
Robust Submodular Maximization:

Offline and Online Algorithms

Nima Anari∗ Nika Haghtalab† Joseph (Seffi) Naor‡

Sebastian Pokutta§ Mohit Singh¶ Alfredo Torrico‖

Abstract

Submodular function maximization has found numerous applications in constrained
subset selection problems, for example picking a subset of candidate sensor locations that
are most informative [22, 19, 16]. In many of these applications, the goal is to obtain
a solution that optimizes multiple objectives at the same time. Constrained Robust
Submodular maximization problems are used as a natural and effective model for such
scenarios [15]. In this paper, we consider the robust submodular maximization problem
subject to a matroid constraint in the offline as well as online setting.

In the offline version of the problem, we are given a collection of k monotone submodular
functions and a matroid on a ground set of size n. The goal is to select one independent
set that maximizes the minimum of the submodular functions. This problem is known
to be NP-hard to approximate to any polynomial factor. We design (nearly) optimal
bi-criteria approximation algorithms that returns a set S that is the union of ln(kε) +O(1)
independent sets such that each function evaluated on S is at least (1− ε) fraction of the
optimal value. These results improve on previous results known for uniform matroids or the
general matroid case when k is a constant. We also note that no bi-criteria approximation
algorithms are possible for non-monotone submodular functions in contrast to the setting
of a single submodular function.

In the online version of the problem, we receive a new collection of functions at each
time step and aim to pick an independent set in every stage. We measure the performance
of the algorithm in the regret setting where the goal is to give a solution that compares
well to picking a single set for all stages. Again, we give a bi-criteria approximation
algorithm which gives a (nearly) optimal approximation as well as regret bounds. Our
results rely crucially on modifying the Follow the Perturbed Leader algorithm of Kalai
and Vempala [12] to incorporate the non-convexity introduced in the problem due to
submodularity as well as the robustness criteria.

1 Introduction

Constrained submodular function maximization has seen significant theoretical progress [4, 9,
1, 27] and found numerous applications especially in constrained subset selection problems [22,

∗Stanford University, Stanford. Email: anari@berkeley.edu
†Carnegie Mellon University, Email: nhaghtal@cs.cmu.edu
‡Technion, Haifa, Israel. Email: naor@cs.technion.ac.il
§Georgia Institute of Technology, Atlanta. Email: sebastian.pokutta@isye.gatech.edu
¶Georgia Institute of Technology, Atlanta. Email: mohitsinghr@gmail.com
‖Georgia Institute of Technology, Atlanta. Email: atorrico3@gatech.edu

1

19, 14, 16, 15, 17]. For instance, it is used to model the problem of picking a subset of
candidate sensor locations for spatial monitoring for phenomena such as temperature, ph
values, humidity, etc [15]. Here the goal is typically to find sensor locations that achieve the
most coverage or give most information about the observed phenomena. Moreover, there are
additional combinatorial constraints on the chosen locations, for example size, knapsack or
more general constraints.

Submodular function optimization has been a natural tool that has been applied to these
problems. Submodularity naturally captures the decreasing marginal gain in the coverage or
the information acquired about relevant phenomena by using more sensors. In particular, the
reduction in variance of observed parameters follows a diminishing returns property under
natural models of parameter distribution underlying the phenomena [7]. While submodular
optimization offers a natural approach to model these problems, there are two key shortcomings
that are not well captured: (1) The sensors are typically used to measure different parameters
at the same time. Observations for each of these parameters can be modelled via a different
submodular function. Thus, we aim to select a subset of sensor locations that are good with
respect to each of these submodular functions simultaneously. (2) Many of the phenomena
being observed are non-stationary and highly variable in certain locations. To obtain a good
solution, an approach is to use different submodular functions to model different spatial
regions. Thus, again, we aim to obtain a solution that performs well under multiple criteria
at the same time.

Robust submodular optimization naturally addresses these deficiencies by optimizing
against several functions simultaneously. We refer the reader to [15] for other applications
of robust submodular maximization in experimental design, variable selection, outbreak
detection, and feature deletion.

In this paper we consider offline and online algorithms for robust submodular maximization
under matroid constraints. In the offline version of the problem, we are given a collection
of monotone submodular functions fi : 2V → R+ on the same ground set V = [n] with
i ∈ [k] := {1, . . . , k} and also a matroid M = (V, I). The goal is to select an independent set
S ∈ I that maximizes mini∈[k] fi(S), i.e., we want to solve

max
S∈I

min
i∈[k]

fi(S).

This problem is NP-hard even when k = 1 and there has been significant progress over the
last decade for this case [4]. Special cases of the problem, e.g., when k is a constant [5], or
when the matroid is uniform [15], have been studied extensively (see related work for details).

In the online version of the problem, we are given a matroid M = (V, I). At each
time instant t, with 1 ≤ t ≤ T , we choose a subset St, then we receive a new collection of
non-negative monotone submodular functions f ti with i ∈ [k] and our reward is mini∈[k] f

t
i (St).

We assume these functions to be bounded, namely 0 ≤ f ti (S) ≤ 1 for all S ⊆ V . Our goal is to
maximize the total payoff

∑
t∈[T] mini∈[k] f

t
i (St). We compare our performance with respect

to the best static decision in hindsight, i.e., maxS∈I
∑

t∈[T] mini∈[k] f
t
i (S). Since this offline

version of the problem is NP-hard to approximate (see Section 2.1), we can only aim for a
bi-criteria algorithm even in the regret setting. Therefore, we formally analyze our randomized
algorithm by measuring the (1− ε) expected regret, defined as

Regret1−ε(T) = (1− ε) ·max
S∈I

∑
t∈[T]

min
i∈[k]

f ti (S)−
∑
t∈[T]

min
i∈[k]

E
[
f ti (St)

]
,

2

and we will design an algorithm with sub-linear (1− ε)-regret.

1.1 Our Results and Contributions

Both offline and online problems are known to be NP-hard to approximate to any polynomial
factor [15]. In this work we aim to design (nearly) optimal bi-criteria approximation algorithms
that output a set of nearly optimal objective value, while ensuring the set is the union of
few independent sets. In both settings we assume that the matroid is accessible via an
independence oracle and the submodular functions are accessible via a value oracle.

For the offline setting of the problem we obtain the following result:

Theorem 1. Let (V, I) be a matroid and let fi : 2V → R+ be a monotone submodular
function for i ∈ [k]. Then, there is a randomized polynomial time algorithm that with constant
probability returns a set SALG, such that for all i ∈ [k], for a given 0 < ε < 1,

fi(S
ALG) ≥ (1− ε) ·max

S∈I
min
j∈[k]

fj(S),

and SALG = S1 ∪ · · · ∪ Sm for m = ln(kε) +O(1), and S1, . . . , Sm ∈ I.

