Matching is as Easy as the Decision Problem, in the NC Model

Nima Anari\(^1\) and Vijay V. Vazirani\(^2\)

\(^1\)Computer Science Department, Stanford University, anari@cs.stanford.edu
\(^2\)Computer Science Department, University of California, Irvine, vazirani@ics.uci.edu

March 5, 2019

Abstract

We give an NC reduction from search to decision for the problem of finding a minimum weight perfect matching, provided edge weights are polynomially bounded. As a consequence, for settling the long-standing open problem of obtaining an NC perfect matching algorithm, it suffices to obtain an NC algorithm for the decision problem. We believe this new fact has qualitatively changed the nature of this open problem.

The difficulty of obtaining an NC perfect matching algorithm led researchers to study matching vis-a-vis clever relaxations of the class NC. In this vein, recently Goldwasser and Grossman [GG15] gave a pseudo-deterministic RNC algorithm for finding a perfect matching in a bipartite graph, i.e., an RNC algorithm with the additional requirement that on the same graph, it should return the same (i.e., unique) perfect matching for almost all choices of random bits. A corollary of our reduction is an analogous algorithm for general graphs.

An equivalent way of stating our main result is: We give an NC algorithm for finding a minimum weight perfect matching in a general graph with polynomially bounded edge weights, provided our algorithm is given access to an oracle for the decision problem. Our result is built on the work of Anari and Vazirani [AV18], which used planarity of the input graph critically; in fact, in three different ways. The main challenge was to adapt these steps to general graphs by appropriately trading planarity with the use of the decision oracle.

1 Introduction

Finding an NC algorithm\(^1\) for perfect matching is currently among the outstanding open problems of theoretical computer science; it has been open for over three decades, ever since the discovery of RNC matching algorithms [KUW86; MVV87]. In this paper, we give an NC reduction from search to decision for the minimum weight perfect matching problem, provided edge weights are polynomially bounded. Equivalently, we give an oracle-based NC algorithm for finding a minimum weight perfect matching in a general graph with polynomially bounded edge weights, where the oracle solves the decision problem. The latter is: Given such a graph \(G\) and weight \(W\), is there a perfect matching of weight at most \(W\) in \(G\)? As a consequence, for settling the open

\(^1\)That is, a deterministic parallel algorithm that runs in polylogarithmic time using polynomially many processors.
problem stated above, it suffices to obtain an NC algorithm for this decision problem. We believe this new fact has qualitatively changed the nature of the open problem.

The difficulty of obtaining an NC matching algorithm led researchers to study matching vis-a-vis certain clever relaxations of the class NC. One such relaxation is pseudo-deterministic RNC. This is an RNC algorithm with the additional property that on the same graph, it must return the same (i.e., unique) solution for almost all choices of random bits [GG11; GG15]. Recently, Goldwasser and Grossman [GG15] gave such an algorithm for perfect matching in bipartite graphs. Since the decision problem stated above has polynomially bounded edge weights, it is NC equivalent to: Find the weight of a minimum weight perfect matching in G. This question is easy to answer in RNC with inverse-polynomial probability of error using the algorithm of [MVV87]. Therefore, using this RNC algorithm in place of the oracle we get an RNC matching algorithm with the property that in a run, all queries to the decision problem will be answered correctly with overwhelming probability, i.e., this is a pseudo-deterministic RNC matching algorithm. Hence we obtain an extension of [GG15] to general graphs.

A second relaxation of NC is quasi-NC, under which the algorithm must run in polylogarithmic time, though it can use \(O(n^{\log^{O(1)} n}) \) processors; see section 1.1 for results obtained for this model. Several nice algorithmic ideas were discovered in these works which eventually led to the solution of the long-standing open problem of obtaining an NC algorithm for finding a perfect matching in planar graphs [AV18] and restoring order on the following issue: On the one hand, counting the number of perfect matchings is far harder than finding one (the former is \#P-complete and the latter is in P), and on the other, for planar graphs, counting has long been known to be in NC whereas finding one had resisted a solution! We note that subsequent to [AV18], Sankowski [San18] obtained the same result via different techniques.

As described in Section 2, our oracle-based NC matching algorithm is built on the work of Anari and Vazirani [AV18], which used planarity of the input graph critically; in fact, in three different ways. The main challenge was to adapt these steps to general graphs by appropriately trading planarity with the use of a decision oracle. The NC algorithm of Cygan, Gabow, and Sankowski [CGS12] and Sankowski [San18] for finding a maximal laminar family of tight odd sets in a given face of the perfect matching polytope turned out to be useful for this purpose.

Our main result is:

Theorem 1.1. There is an NC algorithm for finding a minimum weight perfect matching in a general graph with polynomially bounded edge weights, provided the algorithm is given access to an oracle for the decision problem. The latter is: Given an edge-weighted graph G and an integral weight W, is there a perfect matching of weight at most W in G?

Corollary 1.2. There is a pseudo-deterministic RNC algorithm for finding a minimum weight perfect matching in a general graph with polynomially bounded edge weights.

We further show that our algorithms only need to call the decision oracle for minors of the input graph.

Theorem 1.3. Let \(F \) be a minor-closed family of graphs. If there is an NC algorithm for deciding whether a perfect matching of weight at most W exist in a graph in \(F \), weighted by polynomially bounded weights, then there is also an NC algorithm for finding a minimum weight perfect matching in a graph in \(F \).
1.1 Related work and a brief history of parallel matching algorithms

The notion of a pseudo-deterministic algorithm with polynomial expected running time was given by Gat and Goldwasser [GG11]. Such an algorithm runs in expected polynomial time and is required to output the same (i.e., unique) solution on a given instance on each run with high probability. Hence, in this sense, it resembles a deterministic algorithm. One motivation given for this notion was its use in a distributed setting for verifying delegated computation and for generating cryptographic keys. Gat and Goldwasser [GG11] gave pseudo-deterministic polynomial expected running time algorithms for several number theoretic and cryptographic problems. The extension to pseudo-deterministic RNC algorithms was defined by Goldwasser and Grossman [GG15].

An RNC algorithm for the decision problem, of determining if a graph has a perfect matching, was obtained by Lovász [Lov79], using the Tutte matrix of the graph. The first RNC algorithm for the search problem, of actually finding a perfect matching, was obtained by Karp, Upfal, and Wigderson [KUW86]. This was followed by a somewhat simpler algorithm due to Mulmuley, Vazirani, and Vazirani [MVV87].

The matching problem occupies an especially distinguished position in the theory of algorithms: Some of the most central notions and powerful tools within this theory were discovered in the context of an algorithmic study of this problem, including the notion of polynomial time solvability [Edm65a] and the counting class \(\#P \) [Val79]. The parallel algorithms perspective has also led to such gains: The first RNC matching algorithm led to a fundamental understanding of the computational relationship between search and decision problems [KUW85] and the second algorithm yielded the Isolation Lemma [MVV87], which has found several applications in complexity theory and algorithms. Considering the fundamental insights gained by an algorithmic study of perfect matchings, the problem of obtaining an NC algorithm for it has remained a premier open question ever since the 1980s.

The first substantial progress on this question was made for the case of planar bipartite graphs by Miller and Naor [MN89] via a flow-based approach, followed by Mahajan and Varadarajan [MV00] using the fact that there is an NC algorithm for counting perfect matchings in planar graphs. The NC algorithm of Anari and Vazirani [AV18] for non-bipartite planar graphs also uses this approach, though it requires a number of new ideas to deal with odd set constraints appearing in the LP-relaxation of perfect matching in general graphs. They also extended their algorithm to constant genus graphs. Subsequently, Eppstein and Vazirani [EV18] gave an NC algorithm for perfect matching in one-crossing-minor-free graphs, which include \(K_5 \)-free graphs and \(K_{3,3} \)-free graphs; the resolution of the latter class settles a thirty year old open problem asked in [Vaz89].

The quasi-NC algorithms for matching and its generalizations, mentioned above, work by achieving a partial derandomization of the Isolation Lemma. First, Fenner, Gurjar, and Thierauf [FGT16] gave a quasi-NC algorithm for perfect matching in bipartite graphs, which was followed by the algorithm of Svensson and Tarnawski [ST17] for general graphs. Algorithms were also obtained for the generalization of bipartite matching to the linear matroid intersection problem by Gurjar and Thierauf [GT17], and to a further generalization of finding a vertex of a polytope with faces given by totally unimodular constraints, by Gurjar, Thierauf, and Vishnoi [GTV17].
1.2 Bipartite vs non-bipartite matching: An intriguing phenomenon

Decades of algorithmic work on the matching problem, from numerous perspectives, exhibits the following intriguing phenomenon: The bipartite case gets solved first. Then, using much more elaborate machinery, the general graph case also follows and yields the exact same result! This phenomenon is made all the more fascinating by the fact that the “elaborate machinery” consists not of one fact but numerous different structural properties and mathematical facts which happen to be just right for the problem at hand! We give a number of examples below.

