1 Approximate Negative Correlation

Let \(D_{k \rightarrow l} \in \mathbb{R}^{\binom{n}{k} \times \binom{n}{l}} \) be the first half (down part) of the random walk between sets of size \(k \) and sets of size \(l \), defined by

\[
D_{k \rightarrow l}(S, T) = \begin{cases}
\frac{1}{\binom{l}{i}} & \text{if } T \subseteq S, \\
0 & \text{otherwise}.
\end{cases}
\]

For any distribution \(v : \binom{n}{l} \rightarrow \mathbb{R}_{\geq 0} \), applying \(D_{k \rightarrow l} \) gives us a distribution \(v D_{k \rightarrow l} : \binom{n}{l} \rightarrow \mathbb{R}_{\geq 0} \) defined by the vector-matrix product

\[
v D_{k \rightarrow l}(T) = \sum_{S \in \binom{n}{l}} v(S) D_{k \rightarrow l}(S, T) = \frac{\sum_{S \supseteq T} v(S)}{\binom{k}{l}}.
\]

In class we showed that if \(v, \mu : \binom{n}{l} \rightarrow \mathbb{R}_{\geq 0} \) are distributions where \(v \) is arbitrary and \(\mu \) has a log-concave polynomial \(g_{\mu}(z_1, \ldots, z_n) = \sum_{S} \mu(S) \prod_{i \in S} z_i \), then \(D_{k \rightarrow l} \) shrinks their KL-divergence by a factor of \(l/k \). In other words

\[
D_{KL}(v D_{k \rightarrow l} \| \mu D_{k \rightarrow l}) \leq \frac{l}{k} D_{KL}(v \| \mu).
\]

As a reminder, the KL-divergence is defined as the \(f \)-divergence with \(f(x) = x \log x \):

\[
D_f(v \| \mu) := \mathbb{E}_{S \sim \mu} [f(v(S)/\mu(S))] - f(\mathbb{E}_{S \sim v} [v(S)/\mu(S)]).
\]

In the following, let \(\mu : \binom{n}{k} \rightarrow \mathbb{R}_{\geq 0} \) be a distribution with a log-concave polynomial.

1. Let \(T \in \binom{n}{l} \) be a fixed set and let \(v = \mathbb{I}_T \) be the distribution whose entire probability mass is on \(T \). Use the shrinkage of the KL-divergence for the operator \(D_{k \rightarrow l} \) to prove the following inequality relating \(\mu(T) \) and marginals of \(\mu \):

\[
\mathbb{P}_{S \sim \mu}[S = T] \leq \prod_{i \in T} \mathbb{P}_{S \sim \mu}[i \in S].
\]

2. Now let \(l \in \{0, 1, \ldots, k\} \) be some integer and let \(T \in \binom{n}{l} \) be a fixed set. Define \(v = \mathbb{I}_T \) to be the distribution whose entire probability mass is on the set \(T \). Let \(\mu' = \mu D_{k \rightarrow l} \). Note that \(v \) and \(\mu' \) are defined on the same ground set, and that \(\mu' \) has a log-concave polynomial. What is the value of \(\mu'(T) \)? How about the marginals of \(\mu' \)? Use the results of the previous part to obtain

\[
\mathbb{P}_{S \sim \mu}[T \subseteq S] \leq c(k, l) \prod_{i \in T} \mathbb{P}_{S \sim \mu}[i \in S],
\]

for some function \(c(k, l) \).

3. Show that we can take \(c(k, l) \leq l^n/l! \). Conclude that \(c(k, 2) \leq 2 \) and \(c(k, l) \leq e^l \).