This result relies on extending the continuous greedy algorithm [4] by adding new in-
gredients to it so that it can work in the robust setting. The continuous greedy algorithm
uses a continuous, multilinear extension, of a discrete submodular function. Starting with
the empty solution, at each (infinitesimal) step it picks a maximum weight independent set,
where the weights are given by the gradient of the multilinear extension. We follow the
same approach but face multiple issues. The first issue is which of the k weight functions to
use. Surprisingly, this issue can be resolved by observing that, at each time step, there is
always a single independent set that achieves a good objective with respect to all k functions
simultaneously. While we cannot compute this set efficiently, we can compute a fractional set
that achieves a performance at least as good by solving a linear program (see also [5]). This
allows us to obtain a fractional independent set that simultaneously approximates all of the
functions within (1− 1

e) of the optimum providing us with a (1− 1
e)-approximation to our

objective. Unfortunately, this fractional solution cannot be rounded to an integral solution via
pipage rounding, as is the case for a single submodular function; recall that pipage rounding
uses the function explicitly. To remedy this, we go back to the continuous greedy algorithm
and run it longer, until time τ = ln(kε) + O(1). While the fractional solution obtained in
the end will no longer be a fractional independent set, we show it is in the independent set
polytope forMτ (the τ -fold union of matroidM) using the matroid union theorem. To round
the fractional solution, we now use randomized swap rounding [5] over the matroid Mτ . The
rounding gives us the desired set SALG. While the value of each function is large only in
expectation, running the algorithm up to time t with a careful truncation of the submodular
functions allows us to use Markov’s inequality to prove the desired result. We present the
main results in Section 2.

To our knowledge, for the online setting only the case k = 1 has been studied before, see
[10]. Our approach is somewhat related, but we present a novel perspective to the robust
problem by using the soft-min function in an online manner. We obtain the following main
result:

3

Theorem 2. For the online robust submodular optimization problem with parameters ε, η > 0,
there is a randomized algorithm that returns a set St for each 1 ≤ t ≤ T , such that it is the
union of at most O

(
ln 1

ε

)
independent sets and

∑
t∈[T]

min
i∈[k]

E
[
f ti (St)

]
≥ (1− ε) ·max

S∈I

∑
t∈[T]

min
i∈[k]

f ti (S)−O
(
n

5
4

√
T ln

1

ε

)
.

We remark that since the bound in the above algorithm is on the minimum, taken over
the expected function values at each iteration, the output set is a union of only O

(
ln 1

ε

)
independent sets, as compared to the offline setting where we needed the union of O

(
ln k

ε

)
independent sets. Our results rely crucially on modifying the Follow-the-Perturbed-Leader
(FPL) algorithm [12] to incorporate non-convexity arising from submodularity, as well as
the robustness criteria. The main challenge is that the robustness criteria, mini∈[k] fi, is a
non-smooth function. Moreover, in the offline approach, we are able to optimize multiple
objectives simultaneously, which is not feasible in an online setting. Our approach to deal with
these issues is to use the soft-min function 1

α ln
∑

i∈[k] e
−αfi , defined for some parameter α > 0.

While the choice of the specific soft-min function is seemingly arbitrary, a feature of the chosen
soft-min which is crucial for us is that its gradient is a convex combination of the gradients of
the fi’s. However, choosing a small α leads to a large error in the approximation, compared
to mini∈[k] fi, and choosing a large α makes the soft-min function non-smooth, leading to
large regret errors. We remedy this by optimizing both the α parameter and a discretization
parameter δ, effectively trading off the discretization error and the error arising from α. The
discretization parameter corresponds to a discretization of the continuous algorithm (see
also [26]) into the discrete setting. The algorithm then runs a different instance of the FPL
algorithm for each discretization. Putting all the FPL instances together, we arrive at the
discretized version of the same recurrence as in the offline setting, giving us the result. We
believe that the algorithm might be of independent interest to perform online learning over a
minimum of many functions. The online result appears in Section 3.

1.2 Related Work

Building on the classical work of Nemhauser et al. [20], constrained submodular maximization
problems have seen much progress recently (see for example [4, 5, 2, 3]). Robust submodular
maximization generalizes submodular function maximization under a matroid constraint for
which a (1− 1

e)-approximation is known [4] and is optimal. The problem has been studied
for constant k in [5] who give a (1 − 1

e − ε)-approximation algorithm with running time

O
(
n
k
ε

)
. Closely related to our problem is the submodular cover problem where we are given a

submodular function f , a target b ∈ R+, and the goal is to find a set S of minimum cardinality
such that f(S) ≥ b. A simple reduction shows that robust submodular maximization under
a cardinality constraint reduces to the submodular cover problem [15]. Wolsey [29] showed
that the greedy algorithm gives an O(ln n

ε)-approximation, where the output set S satisfies
f(S) ≥ (1− ε)b. Robust submodular cover under various constraints has been studied from an
algorithmic viewpoint as well as a modeling tool for problems appearing in practice [23, 15].
Orlin et al. [21] study robust submodular optimization under a different measure. Influence
maximization [13] in a network has been a successful application of submodular maximization

4

and recently, He and Kempe [11] and Chen et al. [6] study the robust influence maximization
problem.

There has been some prior work on online submodular function maximization that we
briefly review here. In [26] the authors study the budgeted maximum submodular coverage
problem and consider several feedback cases (let B ∈ Z+ be a bound for the budget): in the
full information case, a (1− 1/e)-expected regret of O(

√
BT lnn) is achieved, however, there

are B experts considered which may be deemed large. Secondly, the opaque feedback model,
which is reminiscent of the bandit model, a (1− 1/e)-expected regret of O(B(n lnn)1/3T 2/3)
is achieved. In a follow-up work [10], online submodular function maximization under both
partition matroid constraints and general matroid constraints are considered. In the former
case, an online greedy algorithm, which uses a discretization of “colors”, gives an expected
regret for full information O(C

∑K
k=1

√
T ln |Pk|), where C is the number of colors, and the

ground set is a disjoint union of K sets P1, . . . , PK . Optimizing over C, yields a (1 − 1/e)-
regret of Θ̃(K3/2T 1/4

√
OPT), where OPT = maxS∈I

∑
t∈[T] ft(S). For bandit feedback, an

extra term of O((TnCK)2/3(lnn)1/3) is incurred. Finally, Golovin et al. [10] improve this
previous result by presenting an online version of the continuous greedy algorithm, which
relies on the Follow-the-Perturbed-Leader algorithm [12] and get a (1− 1/e)-expected regret
of O(

√
T). Similar to the previous approaches, our bi-criteria online algorithm will also use

the Follow-the-Perturbed-Leader algorithm from [12] as a subroutine.

2 The Offline Case

2.1 Preliminaries

Consider a non-negative set function f : 2V → R+. Let us denote the marginal value for
any subset A ⊆ V and e ∈ V by fA(e) := f(A+ e)− f(A), where A+ e := A ∪ {e}. Recall
that f is submodular if and only if it satisfies the diminishing returns property. Namely, for
any e ∈ V and A ⊆ B ⊆ V \{e}, fA(e) ≥ fB(e). Also, we say that f is monotone if for any
A ⊆ B ⊆ V , we have f(A) ≤ f(B).