The duality between maximum matching and minimum vertex cover for bipartite graphs extends to general graphs via the notion of an odd set cover, see Lovász and Plummer [LP09]. The formulation of the perfect matching polytope for bipartite graphs extends by introducing constraints corresponding to odd sets [Edm65b]. Polynomial time algorithms for maximum matching and maximum weight matching in bipartite graphs generalize via the notion of blossoms [LP09]. The most efficient known algorithm for maximum matching in bipartite graphs [HK73; Kar73] obtained via an alternating breadth first search, extends via a much more elaborate algorithm with the same running time via the graph search procedure of double depth first search [MV80] and blossoms defined from the perspective of minimum length alternating paths [Vaz94]. The RNC matching algorithms [KUW86; MVV87] use Tutte’s theorem to extend to general graphs. The randomized matching algorithm of Rabin and Vazirani [RV89] uses Tutte’s theorem and a theorem of Frobenius on ranks of sub-matrices of skew-symmetric matrices.

More recent work exhibits this phenomenon as well. The quasi-NC algorithm of Fenner, Gurjar, and Thierauf [FGT16] for bipartite graphs extends by handling tight odd cuts appropriately [ST17]. The NC algorithm of [MV00] for planar bipartite graphs was extended to non-bipartite graphs via Edmonds’ formulation of the perfect matching polytope [Edm65b], an NC algorithm for max-flow in planar graphs [Joh87], and a result of Padberg and Rao [PR82] for finding tight odd cuts and an elaborate NC algorithm for uncrossing tight odd cuts [AV18]. In the same vein, the current paper is extending the bipartite algorithm of [GG15] using Edmonds’ formulation of the perfect matching polytope [Edm65b] and an NC procedure for finding a maximal laminar family of tight odd cuts [CGS12; San18].

2 Overview and technical ideas

Most of this paper will concentrate on the problem of finding a perfect matching in NC, given an oracle for the weighted decision problem. In section 5.1 we extend our ideas to finding a minimum weight perfect matching if the edge weights are polynomially bounded.

2.1 The bipartite case

For ease of comprehension, we will first give an outline of a proof of Theorem 1.1 for the case of bipartite graphs. Such a proof can be gleaned from the paper of Goldwasser and Grossman [GG15]; however, to the best of our knowledge, this important fact was not derived so far. Below,
we build on the quasi-NC algorithm of Fenner, Gurjar, and Thierauf [FGT16] to obtain a somewhat simpler proof of this result.

The algorithm of [FGT16] first finds a point in the interior of the perfect matching polytope and then iteratively moves to lower dimensional faces of this polytope, terminating when a vertex of the polytope is reached; this will be a perfect matching. For an edge weight vector \(w \), let \(\text{PM}[w] \) denote the face of the polytope containing all fractional and integral minimum weight perfect matchings w.r.t. \(w \). Since we are in the bipartite case, \(\text{PM}[w] \) has a simple description: It is defined by the set of edges that are set to zero, or equivalently its complement, i.e., the set of edges that participate in minimum weight perfect matchings. Let us denote the latter by \(E[w] \).

A key notion, introduced by Datta, Kulkarni, and Roy [DKR10], is that of circulation of a cycle \(C \) in the graph on edges \(E[w] \). This is the absolute value of the difference in the sum of weights of alternate edges. Observe that if the minimum weight perfect matching w.r.t. weight vector \(w \) is not unique, then any cycle that is in the symmetric difference of two such matchings, and therefore is also in the graph on \(E[w] \), must have zero circulation. Hence, if we find a weight vector \(w \) such that each cycle in \(E[w] \) has nonzero circulation, then the minimum weight perfect matching must be unique and can be easily found in NC.

Assume that a cycle \(C \subseteq E[w] \) has zero circulation. Let \(w' \) be a weight vector such that \(E[w'] \subseteq E[w] \) and the circulation of \(C \) w.r.t. \(w' \) is nonzero. Then it is easy to show that \(C \) will not be present in \(E[w'] \), i.e., at least one of its edges will be dropped in going from \(E[w] \) to \(E[w'] \). If so, we will say that \(C \) got destroyed. Thus our goal is to find, in NC, a weight vector that destroys all cycles of \(G \). However, \(G \) may have exponentially many cycles.

One of the key ideas of [FGT16] is a systematic way of destroying cycles: They iteratively destroy cycles of length 4, 8, 16, \ldots, \(n \); clearly, the number of iterations needed is \(O(\log n) \). In the first round, \(G \) has at most \(O(n^4) \) cycles of length 4. Fenner, Gurjar, and Thierauf [FGT16] show that if all cycles of length at most \(2^i \) have already been destroyed, then there are at most \(O(n^4) \) cycles of length at most \(2^i + 1 \) left. Hence, in each iteration only \(O(n^4) \) cycles need to be destroyed.

Suppose a given iteration starts with weight vector \(w \) under which all cycles of length at most \(2^i \) have already been destroyed. In this iteration, the algorithm finds a weight vector \(w' \) for the edges in \(E[w] \) under which all cycles of length at most \(2^{i+1} \) are destroyed. Fenner, Gurjar, and Thierauf [FGT16] prove that in order to destroy any set of \(s \) cycles, it suffices to try certain well-chosen \(O(n^2 s) \) integer weight vectors each of which uses numbers at most \(O(n^2 s) \) large; one of these vectors is sure to work. Since in the current iteration \(s = O(n^4) \), \(O(n^6) \) vectors suffice. For one such weight vector \(y \), it is also easy to compute \(E[y] \) in NC, since for each edge \(e \in E[w] \), the decision oracle can be used to determine if \(e \in E[y] \).

Finally, the weight vector \(w' \) is picked as follows in this iteration. In parallel, for each of the \(O(n^6) \) weight vectors, \(y \), we compute \(E[y] \) and find the girth of the resulting graph. Pick the lexicographically first weight vector, say \(w' \), such that \(E[w'] \) has the desired lower bound on girth, i.e, it destroys all cycles of length at most \(2^{i+1} \).
2.2 Extension to general graphs

New complication arise in general graphs because of the more complex formulation of the perfect matching polytope, and consequently of the face PM\([w]\): to specify PM\([w]\) we need not only the edges \(E[w]\), which participate in minimum weight perfect matchings, but also a maximal laminar family of tight odd sets, say \(L\).

We start with some definitions from [ST17]. The perfect matching polytope lies in \(\mathbb{R}^E\). Let \(1_{E'}\) denote the indicator vector of a subset of edges \(E' \subseteq E\). For \(S \subseteq V\), \(\delta(S)\) denotes the edges that cross \(S\). For an even cycle \(C\), let \(\text{sign}(C)\) denote the vector in \(\mathbb{R}^E\) that is \(+1\) and \(−1\) on alternate edges of \(C\), starting with an arbitrary edge. For \(S \in L\), \(C\) respects set \(S\) if \(\langle 1_{\delta(S)}, \text{sign}(C) \rangle = 0\). Furthermore, \(C\) respects face \(\text{PM}[w]\) if:

1. \(C \subseteq E[w]\) and
2. \(C\) respects every \(S \in L\).

If the minimum weight perfect matching is not unique, then it is easy to see that each cycle \(C\) in the symmetric difference of two such matchings respects face \(\text{PM}[w]\). Therefore, if we find weights \(w\) so that none of the even cycles in the graph on edges \(E[w]\) respects face \(\text{PM}[w]\), then the minimum weight perfect matching will be unique.

Once again, the notion of circulation, as defined above, plays a crucial role. Suppose w.r.t. weight vector \(w\), the circulation of cycle \(C\) is zero. Let \(w'\) be a weight vector such that \(E[w'] \subseteq E[w]\) and the circulation of \(C\) w.r.t. \(w'\) is nonzero. If so, Svensson and Tarnawski [ST17] show that either \(C\) must lose an edge in going from \(E[w]\) to \(E[w']\) or a new odd set \(S\) goes tight w.r.t. \(w'\) such that \(C\) does not respect \(S\). In either case, \(C\) does not respect the new face \(\text{PM}[w']\) and we will say that \(C\) is destroyed.

As stated in the Introduction, our algorithm builds on Anari and Vazirani [AV18]. We start by describing, at a high level, the steps executed by their algorithm for a planar graph, \(G\):

Step (1). Finding \(\Omega(n)\) edge-disjoint even walks: An even walk is either an even simple cycle or two odd cycles with a path joining them, traversed so that the cycles are traversed once and the path twice, once in each direction. As shown by Svensson and Tarnawski [ST17], all statements made above about destroying even cycles also hold about destroying even walks. Anari and Vazirani [AV18] critically use Euler’s formula and the planar dual of \(G\) for executing this step in \(\text{NC}\).

