(z).

Proof. We can write the determinant using a signed sum of permuted diagonals:

ED[det(zI − D)] = ED

[
∑

permutation π

(−1)sign(π)
n

∏
i=1

(zI − D)i,π(i)

]
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Note that for each π, if π(π(i)) 6= i for any i ∈ [n], then the expected value of the term corresponding to π
is 0. This is because when averaged over random signings, the entry at (i, π(i)) is either identically 0 or
takes ±1 values uniformly at random. This entry is independent of every other entry, except for the one at
(π(i), i). So, as long as (π(i), i) does not appear in the product, the average cancels out.

So we just have to keep the terms corresponding to permutations π where π ◦ π = id. Each such
permutation corresponds to a matching M; the indices i where π(i) = i are the monomers or unmatched
vertices, and all other indices get paired up. If any of the edges in M are not part of the graph G = (V, E), the
corresponding entry in zI − D is zero, and the term cancels out. So we only need to consider permutations
corresponding to matchings M of the graph G. It is an easy exercise to see that sign(π) = |M|. Also note
that regardless of the signing D, for every such π we have

n

∏
i=1

(zI − D)i,π(i) = z|V|−2|M|.

We get one factor of z for every index i where π(i) = i, and for all other indices the signs cancel each other.
Putting everything together, we get that

ED[det(zI − D)] = ∑
matching M

(−1)|M|z|V|−2|M| = mG(z).

Lemma 9. There exists a signing D with

max-root(χD) ≤ max-root(ED[χD])

Proof. A priori, an average of a number of polynomials does not even need to have real roots, let alone
roots that are sandwiched by the original polynomials. Consider the example of (z− 1)2 = z2 − 2z + 1 and
(z + 1)2 = z2 + 2z + 1 whose average is z2 + 1, a polynomial with imaginary roots.

However, we saw in the beginning of the course, that if the roots of two univariate polynomials interlace,
then any positive combination of them, i.e., any weighted average of them, becomes real-rooted and vice
versa; moreover the roots of the average will be sandwiched between the roots of the two polynomials.

Our strategy here is to prove that for biased signings D, the average characteristic polynomial χD is
real-rooted, no matter the bias. We will then show how this implies sandwiching of the roots.

If m is the number of edges, we define for a vector p = (p1, . . . , pm) ∈ [0, 1]m, a p-biased signing D, obtained
by signing each edge e, +1 with probability pe and −1 with probability 1− pe, independently of all other
edges. Let µp denote the distribution of p-biased signings. We will prove that

gp(z) := ED∼µp [χD] = ED∼µp [det(zI − D)]

is a real-rooted polynomial. We defer the proof to Lemma 10. Let us see how the real-rootedness of gp
implies sandwiching of the roots.
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We can expand gp in terms of its first variable:

gp(z) = p1 · g(0,p2,...,pm)(z) + (1− p1) · g(1,p2,...,pm).

Note that for any choice of p1 the above is a real-rooted polynomial by Lemma 10. So we have two
polynomials, all of whose convex combinations are real-rooted. Therefore, their roots must interlace and
the roots of their average must be sandwiched between the roots of the two polynomials. This means that
either

max-root(g(0,p2,...,pm)) ≤ max-root(gp) ≤ max-root(g(1,p2,...,pm))

or
max-root(g(1,p2,...,pm)) ≤ max-root(gp) ≤ max-root(g(0,p2,...,pm)).

In either case, we find a polynomial with a not-larger max-root. Now we can apply the same trick to the
second coordinate, and so on. In the end we find some choice (q1, . . . , qm) ∈ {0, 1}m such that

max-root(g(q1,...,qm)) ≤ max-root(gp).

But µq is a deterministic distribution on a single signing. So we have found a signing whose max-root is at
most the initial max-root.

Lemma 10. For any choice (p1, . . . , pm) ∈ [0, 1]m, the biased average polynomial

ED∼µp [det(zI − D)]

is real-rooted.

Proof. For every edge e, let us define two vectors ue, ve ∈ Rn. Both vectors have 0 as their every entry,
except for the endpoints of the edge e; for the endpoints, ve has +1 at both places, and ue has one +1 and
one −1 (arbitrarily assigned). With these choices, it is easy to express any signing D:

D = ∑
e signed +1

ueuᵀ
e + ∑

e signed −1
vevᵀe − ∆ · I

Note that ∆ · I is subtracted to cancel the diagonals contributed by ueuᵀ
e and vevᵀe (both contributed +1

to the diagonal entries of the endpoints of e). This representation allows us to start with a real-stable
polynomial and obtain ED∼µp [χD] by a sequence of operations that preserve real-stability.

First, note that the polynomial

det(zI + x1u1uᵀ
1 + y1v1vᵀ1 + · · ·+ xmumuᵀ

m + ymvmvᵀm)

is real-stable in z, x1, . . . , xm, y1, . . . , ym. This is because the matrix in front of each variable is positive
semidefinite. By performing a shift operation z 7→ z + ∆, we preserve real-stability and get

h := det((z + ∆)I + x1u1uᵀ
1 + y1v1vᵀ1 + · · ·+ xmumuᵀ

m + ymvmvᵀm).

We will prove that

ED∼µp [χD] =

(
∏

e
(1− pe∂xe − (1− pe)∂ye)

)
h

∣∣∣∣∣
x=y=0

.

Each of the operations 1− pe∂xe − (1− pe)∂ye preserves real-stability, as does setting the variables in the
end to 0. So by proving this identity, we will finish the proof of real-rootedness.
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Let us simplify a bit, and consider what these operations do, bivariate polynomials. Our polynomial is
multiaffine in the x and y variables, because the matrices in front of these variables are rank 1. So, consider
a multiaffine bivariate polynomial g(x, y) = a + bx + cy + dxy. Then

(1− p∂x − (1− p)∂y)g
∣∣
x=y=0 = a− pb− (1− p)c

But this quantity is the same as

p(a− b) + (1− p)(a− c) = p · g(−1, 0) + (1− p) · g(0,−1).

So we can interpret this operation on g, as plugging in (−1, 0) with probability p and (0,−1) with
probability 1− p for the variables x, y, and then taking the average.

This probabilistic interpretation carries out to the multivariate setting as well. Because h is multiaffine in
the xe and ye variables, we get that(

∏
e
(1− pe∂xe − (1− pe)∂ye)

)
h

∣∣∣∣∣
x=y=0

= Ex,y[h(z, x1, y1, . . . , xm, ym)],

where in the expectation, each (xe, ye), independently of others, takes the value (−1, 0) and (0,−1) with
probabilities pe and 1 − pe. But note that for any of these choices we have h(z, x1, y1, . . . , xm, ym) =
det(zI − (∑e:xe=−1 ueuᵀ

e + ∑e:ye=−1 vevᵀe − ∆ · I)) = χD where D is the appropriate signing encoding the
(−1, 0)/(0,−1) choices.
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