For a set function f , its multilinear extension F : [0, 1]V → R+ is defined for any y ∈ [0, 1]V

as the expected value of f(Sy), where Sy is the random set generated by drawing independently
each element e ∈ V with probability ye. Formally,

F (y) = ES∼y[f(S)] =
∑
S⊆V

f(S)
∏
e∈S

ye
∏
e/∈S

(1− ye).

Observe, this is in fact an extension of f , since for any subset S ⊆ V , we have f(S) = F (1S),
where 1S(e) = 1 if e ∈ S and zero otherwise. The multilinear extension plays a crucial
role in designing approximation algorithms for various constrained submodular optimization
problems (see for example [4]). We will now present some general properties; for a proof
we refer to [4]. For any vectors x, y ∈ RV , we denote by x ∨ y the vector obtained by taking
coordinate-wise maximum.

Fact 1. [Multilinear Extensions of Monotone Submodular Functions] Let f be a monotone
submodular function and F its multilinear extension.

5

1. By monotonicity of f , we have ∂F
∂ye
≥ 0 for any e ∈ V . This implies that for any x ≤ y

coordinate-wise, F (x) ≤ F (y). On the other hand, by submodularity of f , F is concave

in any positive direction, i.e., for any e, f ∈ V we have ∂2F
∂ye∂yf

≤ 0.

2. Throughout the paper we will denote by ∇eF (y) := ∂F (y)
∂ye

, and ∆eF (y) := ES∼y[fS(e)].

It is easy to see that ∆eF (y) = (1− ye)∇eF (y). Now, consider two points x, y ∈ [0, 1]V

and two sets sampled independently from these vectors: S ∼ x and U ∼ y. Then, by
submodularity

f(S ∪ U) ≤ f(S) +
∑
e∈V

1U (e)fS(e). (1)

3. By taking expectation over x and y in (1), we obtain

F (x ∨ y) ≤ F (x) +
∑
e∈V

ye∆eF (x) ≤ F (x) +
∑
e∈V

ye∇eF (x).

Therefore, we get the following important property

F (x ∨ y) ≤ F (x) + y · ∇F (x). (2)

Let M = (V, I) be a matroid with ground set V = [n] and a family of independent
sets I. We denote the matroid polytope by P(M) = conv{1I | I ∈ I} and for any τ , let
τP(M) = conv{τ ·1I | I ∈ I} be the scaling of the matroid polytope. Consider a fixed integer
k ≥ 1 and for each i ∈ [k] let fi : 2V → R+ be a monotone submodular function. We are
interested in studying a robust version of the well-known problem of maximizing a submodular
function under matroid constraints. Formally, we are interested in

max
S∈I

min
i∈[k]

fi(S). (3)

2.2 Offline Algorithm and Analysis

In this section, we present a procedure that achieves a tight bi-criteria approximation for the
robust submodular optimization problem (3) and prove Theorem 1. Our overall approach is
to first find a fractional solution with a desirable approximation guarantee and then round it
to an integral solution. We use a relaxation of a matroid to its convex hull to accommodate
the search for a fractional solution.

For this algorithm, we need an estimate of the value of the optimal solution which we
denote by OPT. We prove the following lemma which solves an approximate decision version
of our optimization problem. The proof of Theorem 1 follows from the lemma and a search
over an approximate value for OPT.

Lemma 1. There is a randomized polynomial time algorithm that given γ ≤ OPT and
0 < ε < 1 returns with constant probability a set SALG such that for all i ∈ [k],

fi(S
ALG) ≥ (1− ε) · γ,

where SALG =
⋃
j∈[m] Sj with m = ln(kε) +O(1) and Sj ∈ I for each j ∈ [m].

6

We first finish the proof of Theorem 1 assuming Lemma 1.

Theorem 1. Let (V, I) be a matroid and let fi : 2V → R+ be a monotone submodular
function for i ∈ [k]. Then, there is a randomized polynomial time algorithm that with constant
probability returns a set SALG, such that for all i ∈ [k], for a given 0 < ε < 1,

fi(S
ALG) ≥ (1− ε) ·max

S∈I
min
j∈[k]

fj(S),

and SALG = S1 ∪ · · · ∪ Sm for m = ln(kε) +O(1), and S1, . . . , Sm ∈ I.

Proof of Theorem 1. We apply the algorithm from Lemma 1 with approximation loss ε/2 and
with different values of γ, some of which may be larger than OPT, but at least one of them is
guaranteed to satisfy (1− ε/2) OPT ≤ γ ≤ OPT. At the end we return the set SALG from
our runs with the highest value of mini∈[k] fi(S

ALG).
Before describing the set of candidate values of γ that we try, note that if the algorithm

succeeds for the particular value of γ satisfying (1− ε/2) OPT ≤ γ ≤ OPT, then we get

min
i∈[k]

fi(S
ALG) ≥ (1− ε/2) · γ ≥ (1− ε) OPT,

and since we return the set with the highest mini∈[k] fi(S
ALG), the algorithm’s output will

have the desired approximation guarantee.
It remains to show that a set of polynomial size of values for γ exists such that one of

them satisfies (1 − ε) OPT ≤ γ ≤ OPT. To this end we simply try γ = nfi(e)(1 − ε/2)j

for all i ∈ [k], e ∈ V , and j = 0, . . . , dln1−ε/2(1/n)e. Note that there exists an index
i ∈ [k] and a set S ∈ I such that OPT = fi(S). Now let e = argmaxe∈S fi(e). Because
of submodularity and monotonicity we have 1

|S|fi(S) ≤ fi(e) ≤ fi(S). So, we can conclude

that 1 ≥ OPT /nfi(e) ≥ 1/n, which implies that j = dln1−ε/2(OPT /nfi(e))e is in the correct
interval, obtaining

(1− ε/2) OPT ≤ nfi(e)(1− ε/2)j ≤ OPT .

This finishes the proof.

We remark that the dependency of the running time on ε can be made logarithmic by
running a binary search on j as opposed to trying all j = 0, . . . , dln1−ε/2(1/n)e. We just need
to run the algorithm from Lemma 1 for each γ polynomially many times to make the failure
probability exponentially small whenever γ ≤ OPT.

The rest of this section is devoted to the proof of Lemma 1. To achieve a strong
concentration bound when rounding the fractional solution, we truncate fi to min{γ, fi}.
Hereafter, and with a slight abuse of notation, we use fi to refer to min{γ, fi}. Note that
submodularity is preserved under this truncation. Also, we denote by Fi the corresponding
multilinear extension of fi.

We describe the continuous process counterpart of the algorithm in this section and discuss
the discretization details in the Appendix (see Section 5.2).