Step (2). Finding a point in \(\text{PM}\) and moving it to a face where all walks are blocked: The first part is based on the fact that counting the number of perfect matchings in planar graphs is in \(\text{NC}\). For the second part, Anari and Vazirani [AV18] show how to find in \(\text{NC}\) a weight function for edges, \(w\), such that each walk has a non-zero circulation. As a result, if \(x\) is a point in the face \(\text{PM}[w]\), then each walk \(C\) either has an edge \(e\) such that \(e \notin E[w]\) or there is a tight odd set \(S\) such that \(C\) does not respect \(S\). i.e., each walk is destroyed. Such a weight function is easily obtained; however, finding \(x \in \text{PM}[w]\) again resorts to the fact that counting the number of perfect matchings is in \(\text{NC}\).
matchings in planar graphs is in NC; more precisely, that a Pfaffian orientation for planar graphs exists and can be computed in NC.

Step (3). If there is a tight odd set S such that walk C does not respect S, finding one such set: An old result of Padberg and Rao [PR82] states that a Gomory-Hu tree for G under edge weights given by w will have a minimum tight odd cut in it. Anari and Vazirani [AV18] give an NC algorithm for finding a Gomory-Hu tree for a planar graph using the fact that a maximum s-t flow in planar graphs can be computed in NC [Joh87]. Anari and Vazirani [AV18] further show that a small perturbation of w ensures that one of the tight odd set S that is not respected by C is the minimum tight odd cut in G and hence will appear in the Gomory-Hu tree. Repeating this process in parallel for each such walk C, yields a set of tight odd sets.

Step (4). Partial uncrossing of tight odd sets found: The tight odd sets found cannot be shrunk simultaneously because they may be crossing. In the absence of an NC uncrossing algorithm, Anari and Vazirani [AV18] give an NC algorithm for finding the outermost sets of some laminarization of the tight odd sets found. These will be disjoint and can all be shrunk simultaneously.

Step (5). Finding a balanced viable cut: Anari and Vazirani [AV18] show that executing the previous four steps $O(\log n)$ times, together with the shrinking of sets, will either lead to removal of a constant fraction of the edges of the original graph or to a constant sized graph which will reveal a balanced viable cut in G, i.e., a cut (S, \overline{S}) such that both S and \overline{S} have a constant fraction of the vertices and there is a perfect matching in G which contains exactly one edge from this cut. In the first case, we recurse on the smaller graph and in the second, we pick one feasible edge from the cut to be in the perfect matching and recursively find perfect matchings in parallel in the two smaller graphs. We observe that this step works for non-planar graphs as well and we will use a slight generalization of this fact below.

We next outline how our algorithm for general graphs avoids the use of planarity by instead resorting to an oracle O for the decision problem. Observe that the decision oracle enables us to ensure that throughout the algorithm, each edge in the current graph is allowed, i.e., participates in a minimum weight perfect matching.

We finesse the use of planarity in steps (1) and (2) as follows. Using ideas from Caprara, Panconesi, and Rizzi [CPR03] we show that if the graph $G = (V, E)$ is not too sparse, then it contains $\Omega\left(\frac{|E|}{\log^2|V|}\right)$ edge-disjoint even walks, see lemmas 6.5 and 6.7. However, we do not know how to find a set of such walks fast in parallel. At this point we observe that finding walks is not essential; it suffices to find a weight function w, so that each of these walks has non-zero circulation and is therefore destroyed in the face $PM[w]$. To accomplish this, we will work obliviously, as was done in [FGTI16; ST17]: we will show how to construct $O(n^4)$ weight functions, each assigning a weight of at most $O(n^4)$ to each edge, such that under one of them each walk has non-zero circulation.

Next, in parallel, for each of the $O(n^4)$ weight function w, we compute $E[w]$. Also, using the NC algorithms of Cygan, Gabow, and Sankowski [CGS12] and Sankowski [San18] mentioned in the Introduction, we find a maximal laminar family of tight odd sets, L, in the face $PM[w]$. Observe
that since \(L \) is maximal, for each walk \(C \) that does not lose an edge, \(L \) must contain a set \(S \) that \(C \) does not respect. Furthermore, since \(L \) is already laminar, we directly shrink its maximal, and hence disjoint, sets. Observe that this has enabled us to accomplish steps (3) and (4) in one shot. Let \(H_w \) be the resulting graph. For the weight function that worked, each walk will lose at least one edge hence leading to a loss of at least \(\Omega(|E|/\log^2|V|) \) edges.

In cases where the graph \(G \) is very sparse, i.e., when \(|E| \simeq (1+\epsilon)|V| \), we will prove that we can find \(\Omega(|E|) \) disjoint tight sets of size 3. These are induced paths of length 2 on the graph. Shrinking all of them also yields a sizable reduction in the number of edges in the graph.

Step (5) follows as in [AV18], with one difference, namely we require \(O(\log^3|V|) \) iterations to reach a graph where there is a unique perfect matching. We use this as a partial matching in the original graph, and recursively extend it to a perfect matching by solving the search problem on graphs that are smaller by a constant factor. Finally, the analysis of the algorithm becomes non-trivial because we have to deal with virtual even walks as stated in step (1).

3 Preliminaries

We represent undirected graphs by \(G = (V,E) \), where \(V \) is the set of vertices and \(E \) is the set of edges. Unless otherwise specified, we only work with graphs that have no loops, i.e., an edge from a vertex to itself. An edge between vertices \(u \) and \(v \) is represented as \(\{u,v\} \). For a set \(S \subseteq V \), we use \(\delta(S) \) to denote the cut between \(S \) and its complement, i.e., \(\delta(S) = \{\{u,v\} \in E \mid u \in S, v \not\in S\} \). When \(S \) is a singleton, i.e., \(\{v\} \) for some \(v \in V \), we use the shorthand \(\delta(v) = \delta(\{v\}) \). A perfect matching is a subset of edges \(M \subseteq E \) such that for all \(v \in V \) we have \(|M \cap \delta(v)| = 1 \).

Definition 3.1. We call an edge \(e = \{u,v\} \) isolated if \(\deg(u) = \deg(v) = 1 \).

By this definition a graph is a perfect matching if it has no isolated vertices and all of its edges are isolated.

For a set \(S \subseteq E \) of edges we use \(1_S \in \mathbb{R}^E \) to denote the indicator of \(S \). We use the shorthand \(1_e \) to denote the \(e \)-th element of the standard basis for \(\mathbb{R}^E \), where \(e \in E \). We denote the standard inner product between vectors \(w, x \in \mathbb{R}^E \) by \(\langle w, x \rangle \).

Given a convex polytope \(P \subseteq \mathbb{R}^E \), and a weight vector \(w \in \mathbb{R}^E \), we use \(P[w] \) to denote the set of points minimizing the weight function \(x \mapsto \langle w, x \rangle \):

\[
P[w] = \{x \in P \mid \forall y \in P : \langle w, x \rangle \leq \langle w, y \rangle\}.
\]

Note that \(P[w] \) is a face of \(P \); all faces of \(P \) can be obtained as \(P[w] \) for appropriately chosen \(w \).

3.1 Maximal independent sets

Given a graph \(G = (V,E) \), we call a subset \(S \subseteq V \) independent if no edge \(e \in E \) has both endpoints in \(S \). We call an independent set maximal if no strict superset \(T \supsetneq S \) is independent. We will crucially use the fact that maximal independent sets can be found in \(\text{NC} \).
Theorem 3.2 ([Lub86]). There is a deterministic NC algorithm that on input graph \(G = (V, E) \) returns a maximal independent set \(S \subseteq V \).

We usually want a large, rather than a maximal, independent set. We will use the fact that in bounded degree graphs, any maximal independent set is automatically large.

Fact 3.3. If \(G = (V, E) \) is a graph with \(\deg(v) \leq \Delta \) for all \(v \in V \), then any maximal independent set \(S \subseteq V \) satisfies

\[
|S| \geq \frac{|V|}{\Delta + 1}.
\]

3.2 Perfect matching polytope

Given a graph \(G = (V, E) \), we call a subset of edges \(M \subseteq E \) a perfect matching if it contains exactly one edge in every degree cut, i.e., \(|M \cap \delta(v)| = 1 \) for all \(v \). We call a graph matching-covered if any of its edges can be extended to a perfect matching.

Definition 3.4. A graph \(G = (V, E) \) is matching-covered if for every edge \(e \in E \), there exists a perfect matching \(M \) such that \(e \in M \).