Continuous Greedy. We start a continuous gradient step process where y(τ) represents
the point at time τ we are at. We start at y(0) = 0 and take continuous gradient steps in
direction dy

dτ = vall(y), such that vall(y) satisfies the following conditions:

7

(a) vall(y) · ∇Fi(y) ≥ γ − Fi(y) for all i ∈ [k],

(b) vall(y) ∈ P(M), and

(c) vall(y) + y ∈ [0, 1]V .

First, we show that such vall always exists. Take x∗ to be the indicator vector corresponding
to the optimal solution. For any y, v∗ = (x∗ − y) ∨ 0 is a positive direction satisfying
Equation (2), and for all i ∈ [k]:

v∗ · ∇Fi(y) ≥ Fi(y + v∗)− Fi(y) = γ − Fi(y), (4)

where the last equality holds since the truncated values of fi satisfy Fi(y) ≤ γ for all y. It is
easy to check that v∗ satisfies the rest of the constraints (a)-(c), implying that there exists a
feasible solution to the above system of linear inequalities. Therefore, we can solve a linear
program defined by these inequalities to obtain a solution vall(y).

The above continuous process goes on until time m = ln(kε) +O(1). We intentionally set
m > 1 to obtain a (fractional) solution with a higher budget, which is useful for achieving a
bi-criteria approximation. Next we show the following claim.

Claim 1. For any τ ≥ 0, y(τ) ∈ τP(M) ∩ [0, 1]V and for all i ∈ [k],

Fi(y(τ)) ≥ (1− e−τ)γ.

Proof. For any τ ≥ 0, we have

y(τ) =

∫ τ

0
vall(y(s)) ds =

∫ 1

0
τ · vall(y(τs)) ds.

So, y(τ) is a convex combination of vectors in τP(M). Moreover, (vall(y))j = 0 when yj = 1,
thus y(τ) ∈ [0, 1]V proving the first part of the claim.

For the second part, observe that we have for all i ∈ [k],

dFi(y(τ))

dτ
=
dy(τ)

dτ
· ∇Fi(y(τ)) = vall(y(τ)) · ∇Fi(y(τ)) ≥ γ − Fi(y(τ)).

Moreover, Fi(0) = 0. Now we solve the above differential equation to obtain

Fi(y(τ)) ≥ (1− e−τ)γ.

Therefore Fi(y(τ)) ≥ (1− e−τ)γ for each i ∈ [k] as claimed.

Thus, by setting m = ln(kε) +O(1), we obtain that for all i ∈ [k], Fi(y(m)) ≥
(
1− ε

k · c
)
·γ

for a desired constant c < 1. We next show how to obtain an integral solution.

8

Rounding. The next lemma summarizes our rounding. We first show that the fractional
solution at time m is contained in the matroid polytope of the t-fold union of matroid M.
We then do randomized swap rounding [5] in this matroid polytope. The truncation of the
submodular functions, as well as properties of randomized swap rounding, play a crucial role
in the proof.

Lemma 2. Let m = ln(kε) + O(1) be an integer and y(m) be the output of the continuous
greedy algorithm at time m such that Fi(y(m)) ≥

(
1− ε

k · c
)
· γ for each i ∈ [k] and some

constant c < 1. Then, there exists a polynomial time randomized algorithm that outputs a set
S such that with probability at least Ω(1) we have for each i ∈ [k]:

fi(S) ≥ (1− ε) · γ.

Moreover, S is a union of at most m independent sets in M.

Proof. Let Mm =
∨
mM be the m-fold union of matroid M, i.e., I is an independent

set in Mm if and only if I is a union of m independent sets of M. We denote by Im
the set of independent sets of Mm. The rank function of Mm is given by rMm(S) =
minA⊆S |S \A|+m · rM(A) (see [25]). We first show that y = y(m) is in the convex hull of
independent sets of matroid Mm, i.e., P(Mm). This polytope is given by P(Mm) = {x ∈
RV+ | x(S) ≤ rMm(S) ∀ S ⊆ V }, where x(S) =

∑
e∈S xe. We now prove that y ∈ P(Mm).

For any S ⊆ V and A ⊆ S, we have y(S) =
∑

e∈S\A ye + y(A) ≤ |S \A|+m · rM(A), where
the last inequality is due to the fact that ye ≤ 1 for all e, and y(A) ≤ m · rM(A) because
y ∈ mP(M) by Claim 1. Therefore, y ∈ P(Mm).

Next, we apply a randomized swap rounding [5] in matroid Mm to round the solution. A
feature of the randomized swap rounding is that it is oblivious to the specific function fi used,
and it is only a randomized function of the matroid space and the fractional solution.

Theorem 1 (Theorem II.1 of [5]). Let f be a monotone submodular function and F be its
multilinear extension. Let x ∈ P(M) be a point in a matroid polytope and R a random
independent set obtained from it by randomized swap rounding. Then, E[f(R)] ≥ F (x).

Applying Theorem 1 to fractional solution y and matroid Mm, we obtain a random set
S ∈ Im such that

E[fi(S)] ≥ Fi(y) ≥
(

1− ε

k
· c
)
· γ

for all i ∈ [k].
Due to the initial truncation, we have that fi(S) ≤ γ with probability one. Thus, using

Markov’s inequality for each i ∈ [k], we obtain that with probability at least 1− c
k , we have

fi(S) ≥ (1 − ε)γ. Therefore, taking a union bound over k functions, we obtain that with
probability at least 1− c, for all i ∈ [k], we have fi(S) ≥ (1− ε)γ, thus producing an integral
solution S with max-min value at least (1− ε)γ as claimed.

2.3 Hardness of Approximation

We now present a hardness result for a general matroid that motivates the need for a bi-criteria
approximation. We show that to achieve any polynomial approximation in polynomial time
for the robust submodular maximization problem, one needs to look for a solution in the
extended matroid, i.e., one needs to be allowed to return a set S ∈ cI where cI = {S |
∃S1, . . . , Sc ∈ I, S =

⋃
i Si}.

9

Hardness result. We provide a simple reduction from Set Cover. Consider a set cover
instance over a universal set U of k elements and a family of subsets A ⊆ 2U with |A| = n ≤ 2k

admitting a set cover of size `. Construct a robust submodular maximization instance as
follows. Let M = (V, I) be a uniform matroid over A of rank `, where V = A and
I = {B ⊆ A : |B| ≤ `}, i.e., subfamilies with at most ` sets in A. For any j ∈ U , define
fj : 2A → R+ as follows: for any B ⊆ A, fj(B) = 1 if there exists some S ∈ B such that j ∈ S
and zero otherwise. Clearly, fj is monotone and submodular for all j ∈ [k]. Moreover, any
`-cover C ⊆ A for U corresponds to a solution of value 1 for all fj . Conversely, any solution
of value 1 for all fj corresponds to a cover. By the hardness of approximation of Set Cover,
a polynomial time algorithm cannot return a solution B ∈ ((1− ε) lnn)I for any ε > 0 that
achieves an objective function value greater than zero, unless P = NP [8]. Thus, we have the
following lemma.