The perfect matching polytope for \(G = (V, E) \) is defined to have perfect matchings as its vertices

\[
\text{PM}_G = \text{conv}\{1_M | M \subseteq E \text{ is a perfect matching of } G\}.
\]

When \(G \) is clear from context, we simply use \(\text{PM} \) to refer to this polytope. \(\text{PM} \) is alternatively described by the following set of linear equalities and inequalities [Edm65a]:

\[
\text{PM} = \left\{ x \in \mathbb{R}^E \bigg| \begin{array}{ll}
\langle 1_{\delta(v)}, x \rangle = 1 & \forall v \in V, \\
\langle 1_{\delta(S)}, x \rangle \geq 1 & \forall S \subseteq V, \text{ with } |S| \text{ odd}, \\
\langle 1_e, x \rangle \geq 0 & \forall e \in E.
\end{array} \right\}.
\] (1)

Any face \(F \) of \(\text{PM} \) can be either described by a weight vector \(w \), i.e., \(F = \text{PM}[w] \), or it can be alternatively described by the set of inequalities turned into equalities in eq. (1). These correspond to odd sets \(S \) and edges \(e \). When face \(F \) is clear from context, we call odd sets whose inequalities have been turned into equalities, tight odd sets. We call an edge \(e \) allowed if \(x_e > 0 \) for some \(x \in F \), i.e., if the inequality corresponding to \(e \) in eq. (1) has not been turned into equality. We use \(E[F] \) to denote the set of allowed edges in the face \(F = \text{PM}[w] \). Putting it all together, to describe a face \(F \) it is enough to describe the set of allowed edges as well as tight odd sets.

Two tight odd sets \(S_1, S_2 \subseteq V \) are said to cross if they are not disjoint and neither is a subset of the other. A family of these sets \(\mathcal{L} \subseteq 2^V \) is said to be laminar if no pair of sets in it cross. It is well-known that each face \(F \) of the perfect matching polytope can be described by the set of allowed edges and a laminar family of tight odd sets \(\mathcal{L} \):

\[
F = \left\{ x \in \text{PM} \bigg| \begin{array}{ll}
\langle 1_{\delta(S)}, x \rangle = 1 & \forall S \in \mathcal{L}, \\
\langle 1_v, x \rangle = 0 & \forall v \notin E[F].
\end{array} \right\}.
\]

In fact, \(\mathcal{L} \) can be taken to be any maximal laminar family of tight odd sets for the given face \(F \) [see, e.g., ST17, Lemma 2.2]. We will always include all singletons \(\{v\} \) in the laminar family \(\mathcal{L} \) as the equalities \(\langle 1_{\delta(v)}, x \rangle = 1 \) are automatically satisfied over all of \(\text{PM} \).
Note that for a face $F = \text{PM}[w]$, there are potentially many choices for the laminar family \mathcal{L} describing F. Cygan, Gabow, and Sankowski [CGS12] studied the notion of balanced critical dual solutions to isolate a unique choice for \mathcal{L}, and they showed how this unique \mathcal{L} can be found by computing primal solutions to the minimum weight perfect matching problem. Sankowski [San18] used this procedure to design an alternative NC algorithm for planar graph perfect matching. We describe this procedure below. For more details see the work of Cygan, Gabow, and Sankowski [CGS12].

Definition 3.5. Suppose we are given a face $F = \text{PM}[w]$. A laminar optimal dual solution is a laminar family \mathcal{L} of tight odd sets, including all singletons, together with a function $\pi : \mathcal{L} \rightarrow \mathbb{R}$ such that for $S \in \mathcal{L}$, $\pi(S) > 0$ whenever $|S| > 1$ and for all edges e

$$w_e \geq \sum_{S \in \mathcal{L} : e \in \delta(S)} \pi(S),$$

with equality for allowed edges.

This definition precisely gives dual solutions for the linear program $\min \{ \langle w, x \rangle \mid x \in \text{PM} \}$ that satisfy complimentary slackness and are in laminar form. By complimentary slackness, for any such solution, $\sum_{S \in \mathcal{L}} \pi(S)$ is equal to the weight of a minimum weight perfect matching.

Laminar optimal dual solutions exist and are not unique. But Cygan, Gabow, and Sankowski [CGS12] showed that extra conditions can be imposed to make them unique. They dub pairs (\mathcal{L}, π) that satisfy these extra conditions balanced critical duals [CGS12, Definition 24]. We will not use these extra conditions; hence, we refrain from phrasing them here.

The following was shown by Cygan, Gabow, and Sankowski [CGS12, Lemma 28].

Lemma 3.6 ([CGS12]). If $E[w]$ is connected, then a balanced critical dual is unique and algorithm 1 finds its support, the laminar family \mathcal{L}.

Algorithm 1: Finding a balanced critical dual.

\[
\begin{align*}
\mathcal{L} & \leftarrow \{ \{v\} \mid v \in V \}. \\
\text{for } v \in V \text{ in parallel do} \\
& \quad \mu(v) \leftarrow \min \{ \langle w, M \rangle \mid M \subseteq E[w] \text{ is a perfect matching on } V \setminus \{u, v\} \text{ for some vertex } u \}. \\
\text{end} \\
\text{Let } w'_e \leftarrow w_e + \mu(u) + \mu(v) \text{ for each } e \in E[w]. \\
\text{for } t \in \{ w'_e \mid e \in E[w] \} \text{ in parallel do} \\
& \quad \text{Find the connected components of the graph } (V, \{e \in E[w] \mid w'_e \leq t\}). \\
& \quad \text{Add each nontrivial connected component to } \mathcal{L}. \\
\text{end} \\
\text{return } \mathcal{L}.
\end{align*}
\]

It was observed by Sankowski [San18] that all steps of algorithm 1 can be performed in NC except for finding allowed edges $E[w]$ and the computation of $\mu(v)$’s. We use the same insight to design our pseudo-deterministic RNC algorithms.

Remark 3.7. When $E[w]$ is not connected, algorithm 1 still works but should be run in parallel for each connected component of $E[w]$.

10
3.3 Contraction of tight odd sets and matching minors

It was observed by Edmonds [Edm65b] that if a collection of tight odd sets are disjoint, one can shrink each one to a single node and obtain a smaller graph whose perfect matchings can be extended to perfect matchings in the original graph. For the sake of completeness we state and prove this fact here.

Fact 3.8. Suppose that \(F = \text{PM}[w] \) is a face of the matching polytope for \(G = (V, E) \) and \(S_1, \ldots, S_k \) are tight odd sets w.r.t. \(F \). Let \(H \) be obtained from \(G \) by removing disallowed edges and contracting each \(S_i \) to a single node. Then any perfect matching in \(H \) can be extended to a perfect matching in \(G \).

Proof. Suppose that \(M \) is a perfect matching in \(H \). We can think of edges in \(M \) as edges in \(E \) as well; in fact \(M \subseteq E[w] \), because we remove disallowed edges to obtain \(H \). Because \(M \) is a perfect matching in \(H \), for each \(S_i \), there is a unique \(e_i \in M \cap \delta_G(S_i) \). Now since \(e_i \) is an allowed edge, there must be some perfect matching \(M_i \) of \(G \) such that \(e_i \in M_i \) and \(f_{M_i} \in F \). Since \(S_i \) is a tight odd set, \(M_i \) cannot have any other edge in \(\delta(S_i) \), except for \(e_i \). So if we look at \(\{\{u, v\} \in M_i \mid u, v \in S_i\} \), we must have a matching covering all vertices of \(S_i \) except for the endpoint of \(e_i \). Combining all of these matchings for \(i = 1, \ldots, k \) together with \(M \) will give us a perfect matching in \(G \) as desired. \(\square \)

Note that the graph \(H \) obtained above is a minor of the graph \(G \). But it is not an arbitrary minor. It has the additional property that every perfect matching of it can be extended back to a perfect matching of the original graph. For convenience we name these minors, matching minors.

Definition 3.9. A matching minor \(H \) of a graph \(G \), is a graph that can be obtained by a sequence of the following operations: Pick a face of the matching polytope and a collection of disjoint tight odd sets. Remove disallowed edges, and contract each tight odd set into a single node.

The following statement follows directly from fact 3.8.

Lemma 3.10. If \(H \) is a matching minor of the graph \(G \), then every perfect matching in \(H \) can be extended to a perfect matching in \(G \).

In our algorithms, we use the simple observation that a path of length 2 on vertices of degree 2 yields a tight odd set for the entire matching polytope. We call these paths worms.

Definition 3.11. A worm in graph \(G = (V, E) \) is a set of three vertices \(\{a, b, c\} \) such that \(\deg(a) = \deg(b) = \deg(c) = 2 \), and \(\{a, b\}, \{b, c\} \in E \).

Lemma 3.12. A worm \(\{a, b, c\} \) is a tight odd set for the matching polytope and all of its faces.