Lemma 3. Unless P = NP , for any ε > 0, there is no polynomial time algorithm for the
robust submodular maximization problem under matroid constraints that returns a solution S
whose objective is within any positive factor of the optimum and S is a union of (1− ε) lnn
independent sets.

Necessity of monotonicity. In light of the approximation algorithms for non-monotone
submodular function maximization under matroid constraints (see, e.g., [18]), one might hope
that an analogous bi-criteria approximation algorithm could exist for robust non-monotone
submodular function maximization. However, we show that even without any matroid
constraints, getting any approximation in the non-monotone case is NP -hard.

Lemma 4. Unless P = NP , no polynomial time algorithm can output a set S̃ ⊆ V given
general submodular functions f1, . . . , fk such that mini∈[k] fi(S̃) is within a positive factor of
maxS⊆V mini∈[k] fi(S).

Proof. We use a reduction from Sat. Suppose that we have a Sat instance with variables
x1, . . . , xn. We let V = {1, . . . , n}. For every clause in the Sat instance we introduce a
nonnegative linear (and by extension submodular) function. For a clause

∨
i∈A xi ∨

∨
i∈B xi

define
f(S) := |S ∩A|+ |B \ S|.

It is easy to see that f is linear and nonnegative. If we let S be the set of true variables in a
truth assignment, then it is easy to see that f(S) > 0 if and only if the corresponding clause
is satisfied. Therefore, finding a set S such that all functions f corresponding to different
clauses are positive is as hard as finding a satisfying assignment for the Sat instance.

3 The Online Case

3.1 Preliminaries

Consider a set of k twice differentiable, real-valued functions g1, . . . , gk. Let gmin be the
minimum among these functions, i.e., for each point x in the domain, define gmin(x) :=
mini∈[k] gi(x). This function can be approximated by using the so-called soft-min function H

10

defined as follows

H(x) = − 1

α
ln
∑
i∈[k]

e−αgi(x).

where α > 0 is a fixed parameter. Some key properties of this function are stated in the
following lemma.

Lemma 5. For any set of k twice differentiable, real-valued functions g1, . . . , gk, the soft-min
function H satisfies the following properties:

1. Bounds:

gmin(x)− ln(k)

α
≤ H(x) ≤ gmin(x). (5)

2. Gradient:
∇H(x) =

∑
i∈[k]

pi(x)∇gi(x), (6)

where pi(x) := e−αgi(x)/
∑

j∈[k] e
−αgj(x). Clearly, if ∇gi ≥ 0 for all i ∈ [k], then ∇H ≥ 0.

3. Hessian:

∂2H(x)

∂xf∂xe
=
∑
i∈[k]

pi(x)

(
−α∂gi(x)

∂xf

∂gi(x)

∂xe
+
∂2gi(x)

∂xf∂xe

)

+ α

∑
i∈[k]

pi(x)
∂gi(x)

∂xe

∑
i∈[k]

pi(x)
∂gi(x)

∂xf

 (7)

Moreover, if for all i ∈ [k] we have
∣∣∣ ∂gi∂xe

∣∣∣ ≤ L1, and
∣∣∣ ∂2gi
∂xe∂xf

∣∣∣ ≤ L2, then
∣∣∣ ∂2H
∂xe∂xf

∣∣∣ ≤
2αL2

1 + L2.

4. Comparing the average of the gi functions with H: given T > 0 we have

H(x) ≤
∑
i∈[k]

pi(x)gi(x) ≤ H(x) +
n+ lnT

α
+

ln(k)

α
+
ke−n

T
. (8)

So, for α > 0 sufficiently large
∑

i∈[k] pi(x)gi(x) is a good approximation of H(x).

For the proof we refer the interested reader to the Appendix. We will need the following
lemma to prove Theorem 2.

Lemma 6. Fix parameter δ > 0. Consider T sets of k twice-differentiable functions, namely
{g1i }i∈[k], . . . , {gTi }i∈[k]. Assume for all t ∈ [T] and i ∈ [k], we have 0 ≤ gti(x) ≤ 1 for any

x in the domain. Define the corresponding sequence of soft-min functions H1, . . . ,HT , with
a common parameter α > 0. Then, any sets of points {xt}t∈[T], {yt}t∈[T] ⊆ [0, 1]V with
|xt − yt| ≤ δ satisfy∑

t∈[T]

Ht(yt)−
∑
t∈[T]

Ht(xt) ≥
∑
e∈V

∑
t∈[T]

∇eHt(xt)(yte − xte)−O(Tn3δ2α).

11

3.2 Online Algorithm and Analysis

By relying on the FPL algorithm 2 (see Appendix), our goal is to design a bi-criteria online
algorithm that in every time step chooses a subset St such that it is the union of at most
O
(
ln 1

ε

)
independent sets and the (1− ε)-regret is sub-linear. In each time step t, we will use

the soft-min function Ht(y) = − 1
α ln

∑
i∈[k] e

−αF ti (y) defined by the corresponding k multilinear

extensions F ti to generate a new decision set St. Similarly to the FPL algorithm (see Section
5.1), we need to assume some conditions regarding Ht for any t ∈ [T] and P(M):

1. bounded diameter of P(M), i.e., for all y, y′ ∈ P(M), ‖y − y′‖1 ≤ D;

2. for all x, y ∈ P(M), we require
∣∣y ·∆Ht(x)

∣∣ ≤ L;

3. for all y ∈ P(M), we require ‖∆Ht(y)‖1 ≤ A,

where ∆eH
t(y) = (1 − ye)∇eHt(y) =

∑
i∈[k] p

t
i(y)∆eF

t
i (y) for every e ∈ V , t ∈ [T], and

∆eF
t
i (y) = ES∼y[f ti (S + e)− f ti (S)]. Recall we assume that 0 ≤ f ti ≤ 1 in the online case, so

0 ≤ F ti (y) ≤ 1 for every i ∈ [k] as well.

Algorithm 1 OnlineSoftMin

Input: η, ε > 0, α = n2T 2, δ = n−6T−3.
Output: Sequence of sets S1, . . . , ST .
1: Sample p ∼ [0, 1/η]V

2: for t = 1 to T do
3: yt0 = 0
4: for τ ∈ {δ, 2δ, . . . , ln 1

ε} do

5: ztτ = argmaxz∈P(M)

[∑t−1
s=1 ∆Hs(ysτ−δ) + p

]>
z

6: Update ytτ,e = ytτ−δ,e + δ(1− ytτ−δ,e)ztτ,e for each e ∈ V .

7: Play St by doing randomized swap rounding on yt
ln 1

ε

, receive functions f ti .

We state the guarantee of the online algorithm in the following theorem which directly
implies Theorem 2 since we have L ≤ n, A ≤ n and D ≤

√
n.

Theorem 3. For the online robust submodular optimization problem with parameters ε, η > 0,
there is a randomized algorithm that returns a set St for each 1 ≤ t ≤ T , such that it is the
union of at most O

(
ln 1

ε

)
independent sets and

∑
t∈[T]

min
i∈[k]

E
[
f ti (St)

]
≥ (1− ε) ·max

S∈I

∑
t∈[T]

min
i∈[k]

f ti (S)−O
(
Rη
√
T ln

1

ε

)
.

where Rη = ηLAT + D
η . Moreover, for η =

√
D/LAT , we get Regret1−ε(T) = O(

√
T ln 1

ε).

Proof. Consider the sequence of multilinear extensions {F 1
i }i∈[k], . . . , {F Ti }i∈[k] derived from

the monotone submodular functions f ti obtained during the dynamic process. Since f ti is
monotone for all i ∈ [k], we can assume that 0 ≤ F ti (y) ≤ 1 for any y ∈ [0, 1]n and i ∈ [k].
Recall that for α = n2T 2 we denote by Ht(y) = − 1

α ln
∑

i∈[k] e
−αF ti (y) the soft-min function

12

defined by {F ti }i∈[k]. Fix τ ∈ {δ, 2δ, . . . , ln 1
ε} with δ = n−6T−3. According to the update in

Algorithm 1, {ytτ}t∈[T] and {ytτ−δ}t∈[T] satisfy conditions in Lemma 6. Thus, we obtain∑
t∈[T]

Ht(ytτ)−Ht(ytτ−δ) ≥
∑
t∈[T]

∇Ht(ytτ−δ) · (ytτ − ytτ−δ)−O(Tn3δ2α).

Then, since ytτ,e = ytτ−δ,e + δ(1− ytτ−δ,e)ztτ,e, we get∑
t∈[T]

Ht(ytτ)−Ht(ytτ−δ) ≥ δ
∑
t∈[T]

∑
e∈V
∇eHt(ytτ−δ)(1− ytτ−δ,e)ztτ,e −O(Tn3δ2α)

= δ
∑
t∈[T]

∆Ht(ytτ−δ) · ztτ −O(Tn3δ2α). (9)

Observe that an FPL algorithm is implemented for each τ , so we can state a regret bound for
each τ by using Theorem 2 (see Appendix). Specifically,

max
z∈P(M)

E

∑
t∈[T]

∆Ht(ytτ−δ) · z

− E

∑
t∈[T]

∆Ht(ytτ−δ) · ztτ

 ≤ Rη,

where Rη is the regret guarantee from Theorem 2 for a given η > 0. By taking expectation in
(9) and using the regret bound, we obtain

E

[∑
t∈[T]

Ht(ytτ)−Ht(ytτ−δ)

]
≥ δ

 max
z∈P(M)

E

∑
t∈[T]

∆Ht(ytτ−δ) · z

− δRη −O(Tn3δ2α)

≥ δE

∑
t∈[T]

Ht(x∗)−
∑
i∈[k]

pti(y
t
τ−δ)F

t
i (y

t
τ−δ)

− δRη −O(Tn3δ2α), (10)

where x∗ is the true optimum for maxx∈P(M)

∑
t∈[T] mini∈[k] F

t
i (x). Observe that (10) follows

from monotonicity and submodularity of each f ti :

∆Ht(y)>z =
∑
i∈[k]

pti(y)∆F ti (y) · z

≥
∑
i∈[k]

pti(y)F ti (x
∗)−

∑
i∈[k]

pti(y)F ti (y)

≥ F tmin(x∗)−
∑
i∈[k]

pti(y)F ti (y)

≥ Ht(x∗)−
∑
i∈[k]

pti(y)F ti (y).

By applying (8) in expression (10) we get

E

∑
t∈[T]

Ht(ytτ)−Ht(ytτ−δ)

 ≥ δE

∑
t∈[T]

Ht(x∗)−Ht(ytτ−δ)

− δRη −O(Tn3δ2α)

−δT
(
n+ lnT

α
− ln(k)

α
− ke−n

T

)
, (11)

13

Given the choice of α and δ, the last two terms in the right-hand side of (11) is small, so we
can state the following

∑
t∈[T]

Ht(x∗)− E

∑
t∈[T]

Ht(ytτ)

 ≤ (1− δ)

∑
t∈[T]

Ht(x∗)− E

∑
t∈[T]

Ht(ytτ−δ)

+ 2δRη

By iterating 1
δ ln 1

ε times in τ , we get

∑
t∈[T]

Ht(x∗)− E

∑
t∈[T]

Ht(yt
ln 1

ε

)

 ≤ (1− δ)
1
δ
ln 1

ε

∑
t∈[T]

Ht(x∗)−
∑
t∈[T]

Ht(yt0)

+ 2Rη ln
1

ε

≤ ε

∑
t∈[T]

Ht(x∗) +
ln(k)

n2T

+ 2Rη ln
1

ε
,

where in the second inequality we used (1− δ) ≤ e−δ. Given that the term ε ln(k)
n2T

is small (for
T and n sufficiently large) we can bound it by Rη ln 1

ε . Since α is sufficiently large, we can
apply (5) to obtain the following regret bound

(1− ε) ·
∑
t∈[T]

min
i∈[k]

F ti (x
∗)− E

∑
t∈[T]

min
i∈[k]

F ti

(
yt
ln 1

ε

) ≤ 3Rη ln
1

ε
.

Since we are doing randomized swap rounding on each yt
ln 1

ε

, Theorem 1 shows that there

is a random set St that is independent in Mln 1
ε

(i.e., St is the union of at most O(ln(1/ε))

independent sets in M) such that E
[
f ti (St)

]
≥ F ti

(
yt
ln 1

ε

)
. Thus we obtain

(1− ε) ·max
S∈I

∑
t∈[T]

min
i∈[k]

f ti (S)−
∑
t∈[T]

min
i∈[k]

E
[
f ti (St)

]
≤ 3Rη ln

1

ε
.

Observation 1. Theorem 2 can be easily extended to adaptive adversaries by sampling in
each stage t ∈ [T] a different vector p ∼ [0, 1/η]V as shown in [12].

4 Acknowledgements

This research was partially supported by NSF Award CCF-1717947, NSF CAREER award
CMMI-1452463, an IBM Ph.D. fellowship, and a Microsoft Research Ph.D. fellowship.

References

[1] N. Buchbinder and M. Feldman. Deterministic algorithms for submodular maximization
problems. In Proceedings of the Twenty-seventh Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’16, pages 392–403, 2016.

14

[2] N. Buchbinder, M. Feldman, J. S. Naor, and R. Schwartz. Submodular maximization with
cardinality constraints. In Proceedings of the twenty-fifth annual ACM-SIAM symposium
on Discrete algorithms, pages 1433–1452. Society for Industrial and Applied Mathematics,
2014.

[3] N. Buchbinder, M. Feldman, and R. Schwartz. Comparing apples and oranges: Query
trade-off in submodular maximization. Mathematics of Operations Research, 42(2):308–
329, 2016.

[4] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák. Maximizing a monotone submodular
function subject to a matroid constraint. SIAM Journal on Computing, 40(6):1740–1766,
2011.