Proof. The only two neighbors of \(b \) are \(a, c \). So in every perfect matching, \(b \) must be matched to one of them. The other vertex must have an edge to an outside vertex, and in fact that is the only possible edge in \(\delta(\{a, b, c\}) \). \(\square \)

Remark 3.13. Note that the proof of lemma 3.12 does not use the assumptions \(\deg(a) = \deg(c) = 2 \) and only uses \(\deg(b) = 2 \). We will use these extra assumptions elsewhere, to prove that in certain situations, we can find many worms in our graph.
3.4 Even walks and weight vectors

In this section, we present some definitions about even walks which we will need; some are borrowed from Svensson and Tarnawski [ST17]. We call an ordered list of evenly many edges \(C = (e_1, \ldots, e_{2k}) \), not necessarily distinct, that start and end at the same vertex, an even walk. An even walk is allowed to visit a vertex any number of times; if it visits each vertex at most once, it is a simple cycle. The signature of walk \(C \) is defined to be the vector:

\[
\text{sign}(C) = \sum_{i=1}^{2k} (-1)^i \mathbf{1}_{e_i}.
\]

Even if \(C \) is nonempty, it may be that \(\text{sign}(C) \) is the zero vector. If so, we will say that \(C \) is a null walk. Unless otherwise specified, every walk we refer to will be assumed to be not null.

In fact in our analysis, we will only consider even walks \(C \) which are either a simple cycle, or two edge-disjoint cycles joined by a path whose edges are also disjoint from the cycles; here the path is traversed twice, once in each direction. It is easy to see that in either of these cases the even walks are not null.

Consider a weight vector \(w \) and an even walk \(C \), such that \(\langle w, \text{sign}(C) \rangle \neq 0 \).

This means that there cannot be any two distinct points \(x, y \in \text{PM}[w] \) whose difference \(x - y \) is a multiple of \(\text{sign}(C) \). Otherwise we would have \(\langle w, x \rangle \neq \langle w, y \rangle \). Another way of stating this is that if \(x \in \text{PM}[w] \), then \(x + \epsilon \text{sign}(C) \notin \text{PM}[w] \) for any \(\epsilon \neq 0 \). So, some inequality or equality describing \(\text{PM}[w] \) must be violated for this point.

If we pick \(x \) to be in the relative interior of the face \(\text{PM}[w] \) we will have some slack for non-tight inequalities describing \(\text{PM}[w] \). So the violated constraint for \(x + \epsilon \text{sign}(C) \) must be a constraint that is tight for the entire face \(\text{PM}[w] \). This implies that

Lemma 3.14. Suppose that \(C \) is an even walk such that \(\langle w, \text{sign}(C) \rangle \neq 0 \). Then either there is an edge \(e \in C \) that is disallowed, i.e., \(e \notin \mathcal{E}[w] \), or for any laminar dual \((\mathcal{L}, \pi)\) describing \(\text{PM}[w] \), there is some set \(S \) with \(\langle \mathbf{1}_{\delta(S)}, \text{sign}(C) \rangle \neq 0 \).

For more detailed proof of this, see [AV18]. Note that when \(\langle \mathbf{1}_{\delta(S)}, \text{sign}(C) \rangle \neq 0 \), it also means that \(C \) must have an edge with both endpoints inside \(S \).

Lemma 3.15. If \(C \) is an even walk and \(S \subseteq V \) is such that \(\langle \mathbf{1}_{\delta(S)}, \text{sign}(C) \rangle \neq 0 \), then there is an edge \(e = \{u, v\} \in C \) such that \(u, v \in S \).

Proof. If this is not true, then every time \(C \) enters \(S \) it must immediately exit. So if we compute \(\langle \mathbf{1}_{\delta(S)}, \text{sign}(C) \rangle \) by looking at edges that cross \(S \), we always get a \(+1\) followed by a \(-1\), and a \(-1\) followed by a \(+1\). So the entire sum would be 0 which is a contradiction.

We also borrow from Fenner, Gurjar, and Thierauf [FGT16] the following important result, which is also stated in Svensson and Tarnawski [ST17].

12
Lemma 3.16 ([FGT16]). There exists a polynomial sized family of polynomially bounded weight vectors W, such that for any set of edge disjoint even walks C_1, \ldots, C_k, there is some $w \in W$ which ensures

$$\forall i : \langle w, \text{sign}(C_i) \rangle \neq 0.$$

Proof. This lemma is actually proved in [FGT16; ST17] for any collection of nonzero vectors, not just $\text{sign}(C_i)$’s, as long as there is both a polynomial bound on the number of vectors and the absolute value of their coordinates. Edge-disjointness of even walks automatically puts a bound of $|E|$ on their number, and the coordinates of our even walks are always bounded in absolute value by 2. \qed

4 Decision oracle

Throughout the paper we assume that there is an oracle O which answers the following type of queries: Given a graph $G = (V, E)$ and a polynomially bounded weight vector $w \in \mathbb{Z}^E$, what is the weight of the minimum weight perfect matching in G? We denote the answer by

$$O(G, w) = \min \{ \langle w, x \rangle | x \in \text{PM}_G \}.$$

We now list several deterministic NC primitives based on O. Versions of these two lemmas appear implicitly, stated for planar graphs, in Sankowski [San18], but we prove them for the sake of completeness.

Lemma 4.1. Given access to O, for polynomially bounded $w \in \mathbb{Z}^E$, one can find $E[w]$ in NC.

Proof. An edge $e = \{u, v\}$ can be in a minimum weight perfect matching if and only if $O(G, w) = w_e + O(G - \{u\} - \{v\}, w)$, where $G - \{u\} - \{v\}$ is obtained from G by removing vertices u, v. This can be checked in parallel for all edges e. \qed

Lemma 4.2. Given access to O, for polynomially bounded $w \in \mathbb{Z}^E$, one can run algorithm 1 in NC.

Proof. As was observed by Sankowski [San18], all steps of algorithm 1 can be run in NC except for finding $E[w]$ and computing $\mu(v)$. Given access to O, we can find $E[w]$ in NC by lemma 4.1. Furthermore observe that for any $v \in V$

$$\mu(v) = \min \{ O(G - \{u\} - \{v\}, w) | u \in V - \{v\} \},$$

which can be computed by making all queries $O(G - \{u\} - \{v\}, w)$ in parallel and then taking the minimum. \qed

An implementation for the oracle, in RNC with arbitrarily small inverse polynomial probability of error for general graphs, follows from Mulmuley, Vazirani, and Vazirani [MVV87], since they give an RNC algorithm for finding a minimum weight perfect matching if the edge weights are given in unary. Note that the oracle O is promised to be called at most polynomially many times. So even a randomized Monte Carlo oracle, as in the case of RNC implementation for general graphs, is good enough, since we can boost its success probability to make sure the total error probability over all calls remains bounded.
5 The oracle-based algorithm

In this section we describe our oracle-based algorithm for finding a perfect matching. In section 5.1, we will extend this to finding a minimum weight perfect matching for polynomially bounded weights.

On input \(G = (V, E) \), our algorithm proceeds by finding smaller and smaller matching minors \(H \) of \(G \), until \(H \) has a unique perfect matching, or in other words is a perfect matching. Then we pick the edges in \(H \) as a partial matching in \(G \) and extend this partial matching to a perfect matching independently and in parallel for the preimage of each node in \(H \). That is for each node \(s \) in \(H \), we take the set \(S \subseteq V \) that got shrunk to \(s \), remove the single endpoint of the partial matching from \(S \), and recursively find a perfect matching in \(S \). In the end we return the results of all these recursive calls along with the edges of \(H \) as the final answer.

We crucially make sure that the pre-image of nodes in \(H \) never contain more than a constant fraction of \(V \). This makes sure that our recursive calls end in \(O(\log |V|) \) many steps.

In all of our algorithms, when we construct matching minors, we implicitly maintain the mapping from the resulting edges to the original edges, and the mapping from original vertices to the minor’s vertices. These are trivial to maintain in \(NC \), but for clarity we avoid explicitly mentioning them. We also keep node weights for matching minors, where the weight of a node is simply the number of original vertices that got shrunk to it.

The pseudocode for the main algorithm \(\text{PerfectMatching} \) can be seen in algorithm 2. On input \(G \), the algorithm calls \(\text{PartialMatching} \) to find a matching minor \(H \) of \(G \), that itself is a perfect matching. Then the edges of \(H \), which form a partial matching in \(G \), are extended to a perfect matching independently and in parallel in the preimage of each node from \(H \). Since \(H \) is a matching minor, this extension can always be performed by lemma 3.10.

The pseudocode for \(\text{PartialMatching} \) can be seen in algorithm 3. This algorithm keeps a node-weighted matching minor of the input graph \(G \). It tries several ways of obtaining a smaller

Algorithm 2: Divide-and-conquer algorithm for finding a perfect matching.

\[
\text{PerfectMatching}(G = (V, E))
\]

\[
\text{if } V = \emptyset \text{ then}
\]

\[
\quad \text{return } \emptyset.
\]

\[
\text{else}
\]

\[
\quad \text{Call } \text{PartialMatching}(G), \text{ and let } H \text{ be the matching minor returned.}
\]

\[
\quad \text{Let } M \subseteq E \text{ be the edges of } H.
\]

\[
\quad \text{for each node } s \text{ of } H \text{ in parallel do}
\]

\[
\quad \quad \text{Let } S \subseteq V \text{ be the nodes of } G \text{ that are shrunk to } s.
\]

\[
\quad \quad \text{Let } v \text{ be the unique endpoint of the unique edge of } M \text{ in } \delta(S).
\]

\[
\quad \quad \text{Let } G_s \text{ be the induced graph on } S - \{v\}.
\]

\[
\quad \quad M \leftarrow M \cup \text{PerfectMatching}(G_s).
\]

\[
\quad \text{end}
\]

\[
\quad \text{return } M.
\]

\[
\text{end}
\]

The pseudocode for the main algorithm \(\text{PerfectMatching} \) can be seen in algorithm 2. On input \(G \), the algorithm calls \(\text{PartialMatching} \) to find a matching minor \(H \) of \(G \), that itself is a perfect matching. Then the edges of \(H \), which form a partial matching in \(G \), are extended to a perfect matching independently and in parallel in the preimage of each node from \(H \). Since \(H \) is a matching minor, this extension can always be performed by lemma 3.10.

The pseudocode for \(\text{PartialMatching} \) can be seen in algorithm 3. This algorithm keeps a node-weighted matching minor of the input graph \(G \). It tries several ways of obtaining a smaller
Algorithm 3: Find a matching minor of the input graph that is itself a perfect matching.

\textsc{PartialMatching}(G = (V, E))

Assign node weight 1 to each node \(v \in V \).

\textbf{while} G is not a perfect matching \textbf{do}

\hspace{1em} if any node \(v \) of G has at least \(1/6 \) of the total node weight \textbf{then}

\hspace{2em} Remove disallowed edges \(e \notin E[0] \) from G.

\hspace{2em} Contract the complement of \(\{v\} \) to a single node. If there are parallel edges, remove all except for an arbitrary one.

\hspace{2em} return G.

\hspace{1em} end

Find a maximal set of node-disjoint worms in G.

Let \(H \) be obtained from G by removing disallowed edges and contracting each worm into a single node.

\(U \leftarrow \{H\} \).

\textbf{for} \(w \in W \) \textbf{in parallel do}

\hspace{2em} Call \textsc{Reduce}(G, w) and let the result be \(H \).

\hspace{2em} \(U \leftarrow U \cup \{H\} \).

\textbf{end}

Find the graph \(H \in U \) with the minimum number of non-isolated edges.

\(G \leftarrow H \).

\textbf{end}

return G.

Algorithm 4: Remove disallowed edges and contract some tight odd sets w.r.t. a weight vector.

\textsc{Reduce}(G = (V, E), w); \quad // The graph G has node weights.

Remove disallowed edges \(e \notin E[w] \) from G.

Find all connected components of G.

\textbf{for each connected component C of G in parallel do}

\hspace{2em} Run \textsc{algorithm 1} on C to find a laminar family of tight odd sets \(\mathcal{L} \).

\hspace{2em} \textbf{for} \(S \in \mathcal{L} \) \textbf{in parallel do}

\hspace{3em} if node weight of \(S \) is more than half of the node weight of C \textbf{then}

\hspace{4em} Replace \(S \) in \(\mathcal{L} \) with \(C - S \).

\hspace{3em} end

\hspace{2em} end

Find the inclusion-wise maximal sets in \(\mathcal{L} \) and shrink each one to a single node.

\textbf{end}

return G.
matching minor, where size is measured in terms of the number of non-isolated edges, see definition 3.1. One way of obtaining a smaller matching minor is by picking a maximal node-disjoint set of worms and shrinking them simultaneously. By lemma 3.12, this produces a matching minor. Also note that the maximal set of node-disjoint worms can be found in NC by enumerating all worms and using theorem 3.2.

Another way of obtaining smaller matching minors is by trying weights from the set of weight vectors W and calling \texttt{Reduce} to remove disallowed edges $e \notin E[w]$ and to shrink top level sets of a laminar family of tight odd sets w.r.t. w.

Finally the pseudocode for \texttt{Reduce} can be seen in algorithm 4. This algorithm is simply fed a graph $G = (V, E)$ and a weight vector w. It removes disallowed edges $e \notin E[w]$ and shrinks the maximal sets of a laminar family of tight odd set. The laminar family is found using algorithm 1, but is modified to make sure that no shrunk set becomes too large; to be more precise no shrunk vertex in the end will have node weight more than half of the total node weight.

5.1 Finding a minimum weight perfect matching

Here we describe how we can construct an algorithm that returns not just any perfect matching, but rather a minimum weight perfect matching, for polynomially bounded weights.

Given an input graph $G = (V, E)$ and a weight vector w, we can remove disallowed edges $e \notin E[w]$, and find a laminar family of tight odd sets \mathcal{L} w.r.t. w, by calling algorithm 1 on each connected component of G. By complementary slackness, any perfect matching that has only one edge in $\delta(S)$ for each $S \in \mathcal{L}$ will automatically be of minimum weight, see definition 3.5. We can simply contract the top level sets in \mathcal{L}, use algorithm 2 to find a perfect matching in the shrunk graph, and recursively extend this to a minimum weight perfect matching in each shrunk piece. Following an almost identical argument as in the proof of fact 3.8, the perfect matching in the shrunk graph can be extended to a minimum weight perfect matching.

The only problem with this method is that the recursion depth is not guaranteed to be polylogarithmic. However we can fix that by making sure that tight odd sets $S \in \mathcal{L}$ do not have more than half of the vertices in the graph; if they do, we replace them by their complements and we will see in lemma 6.1 why this operation preserves laminarity.

5.2 Minor-closed families of graphs

Throughout our algorithm we only call the decision oracle on graphs obtained from the original through a sequence of edge and vertex removals and contractions. Here we will prove that the decision oracle is only called on minors of the original graph, that is those graphs obtained by vertex and edge removals and contractions of connected subgraphs.

Lemma 5.1. Algorithms 2 to 4 only call the decision oracle on minors of their input graph.

This lemma is all we need to prove theorem 1.3. Note that there are several minor-closed families of graphs where the decision problem can be solved in NC by using a counting oracle. In particular we can count perfect matchings in graphs embedded on surfaces of genus at most $O(\log n)$, and
therefore solve the decision problem, all in NC. This improves upon the genus bound of \(O(\sqrt{\log n}) \) given by Anari and Vazirani [AV18].

Corollary 5.2. For graphs embedded on a surface of genus at most \(O(\log n) \) and weighted with polynomially bounded edge weights, there is an NC algorithm to find a minimum weight perfect matching.

Another consequence of **Theorem 1.3** is an alternative algorithm for \(K_{3,3} \)-free graphs, which was resolved earlier by Eppstein and Vazirani [EV18].

Now we prove **Lemma 5.1.**

Proof of Lemma 5.1. First we prove this for **Algorithm 4**. There, we only remove edges from the input graph, and shrink tight odd sets in connected components. We just have to show that what we shrink is already connected. Consider a tight odd set \(S \) in a connected component \(C \). If it is not internally connected, then one of its internal connected components must have odd size; let that be \(S' \). Since \(S \subseteq C \) and \(C \) is a connected component, there is an edge \(e \in \delta(S - S') \). Since \(S' \) is not internally connected to \(S - S' \), it must be that \(e \in \delta(S) \) too. Now since the graph is matching-covered with minimum weight perfect matchings, there must be some minimum weight perfect matching \(M \ni e \). But because \(S' \) is odd, there must also be an edge \(f \in M \cap \delta(S') \). But note that \(e \neq f \), and both \(e, f \in \delta(S) \). This is a contradiction, since \(S \) cannot have more than one edge in a perfect matching. This shows that \(S \) must be connected and **Algorithm 4** only produces minors of its input graph.

Next we prove the statement for **Algorithm 3**. This algorithm either calls **Algorithm 4**, or finds worms and contracts them. The former produces minors of the input graph, and the latter also produces minors of the input graph since worms are connected.

Note that the graph returned by **Algorithm 3** may not be a proper minor of the input graph; that could happen if the node weight of some \(v \) goes above 1/6 the total node weight. In this scenario, the complement of \(v \) might not be connected and yet we contract it. However the algorithm immediately returns and the decision oracle is not called on this returned graph. So this does not contradict the statement of the lemma.