[5] C. Chekuri, J. Vondrak, and R. Zenklusen. Dependent randomized rounding via exchange
properties of combinatorial structures. In Foundations of Computer Science (FOCS),
2010 51st Annual IEEE Symposium on, pages 575–584. IEEE, 2010.

[6] W. Chen, T. Lin, Z. Tan, M. Zhao, and X. Zhou. Robust influence maximization. In
Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’16, pages 795–804, New York, NY, USA, 2016. ACM.

[7] A. Das and D. Kempe. Algorithms for subset selection in linear regression. In Proceedings
of the fortieth annual ACM symposium on Theory of computing, pages 45–54. ACM,
2008.

[8] I. Dinur and D. Steurer. Analytical approach to parallel repetition. In Proceedings of the
forty-sixth annual ACM symposium on Theory of computing, pages 624–633. ACM, 2014.

[9] A. Ene and H. L. Nguyen. Constrained submodular maximization: Beyond 1/e. In
2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), pages
248–257, 2016.

[10] D. Golovin, A. Krause, and M. Streeter. Online submodular maximization under a
matroid constraint with application to learning assignments. Technical Report, arXiv,
2014.

[11] X. He and D. Kempe. Robust influence maximization. In Proceedings of the 22Nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16,
pages 885–894, New York, NY, USA, 2016. ACM.

[12] A. Kalai and S. Vempala. Efficient algorithms for online decision problems. Journal of
Computer and System Sciences, 71(3):291 – 307, 2005.

[13] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a
social network. Theory of Computing, 11(4):105–147, 2015.

[14] A. Krause and C. Guestrin. Near-optimal nonmyopic value of information in graphical
models. In 21st Conference on Uncertainty in Artificial Intelligence (UAI), page 5, 2005.

[15] A. Krause, H. B. McMahan, C. Guestrin, and A. Gupta. Robust submodular observation
selection. Journal of Machine Learning Research, 9(Dec):2761–2801, 2008.

15

[16] A. Krause, R. Rajagopal, A. Gupta, and C. Guestrin. Simultaneous placement and
scheduling of sensors. In Proceedings of the 2009 International Conference on Information
Processing in Sensor Networks, pages 181–192, 2009.

[17] A. Krause, A. Singh, and C. Guestrin. Near-optimal sensor placements in gaussian
processes: Theory, efficient algorithms and empirical studies. J. Mach. Learn. Res.,
9:235–284, June 2008.

[18] J. Lee, V. S. Mirrokni, V. Nagarajan, and M. Sviridenko. Non-monotone submodular
maximization under matroid and knapsack constraints. In Proceedings of the forty-first
annual ACM symposium on Theory of computing, pages 323–332. ACM, 2009.

[19] H. Lin and J. A. Bilmes. How to select a good training-data subset for transcription:
submodular active selection for sequences. In INTERSPEECH, 2009.

[20] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for
maximizing submodular set functions—i. Mathematical Programming, 14(1):265–294,
1978.

[21] J. B. Orlin, A. S. Schulz, and R. Udwani. Robust monotone submodular function maxi-
mization. In Proceedings of the 18th International Conference on Integer Programming
and Combinatorial Optimization - Volume 9682, IPCO 2016, pages 312–324, New York,
NY, USA, 2016. Springer-Verlag New York, Inc.

[22] T. Powers, J. Bilmes, D. W. Krout, and L. Atlas. Constrained robust submodular
sensor selection with applications to multistatic sonar arrays. In 2016 19th International
Conference on Information Fusion (FUSION), pages 2179–2185, July 2016.

[23] T. Powers, J. Bilmes, S. Wisdom, D. W. Krout, and L. Atlas. Constrained robust
submodular optimization. In NIPS OPT2016 workshop, 2016.

[24] A. Rakhlin and A. Tewari. Lecture notes on online learning. Draft, April, 2009.

[25] A. Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer
Science & Business Media, 2003.

[26] M. Streeter and D. Golovin. An online algorithm for maximizing submodular functions.
In Proceedings of the 21st International Conference on Neural Information Processing
Systems, NIPS’08, pages 1577–1584, 2008.

[27] M. Sviridenko. A note on maximizing a submodular set function subject to a knapsack
constraint. Operations Research Letters, 32(1):41 – 43, 2004.

[28] J. Vondrák. Optimal approximation for the submodular welfare problem in the value
oracle model. In Proceedings of the fortieth annual ACM symposium on Theory of
computing, pages 67–74. ACM, 2008.

[29] L. A. Wolsey. An analysis of the greedy algorithm for the submodular set covering
problem. Combinatorica, 2(4):385–393, 1982.

16

5 Appendix

Proof Lemma 5. We will just prove properties 1 and 4, since the rest is an straightforward
calculation.

1. First, for all i ∈ [k] we have e−αgi(x) ≤ e−αgmin(x). Thus,

H(x) = − 1

α
ln
∑
i∈[k]

e−αgi(x) ≥ − 1

α
ln
(
ke−αgmin(x)

)
= gmin(x)− ln(k)

α

On the other hand,
∑

i∈[k] e
−αgi(x) ≥ e−αgmin(x). Hence,

H(x) ≤ − 1

α
ln
(
e−αgmin(x)

)
= gmin(x).

4. Let us consider sets A1 = {i ∈ [k] : gi(x) ≤ gmin(x) + (n + lnT)/α} and A2 = {i ∈
[k] : gi(x) > gmin(x) + (n+ lnT)/α}. Our intuitive argument is the following: when α
is sufficiently large, those pi(x)’s with i ∈ A2 are exponentially small, and pi(x)’s with
i ∈ A1 go to a uniform distribution over elements in A1. First, observe that for each
i ∈ A2 we have

pi(x) =
e−αgi(x)∑
i∈[k] e

−αgi(x)
<
e−α[gmin(x)+(n+lnT)/α]

e−αgmin(x)
=
e−n

T
,

so
∑

i∈A2
pi(x)gi(x) ≤ ke−n

T . On the other hand, for any i ∈ A1 we have

∑
i∈A1

pi(x)gi(x) ≤
(
gmin(x) +

n+ lnT

α

)∑
i∈A1

pi(x) ≤ H(x) +
n+ lnT

α
+

ln(k)

α

where in the last inequality we used (5). Therefore,

∑
i∈[k]

pi(x)gi(x) ≤ H(x) +
n+ lnT

α
+

ln(k)

α
+
ke−n

T
.

Finally, the other inequality is clear since
∑

i∈[k] pi(x)gi(x) ≥ gmin(x) ≥ H(x).