Finally we prove the statement for **Algorithm 2**. The only graphs produced and passed onto **Algorithm 3** are obtained from the input graph by vertex removals and edge removals. So they are all minors of the input graph. The output of **Algorithm 3** might not be a proper minor, but this output is only used to decide which edges and vertices to remove from the original graph to get to induced graphs on \(S - \{v\} \).

6 Analysis of the algorithm

First we will prove that our oracle-based algorithm returns a correct answer. Next, we will bound the running time and prove that our algorithm is in NC modulo the calls to \(O \); this constitutes the most challenging part of the analysis.
6.1 Correctness

To prove the correctness, we use the following lemma.

Lemma 6.1. Suppose that \mathcal{L} is a laminar family of sets in a node-weighted graph $G = (V, E)$, and we replace every $S \in \mathcal{L}$ whose node weight is larger than half of the total node weight by the complement $V - S$. The resulting family of sets \mathcal{L}' is still laminar.

Proof. Let S, S' be two sets in \mathcal{L}. They are either disjoint or one is contained in the other.

If $S \cap S' = \emptyset$: They cannot both have node weight more than $1/2$. So at most one of them gets replaced by its complement. Then it is easy to see that the resulting sets do not cross.

If $S \subseteq S'$: There are three possibilities. If none of them gets replaced by their complements, or both of them get replaced by their complements, they remain nested and therefore do not cross. If one of them gets replaced by its complement, it has to be the larger set S'. In that case the resulting sets become disjoint, and still do not cross.

Now using lemma 6.1 and lemma 3.10, we deduce that \textsc{reduce} always returns a matching minor of its input graph. Almost by definition, \textsc{partialmatching} also returns a matching minor of its graph when it finishes (for the analysis of running time see section 6.2).

This proves the correctness of the algorithm, since we always find a matching minor that has a unique perfect matching (itself), and by lemma 3.10, we can extend it to a perfect matching, independently in the preimage of each node.

6.2 Running time

First we analyze \textsc{perfectmatching} (algorithm 2) assuming the calls to \textsc{partialmatching} (algorithm 3) are in NC.

Lemma 6.2. Assuming the calls to \textsc{partialmatching} are in NC, \textsc{perfectmatching} is in NC.

Proof. We simply need to bound the number of levels in the recursion. We will prove that when \textsc{partialmatching} returns a matching minor H, the node weight of every node is at most $5/6$ the total node weight. This proves that in each recursive call to \textsc{perfectmatching}, the number of vertices gets reduced by a factor of $5/6$.

Note that the first time in algorithm 3 that a node’s weight goes above $1/6$ the total weight, the algorithm stops and returns a two-node minor. So we just need to prove that the weight of the node that just went above $1/6$ is not more than $5/6$. The current minor was obtained from the previous minor by either \textsc{reduce}, or by shrinking worms. But \textsc{reduce} automatically never creates nodes with weight more than half the total weight. The weight of each node in a worm is also by assumption at most $1/6$ the total weight, so after shrinking the worm, the new weight can be at most $1/6 + 1/6 + 1/6 = 1/2$ the total weight. This finishes the proof.

All that remains to prove our algorithm is in NC is to show that \textsc{partialmatching} finishes in polylogarithmically many steps. To show this, we will prove the following lemma.
Lemma 6.3. In each iteration of algorithm 3, the number of non-isolated edges gets reduced by a factor of \(1 - \Omega(1/ \log^2 |V|)\).

Before proving lemma 6.3, note that it gives a polylogarithmic upper bound on the number of iterations in algorithm 3, since if we track the number of non-isolated edges, after every \(O(\log^2 |V|)\) steps we get a constant factor reduction, and therefore it only takes at most \(O(\log |E| \cdot \log^2 |V|)\) iterations for it to reach 0.

In the rest of this section we prove lemma 6.3. The high-level overview of the proof is as follows: Assume that we simply ignore isolated edges. Then, either the graph \(G\) is very sparse, roughly speaking \(|E| = (1 + \epsilon)|V|\) for a tiny constant \(\epsilon\), in which case we will prove the number of node-disjoint worms found is \(\Omega(|E|)\). On the other hand if the graph is not very sparse, we will prove that there exist \(\Omega(|E|/ \log^2 |V|)\) edge-disjoint even walks; one of the weight functions \(w \in W\) will give a nonzero circulation to all of these even walks. With this \(w\), every such even walk will lose at least one edge in \(\text{Reduce}(G, w)\); so the number of edges in \(\text{Reduce}(G, w)\) would be smaller by a factor of \(1 - \Omega(1/ \log^2 |V|)\).

Formally we prove the following two lemmas.

Lemma 6.4. If \(G = (V, E)\) is a matching-covered connected graph with \((1 - \epsilon)|E| < |V|\) for some constant \(\epsilon < 1/9\), then the number of worms in any maximal set of node-disjoint worms in \(G\) is at least \(c_1 |E|\) for some constant \(c_1(\epsilon) > 0\).

Lemma 6.5. If \(G = (V, E)\) is a matching-covered connected graph on \(|V| > 2\) vertices with \((1 - \epsilon)|E| \geq |V|\) for some constant \(\epsilon > 0\), then there exist \(c_2 |E|/ \log^2 |V|\) many edge-disjoint even walks in \(G\) for some constant \(c_2(\epsilon) > 0\).

Let us prove lemma 6.3 using lemmas 6.4 and 6.5.

Proof of lemma 6.3. First consider the case where \(G\) is a connected graph. Then we can directly apply lemmas 6.4 and 6.5 for some fixed \(\epsilon < 1/9\) to see that we either find \(c_1 |E|\) worms, or there exist \(c_2 |E|/ \log^2 |V|\) many edge-disjoint even walks. In the former case, after contracting the worms, the number of edges gets reduced by a factor of \(1 - c_1\). In the latter case, let \(C_1, C_2, \ldots, C_k\) be the edge-disjoint even walks, and let \(w \in W\) be the weight vector such that \(\langle w, \text{sign}(C_i) \rangle \neq 0\). Note that \(w\) is guaranteed to exist by lemma 3.16. Now in the call to \(\text{Reduce}(G, w)\), every \(C_i\) loses an edge by lemmas 3.14 and 3.15; either an edge becomes disallowed, or it gets shrunk when contracting tight odd sets (we might contract a superset of the conflicting tight odd set, but that still shrinks every edge inside).

So in either case, one of the candidate graphs in \(U\) in algorithm 3 will have a factor of \(1 - c_3/ \log^2 |V|\) fewer edges compared to \(|E|\) for some constant \(c_3 > 0\).

Now consider the case where \(G\) is not connected. Then we can apply the argument to each connected component that is not an isolated edge. We can further assume the same weight vector \(w\) works for all connected components. Now if \(H_1\) is the graph obtained from shrinking worms, and \(H_2\) is the result of \(\text{Reduce}(G, w)\), then we know that the average number of edges in \(H_1\) and \(H_2\) for each connected component is at most \((1 - c_3/2 \log^2 |V|)\) times the number of edges in the connected component. So one of \(H_1, H_2\) must have at most \((1 - c_3/2 \log^2 |V|)\) times as many non-isolated edges as \(G\).

\(\square\)
In the rest of this section we prove lemmas 6.4 and 6.5.

First we prove lemma 6.4. To do this, we prove that the total number of worms is large, and then prove that a maximal node-disjoint set of them must also be large.

Lemma 6.6. Suppose that $G = (V, E)$ is a graph with no vertices of degree 0 or 1. Then the number of worms in G is at least $9|V| - 8|E|$.

Proof. Consider a charging scheme, where we allocate a budget of 1 to each edge, and the edge distributes its budget between its two endpoints. We then sum up the charge on all vertices and use the fact that this sum is exactly $|E|$.

Let $e = \{u, v\}$ be an edge. If neither u nor v is of degree 2, let the edge give $1/2$ to u, and $1/2$ to v. If both u and v are of degree 2, we allocate the budget the same way by splitting it equally between u and v. The only remaining case is when one of u and v has degree 2 and the other has degree at least 3; by symmetry let us assume that $\deg(u) = 2$ and $\deg(v) \geq 3$. Then we allocate $5/8$ to u and $3/8$ to v.

Now let us lower bound the charge that each vertex v receives. Note that the minimum amount v receives from any of its adjacent edges is $3/8$, so an obvious lower bound is $3\deg(v)/8$. If $\deg(v) \geq 3$, this is at least $9/8$. Now consider the case when $\deg(v) = 2$. Then v receives at least $1/2$ from each of its adjacent edges. If one of the neighbors of v is not of degree 2, then the charge that v receives will be at least $1/2 + 5/8 = 9/8$. The only possible case where v does not receive at least $9/8$ is when it is of degree 2, and both of its neighbors are also of degree 2 (the center of a worm), in which case it receives 1.

Now let k be the number of worms. Then, by the above argument the total charge on all the vertices is at least

$$\frac{9}{8}(|V| - k) + k \leq |E|.$$

Rearranging yields $k \geq 9|V| - 8|E|$.

Proof of lemma 6.4. We know that the number of worms is at least $9|V| - 8|E| = (1 - 9\epsilon)|E|$. Now consider the conflict graph of worms, where nodes represent worms, and edges represent having an intersection. It is easy to see that any worm can only intersect at most 4 other worms. So the degrees in this conflict graph are bounded by 4. By fact 3.3, any maximal node-disjoint set of worms will contain at least $(1 - 9\epsilon)|E|/5$ many worms. So we can take $c_1(\epsilon) = (1 - 9\epsilon)/5$ which is positive for $\epsilon < 1/9$.

Now it only remains to prove lemma 6.5. We will first prove that there are many edge-disjoint cycles in a non-sparse graph. Then either half of the these cycles are even, in which case we are done, or half of them are odd. We then show how to pair the odd cycles and connect them with paths to get many edge-disjoint even walks.

We first prove the following lemma. A proof of this lemma can be found in [CPR03], but for the sake of completeness we provide it here.
Lemma 6.7. In a graph $G = (V, E)$ there exists a collection of edge-disjoint cycles with at least the following number of cycles:

$$\frac{|E| - |V|}{2\log_2|V|}.$$

Proof. We prove this by induction on $|V| + |E|$. We have several cases:

i) If there are any loops in the graph, we extract that as one of our cycles, and remove the edge from the graph. The promised quantity goes down by $1/(2\log_2|V|)$ which is $\leq 1/2$. So from now on we assume that G has no loops.

ii) If there are any two parallel edges e, e', we extract those as a cycle of length 2, and remove both from the graph. The promised number of edge-disjoint cycles goes down by $2/(2\log_2|V|) \leq 1$. So adding the cycle we extracted fulfills the promise. From now on we assume that G is simple.

iii) If G has any vertices of degree 0: We can simply remove it and the promised quantity grows.

iv) If G has a vertex of degree 1: We can also remove this vertex. This operation does not change the numerator but shrinks the denominator, which results in a larger promised quantity.

v) If G has a vertex v of degree 2: Let e, e' be the two adjacent edges to v. Remove v, e, e' from the graph, and place a new edge e'' between the two former neighbors of v. By doing this, both $|V|$ and $|E|$ go down by 1. So now the promised number of edge-disjoint cycles becomes larger. By induction we find them, and now we replace the edge e'' if it is used at all in a cycle, by the path of length two consisting of e, e'. Since e'' appears in at most one cycle, this operation preserves edge-disjointness.

vi) Finally if G is a simple graph with no vertices of degree ≤ 2, it must have a cycle of length at most $2\log_2|V|$. If we prove this, we are done by induction, because we can remove the edges of this cycle and the promised quantity goes down by at most 1. Now to prove the existence of this cycle, assume the contrary, that the length of the minimum cycle of the graph is at least $2\log_2|V| + 1$. Pick a vertex v and look at all simple paths of length at most $\log_2|V|$ going out of v. The number of paths of length i is at least twice the number of paths of length $i - 1$. This is because every path of length $i - 1$ ending at a vertex u can be extended in at least $\deg(u) - 1 \geq 1$ ways, and none of these extensions will intersect themselves, otherwise we would get a cycle of length $\log_2|V| + 1$. So in the end, the total number of such paths will be $> 2^{\log_2|V|} = |V|$, which means that two of the paths must share an endpoint. But now from the union of these two paths, we can extract a cycle of length at most $\log_2|V| + \log_2|V| = 2\log_2|V|$.

If some of these cycles from lemma 6.7 are odd, we need to pair them up and connect them with paths. We use a spanning tree to do this.

Fact 6.8 ([For proof see Lemma 20 in AV18]). Consider a tree T with an even number of tokens placed on its vertices, with possibly multiple tokens on each vertex. There is a pairing, i.e., a partitioning of tokens into partitions of size two, such that the unique tree paths connecting each pair are all edge-disjoint.
Lemma 6.9. Suppose that there are 2ℓ edge-disjoint cycles of odd length in a matching-covered connected graph $G = (V, E)$. Then G contains at least $\Omega(\ell^2 / |E|)$ many edge-disjoint even walks.

Proof. We will pair up the odd cycles by paths connecting each pair. This will create ℓ even walks, but they might not be edge-disjoint. We will then show how to extract $\Omega(\ell^2 / |E|)$ edge-disjoint even walks out of them.

Consider a spanning tree T of G. For each of the 2ℓ odd cycles, pick an arbitrary vertex, and put a token on that vertex. Now we have an even number of tokens on the vertices. We can pair up these tokens, so that the unique tree paths (of possibly length 0) connecting each pair are edge-disjoint, see lemma 6.9.

Now for each pair of odd cycles C_1, C_2 whose tokens got paired up, we create an even walk. Let P be the tree path connecting tokens from C_1 and C_2. If P has no common edges with C_1, C_2 we can simply create our even walk, but this is not guaranteed to happen. So instead, traverse P from C_1’s token to C_2’s token and look at the last exit from C_1; afterwards look for the first time any vertex of C_2 is visited. This portion of P is a subpath connecting C_1 and C_2 having no common edged with either. We use C_1, C_2 and this subpath of P to create our even walk.

So far we have created ℓ even walks, but they might not be edge-disjoint. The odd cycles are edge-disjoint, as are the paths connecting them, but one of the paths might share an edge with an unrelated odd cycle. This also means that no edge e can be shared between more than two even walks; e can be used once as part of an odd cycle, and once as part of a path.

Now consider the number of edges in each even walk. If we sum this over all even walks, we get at most $2|E|$, since each edge can appear in at most two even walks. So the average number of edges in an even walk is $\leq 2|E| / \ell$. By Markov’s inequality at least half of the even walks, $\ell / 2$ of them, will have at most twice this average number of edges, $4|E| / \ell$. Now create a conflict graph where nodes represent these $\ell / 2$ even walks, and an edge is placed when the two even walks share an edge. The degree of each node is at most $4|E| / \ell$. So if pick a maximal independent set in this conflict graph, it will consist of at least $\Omega(\ell^2 / |E|)$ many even walks.

We are finally ready to prove lemma 6.5.

Proof of lemma 6.5. First note that if our graph is not an isolated edge and is matching-covered it must contain at least one even cycle. This is because there must be at least two perfect matchings in the graph, and in the symmetric difference of them, we can find one such cycle.

Because we are guaranteed to have at least 1 cycle, we can simply show that asymptotically we can extract $\Omega(|E| / \log^2 |V|)$ many edge-disjoint even walks. Then the asymptotic statement translates to the more concrete bound of $c_2|E| / \log^2 |V|$.

When $(1 - \epsilon)|E| \geq |V|$, by lemma 6.7, we have at least $\epsilon|E|/2\log_2|V| = \Omega(|E| / \log |V|)$ cycles. If at least half of them are of even length, we are done. Otherwise we get $\Omega(|E| / \log |V|)$ odd cycles. Perhaps by throwing away one of them, we can assume the number of odd cycles we have is even. Then we can apply lemma 6.9 to obtain $\Omega(|E| / \log^2 |V|)$ many edge-disjoint walks. This finishes the proof.
7 Discussion

This paper has identified what appears to be the “core” of the difficult open problem of obtaining an NC matching algorithm. We must immediately mention that the decision problem has been the subject of numerous attacks over the past decades and hence its resolution is not likely be an easy matter. At the same time, we hope that since the “target” has been more precisely identified, the resolution of the open problem will gain added impetus.

An obvious open question is to build on the quasi-NC algorithms of Gurjar and Thierauf [GT17] and Gurjar, Thierauf, and Vishnoi [GTV17] to obtain the appropriate oracle-based NC algorithms and pseudo-deterministic RNC algorithms for linear matroid intersection and for finding a vertex of a polytope with faces given by totally unimodular constraints.

The phenomenon identified in section 1.2 clearly deserves to be studied in depth. To the best of our knowledge, there are only two algorithmic results for bipartite matching that have not been extended to general graphs. The first is obtaining a fully polynomial randomized approximation scheme for counting the number of perfect matchings [JSV04]; this is also among the outstanding open problems of theoretical computer science today. The second is obtaining an $O(m^{10/7})$ algorithm for maximum matching [Mad13], which beats the earlier algorithms for sparse graphs.

References

[Vaz89] Vijay V Vazirani. “NC algorithms for computing the number of perfect matchings in K3, 3-free graphs and related problems”. In: Information and computation 80.2 (1989), pp. 152–164.