Proof Lemma 6. For every t ∈ [T] define a matroidMt = (V ×{t}, I ×{t}) = (Vt, It). Given
this, the union matroid is given by a ground set V [T] =

⋃T
t=1 Vt, and independent set family

I [T] = {S ⊆ V 1:T : S ∩ Vt ∈ It}. Define H(X) :=
∑

t∈[T]H
t(xt) for any matrix X ∈ P(M)T ,

where xt denotes the t-th column of X. Clearly, ∇(e,t)H(X) = ∇eHt(xt). Moreover, the
Hessian corresponds to

∇2
(e,t),(f,s)H(X) =

{
0 if t 6= s

∇2
e,fHt(xt) if t = s

17

Consider any X,Y ∈ P(M)T with |yte − xte| ≤ δ. Therefore, a Taylor’s expansion of H gives

H(Y) = H(X) +∇H(X) · (Y −X) +
1

2
(Y −X)>∇2H(ξ) · (Y −X)

where ξ is on the line between X and Y . If we expand the previous expression we obtain

H(Y)−H(X) =
∑
e∈V

∑
t∈[T]

∇eHt(xt)(yte − xte) +
1

2

∑
e,f∈V

∑
t∈[T]

(yte − xte)∇2
e,fH

t(ξ)(ytf − xtf)

Finally, by using property 3 in Lemma 5

H(Y)−H(X) ≥
∑
e∈V

T∑
t=1

∇eHt(xt)(yte − xte)−O(Tn3δ2α),

which is equivalent to∑
t∈[T]

Ht(yt)−
∑
t∈[T]

Ht(xt) ≥
∑
e∈V

∑
t∈[T]

∇eHt(xt)(yte − xte)−O(Tn3δ2α).

5.1 Follow-the-Perturbed-Leader algorithm

In this section, we briefly recall the well-known Follow-the-Perturbed-Leader (FPL) algorithm
introduced in [12] and used in many online optimization problems (see e.g., [24]). The classical
online learning framework is as follows: Consider a dynamic process over T time steps. In
each time step t ∈ [T], a decision-maker has to choose a point dt ∈ D from a fixed (possibly
infinite) set of actions D ⊆ Rn, then an adversary chooses a vector st from a set S. Finally,
the player observes vector st and receives reward st ·dt, and the process continues. The goal of
the player is to maximize the total reward

∑T
t=1 dt · st, and we compare her performance with

respect to best single action picked in hindsight, i.e., maxd∈D
∑T

t=1 st · d. This performance
with respect to the best single action in hindsight is called (expected) regret, formally:

Regret(T) = max
d∈D

∑
t∈[T]

st · d− E

∑
t∈[T]

dt · st

 .
Kalai and Vempala [12] showed that even if one has only access to a linear programming
oracle for D, i.e., we can solve maxd∈D s · d for any s ∈ S, then the FPL algorithm 2 achieves
sub-linear regret, specifically O(

√
T).

In order to state the main result in [12], we need the following. We assume that the
decision set D has diameter at most D, i.e., for all d, d′ ∈ D, ‖d− d′‖1 ≤ D. Further, for all
d ∈ D and s ∈ S we assume that the absolute loss is bounded by L, i.e., |d · s| ≤ L and that
the `1-norm of the loss vectors is bounded by A, i.e., for all s ∈ S, ‖s‖1 ≤ A.

Theorem 2 ([12]). Let s1, . . . , sT ∈ S be a sequence of states. Running the FPL algorithm 2
with parameter ε ≤ 1 ensures regret

Regret(T) ≤ ηLAT +
D

η
.

Moreover, if we choose η =
√
D/LAT , then Regret(T) ≤ 2

√
DLAT = O(

√
T).

18

Algorithm 2 Follow-the-Perturbed-Leader (FPL) [12]

Input: Parameter η > 0
Output: Sequence of decisions d1, . . . , dT
1: Sample p ∼ [0, 1/η]n.
2: for t = 1 to T do

3: Play dt = argmaxd∈D

(∑t−1
j=1 sj + p

)>
d.

5.2 Discretized Algorithm

In this section we describe how the continuous greedy process described in Section 2.2 can
be discretized and implemented. Most of this section is directly adapted from [28]. The two
main ingredients needed to implement the continuous greedy process are discretization of
time and estimation of the values ∇Fi(y) and Fi(y) using random sampling. We assume time
is discretized in steps of length δ. In order to estimate Fi(y) we sample a random set Sy
where each element e is picked independently with probability ye. We average the observed
values of fi(Sy) for M such samples, where M is large enough. We use a similar strategy for
estimating ∇Fi(y). An outline of the algorithm follows.

1. Start with τ = 0 and y(τ) = 0.

2. Use random sampling to get estimates ˜∇Fi(y) and ˜Fi(y) for ∇Fi(y) and Fi(y) respec-
tively.

3. Solve the following linear program to find the direction of movement vall.

maxu,vall u
subject to vall ∈ P(M),

y(τ) + vall ∈ [0, 1]V ,

vall · ˜∇Fi(y) ≥ γ − ˜Fi(y) + u ∀i ∈ [k].

4. Let y(τ+δ) = y(τ)+δvall. Set τ to τ+δ and repeat until the desired time τ = ln(kε)+O(1)
is reached.

Note that we still have y(τ) ∈ τP(M)∩ [0, 1]V , i.e., the first part of Claim 1 is still correct.
We prove an approximate version of the second part next.

Since fi(S) lies between 0 and γ we can take M to be large enough so that the error of
estimation in ˜∇Fi(y) and ˜Fi(y) is inverse-polynomially small relative to γ with very high
probability; see the proof of Lemma 4.2 in [28] for details of the Chernoff bound. This ensures
that the vall that we find satisfies for all i ∈ [k],

vall · ∇Fi(y) ≥ γ − Fi(y)− γ/poly(n, k).

When δ is small enough the second order effects of the changes in Fi(y) can be ignored when
going from τ to τ + δ. This is formalized by the following inequality whose proof is identical
to the proof of Lemma 4.2 in [28].

Fi(y + δvall)− Fi(y) ≥ δ(1− nδ)vall · ∇Fi(y).

19

It now follows that

Fi(y + δvall)− Fi(y) ≥ δ(1− nδ)(γ − Fi(y)− γ/poly(n, k)).

Let γ̃ = (1− nδ)(1− 1/ poly(n, k))γ. Then it follows that

γ̃ − Fi(y + δvall) ≤ (1− δ)(γ̃ − Fi(y)),

and by induction
γ̃ − Fi(y(τ)) ≤ γ̃(1− δ)τ/δ,

or equivalently
Fi(y(τ)) ≥ (1− (1− δ)τ/δ)γ̃ ≥ (1− e−τ)γ̃.

By setting δ inverse-polynomially small enough and M polynomially large enough we can
ensure that the relative error between γ̃ and γ is inverse-polynomially small which gives us an
approximate version of Claim 1.

20

	Introduction
	Our Results and Contributions
	Related Work

	The Offline Case
	Preliminaries
	Offline Algorithm and Analysis
	Hardness of Approximation

	The Online Case
	Preliminaries
	Online Algorithm and Analysis

	Acknowledgements
	Appendix
	Follow-the-Perturbed-Leader algorithm
	Discretized Algorithm

